Index: skia/ext/recursive_gaussian_convolution_unittest.cc |
diff --git a/skia/ext/recursive_gaussian_convolution_unittest.cc b/skia/ext/recursive_gaussian_convolution_unittest.cc |
deleted file mode 100644 |
index 9fe386b7c5647357ec12da49a56b789fdc6958b8..0000000000000000000000000000000000000000 |
--- a/skia/ext/recursive_gaussian_convolution_unittest.cc |
+++ /dev/null |
@@ -1,395 +0,0 @@ |
-// Copyright (c) 2013 The Chromium Authors. All rights reserved. |
-// Use of this source code is governed by a BSD-style license that can be |
-// found in the LICENSE file. |
- |
-#include <functional> |
-#include <numeric> |
-#include <vector> |
- |
-#include "base/basictypes.h" |
-#include "base/files/file_path.h" |
-#include "base/files/file_util.h" |
-#include "base/logging.h" |
-#include "base/time/time.h" |
-#include "skia/ext/convolver.h" |
-#include "skia/ext/recursive_gaussian_convolution.h" |
-#include "testing/gtest/include/gtest/gtest.h" |
-#include "third_party/skia/include/core/SkPoint.h" |
-#include "third_party/skia/include/core/SkRect.h" |
- |
-namespace { |
- |
-int ComputeRowStride(int width, int channel_count, int stride_slack) { |
- return width * channel_count + stride_slack; |
-} |
- |
-SkIPoint MakeImpulseImage(std::vector<unsigned char>* image, |
- int width, |
- int height, |
- int channel_index, |
- int channel_count, |
- int stride_slack) { |
- const int src_row_stride = ComputeRowStride( |
- width, channel_count, stride_slack); |
- const int src_byte_count = src_row_stride * height; |
- const int signal_x = width / 2; |
- const int signal_y = height / 2; |
- |
- image->resize(src_byte_count, 0); |
- const int non_zero_pixel_index = |
- signal_y * src_row_stride + signal_x * channel_count + channel_index; |
- (*image)[non_zero_pixel_index] = 255; |
- return SkIPoint::Make(signal_x, signal_y); |
-} |
- |
-SkIRect MakeBoxImage(std::vector<unsigned char>* image, |
- int width, |
- int height, |
- int channel_index, |
- int channel_count, |
- int stride_slack, |
- int box_width, |
- int box_height, |
- unsigned char value) { |
- const int src_row_stride = ComputeRowStride( |
- width, channel_count, stride_slack); |
- const int src_byte_count = src_row_stride * height; |
- const SkIRect box = SkIRect::MakeXYWH((width - box_width) / 2, |
- (height - box_height) / 2, |
- box_width, box_height); |
- |
- image->resize(src_byte_count, 0); |
- for (int y = box.top(); y < box.bottom(); ++y) { |
- for (int x = box.left(); x < box.right(); ++x) |
- (*image)[y * src_row_stride + x * channel_count + channel_index] = value; |
- } |
- |
- return box; |
-} |
- |
-int ComputeBoxSum(const std::vector<unsigned char>& image, |
- const SkIRect& box, |
- int image_width) { |
- // Compute the sum of all pixels in the box. Assume byte stride 1 and row |
- // stride same as image_width. |
- int sum = 0; |
- for (int y = box.top(); y < box.bottom(); ++y) { |
- for (int x = box.left(); x < box.right(); ++x) |
- sum += image[y * image_width + x]; |
- } |
- |
- return sum; |
-} |
- |
-} // namespace |
- |
-namespace skia { |
- |
-TEST(RecursiveGaussian, SmoothingMethodComparison) { |
- static const int kImgWidth = 512; |
- static const int kImgHeight = 220; |
- static const int kChannelIndex = 3; |
- static const int kChannelCount = 3; |
- static const int kStrideSlack = 22; |
- |
- std::vector<unsigned char> input; |
- SkISize image_size = SkISize::Make(kImgWidth, kImgHeight); |
- MakeImpulseImage( |
- &input, kImgWidth, kImgHeight, kChannelIndex, kChannelCount, |
- kStrideSlack); |
- |
- // Destination will be a single channel image with stide matching width. |
- const int dest_row_stride = kImgWidth; |
- const int dest_byte_count = dest_row_stride * kImgHeight; |
- std::vector<unsigned char> intermediate(dest_byte_count); |
- std::vector<unsigned char> intermediate2(dest_byte_count); |
