Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(441)

Unified Diff: skia/ext/recursive_gaussian_convolution_unittest.cc

Issue 1519243002: Remove many unused files from //skia/ext (Closed) Base URL: git@github.com:domokit/mojo.git@master
Patch Set: Created 5 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « skia/ext/recursive_gaussian_convolution.cc ('k') | ui/android/BUILD.gn » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: skia/ext/recursive_gaussian_convolution_unittest.cc
diff --git a/skia/ext/recursive_gaussian_convolution_unittest.cc b/skia/ext/recursive_gaussian_convolution_unittest.cc
deleted file mode 100644
index 9fe386b7c5647357ec12da49a56b789fdc6958b8..0000000000000000000000000000000000000000
--- a/skia/ext/recursive_gaussian_convolution_unittest.cc
+++ /dev/null
@@ -1,395 +0,0 @@
-// Copyright (c) 2013 The Chromium Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#include <functional>
-#include <numeric>
-#include <vector>
-
-#include "base/basictypes.h"
-#include "base/files/file_path.h"
-#include "base/files/file_util.h"
-#include "base/logging.h"
-#include "base/time/time.h"
-#include "skia/ext/convolver.h"
-#include "skia/ext/recursive_gaussian_convolution.h"
-#include "testing/gtest/include/gtest/gtest.h"
-#include "third_party/skia/include/core/SkPoint.h"
-#include "third_party/skia/include/core/SkRect.h"
-
-namespace {
-
-int ComputeRowStride(int width, int channel_count, int stride_slack) {
- return width * channel_count + stride_slack;
-}
-
-SkIPoint MakeImpulseImage(std::vector<unsigned char>* image,
- int width,
- int height,
- int channel_index,
- int channel_count,
- int stride_slack) {
- const int src_row_stride = ComputeRowStride(
- width, channel_count, stride_slack);
- const int src_byte_count = src_row_stride * height;
- const int signal_x = width / 2;
- const int signal_y = height / 2;
-
- image->resize(src_byte_count, 0);
- const int non_zero_pixel_index =
- signal_y * src_row_stride + signal_x * channel_count + channel_index;
- (*image)[non_zero_pixel_index] = 255;
- return SkIPoint::Make(signal_x, signal_y);
-}
-
-SkIRect MakeBoxImage(std::vector<unsigned char>* image,
- int width,
- int height,
- int channel_index,
- int channel_count,
- int stride_slack,
- int box_width,
- int box_height,
- unsigned char value) {
- const int src_row_stride = ComputeRowStride(
- width, channel_count, stride_slack);
- const int src_byte_count = src_row_stride * height;
- const SkIRect box = SkIRect::MakeXYWH((width - box_width) / 2,
- (height - box_height) / 2,
- box_width, box_height);
-
- image->resize(src_byte_count, 0);
- for (int y = box.top(); y < box.bottom(); ++y) {
- for (int x = box.left(); x < box.right(); ++x)
- (*image)[y * src_row_stride + x * channel_count + channel_index] = value;
- }
-
- return box;
-}
-
-int ComputeBoxSum(const std::vector<unsigned char>& image,
- const SkIRect& box,
- int image_width) {
- // Compute the sum of all pixels in the box. Assume byte stride 1 and row
- // stride same as image_width.
- int sum = 0;
- for (int y = box.top(); y < box.bottom(); ++y) {
- for (int x = box.left(); x < box.right(); ++x)
- sum += image[y * image_width + x];
- }
-
- return sum;
-}
-
-} // namespace
-
-namespace skia {
-
-TEST(RecursiveGaussian, SmoothingMethodComparison) {
- static const int kImgWidth = 512;
- static const int kImgHeight = 220;
- static const int kChannelIndex = 3;
- static const int kChannelCount = 3;
- static const int kStrideSlack = 22;
-
- std::vector<unsigned char> input;
- SkISize image_size = SkISize::Make(kImgWidth, kImgHeight);
- MakeImpulseImage(
- &input, kImgWidth, kImgHeight, kChannelIndex, kChannelCount,
- kStrideSlack);
-
- // Destination will be a single channel image with stide matching width.
