OLD | NEW |
| (Empty) |
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include <algorithm> | |
6 | |
7 #include "skia/ext/convolver.h" | |
8 #include "skia/ext/convolver_SSE2.h" | |
9 #include "third_party/skia/include/core/SkTypes.h" | |
10 | |
11 #include <emmintrin.h> // ARCH_CPU_X86_FAMILY was defined in build/config.h | |
12 | |
13 namespace skia { | |
14 | |
15 // Convolves horizontally along a single row. The row data is given in | |
16 // |src_data| and continues for the num_values() of the filter. | |
17 void ConvolveHorizontally_SSE2(const unsigned char* src_data, | |
18 const ConvolutionFilter1D& filter, | |
19 unsigned char* out_row, | |
20 bool /*has_alpha*/) { | |
21 int num_values = filter.num_values(); | |
22 | |
23 int filter_offset, filter_length; | |
24 __m128i zero = _mm_setzero_si128(); | |
25 __m128i mask[4]; | |
26 // |mask| will be used to decimate all extra filter coefficients that are | |
27 // loaded by SIMD when |filter_length| is not divisible by 4. | |
28 // mask[0] is not used in following algorithm. | |
29 mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); | |
30 mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); | |
31 mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); | |
32 | |
33 // Output one pixel each iteration, calculating all channels (RGBA) together. | |
34 for (int out_x = 0; out_x < num_values; out_x++) { | |
35 const ConvolutionFilter1D::Fixed* filter_values = | |
36 filter.FilterForValue(out_x, &filter_offset, &filter_length); | |
37 | |
38 __m128i accum = _mm_setzero_si128(); | |
39 | |
40 // Compute the first pixel in this row that the filter affects. It will | |
41 // touch |filter_length| pixels (4 bytes each) after this. | |
42 const __m128i* row_to_filter = | |
43 reinterpret_cast<const __m128i*>(&src_data[filter_offset << 2]); | |
44 | |
45 // We will load and accumulate with four coefficients per iteration. | |
46 for (int filter_x = 0; filter_x < filter_length >> 2; filter_x++) { | |
47 | |
48 // Load 4 coefficients => duplicate 1st and 2nd of them for all channels. | |
49 __m128i coeff, coeff16; | |
50 // [16] xx xx xx xx c3 c2 c1 c0 | |
51 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); | |
52 // [16] xx xx xx xx c1 c1 c0 c0 | |
53 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); | |
54 // [16] c1 c1 c1 c1 c0 c0 c0 c0 | |
55 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); | |
56 | |
57 // Load four pixels => unpack the first two pixels to 16 bits => | |
58 // multiply with coefficients => accumulate the convolution result. | |
59 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 | |
60 __m128i src8 = _mm_loadu_si128(row_to_filter); | |
61 // [16] a1 b1 g1 r1 a0 b0 g0 r0 | |
62 __m128i src16 = _mm_unpacklo_epi8(src8, zero); | |
63 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
64 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); | |
65 // [32] a0*c0 b0*c0 g0*c0 r0*c0 | |
66 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
67 accum = _mm_add_epi32(accum, t); | |
68 // [32] a1*c1 b1*c1 g1*c1 r1*c1 | |
69 t = _mm_unpackhi_epi16(mul_lo, mul_hi); | |
70 accum = _mm_add_epi32(accum, t); | |
71 | |
72 // Duplicate 3rd and 4th coefficients for all channels => | |
73 // unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients | |
74 // => accumulate the convolution results. | |
75 // [16] xx xx xx xx c3 c3 c2 c2 | |
76 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); | |
77 // [16] c3 c3 c3 c3 c2 c2 c2 c2 | |
78 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); | |
79 // [16] a3 g3 b3 r3 a2 g2 b2 r2 | |
80 src16 = _mm_unpackhi_epi8(src8, zero); | |
81 mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
82 mul_lo = _mm_mullo_epi16(src16, coeff16); | |
83 // [32] a2*c2 b2*c2 g2*c2 r2*c2 | |
84 t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
85 accum = _mm_add_epi32(accum, t); | |
86 // [32] a3*c3 b3*c3 g3*c3 r3*c3 | |
87 t = _mm_unpackhi_epi16(mul_lo, mul_hi); | |
88 accum = _mm_add_epi32(accum, t); | |
89 | |
90 // Advance the pixel and coefficients pointers. | |
