OLD | NEW |
(Empty) | |
| 1 // Copyright (c) 2013 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 #include "net/disk_cache/v3/index_table.h" |
| 6 |
| 7 #include <algorithm> |
| 8 #include <set> |
| 9 #include <utility> |
| 10 |
| 11 #include "base/bits.h" |
| 12 #include "net/base/io_buffer.h" |
| 13 #include "net/base/net_errors.h" |
| 14 #include "net/disk_cache/disk_cache.h" |
| 15 |
| 16 using base::Time; |
| 17 using base::TimeDelta; |
| 18 using disk_cache::CellInfo; |
| 19 using disk_cache::CellList; |
| 20 using disk_cache::IndexCell; |
| 21 using disk_cache::IndexIterator; |
| 22 |
| 23 namespace { |
| 24 |
| 25 const int kCellHashOffset = 22; |
| 26 const int kCellSmallTableHashOffset = 16; |
| 27 const int kCellTimestampOffset = 40; |
| 28 const int kCellReuseOffset = 60; |
| 29 const int kCellGroupOffset = 3; |
| 30 const int kCellSumOffset = 6; |
| 31 |
| 32 const uint64 kCellAddressMask = 0x3FFFFF; |
| 33 const uint64 kCellSmallTableAddressMask = 0xFFFF; |
| 34 const uint64 kCellHashMask = 0x3FFFF; |
| 35 const uint64 kCellSmallTableHashMask = 0xFFFFFF; |
| 36 const uint64 kCellTimestampMask = 0xFFFFF; |
| 37 const uint64 kCellReuseMask = 0xF; |
| 38 const uint8 kCellStateMask = 0x7; |
| 39 const uint8 kCellGroupMask = 0x7; |
| 40 const uint8 kCellSumMask = 0x3; |
| 41 |
| 42 const int kHashShift = 14; |
| 43 const int kHashSmallTableShift = 8; |
| 44 |
| 45 // Unfortunately we have to break the abstaction a little here: the file number |
| 46 // where entries are stored is outside of the control of this code, and it is |
| 47 // usually part of the stored address. However, for small tables we only store |
| 48 // 16 bits of the address so the file number is never stored on a cell. We have |
| 49 // to infere the file number from the type of entry (normal vs evicted), and |
| 50 // the knowledge that given that the table will not keep more than 64k entries, |
| 51 // a single file of each type is enough. |
| 52 const int kEntriesFile = disk_cache::BLOCK_ENTRIES - 1; |
| 53 const int kEvictedEntriesFile = disk_cache::BLOCK_EVICTED - 1; |
| 54 const int kMaxAddress = 1 << 22; |
| 55 const int kMinFileNumber = 1 << 16; |
| 56 |
| 57 uint32 GetCellAddress(const IndexCell& cell) { |
| 58 return cell.first_part & kCellAddressMask; |
| 59 } |
| 60 |
| 61 uint32 GetCellSmallTableAddress(const IndexCell& cell) { |
| 62 return cell.first_part & kCellSmallTableAddressMask; |
| 63 } |
| 64 |
| 65 uint32 GetCellHash(const IndexCell& cell) { |
| 66 return (cell.first_part >> kCellHashOffset) & kCellHashMask; |
| 67 } |
| 68 |
| 69 uint32 GetCellSmallTableHash(const IndexCell& cell) { |
| 70 return (cell.first_part >> kCellSmallTableHashOffset) & |
| 71 kCellSmallTableHashMask; |
| 72 } |
| 73 |
| 74 int GetCellTimestamp(const IndexCell& cell) { |
| 75 return (cell.first_part >> kCellTimestampOffset) & kCellTimestampMask; |
| 76 } |
| 77 |
| 78 int GetCellReuse(const IndexCell& cell) { |
| 79 return (cell.first_part >> kCellReuseOffset) & kCellReuseMask; |
| 80 } |
| 81 |
| 82 int GetCellState(const IndexCell& cell) { |
| 83 return cell.last_part & kCellStateMask; |
| 84 } |
| 85 |
| 86 int GetCellGroup(const IndexCell& cell) { |
| 87 return (cell.last_part >> kCellGroupOffset) & kCellGroupMask; |
| 88 } |
| 89 |
| 90 int GetCellSum(const IndexCell& cell) { |
| 91 return (cell.last_part >> kCellSumOffset) & kCellSumMask; |
| 92 } |
| 93 |
| 94 void SetCellAddress(IndexCell* cell, uint32 address) { |
| 95 DCHECK_LE(address, static_cast<uint32>(kCellAddressMask)); |
| 96 cell->first_part &= ~kCellAddressMask; |
| 97 cell->first_part |= address; |
| 98 } |
| 99 |
| 100 void SetCellSmallTableAddress(IndexCell* cell, uint32 address) { |
| 101 DCHECK_LE(address, static_cast<uint32>(kCellSmallTableAddressMask)); |
| 102 cell->first_part &= ~kCellSmallTableAddressMask; |
| 103 cell->first_part |= address; |
| 104 } |
| 105 |
| 106 void SetCellHash(IndexCell* cell, uint32 hash) { |
| 107 DCHECK_LE(hash, static_cast<uint32>(kCellHashMask)); |
| 108 cell->first_part &= ~(kCellHashMask << kCellHashOffset); |
| 109 cell->first_part |= static_cast<int64>(hash) << kCellHashOffset; |
| 110 } |
| 111 |
| 112 void SetCellSmallTableHash(IndexCell* cell, uint32 hash) { |
| 113 DCHECK_LE(hash, static_cast<uint32>(kCellSmallTableHashMask)); |
| 114 cell->first_part &= ~(kCellSmallTableHashMask << kCellSmallTableHashOffset); |
| 115 cell->first_part |= static_cast<int64>(hash) << kCellSmallTableHashOffset; |
| 116 } |
| 117 |
| 118 void SetCellTimestamp(IndexCell* cell, int timestamp) { |
| 119 DCHECK_LT(timestamp, 1 << 20); |
| 120 DCHECK_GE(timestamp, 0); |
| 121 cell->first_part &= ~(kCellTimestampMask << kCellTimestampOffset); |
| 122 cell->first_part |= static_cast<int64>(timestamp) << kCellTimestampOffset; |
| 123 } |
| 124 |
| 125 void SetCellReuse(IndexCell* cell, int count) { |
| 126 DCHECK_LT(count, 16); |
| 127 DCHECK_GE(count, 0); |
| 128 cell->first_part &= ~(kCellReuseMask << kCellReuseOffset); |
| 129 cell->first_part |= static_cast<int64>(count) << kCellReuseOffset; |
| 130 } |
| 131 |
| 132 void SetCellState(IndexCell* cell, disk_cache::EntryState state) { |
| 133 cell->last_part &= ~kCellStateMask; |
| 134 cell->last_part |= state; |
| 135 } |