- const int dest_row_stride = kImgWidth;
- const int dest_byte_count = dest_row_stride * kImgHeight;
- std::vector<unsigned char> intermediate(dest_byte_count);
- std::vector<unsigned char> intermediate2(dest_byte_count);
- std::vector<unsigned char> control(dest_byte_count);
- std::vector<unsigned char> output(dest_byte_count);
-
- const int src_row_stride = ComputeRowStride(
- kImgWidth, kChannelCount, kStrideSlack);
-
- const float kernel_sigma = 2.5f;
- ConvolutionFilter1D filter;
- SetUpGaussianConvolutionKernel(&filter, kernel_sigma, false);
- // Process the control image.
- SingleChannelConvolveX1D(&input[0], src_row_stride,
- kChannelIndex, kChannelCount,
- filter, image_size,
- &intermediate[0], dest_row_stride, 0, 1, false);
- SingleChannelConvolveY1D(&intermediate[0], dest_row_stride, 0, 1,
- filter, image_size,
- &control[0], dest_row_stride, 0, 1, false);
-
- // Now try the same using the other method.
- RecursiveFilter recursive_filter(kernel_sigma, RecursiveFilter::FUNCTION);
- SingleChannelRecursiveGaussianY(&input[0], src_row_stride,
- kChannelIndex, kChannelCount,
- recursive_filter, image_size,
- &intermediate2[0], dest_row_stride,
- 0, 1, false);
- SingleChannelRecursiveGaussianX(&intermediate2[0], dest_row_stride, 0, 1,
- recursive_filter, image_size,
- &output[0], dest_row_stride, 0, 1, false);
-
- // We cannot expect the results to be really the same. In particular,
- // the standard implementation is computed in completely fixed-point, while
- // recursive is done in floating point and squeezed back into char*. On top
- // of that, its characteristics are a bit different (consult the paper).
- EXPECT_NEAR(std::accumulate(intermediate.begin(), intermediate.end(), 0),
- std::accumulate(intermediate2.begin(), intermediate2.end(), 0),
- 50);
- int difference_count = 0;
- std::vector<unsigned char>::const_iterator i1, i2;
- for (i1 = control.begin(), i2 = output.begin();
- i1 != control.end(); ++i1, ++i2) {
- if ((*i1 != 0) != (*i2 != 0))
- difference_count++;
- }
-
- EXPECT_LE(difference_count, 44); // 44 is 2 * PI * r (r == 7, spot size).
-}
-
-TEST(RecursiveGaussian, SmoothingImpulse) {
- static const int kImgWidth = 200;
- static const int kImgHeight = 300;
- static const int kChannelIndex = 3;
- static const int kChannelCount = 3;
- static const int kStrideSlack = 22;
-
- std::vector<unsigned char> input;
- SkISize image_size = SkISize::Make(kImgWidth, kImgHeight);
- const SkIPoint centre_point = MakeImpulseImage(
- &input, kImgWidth, kImgHeight, kChannelIndex, kChannelCount,
- kStrideSlack);
-
- // Destination will be a single channel image with stide matching width.
- const int dest_row_stride = kImgWidth;
- const int dest_byte_count = dest_row_stride * kImgHeight;
- std::vector<unsigned char> intermediate(dest_byte_count);
- std::vector<unsigned char> output(dest_byte_count);
-
- const int src_row_stride = ComputeRowStride(
- kImgWidth, kChannelCount, kStrideSlack);
-
- const float kernel_sigma = 5.0f;
- RecursiveFilter recursive_filter(kernel_sigma, RecursiveFilter::FUNCTION);
- SingleChannelRecursiveGaussianY(&input[0], src_row_stride,
- kChannelIndex, kChannelCount,
- recursive_filter, image_size,
- &intermediate[0], dest_row_stride,
- 0, 1, false);
- SingleChannelRecursiveGaussianX(&intermediate[0], dest_row_stride, 0, 1,
- recursive_filter, image_size,
- &output[0], dest_row_stride, 0, 1, false);
-
- // Check we got the expected impulse response.
- const int cx = centre_point.x();
- const int cy = centre_point.y();
- unsigned char value_x = output[dest_row_stride * cy + cx];
- unsigned char value_y = value_x;
- EXPECT_GT(value_x, 0);
- for (int offset = 0;
- offset < std::min(kImgWidth, kImgHeight) && (value_y > 0 || value_x > 0);
- ++offset) {
- // Symmetricity and monotonicity along X.
- EXPECT_EQ(output[dest_row_stride * cy + cx - offset],
- output[dest_row_stride * cy + cx + offset]);
- EXPECT_LE(output[dest_row_stride * cy + cx - offset], value_x);
- value_x = output[dest_row_stride * cy + cx - offset];
-
- // Symmetricity and monotonicity along Y.
