Chromium Code Reviews| Index: test/cctest/heap/test-compaction.cc |
| diff --git a/test/cctest/heap/test-compaction.cc b/test/cctest/heap/test-compaction.cc |
| new file mode 100644 |
| index 0000000000000000000000000000000000000000..0258145087236f8c55235c3cd35e8ed359ea8bf8 |
| --- /dev/null |
| +++ b/test/cctest/heap/test-compaction.cc |
| @@ -0,0 +1,325 @@ |
| +// Copyright 2015 the V8 project authors. All rights reserved. |
| +// Use of this source code is governed by a BSD-style license that can be |
| +// found in the LICENSE file. |
| + |
| +#include "test/cctest/cctest.h" |
| +#include "test/cctest/heap/heap-tester.h" |
| +#include "test/cctest/heap/utils-inl.h" |
| + |
| +namespace v8 { |
| +namespace internal { |
| + |
| +static std::vector<Handle<FixedArray>> FillUpFirstOldSpacePage(Heap* heap) { |
| + // This functions assumes that old space top is still on the first page |
| + heap->old_space()->EmptyAllocationInfo(); |
| + int free_on_first_page = static_cast<int>(heap->old_space()->Available()); |
| + return CreatePadding(heap, free_on_first_page, TENURED); |
| +} |
| + |
| + |
| +static void CheckInvariantsOfAbortedPage(Page* page) { |
| + // Check invariants: |
| + // 1) Markibts are cleared |
| + // 2) The page is not marked as evacuation candidate anymore |
| + // 3) The page is not marked as aborted compaction anymore. |
| + CHECK(page->markbits()->IsClean()); |
| + CHECK(!page->IsEvacuationCandidate()); |
| + CHECK(!page->IsFlagSet(Page::COMPACTION_WAS_ABORTED)); |
| +} |
| + |
| + |
| +HEAP_TEST(CompactionFullAbortedPage) { |
| + // Test the scenario where we reach OOM during compaction and the whole page |
| + // is aborted. |
| + |
| + // Disable concurrent sweeping to ensure memory is in an expected state, i.e., |
| + // we can reach the state of a half aborted page. |
| + FLAG_concurrent_sweeping = false; |
| + FLAG_manual_evacuation_candidates_selection = true; |
| + CcTest::InitializeVM(); |
| + Isolate* isolate = CcTest::i_isolate(); |
| + Heap* heap = isolate->heap(); |
| + { |
| + HandleScope scope1(isolate); |
| + // Fill up the first page since it cannot be evacuated. |
| + auto first_page_handles = FillUpFirstOldSpacePage(heap); |
| + |
| + { |
| + HandleScope scope2(isolate); |
| + heap->old_space()->EmptyAllocationInfo(); |
| + auto second_page_handles = |
| + CreatePadding(heap, Page::kAllocatableMemory, TENURED); |
| + Page* to_be_aborted_page = |
| + Page::FromAddress(second_page_handles.front()->address()); |
| + to_be_aborted_page->SetFlag( |
| + MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING); |
| + heap->old_space()->SetForcedOOM(true); |
| + heap->CollectAllGarbage(); |
| + |
| + // Check that all handles still point to the same page, i.e., compaction |
| + // has been aborted on the page. |
| + for (Handle<FixedArray> object : second_page_handles) { |
| + CHECK_EQ(to_be_aborted_page, Page::FromAddress(object->address())); |
| + } |
| + CheckInvariantsOfAbortedPage(to_be_aborted_page); |
| + } |
| + } |
| +} |
| + |
| + |
| +HEAP_TEST(CompactionPartiallyAbortedPage) { |
| + // Test the scenario where we reach OOM during compaction and parts of the |
| + // page have already been migrated to a new one. |
| + |
| + // Disable concurrent sweeping to ensure memory is in an expected state, i.e., |
| + // we can reach the state of a half aborted page. |
| + FLAG_concurrent_sweeping = false; |
| + FLAG_manual_evacuation_candidates_selection = true; |
| + |
| + const int object_size = 128 * KB; |
| + |
| + CcTest::InitializeVM(); |
| + Isolate* isolate = CcTest::i_isolate(); |
| + Heap* heap = isolate->heap(); |
| + { |
| + HandleScope scope1(isolate); |
| + // Fill up the first page since it cannot be evacuated. |
| + auto first_page_handles = FillUpFirstOldSpacePage(heap); |
| + |
| + { |
| + HandleScope scope2(isolate); |
| + // Fill the second page with objects of size {object_size} (last one is |
| + // properly adjusted). |
| + heap->old_space()->EmptyAllocationInfo(); |
| + auto second_page_handles = |
| + CreatePadding(heap, Page::kAllocatableMemory, TENURED, object_size); |
| + // Mark the second page for evacuation. |
| + Page* to_be_aborted_page = |
| + Page::FromAddress(second_page_handles.front()->address()); |
| + to_be_aborted_page->SetFlag( |
| + MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING); |
| + |
| + { |
| + // Add a third page that is filled with {num_objects} objects of size |
| + // {object_size}. |
| + HandleScope scope3(isolate); |
| + heap->old_space()->EmptyAllocationInfo(); |
| + const int num_objects = 3; |
| + std::vector<Handle<FixedArray>> third_page_handles = CreatePadding( |
| + heap, object_size * num_objects, TENURED, object_size); |
| + heap->old_space()->SetForcedOOM(true); |
| + heap->CollectAllGarbage(); |
| + |
| + bool migration_aborted = false; |
| + for (Handle<FixedArray> object : second_page_handles) { |
| + // Once compaction has been aborted, all following objects still have |
| + // to be on the initial page. |
| + CHECK(!migration_aborted || |
| + (Page::FromAddress(object->address()) == to_be_aborted_page)); |
| + if (to_be_aborted_page == Page::FromAddress(object->address())) { |
| + // This object has not been migrated. |
| + migration_aborted = true; |
| + } |
|
ulan
2015/12/10 17:29:23
else CHECK(the object is on the third page) ?