| 136 |
| 137 void SetCellGroup(IndexCell* cell, disk_cache::EntryGroup group) { |
| 138 cell->last_part &= ~(kCellGroupMask << kCellGroupOffset); |
| 139 cell->last_part |= group << kCellGroupOffset; |
| 140 } |
| 141 |
| 142 void SetCellSum(IndexCell* cell, int sum) { |
| 143 DCHECK_LT(sum, 4); |
| 144 DCHECK_GE(sum, 0); |
| 145 cell->last_part &= ~(kCellSumMask << kCellSumOffset); |
| 146 cell->last_part |= sum << kCellSumOffset; |
| 147 } |
| 148 |
| 149 // This is a very particular way to calculate the sum, so it will not match if |
| 150 // compared a gainst a pure 2 bit, modulo 2 sum. |
| 151 int CalculateCellSum(const IndexCell& cell) { |
| 152 uint32* words = bit_cast<uint32*>(&cell); |
| 153 uint8* bytes = bit_cast<uint8*>(&cell); |
| 154 uint32 result = words[0] + words[1]; |
| 155 result += result >> 16; |
| 156 result += (result >> 8) + (bytes[8] & 0x3f); |
| 157 result += result >> 4; |
| 158 result += result >> 2; |
| 159 return result & 3; |
| 160 } |
| 161 |
| 162 bool SanityCheck(const IndexCell& cell) { |
| 163 if (GetCellSum(cell) != CalculateCellSum(cell)) |
| 164 return false; |
| 165 |
| 166 if (GetCellState(cell) > disk_cache::ENTRY_USED || |
| 167 GetCellGroup(cell) == disk_cache::ENTRY_RESERVED || |
| 168 GetCellGroup(cell) > disk_cache::ENTRY_EVICTED) { |
| 169 return false; |
| 170 } |
| 171 |
| 172 return true; |
| 173 } |
| 174 |
| 175 int FileNumberFromAddress(int index_address) { |
| 176 return index_address / kMinFileNumber; |
| 177 } |
| 178 |
| 179 int StartBlockFromAddress(int index_address) { |
| 180 return index_address % kMinFileNumber; |
| 181 } |
| 182 |
| 183 bool IsValidAddress(disk_cache::Addr address) { |
| 184 if (!address.is_initialized() || |
| 185 (address.file_type() != disk_cache::BLOCK_EVICTED && |
| 186 address.file_type() != disk_cache::BLOCK_ENTRIES)) { |
| 187 return false; |
| 188 } |
| 189 |
| 190 return address.FileNumber() < FileNumberFromAddress(kMaxAddress); |
| 191 } |
| 192 |
| 193 bool IsNormalState(const IndexCell& cell) { |
| 194 disk_cache::EntryState state = |
| 195 static_cast<disk_cache::EntryState>(GetCellState(cell)); |
| 196 DCHECK_NE(state, disk_cache::ENTRY_FREE); |
| 197 return state != disk_cache::ENTRY_DELETED && |
| 198 state != disk_cache::ENTRY_FIXING; |
| 199 } |
| 200 |
| 201 inline int GetNextBucket(int min_bucket_id, int max_bucket_id, |
| 202 disk_cache::IndexBucket* table, |
| 203 disk_cache::IndexBucket** bucket) { |
| 204 if (!(*bucket)->next) |
| 205 return 0; |
| 206 |
| 207 int bucket_id = (*bucket)->next / disk_cache::kCellsPerBucket; |
| 208 if (bucket_id < min_bucket_id || bucket_id > max_bucket_id) { |
| 209 (*bucket)->next = 0; |
| 210 return 0; |
| 211 } |
| 212 *bucket = &table[bucket_id - min_bucket_id]; |
| 213 return bucket_id; |
| 214 } |
| 215 |
| 216 // Updates the |iterator| with the current |cell|. This cell may cause all |
| 217 // previous cells to be deleted (when a new target timestamp is found), the cell |
| 218 // may be added to the list (if it matches the target timestamp), or may it be |
| 219 // ignored. |
| 220 void UpdateIterator(const disk_cache::EntryCell& cell, |
| 221 int limit_time, |
| 222 IndexIterator* iterator) { |
| 223 int time = cell.GetTimestamp(); |
| 224 // Look for not interesting times. |
| 225 if (iterator->forward && time <= limit_time) |
| 226 return; |
| 227 if (!iterator->forward && time >= limit_time) |
| 228 return; |
| 229 |
| 230 if ((iterator->forward && time < iterator->timestamp) || |
| 231 (!iterator->forward && time > iterator->timestamp)) { |
| 232 // This timestamp is better than the one we had. |
| 233 iterator->timestamp = time; |
| 234 iterator->cells.clear(); |
| 235 } |
| 236 if (time == iterator->timestamp) { |
| 237 CellInfo cell_info = { cell.hash(), cell.GetAddress() }; |
| 238 iterator->cells.push_back(cell_info); |
| 239 } |
| 240 } |
| 241 |
| 242 void InitIterator(IndexIterator* iterator) { |
| 243 iterator->cells.clear(); |
| 244 iterator->timestamp = iterator->forward ? kint32max : 0; |
| 245 } |
| 246 |
| 247 } // namespace |
| 248 |
| 249 namespace disk_cache { |
| 250 |
| 251 EntryCell::~EntryCell() { |
| 252 } |
| 253 |
| 254 bool EntryCell::IsValid() const { |
| 255 return GetCellAddress(cell_) != 0; |
| 256 } |
| 257 |
| 258 // This code has to map the cell address (up to 22 bits) to a general cache Addr |
| 259 // (up to 24 bits of general addressing). It also set the implied file_number |
| 260 // in the case of small tables. See also the comment by the definition of |
| 261 // kEntriesFile. |
| 262 Addr EntryCell::GetAddress() const { |
| 263 uint32 address_value = GetAddressValue(); |
| 264 int file_number = FileNumberFromAddress(address_value); |
| 265 if (small_table_) { |
| 266 DCHECK_EQ(0, file_number); |
| 267 file_number = (GetGroup() == ENTRY_EVICTED) ? kEvictedEntriesFile : |
| 268 kEntriesFile; |
| 269 } |
| 270 DCHECK_NE(0, file_number); |
| 271 FileType file_type = (GetGroup() == ENTRY_EVICTED) ? BLOCK_EVICTED : |
| 272 BLOCK_ENTRIES; |
| 273 return Addr(file_type, 1, file_number, StartBlockFromAddress(address_value)); |
| 274 } |
| 275 |
| 276 EntryState EntryCell::GetState() const { |
| 277 return static_cast<EntryState>(cell_.last_part & kCellStateMask); |
