OLD | NEW |
1 /* | 1 /* |
2 * Copyright 2015 Google Inc. | 2 * Copyright 2015 Google Inc. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
6 */ | 6 */ |
7 | 7 |
8 #include "SkOpts.h" | 8 #include "SkOpts.h" |
9 | 9 |
10 #define SK_OPTS_NS sk_sse41 | 10 #define SK_OPTS_NS sk_sse41 |
11 #include "SkBlurImageFilter_opts.h" | 11 #include "SkBlurImageFilter_opts.h" |
12 | 12 |
| 13 #ifndef SK_SUPPORT_LEGACY_X86_BLITS |
| 14 |
| 15 // This file deals mostly with unpacked 8-bit values, |
| 16 // i.e. values between 0 and 255, but in 16-bit lanes with 0 at the top. |
| 17 |
| 18 // So __m128i typically represents 1 or 2 pixels, and m128ix2 represents 4. |
| 19 struct m128ix2 { __m128i lo, hi; }; |
| 20 |
| 21 // unpack{lo,hi}() get our raw pixels unpacked, from half of 4 packed pixels to
2 unpacked pixels. |
| 22 static inline __m128i unpacklo(__m128i x) { return _mm_cvtepu8_epi16(x); } |
| 23 static inline __m128i unpackhi(__m128i x) { return _mm_unpackhi_epi8(x, _mm_setz
ero_si128()); } |
| 24 |
| 25 // pack() converts back, from 4 unpacked pixels to 4 packed pixels. |
| 26 static inline __m128i pack(__m128i lo, __m128i hi) { return _mm_packus_epi16(lo,
hi); } |
| 27 |
| 28 // These nextN() functions abstract over the difference between iterating over |
| 29 // an array of values and returning a constant value, for uint8_t and uint32_t. |
| 30 // The nextN() taking pointers increment that pointer past where they read. |
| 31 // |
| 32 // nextN() returns N unpacked pixels or 4N unpacked coverage values. |
| 33 |
| 34 static inline __m128i next1(uint8_t val) { return _mm_set1_epi16(val); } |
| 35 static inline __m128i next2(uint8_t val) { return _mm_set1_epi16(val); } |
| 36 static inline m128ix2 next4(uint8_t val) { return { next2(val), next2(val) }; } |
| 37 |
| 38 static inline __m128i next1(uint32_t val) { return unpacklo(_mm_cvtsi32_si128(va
l)); } |
| 39 static inline __m128i next2(uint32_t val) { return unpacklo(_mm_set1_epi32(val))
; } |
| 40 static inline m128ix2 next4(uint32_t val) { return { next2(val), next2(val) }; } |
| 41 |
| 42 static inline __m128i next1(const uint8_t*& ptr) { return _mm_set1_epi16(*ptr++)
; } |
| 43 static inline __m128i next2(const uint8_t*& ptr) { |
| 44 auto r = _mm_cvtsi32_si128(*(const uint16_t*)ptr); |
| 45 ptr += 2; |
| 46 const int _ = ~0; |
| 47 return _mm_shuffle_epi8(r, _mm_setr_epi8(0,_,0,_,0,_,0,_, 1,_,1,_,1,_,1,_)); |
| 48 } |
| 49 static inline m128ix2 next4(const uint8_t*& ptr) { |
| 50 auto r = _mm_cvtsi32_si128(*(const uint32_t*)ptr); |
| 51 ptr += 4; |
| 52 const int _ = ~0; |
| 53 auto lo = _mm_shuffle_epi8(r, _mm_setr_epi8(0,_,0,_,0,_,0,_, 1,_,1,_,1,_,1,_
)), |
| 54 hi = _mm_shuffle_epi8(r, _mm_setr_epi8(2,_,2,_,2,_,2,_, 3,_,3,_,3,_,3,_
)); |
| 55 return { lo, hi }; |
| 56 } |
| 57 |
| 58 static inline __m128i next1(const uint32_t*& ptr) { return unpacklo(_mm_cvtsi32_
si128(*ptr++)); } |
| 59 static inline __m128i next2(const uint32_t*& ptr) { |
| 60 auto r = unpacklo(_mm_loadl_epi64((const __m128i*)ptr)); |
| 61 ptr += 2; |
| 62 return r; |
| 63 } |
| 64 static inline m128ix2 next4(const uint32_t*& ptr) { |
| 65 auto packed = _mm_loadu_si128((const __m128i*)ptr); |
| 66 ptr += 4; |
| 67 return { unpacklo(packed), unpackhi(packed) }; |
| 68 } |
| 69 |
| 70 // Divide by 255 with rounding. |
| 71 // (x+127)/255 == ((x+128)*257)>>16. |
| 72 // Sometimes we can be more efficient by breaking this into two parts. |
| 73 static inline __m128i div255_part1(__m128i x) { return _mm_add_epi16(x, _mm_set1
_epi16(128)); } |
| 74 static inline __m128i div255_part2(__m128i x) { return _mm_mulhi_epu16(x, _mm_se
t1_epi16(257)); } |
| 75 static inline __m128i div255(__m128i x) { return div255_part2(div255_part1(x));
} |
| 76 |
| 77 // (x*y+127)/255, a byte multiply. |
| 78 static inline __m128i scale(__m128i x, __m128i y) { |
| 79 return div255(_mm_mullo_epi16(x, y)); |
| 80 } |
| 81 |
| 82 // (255 - x). |
| 83 static inline __m128i inv(__m128i x) { |
| 84 return _mm_xor_si128(_mm_set1_epi16(0x00ff), x); // This seems a bit faster
than _mm_sub_epi16. |
| 85 } |
| 86 |
| 87 // ARGB argb -> AAAA aaaa |
| 88 static inline __m128i alphas(__m128i px) { |