- std::vector<unsigned char> control(dest_byte_count); |
- std::vector<unsigned char> output(dest_byte_count); |
- |
- const int src_row_stride = ComputeRowStride( |
- kImgWidth, kChannelCount, kStrideSlack); |
- |
- const float kernel_sigma = 2.5f; |
- ConvolutionFilter1D filter; |
- SetUpGaussianConvolutionKernel(&filter, kernel_sigma, false); |
- // Process the control image. |
- SingleChannelConvolveX1D(&input[0], src_row_stride, |
- kChannelIndex, kChannelCount, |
- filter, image_size, |
- &intermediate[0], dest_row_stride, 0, 1, false); |
- SingleChannelConvolveY1D(&intermediate[0], dest_row_stride, 0, 1, |
- filter, image_size, |
- &control[0], dest_row_stride, 0, 1, false); |
- |
- // Now try the same using the other method. |
- RecursiveFilter recursive_filter(kernel_sigma, RecursiveFilter::FUNCTION); |
- SingleChannelRecursiveGaussianY(&input[0], src_row_stride, |
- kChannelIndex, kChannelCount, |
- recursive_filter, image_size, |
- &intermediate2[0], dest_row_stride, |
- 0, 1, false); |
- SingleChannelRecursiveGaussianX(&intermediate2[0], dest_row_stride, 0, 1, |
- recursive_filter, image_size, |
- &output[0], dest_row_stride, 0, 1, false); |
- |
- // We cannot expect the results to be really the same. In particular, |
- // the standard implementation is computed in completely fixed-point, while |
- // recursive is done in floating point and squeezed back into char*. On top |
- // of that, its characteristics are a bit different (consult the paper). |
- EXPECT_NEAR(std::accumulate(intermediate.begin(), intermediate.end(), 0), |
- std::accumulate(intermediate2.begin(), intermediate2.end(), 0), |
- 50); |
- int difference_count = 0; |
- std::vector<unsigned char>::const_iterator i1, i2; |
- for (i1 = control.begin(), i2 = output.begin(); |
- i1 != control.end(); ++i1, ++i2) { |
- if ((*i1 != 0) != (*i2 != 0)) |
- difference_count++; |
- } |
- |
- EXPECT_LE(difference_count, 44); // 44 is 2 * PI * r (r == 7, spot size). |
-} |
- |
-TEST(RecursiveGaussian, SmoothingImpulse) { |
- static const int kImgWidth = 200; |
- static const int kImgHeight = 300; |
- static const int kChannelIndex = 3; |
- static const int kChannelCount = 3; |
- static const int kStrideSlack = 22; |
- |
- std::vector<unsigned char> input; |
- SkISize image_size = SkISize::Make(kImgWidth, kImgHeight); |
- const SkIPoint centre_point = MakeImpulseImage( |
- &input, kImgWidth, kImgHeight, kChannelIndex, kChannelCount, |
- kStrideSlack); |
- |
- // Destination will be a single channel image with stide matching width. |
- const int dest_row_stride = kImgWidth; |
- const int dest_byte_count = dest_row_stride * kImgHeight; |
- std::vector<unsigned char> intermediate(dest_byte_count); |
- std::vector<unsigned char> output(dest_byte_count); |
- |
- const int src_row_stride = ComputeRowStride( |
- kImgWidth, kChannelCount, kStrideSlack); |
- |
- const float kernel_sigma = 5.0f; |
- RecursiveFilter recursive_filter(kernel_sigma, RecursiveFilter::FUNCTION); |
- SingleChannelRecursiveGaussianY(&input[0], src_row_stride, |
- kChannelIndex, kChannelCount, |
- recursive_filter, image_size, |
- &intermediate[0], dest_row_stride, |
- 0, 1, false); |
- SingleChannelRecursiveGaussianX(&intermediate[0], dest_row_stride, 0, 1, |
- recursive_filter, image_size, |
- &output[0], dest_row_stride, 0, 1, false); |
- |
- // Check we got the expected impulse response. |
- const int cx = centre_point.x(); |
- const int cy = centre_point.y(); |
- unsigned char value_x = output[dest_row_stride * cy + cx]; |
- unsigned char value_y = value_x; |
- EXPECT_GT(value_x, 0); |
- for (int offset = 0; |
- offset < std::min(kImgWidth, kImgHeight) && (value_y > 0 || value_x > 0); |
- ++offset) { |
- // Symmetricity and monotonicity along X. |
- EXPECT_EQ(output[dest_row_stride * cy + cx - offset], |
- output[dest_row_stride * cy + cx + offset]); |