| 278 } |
| 279 |
| 280 EntryGroup EntryCell::GetGroup() const { |
| 281 return static_cast<EntryGroup>((cell_.last_part >> kCellGroupOffset) & |
| 282 kCellGroupMask); |
| 283 } |
| 284 |
| 285 int EntryCell::GetReuse() const { |
| 286 return (cell_.first_part >> kCellReuseOffset) & kCellReuseMask; |
| 287 } |
| 288 |
| 289 int EntryCell::GetTimestamp() const { |
| 290 return GetCellTimestamp(cell_); |
| 291 } |
| 292 |
| 293 void EntryCell::SetState(EntryState state) { |
| 294 SetCellState(&cell_, state); |
| 295 } |
| 296 |
| 297 void EntryCell::SetGroup(EntryGroup group) { |
| 298 SetCellGroup(&cell_, group); |
| 299 } |
| 300 |
| 301 void EntryCell::SetReuse(int count) { |
| 302 SetCellReuse(&cell_, count); |
| 303 } |
| 304 |
| 305 void EntryCell::SetTimestamp(int timestamp) { |
| 306 SetCellTimestamp(&cell_, timestamp); |
| 307 } |
| 308 |
| 309 // Static. |
| 310 EntryCell EntryCell::GetEntryCellForTest(int32 cell_id, |
| 311 uint32 hash, |
| 312 Addr address, |
| 313 IndexCell* cell, |
| 314 bool small_table) { |
| 315 if (cell) { |
| 316 EntryCell entry_cell(cell_id, hash, *cell, small_table); |
| 317 return entry_cell; |
| 318 } |
| 319 |
| 320 return EntryCell(cell_id, hash, address, small_table); |
| 321 } |
| 322 |
| 323 void EntryCell::SerializaForTest(IndexCell* destination) { |
| 324 FixSum(); |
| 325 Serialize(destination); |
| 326 } |
| 327 |
| 328 EntryCell::EntryCell() : cell_id_(0), hash_(0), small_table_(false) { |
| 329 cell_.Clear(); |
| 330 } |
| 331 |
| 332 EntryCell::EntryCell(int32 cell_id, uint32 hash, Addr address, bool small_table) |
| 333 : cell_id_(cell_id), |
| 334 hash_(hash), |
| 335 small_table_(small_table) { |
| 336 DCHECK(IsValidAddress(address) || !address.value()); |
| 337 |
| 338 cell_.Clear(); |
| 339 SetCellState(&cell_, ENTRY_NEW); |
| 340 SetCellGroup(&cell_, ENTRY_NO_USE); |
| 341 if (small_table) { |
| 342 DCHECK(address.FileNumber() == kEntriesFile || |
| 343 address.FileNumber() == kEvictedEntriesFile); |
| 344 SetCellSmallTableAddress(&cell_, address.start_block()); |
| 345 SetCellSmallTableHash(&cell_, hash >> kHashSmallTableShift); |
| 346 } else { |
| 347 uint32 cell_address = address.FileNumber() << 16 | address.start_block(); |
| 348 SetCellAddress(&cell_, cell_address); |
| 349 SetCellHash(&cell_, hash >> kHashShift); |
| 350 } |
| 351 } |
| 352 |
| 353 EntryCell::EntryCell(int32 cell_id, |
| 354 uint32 hash, |
| 355 const IndexCell& cell, |
| 356 bool small_table) |
| 357 : cell_id_(cell_id), |
| 358 hash_(hash), |
| 359 cell_(cell), |
| 360 small_table_(small_table) { |
| 361 } |
| 362 |
| 363 void EntryCell::FixSum() { |
| 364 SetCellSum(&cell_, CalculateCellSum(cell_)); |
| 365 } |
| 366 |
| 367 uint32 EntryCell::GetAddressValue() const { |
| 368 if (small_table_) |
| 369 return GetCellSmallTableAddress(cell_); |
| 370 |
| 371 return GetCellAddress(cell_); |
| 372 } |
| 373 |
| 374 uint32 EntryCell::RecomputeHash() { |
| 375 if (small_table_) { |
| 376 hash_ &= (1 << kHashSmallTableShift) - 1; |
| 377 hash_ |= GetCellSmallTableHash(cell_) << kHashSmallTableShift; |
| 378 return hash_; |
| 379 } |
| 380 |
| 381 hash_ &= (1 << kHashShift) - 1; |
| 382 hash_ |= GetCellHash(cell_) << kHashShift; |
| 383 return hash_; |
| 384 } |
| 385 |
| 386 void EntryCell::Serialize(IndexCell* destination) const { |
| 387 *destination = cell_; |
| 388 } |
| 389 |
| 390 EntrySet::EntrySet() : evicted_count(0), current(0) { |
| 391 } |
| 392 |
| 393 EntrySet::~EntrySet() { |
| 394 } |
| 395 |
| 396 IndexIterator::IndexIterator() { |
| 397 } |
| 398 |
| 399 IndexIterator::~IndexIterator() { |
| 400 } |
| 401 |
| 402 IndexTableInitData::IndexTableInitData() { |
| 403 } |
| 404 |
| 405 IndexTableInitData::~IndexTableInitData() { |
| 406 } |
| 407 |
| 408 // ----------------------------------------------------------------------- |
| 409 |
| 410 IndexTable::IndexTable(IndexTableBackend* backend) |
| 411 : backend_(backend), |
| 412 header_(NULL), |
| 413 main_table_(NULL), |
| 414 extra_table_(NULL), |
| 415 modified_(false), |
| 416 small_table_(false) { |
| 417 } |
| 418 |
| 419 IndexTable::~IndexTable() { |
| 420 } |
| 421 |
| 422 // For a general description of the index tables see: |
| 423 // http://www.chromium.org/developers/design-documents/network-stack/disk-cache/
disk-cache-v3#TOC-Index |
| 424 // |
| 425 // The index is split between two tables: the main_table_ and the extra_table_. |
| 426 // The main table can grow only by doubling its number of cells, while the |
| 427 // extra table can grow slowly, because it only contain cells that overflow |
| 428 // from the main table. In order to locate a given cell, part of the hash is |
| 429 // used directly as an index into the main table; once that bucket is located, |
| 430 // all cells with that partial hash (i.e., belonging to that bucket) are |
| 431 // inspected, and if present, the next bucket (located on the extra table) is |
| 432 // then located. For more information on bucket chaining see: |
| 433 // http://www.chromium.org/developers/design-documents/network-stack/disk-cache/
disk-cache-v3#TOC-Buckets |
| 434 // |
| 435 // There are two cases when increasing the size: |
| 436 // - Doubling the size of the main table |