- EXPECT_EQ(output[dest_row_stride * (cy - offset) + cx],
- output[dest_row_stride * (cy + offset) + cx]);
- EXPECT_LE(output[dest_row_stride * (cy - offset) + cx], value_y);
- value_y = output[dest_row_stride * (cy - offset) + cx];
-
- // Symmetricity along X/Y (not really assured, but should be close).
- EXPECT_NEAR(value_x, value_y, 1);
- }
-
- // Smooth the inverse now.
- std::vector<unsigned char> output2(dest_byte_count);
- std::transform(input.begin(), input.end(), input.begin(),
- std::bind1st(std::minus<unsigned char>(), 255U));
- SingleChannelRecursiveGaussianY(&input[0], src_row_stride,
- kChannelIndex, kChannelCount,
- recursive_filter, image_size,
- &intermediate[0], dest_row_stride,
- 0, 1, false);
- SingleChannelRecursiveGaussianX(&intermediate[0], dest_row_stride, 0, 1,
- recursive_filter, image_size,
- &output2[0], dest_row_stride, 0, 1, false);
- // The image should be the reverse of output, but permitting for rounding
- // we will only claim that wherever output is 0, output2 should be 255.
- // There still can be differences at the edges of the object.
- std::vector<unsigned char>::const_iterator i1, i2;
- int difference_count = 0;
- for (i1 = output.begin(), i2 = output2.begin();
- i1 != output.end(); ++i1, ++i2) {
- // The line below checks (*i1 == 0 <==> *i2 == 255).
- if ((*i1 != 0 && *i2 == 255) && ! (*i1 == 0 && *i2 != 255))
- ++difference_count;
- }
- EXPECT_LE(difference_count, 8);
-}
-
-TEST(RecursiveGaussian, FirstDerivative) {
- static const int kImgWidth = 512;
- static const int kImgHeight = 1024;
- static const int kChannelIndex = 2;
- static const int kChannelCount = 4;
- static const int kStrideSlack = 22;
- static const int kBoxSize = 400;
-
- std::vector<unsigned char> input;
- const SkISize image_size = SkISize::Make(kImgWidth, kImgHeight);
- const SkIRect box = MakeBoxImage(
- &input, kImgWidth, kImgHeight, kChannelIndex, kChannelCount,
- kStrideSlack, kBoxSize, kBoxSize, 200);
-
- // Destination will be a single channel image with stide matching width.
- const int dest_row_stride = kImgWidth;
- const int dest_byte_count = dest_row_stride * kImgHeight;
- std::vector<unsigned char> output_x(dest_byte_count);
- std::vector<unsigned char> output_y(dest_byte_count);
- std::vector<unsigned char> output(dest_byte_count);
-
- const int src_row_stride = ComputeRowStride(
- kImgWidth, kChannelCount, kStrideSlack);
-
- const float kernel_sigma = 3.0f;
- const int spread = 4 * kernel_sigma;
- RecursiveFilter recursive_filter(kernel_sigma,
- RecursiveFilter::FIRST_DERIVATIVE);
- SingleChannelRecursiveGaussianX(&input[0], src_row_stride,
- kChannelIndex, kChannelCount,
- recursive_filter, image_size,
- &output_x[0], dest_row_stride,
- 0, 1, true);
- SingleChannelRecursiveGaussianY(&input[0], src_row_stride,
- kChannelIndex, kChannelCount,
- recursive_filter, image_size,
- &output_y[0], dest_row_stride,
- 0, 1, true);
-
- // In test code we can assume adding the two up should do fine.
- std::vector<unsigned char>::const_iterator ix, iy;
- std::vector<unsigned char>::iterator target;
- for (target = output.begin(), ix = output_x.begin(), iy = output_y.begin();
- target < output.end(); ++target, ++ix, ++iy) {
- *target = *ix + *iy;
- }
-
- SkIRect inflated_rect(box);
- inflated_rect.outset(spread, spread);
- SkIRect deflated_rect(box);
- deflated_rect.inset(spread, spread);
-
- int image_total = ComputeBoxSum(output,
- SkIRect::MakeWH(kImgWidth, kImgHeight),
- kImgWidth);
- int box_inflated = ComputeBoxSum(output, inflated_rect, kImgWidth);
- int box_deflated = ComputeBoxSum(output, deflated_rect, kImgWidth);
- EXPECT_EQ(box_deflated, 0);
- EXPECT_EQ(image_total, box_inflated);
-
- // Try inverted image. Behaviour should be very similar (modulo rounding).