91 row_to_filter += 1; | |
92 filter_values += 4; | |
93 } | |
94 | |
95 // When |filter_length| is not divisible by 4, we need to decimate some of | |
96 // the filter coefficient that was loaded incorrectly to zero; Other than | |
97 // that the algorithm is same with above, exceot that the 4th pixel will be | |
98 // always absent. | |
99 int r = filter_length&3; | |
100 if (r) { | |
101 // Note: filter_values must be padded to align_up(filter_offset, 8). | |
102 __m128i coeff, coeff16; | |
103 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); | |
104 // Mask out extra filter taps. | |
105 coeff = _mm_and_si128(coeff, mask[r]); | |
106 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); | |
107 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); | |
108 | |
109 // Note: line buffer must be padded to align_up(filter_offset, 16). | |
110 // We resolve this by use C-version for the last horizontal line. | |
111 __m128i src8 = _mm_loadu_si128(row_to_filter); | |
112 __m128i src16 = _mm_unpacklo_epi8(src8, zero); | |
113 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
114 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); | |
115 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
116 accum = _mm_add_epi32(accum, t); | |
117 t = _mm_unpackhi_epi16(mul_lo, mul_hi); | |
118 accum = _mm_add_epi32(accum, t); | |
119 | |
120 src16 = _mm_unpackhi_epi8(src8, zero); | |
121 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); | |
122 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); | |
123 mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
124 mul_lo = _mm_mullo_epi16(src16, coeff16); | |
125 t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
126 accum = _mm_add_epi32(accum, t); | |
127 } | |
128 | |
129 // Shift right for fixed point implementation. | |
130 accum = _mm_srai_epi32(accum, ConvolutionFilter1D::kShiftBits); | |
131 | |
132 // Packing 32 bits |accum| to 16 bits per channel (signed saturation). | |
133 accum = _mm_packs_epi32(accum, zero); | |
134 // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). | |
135 accum = _mm_packus_epi16(accum, zero); | |
136 | |
137 // Store the pixel value of 32 bits. | |
138 *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum); | |
139 out_row += 4; | |
140 } | |
141 } | |
142 | |
143 // Convolves horizontally along four rows. The row data is given in | |
144 // |src_data| and continues for the num_values() of the filter. | |
145 // The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please | |
146 // refer to that function for detailed comments. | |
147 void Convolve4RowsHorizontally_SSE2(const unsigned char* src_data[4], | |
148 const ConvolutionFilter1D& filter, | |
149 unsigned char* out_row[4]) { | |
150 int num_values = filter.num_values(); | |
151 | |
152 int filter_offset, filter_length; | |
153 __m128i zero = _mm_setzero_si128(); | |
154 __m128i mask[4]; | |
155 // |mask| will be used to decimate all extra filter coefficients that are | |
156 // loaded by SIMD when |filter_length| is not divisible by 4. | |
157 // mask[0] is not used in following algorithm. | |
158 mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); | |
159 mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); | |
160 mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); | |
161 | |
162 // Output one pixel each iteration, calculating all channels (RGBA) together. | |
163 for (int out_x = 0; out_x < num_values; out_x++) { | |
164 const ConvolutionFilter1D::Fixed* filter_values = | |
165 filter.FilterForValue(out_x, &filter_offset, &filter_length); | |
166 | |
167 // four pixels in a column per iteration. | |
168 __m128i accum0 = _mm_setzero_si128(); | |
169 __m128i accum1 = _mm_setzero_si128(); | |
170 __m128i accum2 = _mm_setzero_si128(); | |
171 __m128i accum3 = _mm_setzero_si128(); | |
172 int start = (filter_offset<<2); | |
173 // We will load and accumulate with four coefficients per iteration. | |
174 for (int filter_x = 0; filter_x < (filter_length >> 2); filter_x++) { | |
175 __m128i coeff, coeff16lo, coeff16hi; | |
