Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1497)

Side by Side Diff: src/opts/SkOpts_sse41.cpp

Issue 1532613002: AVX 2 SrcOver blits: color32, blitmask. (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: i'd have sworn other_cflags used to work Created 4 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « src/opts/SkOpts_avx2.cpp ('k') | no next file » | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 /* 1 /*
2 * Copyright 2015 Google Inc. 2 * Copyright 2015 Google Inc.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license that can be 4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file. 5 * found in the LICENSE file.
6 */ 6 */
7 7
8 #include "SkOpts.h" 8 #include "SkOpts.h"
9 9
10 #define SK_OPTS_NS sk_sse41 10 #define SK_OPTS_NS sk_sse41
11 #include "SkBlurImageFilter_opts.h" 11 #include "SkBlurImageFilter_opts.h"
12 12
13 #ifndef SK_SUPPORT_LEGACY_X86_BLITS 13 #ifndef SK_SUPPORT_LEGACY_X86_BLITS
14 14
15 // This file deals mostly with unpacked 8-bit values, 15 namespace sk_sse41 {
16 // i.e. values between 0 and 255, but in 16-bit lanes with 0 at the top.
17 16
18 // So __m128i typically represents 1 or 2 pixels, and m128ix2 represents 4. 17 // An SSE register holding at most 64 bits of useful data in the low lanes.
19 struct m128ix2 { __m128i lo, hi; }; 18 struct m64i {
19 __m128i v;
20 /*implicit*/ m64i(__m128i v) : v(v) {}
21 operator __m128i() const { return v; }
22 };
20 23
21 // unpack{lo,hi}() get our raw pixels unpacked, from half of 4 packed pixels to 2 unpacked pixels. 24 // Load 4, 2, or 1 constant pixels or coverages (4x replicated).
22 static inline __m128i unpacklo(__m128i x) { return _mm_cvtepu8_epi16(x); } 25 static __m128i next4(uint32_t val) { return _mm_set1_epi32(val); }
23 static inline __m128i unpackhi(__m128i x) { return _mm_unpackhi_epi8(x, _mm_setz ero_si128()); } 26 static m64i next2(uint32_t val) { return _mm_set1_epi32(val); }
27 static m64i next1(uint32_t val) { return _mm_set1_epi32(val); }
24 28
25 // pack() converts back, from 4 unpacked pixels to 4 packed pixels. 29 static __m128i next4(uint8_t val) { return _mm_set1_epi8(val); }
26 static inline __m128i pack(__m128i lo, __m128i hi) { return _mm_packus_epi16(lo, hi); } 30 static m64i next2(uint8_t val) { return _mm_set1_epi8(val); }
31 static m64i next1(uint8_t val) { return _mm_set1_epi8(val); }
27 32
28 // These nextN() functions abstract over the difference between iterating over 33 // Load 4, 2, or 1 variable pixels or coverages (4x replicated),
29 // an array of values and returning a constant value, for uint8_t and uint32_t. 34 // incrementing the pointer past what we read.