| 437 // - Adding more entries to the extra table |
| 438 // |
| 439 // For example, consider a 64k main table with 8k cells on the extra table (for |
| 440 // a total of 72k cells). Init can be called to add another 8k cells at the end |
| 441 // (grow to 80k cells). When the size of the extra table approaches 64k, Init |
| 442 // can be called to double the main table (to 128k) and go back to a small extra |
| 443 // table. |
| 444 void IndexTable::Init(IndexTableInitData* params) { |
| 445 bool growing = header_ != NULL; |
| 446 scoped_ptr<IndexBucket[]> old_extra_table; |
| 447 header_ = ¶ms->index_bitmap->header; |
| 448 |
| 449 if (params->main_table) { |
| 450 if (main_table_) { |
| 451 // This is doubling the size of main table. |
| 452 DCHECK_EQ(base::bits::Log2Floor(header_->table_len), |
| 453 base::bits::Log2Floor(backup_header_->table_len) + 1); |
| 454 int extra_size = (header()->max_bucket - mask_) * kCellsPerBucket; |
| 455 DCHECK_GE(extra_size, 0); |
| 456 |
| 457 // Doubling the size implies deleting the extra table and moving as many |
| 458 // cells as we can to the main table, so we first copy the old one. This |
| 459 // is not required when just growing the extra table because we don't |
| 460 // move any cell in that case. |
| 461 old_extra_table.reset(new IndexBucket[extra_size]); |
| 462 memcpy(old_extra_table.get(), extra_table_, |
| 463 extra_size * sizeof(IndexBucket)); |
| 464 memset(params->extra_table, 0, extra_size * sizeof(IndexBucket)); |
| 465 } |
| 466 main_table_ = params->main_table; |
| 467 } |
| 468 DCHECK(main_table_); |
| 469 extra_table_ = params->extra_table; |
| 470 |
| 471 // extra_bits_ is really measured against table-size specific values. |
| 472 const int kMaxAbsoluteExtraBits = 11; // From smaller to largest table. |
| 473 const int kMaxExtraBitsSmallTable = 6; |
| 474 |
| 475 extra_bits_ = base::bits::Log2Floor(header_->table_len) - |
| 476 base::bits::Log2Floor(kBaseTableLen); |
| 477 DCHECK_GE(extra_bits_, 0); |
| 478 DCHECK_LE(extra_bits_, kMaxAbsoluteExtraBits); |
| 479 mask_ = ((kBaseTableLen / kCellsPerBucket) << extra_bits_) - 1; |
| 480 small_table_ = extra_bits_ < kMaxExtraBitsSmallTable; |
| 481 if (!small_table_) |
| 482 extra_bits_ -= kMaxExtraBitsSmallTable; |
| 483 |
| 484 // table_len keeps the max number of cells stored by the index. We need a |
| 485 // bitmap with 1 bit per cell, and that bitmap has num_words 32-bit words. |
| 486 int num_words = (header_->table_len + 31) / 32; |
| 487 |
| 488 if (old_extra_table) { |
| 489 // All the cells from the extra table are moving to the new tables so before |
| 490 // creating the bitmaps, clear the part of the bitmap referring to the extra |
| 491 // table. |
| 492 int main_table_bit_words = ((mask_ >> 1) + 1) * kCellsPerBucket / 32; |
| 493 DCHECK_GT(num_words, main_table_bit_words); |
| 494 memset(params->index_bitmap->bitmap + main_table_bit_words, 0, |
| 495 (num_words - main_table_bit_words) * sizeof(int32)); |
| 496 |
| 497 DCHECK(growing); |
| 498 int old_num_words = (backup_header_.get()->table_len + 31) / 32; |
| 499 DCHECK_GT(old_num_words, main_table_bit_words); |
| 500 memset(backup_bitmap_storage_.get() + main_table_bit_words, 0, |
| 501 (old_num_words - main_table_bit_words) * sizeof(int32)); |
| 502 } |
| 503 bitmap_.reset(new Bitmap(params->index_bitmap->bitmap, header_->table_len, |
| 504 num_words)); |
| 505 |
| 506 if (growing) { |
| 507 int old_num_words = (backup_header_.get()->table_len + 31) / 32; |
| 508 DCHECK_GE(num_words, old_num_words); |
| 509 scoped_ptr<uint32[]> storage(new uint32[num_words]); |
| 510 memcpy(storage.get(), backup_bitmap_storage_.get(), |
| 511 old_num_words * sizeof(int32)); |
| 512 memset(storage.get() + old_num_words, 0, |
| 513 (num_words - old_num_words) * sizeof(int32)); |
| 514 |
| 515 backup_bitmap_storage_.swap(storage); |
| 516 backup_header_->table_len = header_->table_len; |
| 517 } else { |
| 518 backup_bitmap_storage_.reset(params->backup_bitmap.release()); |
| 519 backup_header_.reset(params->backup_header.release()); |
| 520 } |
| 521 |
| 522 num_words = (backup_header_->table_len + 31) / 32; |
| 523 backup_bitmap_.reset(new Bitmap(backup_bitmap_storage_.get(), |
| 524 backup_header_->table_len, num_words)); |
| 525 if (old_extra_table) |
| 526 MoveCells(old_extra_table.get()); |
| 527 |
| 528 if (small_table_) |
| 529 DCHECK(header_->flags & SMALL_CACHE); |
| 530 } |
| 531 |
| 532 void IndexTable::Reset() { |
| 533 header_ = NULL; |
| 534 main_table_ = NULL; |
| 535 extra_table_ = NULL; |
| 536 bitmap_.reset(); |
| 537 backup_bitmap_.reset(); |
| 538 backup_header_.reset(); |
| 539 backup_bitmap_storage_.reset(); |
| 540 modified_ = false; |
| 541 } |
| 542 |
| 543 // The general method for locating cells is to: |
| 544 // 1. Get the first bucket. This usually means directly indexing the table (as |
| 545 // this method does), or iterating through all possible buckets. |
| 546 // 2. Iterate through all the cells in that first bucket. |
| 547 // 3. If there is a linked bucket, locate it directly in the extra table. |
| 548 // 4. Go back to 2, as needed. |
| 549 // |
| 550 // One consequence of this pattern is that we never start looking at buckets in |
