Index: skia/ext/image_operations.cc |
diff --git a/skia/ext/image_operations.cc b/skia/ext/image_operations.cc |
deleted file mode 100644 |
index a14344d319ea0a098c7a03d57a54430a4c25595b..0000000000000000000000000000000000000000 |
--- a/skia/ext/image_operations.cc |
+++ /dev/null |
@@ -1,413 +0,0 @@ |
-// Copyright (c) 2012 The Chromium Authors. All rights reserved. |
-// Use of this source code is governed by a BSD-style license that can be |
-// found in the LICENSE file. |
- |
-#define _USE_MATH_DEFINES |
-#include <algorithm> |
-#include <cmath> |
-#include <limits> |
- |
-#include "skia/ext/image_operations.h" |
- |
-// TODO(pkasting): skia/ext should not depend on base/! |
-#include "base/containers/stack_container.h" |
-#include "base/logging.h" |
-#include "base/metrics/histogram.h" |
-#include "base/time/time.h" |
-#include "base/trace_event/trace_event.h" |
-#include "build/build_config.h" |
-#include "skia/ext/convolver.h" |
-#include "third_party/skia/include/core/SkColorPriv.h" |
-#include "third_party/skia/include/core/SkRect.h" |
- |
-namespace skia { |
- |
-namespace { |
- |
-// Returns the ceiling/floor as an integer. |
-inline int CeilInt(float val) { |
- return static_cast<int>(ceil(val)); |
-} |
-inline int FloorInt(float val) { |
- return static_cast<int>(floor(val)); |
-} |
- |
-// Filter function computation ------------------------------------------------- |
- |
-// Evaluates the box filter, which goes from -0.5 to +0.5. |
-float EvalBox(float x) { |
- return (x >= -0.5f && x < 0.5f) ? 1.0f : 0.0f; |
-} |
- |
-// Evaluates the Lanczos filter of the given filter size window for the given |
-// position. |
-// |
-// |filter_size| is the width of the filter (the "window"), outside of which |
-// the value of the function is 0. Inside of the window, the value is the |
-// normalized sinc function: |
-// lanczos(x) = sinc(x) * sinc(x / filter_size); |
-// where |
-// sinc(x) = sin(pi*x) / (pi*x); |
-float EvalLanczos(int filter_size, float x) { |
- if (x <= -filter_size || x >= filter_size) |
- return 0.0f; // Outside of the window. |
- if (x > -std::numeric_limits<float>::epsilon() && |
- x < std::numeric_limits<float>::epsilon()) |
- return 1.0f; // Special case the discontinuity at the origin. |
- float xpi = x * static_cast<float>(M_PI); |
- return (sin(xpi) / xpi) * // sinc(x) |
- sin(xpi / filter_size) / (xpi / filter_size); // sinc(x/filter_size) |
-} |
- |
-// Evaluates the Hamming filter of the given filter size window for the given |
-// position. |
-// |
-// The filter covers [-filter_size, +filter_size]. Outside of this window |
-// the value of the function is 0. Inside of the window, the value is sinus |
-// cardinal multiplied by a recentered Hamming function. The traditional |
-// Hamming formula for a window of size N and n ranging in [0, N-1] is: |
-// hamming(n) = 0.54 - 0.46 * cos(2 * pi * n / (N-1))) |
-// In our case we want the function centered for x == 0 and at its minimum |
-// on both ends of the window (x == +/- filter_size), hence the adjusted |
-// formula: |
-// hamming(x) = (0.54 - |
-// 0.46 * cos(2 * pi * (x - filter_size)/ (2 * filter_size))) |
-// = 0.54 - 0.46 * cos(pi * x / filter_size - pi) |
-// = 0.54 + 0.46 * cos(pi * x / filter_size) |
-float EvalHamming(int filter_size, float x) { |
- if (x <= -filter_size || x >= filter_size) |
- return 0.0f; // Outside of the window. |
- if (x > -std::numeric_limits<float>::epsilon() && |
- x < std::numeric_limits<float>::epsilon()) |
- return 1.0f; // Special case the sinc discontinuity at the origin. |
- const float xpi = x * static_cast<float>(M_PI); |
- |
- return ((sin(xpi) / xpi) * // sinc(x) |
- (0.54f + 0.46f * cos(xpi / filter_size))); // hamming(x) |
-} |
- |
-// ResizeFilter ---------------------------------------------------------------- |
- |
-// Encapsulates computation and storage of the filters required for one complete |
-// resize operation. |
-class ResizeFilter { |
- public: |
- ResizeFilter(ImageOperations::ResizeMethod method, |
- int src_full_width, int src_full_height, |
- int dest_width, int dest_height, |
- const SkIRect& dest_subset); |
- |
- // Returns the filled filter values. |
- const ConvolutionFilter1D& x_filter() { return x_filter_; } |
- const ConvolutionFilter1D& y_filter() { return y_filter_; } |
- |
- private: |
- // Returns the number of pixels that the filer spans, in filter space (the |