30 // The nextN() taking pointers increment that pointer past where they read. 35 static __m128i next4(const uint32_t*& ptr) {
31 // 36 auto r = _mm_loadu_si128((const __m128i*)ptr);
32 // nextN() returns N unpacked pixels or 4N unpacked coverage values. 37 ptr += 4;
33 38 return r;
34 static inline __m128i next1(uint8_t val) { return _mm_set1_epi16(val); }
35 static inline __m128i next2(uint8_t val) { return _mm_set1_epi16(val); }
36 static inline m128ix2 next4(uint8_t val) { return { next2(val), next2(val) }; }
37
38 static inline __m128i next1(uint32_t val) { return unpacklo(_mm_cvtsi32_si128(va l)); }
39 static inline __m128i next2(uint32_t val) { return unpacklo(_mm_set1_epi32(val)) ; }
40 static inline m128ix2 next4(uint32_t val) { return { next2(val), next2(val) }; }
41
42 static inline __m128i next1(const uint8_t*& ptr) { return _mm_set1_epi16(*ptr++) ; }
43 static inline __m128i next2(const uint8_t*& ptr) {
44 auto r = _mm_cvtsi32_si128(*(const uint16_t*)ptr);
45 ptr += 2;
46 const int _ = ~0;
47 return _mm_shuffle_epi8(r, _mm_setr_epi8(0,_,0,_,0,_,0,_, 1,_,1,_,1,_,1,_));
48 } 39 }
49 static inline m128ix2 next4(const uint8_t*& ptr) { 40 static m64i next2(const uint32_t*& ptr) {
50 auto r = _mm_cvtsi32_si128(*(const uint32_t*)ptr); 41 auto r = _mm_loadl_epi64((const __m128i*)ptr);
51 ptr += 4;
52 const int _ = ~0;
53 auto lo = _mm_shuffle_epi8(r, _mm_setr_epi8(0,_,0,_,0,_,0,_, 1,_,1,_,1,_,1,_ )),
54 hi = _mm_shuffle_epi8(r, _mm_setr_epi8(2,_,2,_,2,_,2,_, 3,_,3,_,3,_,3,_ ));
55 return { lo, hi };
56 }
57
58 static inline __m128i next1(const uint32_t*& ptr) { return unpacklo(_mm_cvtsi32_ si128(*ptr++)); }
59 static inline __m128i next2(const uint32_t*& ptr) {
60 auto r = unpacklo(_mm_loadl_epi64((const __m128i*)ptr));
61 ptr += 2; 42 ptr += 2;
62 return r; 43 return r;
63 } 44 }
64 static inline m128ix2 next4(const uint32_t*& ptr) { 45 static m64i next1(const uint32_t*& ptr) {
65 auto packed = _mm_loadu_si128((const __m128i*)ptr); 46 auto r = _mm_cvtsi32_si128(*ptr);
66 ptr += 4; 47 ptr += 1;
67 return { unpacklo(packed), unpackhi(packed) }; 48 return r;
68 } 49 }
69 50
70 // Divide by 255 with rounding. 51 // xyzw -> xxxx yyyy zzzz wwww
71 // (x+127)/255 == ((x+128)*257)>>16. 52 static __m128i replicate_coverage(__m128i xyzw) {
72 // Sometimes we can be more efficient by breaking this into two parts. 53 const uint8_t mask[] = { 0,0,0,0, 1,1,1,1, 2,2,2,2, 3,3,3,3 };
73 static inline __m128i div255_part1(__m128i x) { return _mm_add_epi16(x, _mm_set1 _epi16(128)); } 54 return _mm_shuffle_epi8(xyzw, _mm_load_si128((const __m128i*)mask));
74 static inline __m128i div255_part2(__m128i x) { return _mm_mulhi_epu16(x, _mm_se t1_epi16(257)); }
75 static inline __m128i div255(__m128i x) { return div255_part2(div255_part1(x)); }
76
77 // (x*y+127)/255, a byte multiply.
78 static inline __m128i scale(__m128i x, __m128i y) {
79 return div255(_mm_mullo_epi16(x, y));
80 } 55 }
81 56
82 // (255 - x). 57 static __m128i next4(const uint8_t*& ptr) {
83 static inline __m128i inv(__m128i x) { 58 auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint32_t*)ptr));
84 return _mm_xor_si128(_mm_set1_epi16(0x00ff), x); // This seems a bit faster than _mm_sub_epi16. 59 ptr += 4;
60 return r;
85 } 61 }
86 62 static m64i next2(const uint8_t*& ptr) {
87 // ARGB argb -> AAAA aaaa 63 auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint16_t*)ptr));
88 static inline __m128i alphas(__m128i px) { 64 ptr += 2;
89 const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so thi s is typically 6. 65 return r;
90 const int _ = ~0; 66 }
91 return _mm_shuffle_epi8(px, _mm_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, a+8,_,a+8 ,_,a+8,_,a+8,_)); 67 static m64i next1(const uint8_t*& ptr) {
68 auto r = replicate_coverage(_mm_cvtsi32_si128(*ptr));
69 ptr += 1;
70 return r;
92 } 71 }
93 72
94 // For i = 0...n, tgt = fn(dst,src,cov), where Dst,Src,and Cov can be constants or arrays. 73 // For i = 0...n, tgt = fn(dst,src,cov), where Dst,Src,and Cov can be constants or arrays.