176 // [16] xx xx xx xx c3 c2 c1 c0 | |
177 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); | |
178 // [16] xx xx xx xx c1 c1 c0 c0 | |
179 coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); | |
180 // [16] c1 c1 c1 c1 c0 c0 c0 c0 | |
181 coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); | |
182 // [16] xx xx xx xx c3 c3 c2 c2 | |
183 coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); | |
184 // [16] c3 c3 c3 c3 c2 c2 c2 c2 | |
185 coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); | |
186 | |
187 __m128i src8, src16, mul_hi, mul_lo, t; | |
188 | |
189 #define ITERATION(src, accum) \ | |
190 src8 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src)); \ | |
191 src16 = _mm_unpacklo_epi8(src8, zero); \ | |
192 mul_hi = _mm_mulhi_epi16(src16, coeff16lo); \ | |
193 mul_lo = _mm_mullo_epi16(src16, coeff16lo); \ | |
194 t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ | |
195 accum = _mm_add_epi32(accum, t); \ | |
196 t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ | |
197 accum = _mm_add_epi32(accum, t); \ | |
198 src16 = _mm_unpackhi_epi8(src8, zero); \ | |
199 mul_hi = _mm_mulhi_epi16(src16, coeff16hi); \ | |
200 mul_lo = _mm_mullo_epi16(src16, coeff16hi); \ | |
201 t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ | |
202 accum = _mm_add_epi32(accum, t); \ | |
203 t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ | |
204 accum = _mm_add_epi32(accum, t) | |
205 | |
206 ITERATION(src_data[0] + start, accum0); | |
207 ITERATION(src_data[1] + start, accum1); | |
208 ITERATION(src_data[2] + start, accum2); | |
209 ITERATION(src_data[3] + start, accum3); | |
210 | |
211 start += 16; | |
212 filter_values += 4; | |
213 } | |
214 | |
215 int r = filter_length & 3; | |
216 if (r) { | |
217 // Note: filter_values must be padded to align_up(filter_offset, 8); | |
218 __m128i coeff; | |
219 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); | |
220 // Mask out extra filter taps. | |
221 coeff = _mm_and_si128(coeff, mask[r]); | |
222 | |
223 __m128i coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); | |
224 /* c1 c1 c1 c1 c0 c0 c0 c0 */ | |
225 coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); | |
226 __m128i coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); | |
227 coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); | |
228 | |
229 __m128i src8, src16, mul_hi, mul_lo, t; | |
230 | |
231 ITERATION(src_data[0] + start, accum0); | |
232 ITERATION(src_data[1] + start, accum1); | |
233 ITERATION(src_data[2] + start, accum2); | |
234 ITERATION(src_data[3] + start, accum3); | |
235 } | |
236 | |
237 accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); | |
238 accum0 = _mm_packs_epi32(accum0, zero); | |
239 accum0 = _mm_packus_epi16(accum0, zero); | |
240 accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); | |
241 accum1 = _mm_packs_epi32(accum1, zero); | |
242 accum1 = _mm_packus_epi16(accum1, zero); | |
243 accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); | |
244 accum2 = _mm_packs_epi32(accum2, zero); | |
245 accum2 = _mm_packus_epi16(accum2, zero); | |
246 accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits); | |
247 accum3 = _mm_packs_epi32(accum3, zero); | |
248 accum3 = _mm_packus_epi16(accum3, zero); | |
249 | |
250 *(reinterpret_cast<int*>(out_row[0])) = _mm_cvtsi128_si32(accum0); | |
251 *(reinterpret_cast<int*>(out_row[1])) = _mm_cvtsi128_si32(accum1); | |
252 *(reinterpret_cast<int*>(out_row[2])) = _mm_cvtsi128_si32(accum2); | |
253 *(reinterpret_cast<int*>(out_row[3])) = _mm_cvtsi128_si32(accum3); | |
254 | |
255 out_row[0] += 4; | |
256 out_row[1] += 4; | |
257 out_row[2] += 4; | |
258 out_row[3] += 4; | |
259 } | |
260 } | |
261 | |
262 // Does vertical convolution to produce one output row. The filter values and | |
263 // length are given in the first two parameters. These are applied to each | |
264 // of the rows pointed to in the |source_data_rows| array, with each row | |
265 // being |pixel_width| wide. | |
266 // | |