- // destination image). |
- float GetFilterSupport(float scale) { |
- switch (method_) { |
- case ImageOperations::RESIZE_BOX: |
- // The box filter just scales with the image scaling. |
- return 0.5f; // Only want one side of the filter = /2. |
- case ImageOperations::RESIZE_HAMMING1: |
- // The Hamming filter takes as much space in the source image in |
- // each direction as the size of the window = 1 for Hamming1. |
- return 1.0f; |
- case ImageOperations::RESIZE_LANCZOS2: |
- // The Lanczos filter takes as much space in the source image in |
- // each direction as the size of the window = 2 for Lanczos2. |
- return 2.0f; |
- case ImageOperations::RESIZE_LANCZOS3: |
- // The Lanczos filter takes as much space in the source image in |
- // each direction as the size of the window = 3 for Lanczos3. |
- return 3.0f; |
- default: |
- NOTREACHED(); |
- return 1.0f; |
- } |
- } |
- |
- // Computes one set of filters either horizontally or vertically. The caller |
- // will specify the "min" and "max" rather than the bottom/top and |
- // right/bottom so that the same code can be re-used in each dimension. |
- // |
- // |src_depend_lo| and |src_depend_size| gives the range for the source |
- // depend rectangle (horizontally or vertically at the caller's discretion |
- // -- see above for what this means). |
- // |
- // Likewise, the range of destination values to compute and the scale factor |
- // for the transform is also specified. |
- void ComputeFilters(int src_size, |
- int dest_subset_lo, int dest_subset_size, |
- float scale, |
- ConvolutionFilter1D* output); |
- |
- // Computes the filter value given the coordinate in filter space. |
- inline float ComputeFilter(float pos) { |
- switch (method_) { |
- case ImageOperations::RESIZE_BOX: |
- return EvalBox(pos); |
- case ImageOperations::RESIZE_HAMMING1: |
- return EvalHamming(1, pos); |
- case ImageOperations::RESIZE_LANCZOS2: |
- return EvalLanczos(2, pos); |
- case ImageOperations::RESIZE_LANCZOS3: |
- return EvalLanczos(3, pos); |
- default: |
- NOTREACHED(); |
- return 0; |
- } |
- } |
- |
- ImageOperations::ResizeMethod method_; |
- |
- // Size of the filter support on one side only in the destination space. |
- // See GetFilterSupport. |
- float x_filter_support_; |
- float y_filter_support_; |
- |
- // Subset of scaled destination bitmap to compute. |
- SkIRect out_bounds_; |
- |
- ConvolutionFilter1D x_filter_; |
- ConvolutionFilter1D y_filter_; |
- |
- DISALLOW_COPY_AND_ASSIGN(ResizeFilter); |
-}; |
- |
-ResizeFilter::ResizeFilter(ImageOperations::ResizeMethod method, |
- int src_full_width, int src_full_height, |
- int dest_width, int dest_height, |
- const SkIRect& dest_subset) |
- : method_(method), |
- out_bounds_(dest_subset) { |
- // method_ will only ever refer to an "algorithm method". |
- SkASSERT((ImageOperations::RESIZE_FIRST_ALGORITHM_METHOD <= method) && |
- (method <= ImageOperations::RESIZE_LAST_ALGORITHM_METHOD)); |
- |
- float scale_x = static_cast<float>(dest_width) / |
- static_cast<float>(src_full_width); |
- float scale_y = static_cast<float>(dest_height) / |
- static_cast<float>(src_full_height); |
- |
- ComputeFilters(src_full_width, dest_subset.fLeft, dest_subset.width(), |
- scale_x, &x_filter_); |
- ComputeFilters(src_full_height, dest_subset.fTop, dest_subset.height(), |
- scale_y, &y_filter_); |
-} |
- |
-// TODO(egouriou): Take advantage of periods in the convolution. |
-// Practical resizing filters are periodic outside of the border area. |
-// For Lanczos, a scaling by a (reduced) factor of p/q (q pixels in the |
-// source become p pixels in the destination) will have a period of p. |
-// A nice consequence is a period of 1 when downscaling by an integral |
-// factor. Downscaling from typical display resolutions is also bound |
-// to produce interesting periods as those are chosen to have multiple |
-// small factors. |
-// Small periods reduce computational load and improve cache usage if |
-// the coefficients can be shared. For periods of 1 we can consider |
-// loading the factors only once outside the borders. |
-void ResizeFilter::ComputeFilters(int src_size, |
- int dest_subset_lo, int dest_subset_size, |
- float scale, |
- ConvolutionFilter1D* output) { |
- int dest_subset_hi = dest_subset_lo + dest_subset_size; // [lo, hi) |
- |
- // When we're doing a magnification, the scale will be larger than one. This |