95 template <typename Dst, typename Src, typename Cov, typename Fn> 74 template <typename Dst, typename Src, typename Cov, typename Fn>
96 static inline void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov, Fn&& fn) { 75 static void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov , Fn&& fn) {
97 // We don't want to muck with the callers' pointers, so we make them const a nd copy here. 76 // We don't want to muck with the callers' pointers, so we make them const a nd copy here.
98 Dst d = dst; 77 Dst d = dst;
99 Src s = src; 78 Src s = src;
100 Cov c = cov; 79 Cov c = cov;
101 80
102 // Writing this as a single while-loop helps hoist loop invariants from fn. 81 // Writing this as a single while-loop helps hoist loop invariants from fn.
103 while (n) { 82 while (n) {
104 if (n >= 4) { 83 if (n >= 4) {
105 auto d4 = next4(d), 84 _mm_storeu_si128((__m128i*)t, fn(next4(d), next4(s), next4(c)));
106 s4 = next4(s),
107 c4 = next4(c);
108 auto lo = fn(d4.lo, s4.lo, c4.lo),
109 hi = fn(d4.hi, s4.hi, c4.hi);
110 _mm_storeu_si128((__m128i*)t, pack(lo,hi));
111 t += 4; 85 t += 4;
112 n -= 4; 86 n -= 4;
113 continue; 87 continue;
114 } 88 }
115 if (n & 2) { 89 if (n & 2) {
116 auto r = fn(next2(d), next2(s), next2(c)); 90 _mm_storel_epi64((__m128i*)t, fn(next2(d), next2(s), next2(c)));
117 _mm_storel_epi64((__m128i*)t, pack(r,r));
118 t += 2; 91 t += 2;
119 } 92 }
120 if (n & 1) { 93 if (n & 1) {
121 auto r = fn(next1(d), next1(s), next1(c)); 94 *t = _mm_cvtsi128_si32(fn(next1(d), next1(s), next1(c)));
122 *t = _mm_cvtsi128_si32(pack(r,r));
123 } 95 }
124 return; 96 return;
125 } 97 }
126 } 98 }
127 99
128 namespace sk_sse41 { 100 // packed
101 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ //
102 // unpacked
103
104 // Everything on the packed side of the squiggly line deals with densely packed 8-bit data,
105 // e.g. [BGRA bgra ... ] for pixels or [ CCCC cccc ... ] for coverage.
106 //
107 // Everything on the unpacked side of the squiggly line deals with unpacked 8-bi t data,
108 // e.g [B_G_ R_A_ b_g_ r_a_ ] for pixels or [ C_C_ C_C_ c_c_ c_c_ c_c_ ] for cov erage,
109 // where _ is a zero byte.
110 //
111 // Adapt<Fn> / adapt(fn) allow the two sides to interoperate,
112 // by unpacking arguments, calling fn, then packing the results.
113 //
114 // This lets us write most of our code in terms of unpacked inputs (considerably simpler)
115 // and all the packing and unpacking is handled automatically.
116
117 template <typename Fn>
118 struct Adapt {
119 Fn fn;
120
121 __m128i operator()(__m128i d, __m128i s, __m128i c) {
122 auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128( )); };
123 auto hi = [](__m128i x) { return _mm_unpackhi_epi8(x, _mm_setzero_si128( )); };
124 return _mm_packus_epi16(fn(lo(d), lo(s), lo(c)),
125 fn(hi(d), hi(s), hi(c)));
126 }
127
128 m64i operator()(const m64i& d, const m64i& s, const m64i& c) {
129 auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128( )); };
130 auto r = fn(lo(d), lo(s), lo(c));
131 return _mm_packus_epi16(r, r);
132 }
133 };
134
135 template <typename Fn>
136 static Adapt<Fn> adapt(Fn&& fn) { return { fn }; }
137
138 // These helpers all work exclusively with unpacked 8-bit values,
139 // except div255() with is 16-bit -> unpacked 8-bit, and mul255() which is the r everse.