- std::transform(input.begin(), input.end(), input.begin(),
- std::bind1st(std::minus<unsigned char>(), 255U));
- SingleChannelRecursiveGaussianX(&input[0], src_row_stride,
- kChannelIndex, kChannelCount,
- recursive_filter, image_size,
- &output_x[0], dest_row_stride,
- 0, 1, true);
- SingleChannelRecursiveGaussianY(&input[0], src_row_stride,
- kChannelIndex, kChannelCount,
- recursive_filter, image_size,
- &output_y[0], dest_row_stride,
- 0, 1, true);
-
- for (target = output.begin(), ix = output_x.begin(), iy = output_y.begin();
- target < output.end(); ++target, ++ix, ++iy) {
- *target = *ix + *iy;
- }
-
- image_total = ComputeBoxSum(output,
- SkIRect::MakeWH(kImgWidth, kImgHeight),
- kImgWidth);
- box_inflated = ComputeBoxSum(output, inflated_rect, kImgWidth);
- box_deflated = ComputeBoxSum(output, deflated_rect, kImgWidth);
-
- EXPECT_EQ(box_deflated, 0);
- EXPECT_EQ(image_total, box_inflated);
-}
-
-TEST(RecursiveGaussian, SecondDerivative) {
- static const int kImgWidth = 700;
- static const int kImgHeight = 500;
- static const int kChannelIndex = 0;
- static const int kChannelCount = 2;
- static const int kStrideSlack = 42;
- static const int kBoxSize = 200;
-
- std::vector<unsigned char> input;
- SkISize image_size = SkISize::Make(kImgWidth, kImgHeight);
- const SkIRect box = MakeBoxImage(
- &input, kImgWidth, kImgHeight, kChannelIndex, kChannelCount,
- kStrideSlack, kBoxSize, kBoxSize, 200);
-
- // Destination will be a single channel image with stide matching width.
- const int dest_row_stride = kImgWidth;
- const int dest_byte_count = dest_row_stride * kImgHeight;
- std::vector<unsigned char> output_x(dest_byte_count);
- std::vector<unsigned char> output_y(dest_byte_count);
- std::vector<unsigned char> output(dest_byte_count);
-
- const int src_row_stride = ComputeRowStride(
- kImgWidth, kChannelCount, kStrideSlack);
-
- const float kernel_sigma = 5.0f;
- const int spread = 8 * kernel_sigma;
- RecursiveFilter recursive_filter(kernel_sigma,
- RecursiveFilter::SECOND_DERIVATIVE);
- SingleChannelRecursiveGaussianX(&input[0], src_row_stride,
- kChannelIndex, kChannelCount,
- recursive_filter, image_size,
- &output_x[0], dest_row_stride,
- 0, 1, true);
- SingleChannelRecursiveGaussianY(&input[0], src_row_stride,
- kChannelIndex, kChannelCount,
- recursive_filter, image_size,
- &output_y[0], dest_row_stride,
- 0, 1, true);
-
- // In test code we can assume adding the two up should do fine.
- std::vector<unsigned char>::const_iterator ix, iy;
- std::vector<unsigned char>::iterator target;
- for (target = output.begin(),ix = output_x.begin(), iy = output_y.begin();
- target < output.end(); ++target, ++ix, ++iy) {
- *target = *ix + *iy;
- }
-
- int image_total = ComputeBoxSum(output,
- SkIRect::MakeWH(kImgWidth, kImgHeight),
- kImgWidth);
- int box_inflated = ComputeBoxSum(output,
- SkIRect::MakeLTRB(box.left() - spread,
- box.top() - spread,
- box.right() + spread,
- box.bottom() + spread),
- kImgWidth);
- int box_deflated = ComputeBoxSum(output,
- SkIRect::MakeLTRB(box.left() + spread,
- box.top() + spread,
- box.right() - spread,
- box.bottom() - spread),
- kImgWidth);
- // Since second derivative is not really used and implemented mostly
- // for the sake of completeness, we do not verify the detail (that dip
- // in the middle). But it is there.
- EXPECT_EQ(box_deflated, 0);
- EXPECT_EQ(image_total, box_inflated);
-}
-
-} // namespace skia
« no previous file with comments | « skia/ext/recursive_gaussian_convolution.cc ('k') | ui/android/BUILD.gn » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698