267 // The output must have room for |pixel_width * 4| bytes. | |
268 template<bool has_alpha> | |
269 void ConvolveVertically_SSE2(const ConvolutionFilter1D::Fixed* filter_values, | |
270 int filter_length, | |
271 unsigned char* const* source_data_rows, | |
272 int pixel_width, | |
273 unsigned char* out_row) { | |
274 int width = pixel_width & ~3; | |
275 | |
276 __m128i zero = _mm_setzero_si128(); | |
277 __m128i accum0, accum1, accum2, accum3, coeff16; | |
278 const __m128i* src; | |
279 // Output four pixels per iteration (16 bytes). | |
280 for (int out_x = 0; out_x < width; out_x += 4) { | |
281 | |
282 // Accumulated result for each pixel. 32 bits per RGBA channel. | |
283 accum0 = _mm_setzero_si128(); | |
284 accum1 = _mm_setzero_si128(); | |
285 accum2 = _mm_setzero_si128(); | |
286 accum3 = _mm_setzero_si128(); | |
287 | |
288 // Convolve with one filter coefficient per iteration. | |
289 for (int filter_y = 0; filter_y < filter_length; filter_y++) { | |
290 | |
291 // Duplicate the filter coefficient 8 times. | |
292 // [16] cj cj cj cj cj cj cj cj | |
293 coeff16 = _mm_set1_epi16(filter_values[filter_y]); | |
294 | |
295 // Load four pixels (16 bytes) together. | |
296 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 | |
297 src = reinterpret_cast<const __m128i*>( | |
298 &source_data_rows[filter_y][out_x << 2]); | |
299 __m128i src8 = _mm_loadu_si128(src); | |
300 | |
301 // Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels => | |
302 // multiply with current coefficient => accumulate the result. | |
303 // [16] a1 b1 g1 r1 a0 b0 g0 r0 | |
304 __m128i src16 = _mm_unpacklo_epi8(src8, zero); | |
305 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
306 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); | |
307 // [32] a0 b0 g0 r0 | |
308 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
309 accum0 = _mm_add_epi32(accum0, t); | |
310 // [32] a1 b1 g1 r1 | |
311 t = _mm_unpackhi_epi16(mul_lo, mul_hi); | |
312 accum1 = _mm_add_epi32(accum1, t); | |
313 | |
314 // Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels => | |
315 // multiply with current coefficient => accumulate the result. | |
316 // [16] a3 b3 g3 r3 a2 b2 g2 r2 | |
317 src16 = _mm_unpackhi_epi8(src8, zero); | |
318 mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
319 mul_lo = _mm_mullo_epi16(src16, coeff16); | |
320 // [32] a2 b2 g2 r2 | |
321 t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
322 accum2 = _mm_add_epi32(accum2, t); | |
323 // [32] a3 b3 g3 r3 | |
324 t = _mm_unpackhi_epi16(mul_lo, mul_hi); | |
325 accum3 = _mm_add_epi32(accum3, t); | |
326 } | |
327 | |
328 // Shift right for fixed point implementation. | |
329 accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); | |
330 accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); | |
331 accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); | |
332 accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits); | |
333 | |
334 // Packing 32 bits |accum| to 16 bits per channel (signed saturation). | |
335 // [16] a1 b1 g1 r1 a0 b0 g0 r0 | |
336 accum0 = _mm_packs_epi32(accum0, accum1); | |
337 // [16] a3 b3 g3 r3 a2 b2 g2 r2 | |
338 accum2 = _mm_packs_epi32(accum2, accum3); | |
339 | |
340 // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). | |
341 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 | |
342 accum0 = _mm_packus_epi16(accum0, accum2); | |
343 | |
344 if (has_alpha) { | |
345 // Compute the max(ri, gi, bi) for each pixel. | |
346 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 | |
347 __m128i a = _mm_srli_epi32(accum0, 8); | |
348 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 | |
349 __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. | |
350 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 | |
351 a = _mm_srli_epi32(accum0, 16); | |
352 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 | |
353 b = _mm_max_epu8(a, b); // Max of r and g and b. | |
354 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 | |
355 b = _mm_slli_epi32(b, 24); | |
356 | |