Michael Lippautz
2015/12/10 17:42:44
Done.
|
| + } |
| + // Check that we actually created a scenario with a partially aborted |
| + // page. |
| + CHECK(migration_aborted); |
| + CheckInvariantsOfAbortedPage(to_be_aborted_page); |
| + } |
| + } |
| + } |
| +} |
| + |
| + |
| +HEAP_TEST(CompactionPartiallyAbortedPageIntraAbortedPointers) { |
| + // Test the scenario where we reach OOM during compaction and parts of the |
| + // page have already been migrated to a new one. Objects on the aborted page |
| + // are linked together. This test makes sure that intra aborted page pointers |
| + // get properly updated. |
| + |
| + // Disable concurrent sweeping to ensure memory is in an expected state, i.e., |
| + // we can reach the state of a half aborted page. |
| + FLAG_concurrent_sweeping = false; |
| + FLAG_manual_evacuation_candidates_selection = true; |
| + |
| + const int object_size = 128 * KB; |
| + |
| + CcTest::InitializeVM(); |
| + Isolate* isolate = CcTest::i_isolate(); |
| + Heap* heap = isolate->heap(); |
| + { |
| + HandleScope scope1(isolate); |
| + // Fill up the first page since it cannot be evacuated. |
| + auto first_page_handles = FillUpFirstOldSpacePage(heap); |
| + |
| + Page* to_be_aborted_page = nullptr; |
| + { |
| + HandleScope temporary_scope(isolate); |
| + // Fill the second page with objects of size {object_size} (last one is |
| + // properly adjusted). |
| + heap->old_space()->EmptyAllocationInfo(); |
| + const int free_on_second_page = Page::kAllocatableMemory; |
| + std::vector<Handle<FixedArray>> second_page_handles = |
| + CreatePadding(heap, free_on_second_page, TENURED, object_size); |
| + // Mark the second page for evacuation. |
| + to_be_aborted_page = |
| + Page::FromAddress(second_page_handles.front()->address()); |
| + to_be_aborted_page->SetFlag( |
| + MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING); |
| + |
| + for (size_t i = second_page_handles.size() - 1; i > 0; i--) { |
| + second_page_handles[i]->set(0, *second_page_handles[i - 1]); |
| + } |
| + first_page_handles.front()->set(0, *second_page_handles.back()); |
| + } |
| + |
| + { |
| + // Add a third page that is filled with {num_objects} objects of size |
| + // {object_size}. |
| + HandleScope scope3(isolate); |
| + heap->old_space()->EmptyAllocationInfo(); |
| + const int num_objects = 2; |
| + int used_memory = object_size * num_objects; |
| + std::vector<Handle<FixedArray>> third_page_handles = |
| + CreatePadding(heap, used_memory, TENURED, object_size); |
| + heap->old_space()->SetForcedOOM(true); |
| + heap->CollectAllGarbage(); |
| + |
| + // The following check makes sure that we compacted "some" objects, while |
| + // leaving others in place. |
| + bool in_place = true; |
| + Handle<FixedArray> current = first_page_handles.front(); |
| + while (current->get(0) != heap->undefined_value()) { |
| + current = Handle<FixedArray>(FixedArray::cast(current->get(0))); |
| + CHECK(current->IsFixedArray()); |
| + if (Page::FromAddress(current->address()) != to_be_aborted_page) { |
| + in_place = false; |
| + } |
| + bool on_aborted_page = |
| + Page::FromAddress(current->address()) == to_be_aborted_page; |
| + CHECK((in_place && on_aborted_page) || (!in_place && !on_aborted_page)); |
| + } |
| + // Check that we at least migrated one object, as otherwise the test would |
| + // not trigger. |
| + CHECK(!in_place); |
| + |
| + CheckInvariantsOfAbortedPage(to_be_aborted_page); |
| + heap->CollectAllGarbage(); |
| + } |
| + } |
| +} |
| + |
| + |
| +HEAP_TEST(CompactionPartiallyAbortedPageWithStoreBufferEntries) { |
| + // Test the scenario where we reach OOM during compaction and parts of the |
| + // page have already been migrated to a new one. Objects on the aborted page |
| + // are linked together and the very first object on the aborted page points |
| + // into new space. The test verfies that the store buffer entries are properly |
| + // cleared and rebuilt after aborting a page. Failing to do so can result in |
| + // other objects being allocated in the free space where their payload looks |
| + // like a valid new space pointer. |