- EXPECT_LE(output[dest_row_stride * cy + cx - offset], value_x); |
- value_x = output[dest_row_stride * cy + cx - offset]; |
- |
- // Symmetricity and monotonicity along Y. |
- EXPECT_EQ(output[dest_row_stride * (cy - offset) + cx], |
- output[dest_row_stride * (cy + offset) + cx]); |
- EXPECT_LE(output[dest_row_stride * (cy - offset) + cx], value_y); |
- value_y = output[dest_row_stride * (cy - offset) + cx]; |
- |
- // Symmetricity along X/Y (not really assured, but should be close). |
- EXPECT_NEAR(value_x, value_y, 1); |
- } |
- |
- // Smooth the inverse now. |
- std::vector<unsigned char> output2(dest_byte_count); |
- std::transform(input.begin(), input.end(), input.begin(), |
- std::bind1st(std::minus<unsigned char>(), 255U)); |
- SingleChannelRecursiveGaussianY(&input[0], src_row_stride, |
- kChannelIndex, kChannelCount, |
- recursive_filter, image_size, |
- &intermediate[0], dest_row_stride, |
- 0, 1, false); |
- SingleChannelRecursiveGaussianX(&intermediate[0], dest_row_stride, 0, 1, |
- recursive_filter, image_size, |
- &output2[0], dest_row_stride, 0, 1, false); |
- // The image should be the reverse of output, but permitting for rounding |
- // we will only claim that wherever output is 0, output2 should be 255. |
- // There still can be differences at the edges of the object. |
- std::vector<unsigned char>::const_iterator i1, i2; |
- int difference_count = 0; |
- for (i1 = output.begin(), i2 = output2.begin(); |
- i1 != output.end(); ++i1, ++i2) { |
- // The line below checks (*i1 == 0 <==> *i2 == 255). |
- if ((*i1 != 0 && *i2 == 255) && ! (*i1 == 0 && *i2 != 255)) |
- ++difference_count; |
- } |
- EXPECT_LE(difference_count, 8); |
-} |
- |
-TEST(RecursiveGaussian, FirstDerivative) { |
- static const int kImgWidth = 512; |
- static const int kImgHeight = 1024; |
- static const int kChannelIndex = 2; |
- static const int kChannelCount = 4; |
- static const int kStrideSlack = 22; |
- static const int kBoxSize = 400; |
- |
- std::vector<unsigned char> input; |
- const SkISize image_size = SkISize::Make(kImgWidth, kImgHeight); |
- const SkIRect box = MakeBoxImage( |
- &input, kImgWidth, kImgHeight, kChannelIndex, kChannelCount, |
- kStrideSlack, kBoxSize, kBoxSize, 200); |
- |
- // Destination will be a single channel image with stide matching width. |
- const int dest_row_stride = kImgWidth; |
- const int dest_byte_count = dest_row_stride * kImgHeight; |
- std::vector<unsigned char> output_x(dest_byte_count); |
- std::vector<unsigned char> output_y(dest_byte_count); |
- std::vector<unsigned char> output(dest_byte_count); |
- |
- const int src_row_stride = ComputeRowStride( |
- kImgWidth, kChannelCount, kStrideSlack); |
- |
- const float kernel_sigma = 3.0f; |
- const int spread = 4 * kernel_sigma; |
- RecursiveFilter recursive_filter(kernel_sigma, |
- RecursiveFilter::FIRST_DERIVATIVE); |
- SingleChannelRecursiveGaussianX(&input[0], src_row_stride, |
- kChannelIndex, kChannelCount, |
- recursive_filter, image_size, |
- &output_x[0], dest_row_stride, |
- 0, 1, true); |
- SingleChannelRecursiveGaussianY(&input[0], src_row_stride, |
- kChannelIndex, kChannelCount, |
- recursive_filter, image_size, |
- &output_y[0], dest_row_stride, |
- 0, 1, true); |
- |
- // In test code we can assume adding the two up should do fine. |
- std::vector<unsigned char>::const_iterator ix, iy; |
- std::vector<unsigned char>::iterator target; |
- for (target = output.begin(), ix = output_x.begin(), iy = output_y.begin(); |
- target < output.end(); ++target, ++ix, ++iy) { |
- *target = *ix + *iy; |
- } |
- |
- SkIRect inflated_rect(box); |
- inflated_rect.outset(spread, spread); |
- SkIRect deflated_rect(box); |
- deflated_rect.inset(spread, spread); |
- |
- int image_total = ComputeBoxSum(output, |
- SkIRect::MakeWH(kImgWidth, kImgHeight), |
- kImgWidth); |
- int box_inflated = ComputeBoxSum(output, inflated_rect, kImgWidth); |