| 89 const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so thi
s is typically 6. |
| 90 const int _ = ~0; |
| 91 return _mm_shuffle_epi8(px, _mm_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, a+8,_,a+8
,_,a+8,_,a+8,_)); |
| 92 } |
| 93 |
| 94 // For i = 0...n, tgt = fn(dst,src,cov), where Dst,Src,and Cov can be constants
or arrays. |
| 95 template <typename Dst, typename Src, typename Cov, typename Fn> |
| 96 static inline void loop(int n, uint32_t* t, const Dst dst, const Src src, const
Cov cov, Fn&& fn) { |
| 97 // We don't want to muck with the callers' pointers, so we make them const a
nd copy here. |
| 98 Dst d = dst; |
| 99 Src s = src; |
| 100 Cov c = cov; |
| 101 |
| 102 // Writing this as a single while-loop helps hoist loop invariants from fn. |
| 103 while (n) { |
| 104 if (n >= 4) { |
| 105 auto d4 = next4(d), |
| 106 s4 = next4(s), |
| 107 c4 = next4(c); |
| 108 auto lo = fn(d4.lo, s4.lo, c4.lo), |
| 109 hi = fn(d4.hi, s4.hi, c4.hi); |
| 110 _mm_storeu_si128((__m128i*)t, pack(lo,hi)); |
| 111 t += 4; |
| 112 n -= 4; |
| 113 continue; |
| 114 } |
| 115 if (n & 2) { |
| 116 auto r = fn(next2(d), next2(s), next2(c)); |
| 117 _mm_storel_epi64((__m128i*)t, pack(r,r)); |
| 118 t += 2; |
| 119 } |
| 120 if (n & 1) { |
| 121 auto r = fn(next1(d), next1(s), next1(c)); |
| 122 *t = _mm_cvtsi128_si32(pack(r,r)); |
| 123 } |
| 124 return; |
| 125 } |
| 126 } |
| 127 |
| 128 namespace sk_sse41 { |
| 129 |
| 130 // SrcOver, with a constant source and full coverage. |
| 131 static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMCo
lor src) { |
| 132 // We want to calculate s + (d * inv(alphas(s)) + 127)/255. |
| 133 // We'd generally do that div255 as s + ((d * inv(alphas(s)) + 128)*257)>>16
. |
| 134 |
| 135 // But we can go one step further to ((s*255 + 128 + d*inv(alphas(s)))*257)>
>16. |
| 136 // This lets us hoist (s*255+128) and inv(alphas(s)) out of the loop. |
| 137 __m128i s = next2(src), |
| 138 s_255_128 = div255_part1(_mm_mullo_epi16(s, _mm_set1_epi16(255))), |
| 139 A = inv(alphas(s)); |
| 140 |
| 141 const uint8_t cov = 0xff; |
| 142 loop(n, tgt, dst, src, cov, [=](__m128i d, __m128i, __m128i) { |
| 143 return div255_part2(_mm_add_epi16(s_255_128, _mm_mullo_epi16(d, A))); |
| 144 }); |
| 145 } |
| 146 |
| 147 // SrcOver, with a constant source and variable coverage. |
| 148 // If the source is opaque, SrcOver becomes Src. |
| 149 static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB, |
| 150 const SkAlpha* cov, size_t covRB, |
| 151 SkColor color, int w, int h) { |
| 152 if (SkColorGetA(color) == 0xFF) { |
| 153 const SkPMColor src = SkSwizzle_BGRA_to_PMColor(color); |
| 154 while (h --> 0) { |
| 155 loop(w, dst, (const SkPMColor*)dst, src, cov, [](__m128i d, __m128i
s, __m128i c) { |
| 156 // Src blend mode: a simple lerp from d to s by c. |
| 157 // TODO: try a pmaddubsw version? |
| 158 return div255(_mm_add_epi16(_mm_mullo_epi16(inv(c),d), _mm_mullo
_epi16(c,s))); |
| 159 }); |
| 160 dst += dstRB / sizeof(*dst); |
| 161 cov += covRB / sizeof(*cov); |
| 162 } |
| 163 } else { |
| 164 const SkPMColor src = SkPreMultiplyColor(color); |
| 165 while (h --> 0) { |
| 166 loop(w, dst, (const SkPMColor*)dst, src, cov, [](__m128i d, __m128i
s, __m128i c) { |
| 167 // SrcOver blend mode, with coverage folded into source alpha. |
| 168 __m128i sc = scale(s,c), |
| 169 AC = inv(alphas(sc)); |
| 170 return _mm_add_epi16(sc, scale(d,AC)); |
| 171 }); |
| 172 dst += dstRB / sizeof(*dst); |
| 173 cov += covRB / sizeof(*cov); |
| 174 } |
| 175 } |
| 176 } |
| 177 |
| 178 } // namespace sk_sse41 |
| 179 #endif |
| 180 |
13 namespace SkOpts { | 181 namespace SkOpts { |
14 void Init_sse41() { | 182 void Init_sse41() { |
15 box_blur_xx = sk_sse41::box_blur_xx; | 183 box_blur_xx = sk_sse41::box_blur_xx; |
16 box_blur_xy = sk_sse41::box_blur_xy; | 184 box_blur_xy = sk_sse41::box_blur_xy; |
17 box_blur_yx = sk_sse41::box_blur_yx; | 185 box_blur_yx = sk_sse41::box_blur_yx; |
| 186 |
| 187 #ifndef SK_SUPPORT_LEGACY_X86_BLITS |
| 188 blit_row_color32 = sk_sse41::blit_row_color32; |
| 189 blit_mask_d32_a8 = sk_sse41::blit_mask_d32_a8; |
| 190 #endif |
18 } | 191 } |
19 } | 192 } |
OLD | NEW |