357 // Make sure the value of alpha channel is always larger than maximum | |
358 // value of color channels. | |
359 accum0 = _mm_max_epu8(b, accum0); | |
360 } else { | |
361 // Set value of alpha channels to 0xFF. | |
362 __m128i mask = _mm_set1_epi32(0xff000000); | |
363 accum0 = _mm_or_si128(accum0, mask); | |
364 } | |
365 | |
366 // Store the convolution result (16 bytes) and advance the pixel pointers. | |
367 _mm_storeu_si128(reinterpret_cast<__m128i*>(out_row), accum0); | |
368 out_row += 16; | |
369 } | |
370 | |
371 // When the width of the output is not divisible by 4, We need to save one | |
372 // pixel (4 bytes) each time. And also the fourth pixel is always absent. | |
373 if (pixel_width & 3) { | |
374 accum0 = _mm_setzero_si128(); | |
375 accum1 = _mm_setzero_si128(); | |
376 accum2 = _mm_setzero_si128(); | |
377 for (int filter_y = 0; filter_y < filter_length; ++filter_y) { | |
378 coeff16 = _mm_set1_epi16(filter_values[filter_y]); | |
379 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 | |
380 src = reinterpret_cast<const __m128i*>( | |
381 &source_data_rows[filter_y][width<<2]); | |
382 __m128i src8 = _mm_loadu_si128(src); | |
383 // [16] a1 b1 g1 r1 a0 b0 g0 r0 | |
384 __m128i src16 = _mm_unpacklo_epi8(src8, zero); | |
385 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
386 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); | |
387 // [32] a0 b0 g0 r0 | |
388 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
389 accum0 = _mm_add_epi32(accum0, t); | |
390 // [32] a1 b1 g1 r1 | |
391 t = _mm_unpackhi_epi16(mul_lo, mul_hi); | |
392 accum1 = _mm_add_epi32(accum1, t); | |
393 // [16] a3 b3 g3 r3 a2 b2 g2 r2 | |
394 src16 = _mm_unpackhi_epi8(src8, zero); | |
395 mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
396 mul_lo = _mm_mullo_epi16(src16, coeff16); | |
397 // [32] a2 b2 g2 r2 | |
398 t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
399 accum2 = _mm_add_epi32(accum2, t); | |
400 } | |
401 | |
402 accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); | |
403 accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); | |
404 accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); | |
405 // [16] a1 b1 g1 r1 a0 b0 g0 r0 | |
406 accum0 = _mm_packs_epi32(accum0, accum1); | |
407 // [16] a3 b3 g3 r3 a2 b2 g2 r2 | |
408 accum2 = _mm_packs_epi32(accum2, zero); | |
409 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 | |
410 accum0 = _mm_packus_epi16(accum0, accum2); | |
411 if (has_alpha) { | |
412 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 | |
413 __m128i a = _mm_srli_epi32(accum0, 8); | |
414 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 | |
415 __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. | |
416 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 | |
417 a = _mm_srli_epi32(accum0, 16); | |
418 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 | |
419 b = _mm_max_epu8(a, b); // Max of r and g and b. | |
420 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 | |
421 b = _mm_slli_epi32(b, 24); | |
422 accum0 = _mm_max_epu8(b, accum0); | |
423 } else { | |
424 __m128i mask = _mm_set1_epi32(0xff000000); | |
425 accum0 = _mm_or_si128(accum0, mask); | |
426 } | |
427 | |
428 for (int out_x = width; out_x < pixel_width; out_x++) { | |
429 *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum0); | |
430 accum0 = _mm_srli_si128(accum0, 4); | |
431 out_row += 4; | |
432 } | |
433 } | |
434 } | |
435 | |
436 void ConvolveVertically_SSE2(const ConvolutionFilter1D::Fixed* filter_values, | |
437 int filter_length, | |
438 unsigned char* const* source_data_rows, | |
439 int pixel_width, | |
440 unsigned char* out_row, | |
441 bool has_alpha) { | |
442 if (has_alpha) { | |
443 ConvolveVertically_SSE2<true>(filter_values, | |
444 filter_length, | |
445 source_data_rows, | |
446 pixel_width, | |
447 out_row); | |
448 } else { | |
449 ConvolveVertically_SSE2<false>(filter_values, | |
450 filter_length, | |
451 source_data_rows, | |
452 pixel_width, | |
453 out_row); | |
454 } | |
455 } | |
456 | |
457 } // namespace skia | |
OLD | NEW |