| 551 // the extra table, unless we are following a link from the main table. |
| 552 EntrySet IndexTable::LookupEntries(uint32 hash) { |
| 553 EntrySet entries; |
| 554 int bucket_id = static_cast<int>(hash & mask_); |
| 555 IndexBucket* bucket = &main_table_[bucket_id]; |
| 556 for (;;) { |
| 557 for (int i = 0; i < kCellsPerBucket; i++) { |
| 558 IndexCell* current_cell = &bucket->cells[i]; |
| 559 if (!GetAddressValue(*current_cell)) |
| 560 continue; |
| 561 if (!SanityCheck(*current_cell)) { |
| 562 NOTREACHED(); |
| 563 int cell_id = bucket_id * kCellsPerBucket + i; |
| 564 current_cell->Clear(); |
| 565 bitmap_->Set(cell_id, false); |
| 566 backup_bitmap_->Set(cell_id, false); |
| 567 modified_ = true; |
| 568 continue; |
| 569 } |
| 570 int cell_id = bucket_id * kCellsPerBucket + i; |
| 571 if (MisplacedHash(*current_cell, hash)) { |
| 572 HandleMisplacedCell(current_cell, cell_id, hash & mask_); |
| 573 } else if (IsHashMatch(*current_cell, hash)) { |
| 574 EntryCell entry_cell(cell_id, hash, *current_cell, small_table_); |
| 575 CheckState(entry_cell); |
| 576 if (entry_cell.GetState() != ENTRY_DELETED) { |
| 577 entries.cells.push_back(entry_cell); |
| 578 if (entry_cell.GetGroup() == ENTRY_EVICTED) |
| 579 entries.evicted_count++; |
| 580 } |
| 581 } |
| 582 } |
| 583 bucket_id = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_, |
| 584 &bucket); |
| 585 if (!bucket_id) |
| 586 break; |
| 587 } |
| 588 return entries; |
| 589 } |
| 590 |
| 591 EntryCell IndexTable::CreateEntryCell(uint32 hash, Addr address) { |
| 592 DCHECK(IsValidAddress(address)); |
| 593 DCHECK(address.FileNumber() || address.start_block()); |
| 594 |
| 595 int bucket_id = static_cast<int>(hash & mask_); |
| 596 int cell_id = 0; |
| 597 IndexBucket* bucket = &main_table_[bucket_id]; |
| 598 IndexCell* current_cell = NULL; |
| 599 bool found = false; |
| 600 for (; !found;) { |
| 601 for (int i = 0; i < kCellsPerBucket && !found; i++) { |
| 602 current_cell = &bucket->cells[i]; |
| 603 if (!GetAddressValue(*current_cell)) { |
| 604 cell_id = bucket_id * kCellsPerBucket + i; |
| 605 found = true; |
| 606 } |
| 607 } |
| 608 if (found) |
| 609 break; |
| 610 bucket_id = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_, |
| 611 &bucket); |
| 612 if (!bucket_id) |
| 613 break; |
| 614 } |
| 615 |
| 616 if (!found) { |
| 617 bucket_id = NewExtraBucket(); |
| 618 if (bucket_id) { |
| 619 cell_id = bucket_id * kCellsPerBucket; |
| 620 bucket->next = cell_id; |
| 621 bucket = &extra_table_[bucket_id - (mask_ + 1)]; |
| 622 bucket->hash = hash & mask_; |
| 623 found = true; |
| 624 } else { |
| 625 // address 0 is a reserved value, and the caller interprets it as invalid. |
| 626 address.set_value(0); |
| 627 } |
| 628 } |
| 629 |
| 630 EntryCell entry_cell(cell_id, hash, address, small_table_); |
| 631 if (address.file_type() == BLOCK_EVICTED) |
| 632 entry_cell.SetGroup(ENTRY_EVICTED); |
| 633 else |
| 634 entry_cell.SetGroup(ENTRY_NO_USE); |
| 635 Save(&entry_cell); |
| 636 |
| 637 if (found) { |
| 638 bitmap_->Set(cell_id, true); |
| 639 backup_bitmap_->Set(cell_id, true); |
| 640 header()->used_cells++; |
| 641 modified_ = true; |
| 642 } |
| 643 |
| 644 return entry_cell; |
| 645 } |
| 646 |
| 647 EntryCell IndexTable::FindEntryCell(uint32 hash, Addr address) { |
| 648 return FindEntryCellImpl(hash, address, false); |
| 649 } |
| 650 |
| 651 int IndexTable::CalculateTimestamp(Time time) { |
| 652 TimeDelta delta = time - Time::FromInternalValue(header_->base_time); |
| 653 return std::max(delta.InMinutes(), 0); |
| 654 } |
| 655 |
| 656 base::Time IndexTable::TimeFromTimestamp(int timestamp) { |
| 657 return Time::FromInternalValue(header_->base_time) + |
| 658 TimeDelta::FromMinutes(timestamp); |
| 659 } |
| 660 |
| 661 void IndexTable::SetSate(uint32 hash, Addr address, EntryState state) { |
| 662 EntryCell cell = FindEntryCellImpl(hash, address, state == ENTRY_FREE); |
| 663 if (!cell.IsValid()) { |
| 664 NOTREACHED(); |
| 665 return; |
| 666 } |
| 667 |
| 668 EntryState old_state = cell.GetState(); |
| 669 if (state == ENTRY_FREE) { |
| 670 DCHECK_EQ(old_state, ENTRY_DELETED); |
| 671 } else if (state == ENTRY_NEW) { |
| 672 DCHECK_EQ(old_state, ENTRY_FREE); |
| 673 } else if (state == ENTRY_OPEN) { |
| 674 DCHECK_EQ(old_state, ENTRY_USED); |
| 675 } else if (state == ENTRY_MODIFIED) { |
| 676 DCHECK_EQ(old_state, ENTRY_OPEN); |
| 677 } else if (state == ENTRY_DELETED) { |
| 678 DCHECK(old_state == ENTRY_NEW || old_state == ENTRY_OPEN || |
| 679 old_state == ENTRY_MODIFIED); |
| 680 } else if (state == ENTRY_USED) { |
| 681 DCHECK(old_state == ENTRY_NEW || old_state == ENTRY_OPEN || |
| 682 old_state == ENTRY_MODIFIED); |
| 683 } |
| 684 |
| 685 modified_ = true; |
| 686 if (state == ENTRY_DELETED) { |
| 687 bitmap_->Set(cell.cell_id(), false); |
| 688 backup_bitmap_->Set(cell.cell_id(), false); |
| 689 } else if (state == ENTRY_FREE) { |
| 690 cell.Clear(); |
| 691 Write(cell); |
| 692 header()->used_cells--; |
| 693 return; |
| 694 } |
| 695 cell.SetState(state); |
| 696 |
| 697 Save(&cell); |
| 698 } |
| 699 |
| 700 void IndexTable::UpdateTime(uint32 hash, Addr address, base::Time current) { |
| 701 EntryCell cell = FindEntryCell(hash, address); |
| 702 if (!cell.IsValid()) |