- // means the destination pixels are much smaller than the source pixels, and |
- // that the range covered by the filter won't necessarily cover any source |
- // pixel boundaries. Therefore, we use these clamped values (max of 1) for |
- // some computations. |
- float clamped_scale = std::min(1.0f, scale); |
- |
- // This is how many source pixels from the center we need to count |
- // to support the filtering function. |
- float src_support = GetFilterSupport(clamped_scale) / clamped_scale; |
- |
- // Speed up the divisions below by turning them into multiplies. |
- float inv_scale = 1.0f / scale; |
- |
- base::StackVector<float, 64> filter_values; |
- base::StackVector<int16, 64> fixed_filter_values; |
- |
- // Loop over all pixels in the output range. We will generate one set of |
- // filter values for each one. Those values will tell us how to blend the |
- // source pixels to compute the destination pixel. |
- for (int dest_subset_i = dest_subset_lo; dest_subset_i < dest_subset_hi; |
- dest_subset_i++) { |
- // Reset the arrays. We don't declare them inside so they can re-use the |
- // same malloc-ed buffer. |
- filter_values->clear(); |
- fixed_filter_values->clear(); |
- |
- // This is the pixel in the source directly under the pixel in the dest. |
- // Note that we base computations on the "center" of the pixels. To see |
- // why, observe that the destination pixel at coordinates (0, 0) in a 5.0x |
- // downscale should "cover" the pixels around the pixel with *its center* |
- // at coordinates (2.5, 2.5) in the source, not those around (0, 0). |
- // Hence we need to scale coordinates (0.5, 0.5), not (0, 0). |
- float src_pixel = (static_cast<float>(dest_subset_i) + 0.5f) * inv_scale; |
- |
- // Compute the (inclusive) range of source pixels the filter covers. |
- int src_begin = std::max(0, FloorInt(src_pixel - src_support)); |
- int src_end = std::min(src_size - 1, CeilInt(src_pixel + src_support)); |
- |
- // Compute the unnormalized filter value at each location of the source |
- // it covers. |
- float filter_sum = 0.0f; // Sub of the filter values for normalizing. |
- for (int cur_filter_pixel = src_begin; cur_filter_pixel <= src_end; |
- cur_filter_pixel++) { |
- // Distance from the center of the filter, this is the filter coordinate |
- // in source space. We also need to consider the center of the pixel |
- // when comparing distance against 'src_pixel'. In the 5x downscale |
- // example used above the distance from the center of the filter to |
- // the pixel with coordinates (2, 2) should be 0, because its center |
- // is at (2.5, 2.5). |
- float src_filter_dist = |
- ((static_cast<float>(cur_filter_pixel) + 0.5f) - src_pixel); |
- |
- // Since the filter really exists in dest space, map it there. |
- float dest_filter_dist = src_filter_dist * clamped_scale; |
- |
- // Compute the filter value at that location. |
- float filter_value = ComputeFilter(dest_filter_dist); |
- filter_values->push_back(filter_value); |
- |
- filter_sum += filter_value; |
- } |
- DCHECK(!filter_values->empty()) << "We should always get a filter!"; |
- |
- // The filter must be normalized so that we don't affect the brightness of |
- // the image. Convert to normalized fixed point. |
- int16 fixed_sum = 0; |
- for (size_t i = 0; i < filter_values->size(); i++) { |
- int16 cur_fixed = output->FloatToFixed(filter_values[i] / filter_sum); |
- fixed_sum += cur_fixed; |
- fixed_filter_values->push_back(cur_fixed); |
- } |
- |
- // The conversion to fixed point will leave some rounding errors, which |
- // we add back in to avoid affecting the brightness of the image. We |
- // arbitrarily add this to the center of the filter array (this won't always |
- // be the center of the filter function since it could get clipped on the |
- // edges, but it doesn't matter enough to worry about that case). |
- int16 leftovers = output->FloatToFixed(1.0f) - fixed_sum; |
- fixed_filter_values[fixed_filter_values->size() / 2] += leftovers; |
- |
- // Now it's ready to go. |
- output->AddFilter(src_begin, &fixed_filter_values[0], |
- static_cast<int>(fixed_filter_values->size())); |
- } |
- |
- output->PaddingForSIMD(); |
-} |
- |
-ImageOperations::ResizeMethod ResizeMethodToAlgorithmMethod( |
- ImageOperations::ResizeMethod method) { |
- // Convert any "Quality Method" into an "Algorithm Method" |