- int box_deflated = ComputeBoxSum(output, deflated_rect, kImgWidth); |
- EXPECT_EQ(box_deflated, 0); |
- EXPECT_EQ(image_total, box_inflated); |
- |
- // Try inverted image. Behaviour should be very similar (modulo rounding). |
- std::transform(input.begin(), input.end(), input.begin(), |
- std::bind1st(std::minus<unsigned char>(), 255U)); |
- SingleChannelRecursiveGaussianX(&input[0], src_row_stride, |
- kChannelIndex, kChannelCount, |
- recursive_filter, image_size, |
- &output_x[0], dest_row_stride, |
- 0, 1, true); |
- SingleChannelRecursiveGaussianY(&input[0], src_row_stride, |
- kChannelIndex, kChannelCount, |
- recursive_filter, image_size, |
- &output_y[0], dest_row_stride, |
- 0, 1, true); |
- |
- for (target = output.begin(), ix = output_x.begin(), iy = output_y.begin(); |
- target < output.end(); ++target, ++ix, ++iy) { |
- *target = *ix + *iy; |
- } |
- |
- image_total = ComputeBoxSum(output, |
- SkIRect::MakeWH(kImgWidth, kImgHeight), |
- kImgWidth); |
- box_inflated = ComputeBoxSum(output, inflated_rect, kImgWidth); |
- box_deflated = ComputeBoxSum(output, deflated_rect, kImgWidth); |
- |
- EXPECT_EQ(box_deflated, 0); |
- EXPECT_EQ(image_total, box_inflated); |
-} |
- |
-TEST(RecursiveGaussian, SecondDerivative) { |
- static const int kImgWidth = 700; |
- static const int kImgHeight = 500; |
- static const int kChannelIndex = 0; |
- static const int kChannelCount = 2; |
- static const int kStrideSlack = 42; |
- static const int kBoxSize = 200; |
- |
- std::vector<unsigned char> input; |
- SkISize image_size = SkISize::Make(kImgWidth, kImgHeight); |
- const SkIRect box = MakeBoxImage( |
- &input, kImgWidth, kImgHeight, kChannelIndex, kChannelCount, |
- kStrideSlack, kBoxSize, kBoxSize, 200); |
- |
- // Destination will be a single channel image with stide matching width. |
- const int dest_row_stride = kImgWidth; |
- const int dest_byte_count = dest_row_stride * kImgHeight; |
- std::vector<unsigned char> output_x(dest_byte_count); |
- std::vector<unsigned char> output_y(dest_byte_count); |
- std::vector<unsigned char> output(dest_byte_count); |
- |
- const int src_row_stride = ComputeRowStride( |
- kImgWidth, kChannelCount, kStrideSlack); |
- |
- const float kernel_sigma = 5.0f; |
- const int spread = 8 * kernel_sigma; |
- RecursiveFilter recursive_filter(kernel_sigma, |
- RecursiveFilter::SECOND_DERIVATIVE); |
- SingleChannelRecursiveGaussianX(&input[0], src_row_stride, |
- kChannelIndex, kChannelCount, |
- recursive_filter, image_size, |
- &output_x[0], dest_row_stride, |
- 0, 1, true); |
- SingleChannelRecursiveGaussianY(&input[0], src_row_stride, |
- kChannelIndex, kChannelCount, |
- recursive_filter, image_size, |
- &output_y[0], dest_row_stride, |
- 0, 1, true); |
- |
- // In test code we can assume adding the two up should do fine. |
- std::vector<unsigned char>::const_iterator ix, iy; |
- std::vector<unsigned char>::iterator target; |
- for (target = output.begin(),ix = output_x.begin(), iy = output_y.begin(); |
- target < output.end(); ++target, ++ix, ++iy) { |
- *target = *ix + *iy; |
- } |
- |
- int image_total = ComputeBoxSum(output, |
- SkIRect::MakeWH(kImgWidth, kImgHeight), |
- kImgWidth); |
- int box_inflated = ComputeBoxSum(output, |
- SkIRect::MakeLTRB(box.left() - spread, |
- box.top() - spread, |
- box.right() + spread, |
- box.bottom() + spread), |
- kImgWidth); |
- int box_deflated = ComputeBoxSum(output, |
- SkIRect::MakeLTRB(box.left() + spread, |
- box.top() + spread, |
- box.right() - spread, |
- box.bottom() - spread), |
- kImgWidth); |
- // Since second derivative is not really used and implemented mostly |
- // for the sake of completeness, we do not verify the detail (that dip |
- // in the middle). But it is there. |
- EXPECT_EQ(box_deflated, 0); |
- EXPECT_EQ(image_total, box_inflated); |
-} |
- |
-} // namespace skia |