| 703 return; |
| 704 |
| 705 int minutes = CalculateTimestamp(current); |
| 706 |
| 707 // Keep about 3 months of headroom. |
| 708 const int kMaxTimestamp = (1 << 20) - 60 * 24 * 90; |
| 709 if (minutes > kMaxTimestamp) { |
| 710 // TODO(rvargas): |
| 711 // Update header->old_time and trigger a timer |
| 712 // Rebaseline timestamps and don't update sums |
| 713 // Start a timer (about 2 backups) |
| 714 // fix all ckecksums and trigger another timer |
| 715 // update header->old_time because rebaseline is done. |
| 716 minutes = std::min(minutes, (1 << 20) - 1); |
| 717 } |
| 718 |
| 719 cell.SetTimestamp(minutes); |
| 720 Save(&cell); |
| 721 } |
| 722 |
| 723 void IndexTable::Save(EntryCell* cell) { |
| 724 cell->FixSum(); |
| 725 Write(*cell); |
| 726 } |
| 727 |
| 728 void IndexTable::GetOldest(IndexIterator* no_use, |
| 729 IndexIterator* low_use, |
| 730 IndexIterator* high_use) { |
| 731 no_use->forward = true; |
| 732 low_use->forward = true; |
| 733 high_use->forward = true; |
| 734 InitIterator(no_use); |
| 735 InitIterator(low_use); |
| 736 InitIterator(high_use); |
| 737 |
| 738 WalkTables(-1, no_use, low_use, high_use); |
| 739 } |
| 740 |
| 741 bool IndexTable::GetNextCells(IndexIterator* iterator) { |
| 742 int current_time = iterator->timestamp; |
| 743 InitIterator(iterator); |
| 744 |
| 745 WalkTables(current_time, iterator, iterator, iterator); |
| 746 return !iterator->cells.empty(); |
| 747 } |
| 748 |
| 749 void IndexTable::OnBackupTimer() { |
| 750 if (!modified_) |
| 751 return; |
| 752 |
| 753 int num_words = (header_->table_len + 31) / 32; |
| 754 int num_bytes = num_words * 4 + static_cast<int>(sizeof(*header_)); |
| 755 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(num_bytes)); |
| 756 memcpy(buffer->data(), header_, sizeof(*header_)); |
| 757 memcpy(buffer->data() + sizeof(*header_), backup_bitmap_storage_.get(), |
| 758 num_words * 4); |
| 759 backend_->SaveIndex(buffer, num_bytes); |
| 760 modified_ = false; |
| 761 } |
| 762 |
| 763 // ----------------------------------------------------------------------- |
| 764 |
| 765 EntryCell IndexTable::FindEntryCellImpl(uint32 hash, Addr address, |
| 766 bool allow_deleted) { |
| 767 int bucket_id = static_cast<int>(hash & mask_); |
| 768 IndexBucket* bucket = &main_table_[bucket_id]; |
| 769 for (;;) { |
| 770 for (int i = 0; i < kCellsPerBucket; i++) { |
| 771 IndexCell* current_cell = &bucket->cells[i]; |
| 772 if (!GetAddressValue(*current_cell)) |
| 773 continue; |
| 774 DCHECK(SanityCheck(*current_cell)); |
| 775 if (IsHashMatch(*current_cell, hash)) { |
| 776 // We have a match. |
| 777 int cell_id = bucket_id * kCellsPerBucket + i; |
| 778 EntryCell entry_cell(cell_id, hash, *current_cell, small_table_); |
| 779 if (entry_cell.GetAddress() != address) |
| 780 continue; |
| 781 |
| 782 if (!allow_deleted && entry_cell.GetState() == ENTRY_DELETED) |
| 783 continue; |
| 784 |
| 785 return entry_cell; |
| 786 } |
| 787 } |
| 788 bucket_id = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_, |
| 789 &bucket); |
| 790 if (!bucket_id) |
| 791 break; |
| 792 } |
| 793 return EntryCell(); |
| 794 } |
| 795 |
| 796 void IndexTable::CheckState(const EntryCell& cell) { |
| 797 int current_state = cell.GetState(); |
| 798 if (current_state != ENTRY_FIXING) { |
| 799 bool present = ((current_state & 3) != 0); // Look at the last two bits. |
| 800 if (present != bitmap_->Get(cell.cell_id()) || |
| 801 present != backup_bitmap_->Get(cell.cell_id())) { |
| 802 // There's a mismatch. |
| 803 if (current_state == ENTRY_DELETED) { |
| 804 // We were in the process of deleting this entry. Finish now. |
| 805 backend_->DeleteCell(cell); |
| 806 } else { |
| 807 current_state = ENTRY_FIXING; |
| 808 EntryCell bad_cell(cell); |
| 809 bad_cell.SetState(ENTRY_FIXING); |
| 810 Save(&bad_cell); |
| 811 } |
| 812 } |
| 813 } |
| 814 |
| 815 if (current_state == ENTRY_FIXING) |
| 816 backend_->FixCell(cell); |
| 817 } |
| 818 |
| 819 void IndexTable::Write(const EntryCell& cell) { |
| 820 IndexBucket* bucket = NULL; |
| 821 int bucket_id = cell.cell_id() / kCellsPerBucket; |
| 822 if (bucket_id < static_cast<int32>(mask_ + 1)) { |
| 823 bucket = &main_table_[bucket_id]; |
| 824 } else { |
| 825 DCHECK_LE(bucket_id, header()->max_bucket); |
| 826 bucket = &extra_table_[bucket_id - (mask_ + 1)]; |
| 827 } |
| 828 |
| 829 int cell_number = cell.cell_id() % kCellsPerBucket; |
| 830 if (GetAddressValue(bucket->cells[cell_number]) && cell.GetAddressValue()) { |
| 831 DCHECK_EQ(cell.GetAddressValue(), |
| 832 GetAddressValue(bucket->cells[cell_number])); |
| 833 } |
| 834 cell.Serialize(&bucket->cells[cell_number]); |
| 835 } |
| 836 |
| 837 int IndexTable::NewExtraBucket() { |
| 838 int safe_window = (header()->table_len < kNumExtraBlocks * 2) ? |
| 839 kNumExtraBlocks / 4 : kNumExtraBlocks; |
| 840 if (header()->table_len - header()->max_bucket * kCellsPerBucket < |
| 841 safe_window) { |
| 842 backend_->GrowIndex(); |
| 843 } |
| 844 |
| 845 if (header()->max_bucket * kCellsPerBucket == |
| 846 header()->table_len - kCellsPerBucket) { |
| 847 return 0; |
| 848 } |
| 849 |
| 850 header()->max_bucket++; |
| 851 return header()->max_bucket; |
| 852 } |
| 853 |