- if (method >= ImageOperations::RESIZE_FIRST_ALGORITHM_METHOD && |
- method <= ImageOperations::RESIZE_LAST_ALGORITHM_METHOD) { |
- return method; |
- } |
- // The call to ImageOperationsGtv::Resize() above took care of |
- // GPU-acceleration in the cases where it is possible. So now we just |
- // pick the appropriate software method for each resize quality. |
- switch (method) { |
- // Users of RESIZE_GOOD are willing to trade a lot of quality to |
- // get speed, allowing the use of linear resampling to get hardware |
- // acceleration (SRB). Hence any of our "good" software filters |
- // will be acceptable, and we use the fastest one, Hamming-1. |
- case ImageOperations::RESIZE_GOOD: |
- // Users of RESIZE_BETTER are willing to trade some quality in order |
- // to improve performance, but are guaranteed not to devolve to a linear |
- // resampling. In visual tests we see that Hamming-1 is not as good as |
- // Lanczos-2, however it is about 40% faster and Lanczos-2 itself is |
- // about 30% faster than Lanczos-3. The use of Hamming-1 has been deemed |
- // an acceptable trade-off between quality and speed. |
- case ImageOperations::RESIZE_BETTER: |
- return ImageOperations::RESIZE_HAMMING1; |
- default: |
- return ImageOperations::RESIZE_LANCZOS3; |
- } |
-} |
- |
-} // namespace |
- |
-// Resize ---------------------------------------------------------------------- |
- |
-// static |
-SkBitmap ImageOperations::Resize(const SkBitmap& source, |
- ResizeMethod method, |
- int dest_width, int dest_height, |
- const SkIRect& dest_subset, |
- SkBitmap::Allocator* allocator) { |
- TRACE_EVENT2("disabled-by-default-skia", "ImageOperations::Resize", |
- "src_pixels", source.width() * source.height(), "dst_pixels", |
- dest_width * dest_height); |
- // Ensure that the ResizeMethod enumeration is sound. |
- SkASSERT(((RESIZE_FIRST_QUALITY_METHOD <= method) && |
- (method <= RESIZE_LAST_QUALITY_METHOD)) || |
- ((RESIZE_FIRST_ALGORITHM_METHOD <= method) && |
- (method <= RESIZE_LAST_ALGORITHM_METHOD))); |
- |
- // Time how long this takes to see if it's a problem for users. |
- base::TimeTicks resize_start = base::TimeTicks::Now(); |
- |
- SkIRect dest = { 0, 0, dest_width, dest_height }; |
- DCHECK(dest.contains(dest_subset)) << |
- "The supplied subset does not fall within the destination image."; |
- |
- // If the size of source or destination is 0, i.e. 0x0, 0xN or Nx0, just |
- // return empty. |
- if (source.width() < 1 || source.height() < 1 || |
- dest_width < 1 || dest_height < 1) |
- return SkBitmap(); |
- |
- method = ResizeMethodToAlgorithmMethod(method); |
- // Check that we deal with an "algorithm methods" from this point onward. |
- SkASSERT((ImageOperations::RESIZE_FIRST_ALGORITHM_METHOD <= method) && |
- (method <= ImageOperations::RESIZE_LAST_ALGORITHM_METHOD)); |
- |
- SkAutoLockPixels locker(source); |
- if (!source.readyToDraw() || source.colorType() != kN32_SkColorType) |
- return SkBitmap(); |
- |
- ResizeFilter filter(method, source.width(), source.height(), |
- dest_width, dest_height, dest_subset); |
- |
- // Get a source bitmap encompassing this touched area. We construct the |
- // offsets and row strides such that it looks like a new bitmap, while |
- // referring to the old data. |
- const uint8* source_subset = |
- reinterpret_cast<const uint8*>(source.getPixels()); |
- |
- // Convolve into the result. |
- SkBitmap result; |
- result.setInfo(SkImageInfo::MakeN32(dest_subset.width(), dest_subset.height(), source.alphaType())); |
- result.allocPixels(allocator, NULL); |
- if (!result.readyToDraw()) |
- return SkBitmap(); |
- |
- BGRAConvolve2D(source_subset, static_cast<int>(source.rowBytes()), |
- !source.isOpaque(), filter.x_filter(), filter.y_filter(), |
- static_cast<int>(result.rowBytes()), |
- static_cast<unsigned char*>(result.getPixels()), |
- true); |
- |
- base::TimeDelta delta = base::TimeTicks::Now() - resize_start; |
- UMA_HISTOGRAM_TIMES("Image.ResampleMS", delta); |
- |
- return result; |
-} |
- |
-// static |
-SkBitmap ImageOperations::Resize(const SkBitmap& source, |
- ResizeMethod method, |
- int dest_width, int dest_height, |
- SkBitmap::Allocator* allocator) { |
- SkIRect dest_subset = { 0, 0, dest_width, dest_height }; |
- return Resize(source, method, dest_width, dest_height, dest_subset, |
- allocator); |
-} |
- |
-} // namespace skia |