140
141 // Divide by 255 with rounding.
142 // (x+127)/255 == ((x+128)*257)>>16.
143 // Sometimes we can be more efficient by breaking this into two parts.
144 static __m128i div255_part1(__m128i x) { return _mm_add_epi16(x, _mm_set1_epi16( 128)); }
145 static __m128i div255_part2(__m128i x) { return _mm_mulhi_epu16(x, _mm_set1_epi1 6(257)); }
146 static __m128i div255(__m128i x) { return div255_part2(div255_part1(x)); }
147
148 // (x*y+127)/255, a byte multiply.
149 static __m128i scale(__m128i x, __m128i y) { return div255(_mm_mullo_epi16(x, y) ); }
150
151 // (255 * x).
152 static __m128i mul255(__m128i x) { return _mm_sub_epi16(_mm_slli_epi16(x, 8), x) ; }
153
154 // (255 - x).
155 static __m128i inv(__m128i x) { return _mm_xor_si128(_mm_set1_epi16(0x00ff), x); }
156
157 // ARGB argb -> AAAA aaaa
158 static __m128i alphas(__m128i px) {
159 const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so thi s is typically 6.
160 const int _ = ~0;
161 return _mm_shuffle_epi8(px, _mm_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, a+8,_,a+8 ,_,a+8,_,a+8,_));
162 }
129 163
130 // SrcOver, with a constant source and full coverage. 164 // SrcOver, with a constant source and full coverage.
131 static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMCo lor src) { 165 static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMCo lor src) {
132 // We want to calculate s + (d * inv(alphas(s)) + 127)/255. 166 // We want to calculate s + (d * inv(alphas(s)) + 127)/255.
133 // We'd generally do that div255 as s + ((d * inv(alphas(s)) + 128)*257)>>16 . 167 // We'd generally do that div255 as s + ((d * inv(alphas(s)) + 128)*257)>>16 .
134 168
135 // But we can go one step further to ((s*255 + 128 + d*inv(alphas(s)))*257)> >16. 169 // But we can go one step further to ((s*255 + 128 + d*inv(alphas(s)))*257)> >16.
136 // This lets us hoist (s*255+128) and inv(alphas(s)) out of the loop. 170 // This lets us hoist (s*255+128) and inv(alphas(s)) out of the loop.
137 __m128i s = next2(src), 171 __m128i s = _mm_unpacklo_epi8(_mm_set1_epi32(src), _mm_setzero_si128()),
138 s_255_128 = div255_part1(_mm_mullo_epi16(s, _mm_set1_epi16(255))), 172 s_255_128 = div255_part1(mul255(s)),
139 A = inv(alphas(s)); 173 A = inv(alphas(s));
140 174
141 const uint8_t cov = 0xff; 175 const uint8_t cov = 0xff;
142 loop(n, tgt, dst, src, cov, [=](__m128i d, __m128i, __m128i) { 176 loop(n, tgt, dst, src, cov, adapt([=](__m128i d, __m128i, __m128i) {
143 return div255_part2(_mm_add_epi16(s_255_128, _mm_mullo_epi16(d, A))); 177 return div255_part2(_mm_add_epi16(s_255_128, _mm_mullo_epi16(d, A)));
144 }); 178 }));
145 } 179 }
146 180
147 // SrcOver, with a constant source and variable coverage. 181 // SrcOver, with a constant source and variable coverage.
148 // If the source is opaque, SrcOver becomes Src. 182 // If the source is opaque, SrcOver becomes Src.