| 854 void IndexTable::WalkTables(int limit_time, |
| 855 IndexIterator* no_use, |
| 856 IndexIterator* low_use, |
| 857 IndexIterator* high_use) { |
| 858 header_->num_no_use_entries = 0; |
| 859 header_->num_low_use_entries = 0; |
| 860 header_->num_high_use_entries = 0; |
| 861 header_->num_evicted_entries = 0; |
| 862 |
| 863 for (int i = 0; i < static_cast<int32>(mask_ + 1); i++) { |
| 864 int bucket_id = i; |
| 865 IndexBucket* bucket = &main_table_[i]; |
| 866 for (;;) { |
| 867 UpdateFromBucket(bucket, i, limit_time, no_use, low_use, high_use); |
| 868 |
| 869 bucket_id = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_, |
| 870 &bucket); |
| 871 if (!bucket_id) |
| 872 break; |
| 873 } |
| 874 } |
| 875 header_->num_entries = header_->num_no_use_entries + |
| 876 header_->num_low_use_entries + |
| 877 header_->num_high_use_entries + |
| 878 header_->num_evicted_entries; |
| 879 modified_ = true; |
| 880 } |
| 881 |
| 882 void IndexTable::UpdateFromBucket(IndexBucket* bucket, int bucket_hash, |
| 883 int limit_time, |
| 884 IndexIterator* no_use, |
| 885 IndexIterator* low_use, |
| 886 IndexIterator* high_use) { |
| 887 for (int i = 0; i < kCellsPerBucket; i++) { |
| 888 IndexCell& current_cell = bucket->cells[i]; |
| 889 if (!GetAddressValue(current_cell)) |
| 890 continue; |
| 891 DCHECK(SanityCheck(current_cell)); |
| 892 if (!IsNormalState(current_cell)) |
| 893 continue; |
| 894 |
| 895 EntryCell entry_cell(0, GetFullHash(current_cell, bucket_hash), |
| 896 current_cell, small_table_); |
| 897 switch (GetCellGroup(current_cell)) { |
| 898 case ENTRY_NO_USE: |
| 899 UpdateIterator(entry_cell, limit_time, no_use); |
| 900 header_->num_no_use_entries++; |
| 901 break; |
| 902 case ENTRY_LOW_USE: |
| 903 UpdateIterator(entry_cell, limit_time, low_use); |
| 904 header_->num_low_use_entries++; |
| 905 break; |
| 906 case ENTRY_HIGH_USE: |
| 907 UpdateIterator(entry_cell, limit_time, high_use); |
| 908 header_->num_high_use_entries++; |
| 909 break; |
| 910 case ENTRY_EVICTED: |
| 911 header_->num_evicted_entries++; |
| 912 break; |
| 913 default: |
| 914 NOTREACHED(); |
| 915 } |
| 916 } |
| 917 } |
| 918 |
| 919 void IndexTable::MoveCells(IndexBucket* old_extra_table) { |
| 920 int max_hash = (mask_ + 1) / 2; |
| 921 int max_bucket = header()->max_bucket; |
| 922 header()->max_bucket = mask_; |
| 923 int used_cells = header()->used_cells; |
| 924 |
| 925 // Consider a large cache: a cell stores the upper 18 bits of the hash |
| 926 // (h >> 14). If the table is say 8 times the original size (growing from 4x), |
| 927 // the bit that we are interested in would be the 3rd bit of the stored value, |
| 928 // in other words 'multiplier' >> 1. |
| 929 uint32 new_bit = (1 << extra_bits_) >> 1; |
| 930 |
| 931 scoped_ptr<IndexBucket[]> old_main_table; |
| 932 IndexBucket* source_table = main_table_; |
| 933 bool upgrade_format = !extra_bits_; |
| 934 if (upgrade_format) { |
| 935 // This method should deal with migrating a small table to a big one. Given |
| 936 // that the first thing to do is read the old table, set small_table_ for |
| 937 // the size of the old table. Now, when moving a cell, the result cannot be |
| 938 // placed in the old table or we will end up reading it again and attempting |
| 939 // to move it, so we have to copy the whole table at once. |
| 940 DCHECK(!small_table_); |
| 941 small_table_ = true; |
| 942 old_main_table.reset(new IndexBucket[max_hash]); |
| 943 memcpy(old_main_table.get(), main_table_, max_hash * sizeof(IndexBucket)); |
| 944 memset(main_table_, 0, max_hash * sizeof(IndexBucket)); |
| 945 source_table = old_main_table.get(); |
| 946 } |
| 947 |
| 948 for (int i = 0; i < max_hash; i++) { |
| 949 int bucket_id = i; |
| 950 IndexBucket* bucket = &source_table[i]; |
| 951 for (;;) { |
| 952 for (int j = 0; j < kCellsPerBucket; j++) { |
| 953 IndexCell& current_cell = bucket->cells[j]; |
| 954 if (!GetAddressValue(current_cell)) |
| 955 continue; |
| 956 DCHECK(SanityCheck(current_cell)); |
| 957 if (bucket_id == i) { |
| 958 if (upgrade_format || (GetHashValue(current_cell) & new_bit)) { |
| 959 // Move this cell to the upper half of the table. |
| 960 MoveSingleCell(¤t_cell, bucket_id * kCellsPerBucket + j, i, |
| 961 true); |
| 962 } |
| 963 } else { |
| 964 // All cells on extra buckets have to move. |
| 965 MoveSingleCell(¤t_cell, bucket_id * kCellsPerBucket + j, i, |
| 966 true); |
| 967 } |
| 968 } |
| 969 |
| 970 bucket_id = GetNextBucket(max_hash, max_bucket, old_extra_table, &bucket); |
| 971 if (!bucket_id) |
| 972 break; |
| 973 } |
| 974 } |
| 975 |
| 976 DCHECK_EQ(header()->used_cells, used_cells); |
| 977 |
| 978 if (upgrade_format) { |
| 979 small_table_ = false; |
| 980 header()->flags &= ~SMALL_CACHE; |
| 981 } |
| 982 } |
| 983 |
| 984 void IndexTable::MoveSingleCell(IndexCell* current_cell, int cell_id, |
| 985 int main_table_index, bool growing) { |
| 986 uint32 hash = GetFullHash(*current_cell, main_table_index); |
| 987 EntryCell old_cell(cell_id, hash, *current_cell, small_table_); |
| 988 |
| 989 bool upgrade_format = !extra_bits_ && growing; |
| 990 if (upgrade_format) |
| 991 small_table_ = false; |
| 992 EntryCell new_cell = CreateEntryCell(hash, old_cell.GetAddress()); |
| 993 |