149 static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB, 183 static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB,
150 const SkAlpha* cov, size_t covRB, 184 const SkAlpha* cov, size_t covRB,
151 SkColor color, int w, int h) { 185 SkColor color, int w, int h) {
152 if (SkColorGetA(color) == 0xFF) { 186 if (SkColorGetA(color) == 0xFF) {
153 const SkPMColor src = SkSwizzle_BGRA_to_PMColor(color); 187 const SkPMColor src = SkSwizzle_BGRA_to_PMColor(color);
154 while (h --> 0) { 188 while (h --> 0) {
155 loop(w, dst, (const SkPMColor*)dst, src, cov, [](__m128i d, __m128i s, __m128i c) { 189 loop(w, dst, (const SkPMColor*)dst, src, cov,
190 adapt([](__m128i d, __m128i s, __m128i c) {
156 // Src blend mode: a simple lerp from d to s by c. 191 // Src blend mode: a simple lerp from d to s by c.
157 // TODO: try a pmaddubsw version? 192 // TODO: try a pmaddubsw version?
158 return div255(_mm_add_epi16(_mm_mullo_epi16(inv(c),d), _mm_mullo _epi16(c,s))); 193 return div255(_mm_add_epi16(_mm_mullo_epi16(inv(c),d),
159 }); 194 _mm_mullo_epi16( c ,s)));
195 }));
160 dst += dstRB / sizeof(*dst); 196 dst += dstRB / sizeof(*dst);
161 cov += covRB / sizeof(*cov); 197 cov += covRB / sizeof(*cov);
162 } 198 }
163 } else { 199 } else {
164 const SkPMColor src = SkPreMultiplyColor(color); 200 const SkPMColor src = SkPreMultiplyColor(color);
165 while (h --> 0) { 201 while (h --> 0) {
166 loop(w, dst, (const SkPMColor*)dst, src, cov, [](__m128i d, __m128i s, __m128i c) { 202 loop(w, dst, (const SkPMColor*)dst, src, cov,
203 adapt([](__m128i d, __m128i s, __m128i c) {
167 // SrcOver blend mode, with coverage folded into source alpha. 204 // SrcOver blend mode, with coverage folded into source alpha.
168 __m128i sc = scale(s,c), 205 __m128i sc = scale(s,c),
169 AC = inv(alphas(sc)); 206 AC = inv(alphas(sc));
170 return _mm_add_epi16(sc, scale(d,AC)); 207 return _mm_add_epi16(sc, scale(d,AC));
171 }); 208 }));
172 dst += dstRB / sizeof(*dst); 209 dst += dstRB / sizeof(*dst);
173 cov += covRB / sizeof(*cov); 210 cov += covRB / sizeof(*cov);
174 } 211 }
175 } 212 }
176 } 213 }
177 214
178 } // namespace sk_sse41 215 } // namespace sk_sse41
216
179 #endif 217 #endif
180 218
181 namespace SkOpts { 219 namespace SkOpts {
182 void Init_sse41() { 220 void Init_sse41() {
183 box_blur_xx = sk_sse41::box_blur_xx; 221 box_blur_xx = sk_sse41::box_blur_xx;
184 box_blur_xy = sk_sse41::box_blur_xy; 222 box_blur_xy = sk_sse41::box_blur_xy;
185 box_blur_yx = sk_sse41::box_blur_yx; 223 box_blur_yx = sk_sse41::box_blur_yx;
186 224
187 #ifndef SK_SUPPORT_LEGACY_X86_BLITS 225 #ifndef SK_SUPPORT_LEGACY_X86_BLITS
188 blit_row_color32 = sk_sse41::blit_row_color32; 226 blit_row_color32 = sk_sse41::blit_row_color32;
189 blit_mask_d32_a8 = sk_sse41::blit_mask_d32_a8; 227 blit_mask_d32_a8 = sk_sse41::blit_mask_d32_a8;
190 #endif 228 #endif
191 } 229 }
192 } 230 }
OLDNEW
« no previous file with comments | « src/opts/SkOpts_avx2.cpp ('k') | no next file » | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698