| 994 if (!new_cell.IsValid()) { |
| 995 // We'll deal with this entry later. |
| 996 if (upgrade_format) |
| 997 small_table_ = true; |
| 998 return; |
| 999 } |
| 1000 |
| 1001 new_cell.SetState(old_cell.GetState()); |
| 1002 new_cell.SetGroup(old_cell.GetGroup()); |
| 1003 new_cell.SetReuse(old_cell.GetReuse()); |
| 1004 new_cell.SetTimestamp(old_cell.GetTimestamp()); |
| 1005 Save(&new_cell); |
| 1006 modified_ = true; |
| 1007 if (upgrade_format) |
| 1008 small_table_ = true; |
| 1009 |
| 1010 if (old_cell.GetState() == ENTRY_DELETED) { |
| 1011 bitmap_->Set(new_cell.cell_id(), false); |
| 1012 backup_bitmap_->Set(new_cell.cell_id(), false); |
| 1013 } |
| 1014 |
| 1015 if (!growing || cell_id / kCellsPerBucket == main_table_index) { |
| 1016 // Only delete entries that live on the main table. |
| 1017 if (!upgrade_format) { |
| 1018 old_cell.Clear(); |
| 1019 Write(old_cell); |
| 1020 } |
| 1021 |
| 1022 if (cell_id != new_cell.cell_id()) { |
| 1023 bitmap_->Set(old_cell.cell_id(), false); |
| 1024 backup_bitmap_->Set(old_cell.cell_id(), false); |
| 1025 } |
| 1026 } |
| 1027 header()->used_cells--; |
| 1028 } |
| 1029 |
| 1030 void IndexTable::HandleMisplacedCell(IndexCell* current_cell, int cell_id, |
| 1031 int main_table_index) { |
| 1032 // The cell may be misplaced, or a duplicate cell exists with this data. |
| 1033 uint32 hash = GetFullHash(*current_cell, main_table_index); |
| 1034 MoveSingleCell(current_cell, cell_id, main_table_index, false); |
| 1035 |
| 1036 // Now look for a duplicate cell. |
| 1037 CheckBucketList(hash & mask_); |
| 1038 } |
| 1039 |
| 1040 void IndexTable::CheckBucketList(int bucket_id) { |
| 1041 typedef std::pair<int, EntryGroup> AddressAndGroup; |
| 1042 std::set<AddressAndGroup> entries; |
| 1043 IndexBucket* bucket = &main_table_[bucket_id]; |
| 1044 int bucket_hash = bucket_id; |
| 1045 for (;;) { |
| 1046 for (int i = 0; i < kCellsPerBucket; i++) { |
| 1047 IndexCell* current_cell = &bucket->cells[i]; |
| 1048 if (!GetAddressValue(*current_cell)) |
| 1049 continue; |
| 1050 if (!SanityCheck(*current_cell)) { |
| 1051 NOTREACHED(); |
| 1052 current_cell->Clear(); |
| 1053 continue; |
| 1054 } |
| 1055 int cell_id = bucket_id * kCellsPerBucket + i; |
| 1056 EntryCell cell(cell_id, GetFullHash(*current_cell, bucket_hash), |
| 1057 *current_cell, small_table_); |
| 1058 if (!entries.insert(std::make_pair(cell.GetAddress().value(), |
| 1059 cell.GetGroup())).second) { |
| 1060 current_cell->Clear(); |
| 1061 continue; |
| 1062 } |
| 1063 CheckState(cell); |
| 1064 } |
| 1065 |
| 1066 bucket_id = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_, |
| 1067 &bucket); |
| 1068 if (!bucket_id) |
| 1069 break; |
| 1070 } |
| 1071 } |
| 1072 |
| 1073 uint32 IndexTable::GetAddressValue(const IndexCell& cell) { |
| 1074 if (small_table_) |
| 1075 return GetCellSmallTableAddress(cell); |
| 1076 |
| 1077 return GetCellAddress(cell); |
| 1078 } |
| 1079 |
| 1080 uint32 IndexTable::GetHashValue(const IndexCell& cell) { |
| 1081 if (small_table_) |
| 1082 return GetCellSmallTableHash(cell); |
| 1083 |
| 1084 return GetCellHash(cell); |
| 1085 } |
| 1086 |
| 1087 uint32 IndexTable::GetFullHash(const IndexCell& cell, uint32 lower_part) { |
| 1088 // It is OK for the high order bits of lower_part to overlap with the stored |
| 1089 // part of the hash. |
| 1090 if (small_table_) |
| 1091 return (GetCellSmallTableHash(cell) << kHashSmallTableShift) | lower_part; |
| 1092 |
| 1093 return (GetCellHash(cell) << kHashShift) | lower_part; |
| 1094 } |
| 1095 |
| 1096 // All the bits stored in the cell should match the provided hash. |
| 1097 bool IndexTable::IsHashMatch(const IndexCell& cell, uint32 hash) { |
| 1098 hash = small_table_ ? hash >> kHashSmallTableShift : hash >> kHashShift; |
| 1099 return GetHashValue(cell) == hash; |
| 1100 } |
| 1101 |
| 1102 // A partial match ignores the redundant bits stored in the cell. In other |
| 1103 // words, returns true for misplaced cells as well as cells that have a regular |
| 1104 // hash match. |
| 1105 bool IndexTable::IsPartialHashMatch(const IndexCell& cell, uint32 hash) { |
| 1106 hash = small_table_ ? hash >> kHashSmallTableShift : hash >> kHashShift; |
| 1107 return (GetHashValue(cell) >> extra_bits_) == (hash >> extra_bits_); |
| 1108 } |
| 1109 |
| 1110 bool IndexTable::MisplacedHash(const IndexCell& cell, uint32 hash) { |
| 1111 if (!extra_bits_) |
| 1112 return false; |
| 1113 |
| 1114 uint32 mask = (1 << extra_bits_) - 1; |
| 1115 hash = small_table_ ? hash >> kHashSmallTableShift : hash >> kHashShift; |
| 1116 return (GetHashValue(cell) & mask) != (hash & mask); |
| 1117 } |
| 1118 |
| 1119 // Things we can be doing: |
| 1120 // |
| 1121 // - Updating timestamps |
| 1122 // Fast, but we go through a few backup cycles to make sure it sticks |
| 1123 // - Growing the extra table -> increase bitmap size, remap |
| 1124 // Just a matter of tripping to the cache thread. Everything keeps moving |
| 1125 // - Growing the whole table -> relocating all entries, may take a while |
| 1126 // - Evictions... only when we are NOT doing something else? just find the |
| 1127 // entries again so that there's no invalidation of lists |
| 1128 |
| 1129 } // namespace disk_cache |
OLD | NEW |