| + |
| + // Disable concurrent sweeping to ensure memory is in an expected state, i.e., |
| + // we can reach the state of a half aborted page. |
| + FLAG_concurrent_sweeping = false; |
| + FLAG_manual_evacuation_candidates_selection = true; |
| + |
| + const int object_size = 128 * KB; |
| + |
| + CcTest::InitializeVM(); |
| + Isolate* isolate = CcTest::i_isolate(); |
| + Heap* heap = isolate->heap(); |
| + { |
| + HandleScope scope1(isolate); |
| + // Fill up the first page since it cannot be evacuated. |
| + auto first_page_handles = FillUpFirstOldSpacePage(heap); |
| + |
| + Page* to_be_aborted_page = nullptr; |
| + { |
| + HandleScope temporary_scope(isolate); |
| + // Fill the second page with objects of size {object_size} (last one is |
| + // properly adjusted). |
| + heap->old_space()->EmptyAllocationInfo(); |
| + auto second_page_handles = |
| + CreatePadding(heap, Page::kAllocatableMemory, TENURED, object_size); |
| + // Mark the second page for evacuation. |
| + to_be_aborted_page = |
| + Page::FromAddress(second_page_handles.front()->address()); |
| + to_be_aborted_page->SetFlag( |
| + MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING); |
| + |
| + for (size_t i = second_page_handles.size() - 1; i > 0; i--) { |
| + second_page_handles[i]->set(0, *second_page_handles[i - 1]); |
| + } |
| + first_page_handles.front()->set(0, *second_page_handles.back()); |
| + Handle<FixedArray> new_space_array = |
| + isolate->factory()->NewFixedArray(1, NOT_TENURED); |
| + CHECK(heap->InNewSpace(*new_space_array)); |
| + second_page_handles.front()->set(1, *new_space_array); |
| + } |
| + |
| + { |
| + // Add a third page that is filled with {num_objects} objects of size |
| + // {object_size}. |
| + HandleScope scope3(isolate); |
| + heap->old_space()->EmptyAllocationInfo(); |
| + const int num_objects = 2; |
| + int used_memory = object_size * num_objects; |
| + std::vector<Handle<FixedArray>> third_page_handles = |
| + CreatePadding(heap, used_memory, TENURED, object_size); |
| + heap->old_space()->SetForcedOOM(true); |
| + heap->CollectAllGarbage(); |
| + |
| + // The following check makes sure that we compacted "some" objects, while |
| + // leaving others in place. |
| + bool in_place = true; |
| + Handle<FixedArray> current = first_page_handles.front(); |
| + while (current->get(0) != heap->undefined_value()) { |
| + current = Handle<FixedArray>(FixedArray::cast(current->get(0))); |
| + CHECK(!heap->InNewSpace(*current)); |
| + CHECK(current->IsFixedArray()); |
| + if (Page::FromAddress(current->address()) != to_be_aborted_page) { |
| + in_place = false; |
| + } |
| + bool on_aborted_page = |
| + Page::FromAddress(current->address()) == to_be_aborted_page; |
| + CHECK((in_place && on_aborted_page) || (!in_place && !on_aborted_page)); |
| + } |
| + // Check that we at least migrated one object, as otherwise the test would |
| + // not trigger. |
| + CHECK(!in_place); |
| + |
| + CheckInvariantsOfAbortedPage(to_be_aborted_page); |
| + |
| + // Allocate a new object in new space. |
| + Handle<FixedArray> holder = |
| + isolate->factory()->NewFixedArray(10, NOT_TENURED); |
| + // Create a broken address that looks like a tagged pointer to a new space |
| + // object. |
| + Address broken_address = holder->address() + 2 * kPointerSize + 1; |
| + // Convert it to a vector to create a string from it. |
| + Vector<const uint8_t> string_to_broken_addresss( |
| + reinterpret_cast<const uint8_t*>(&broken_address), 8); |
| + |
| + Handle<String> string; |
| + do { |
| + // We know that the intersting slot will be on the aborted page and |
| + // hence we allocate until we get our string on the aborted page. |
| + // We used slot 1 in the fixed size array which corresponds to the |
| + // the first word in the string. Since the first object definitelly |
| + // migrated we can just allocate until we hit the aborted page. |
| + string = isolate->factory() |
| + ->NewStringFromOneByte(string_to_broken_addresss, TENURED) |
| + .ToHandleChecked(); |
| + } while (Page::FromAddress(string->address()) != to_be_aborted_page); |
| + |
| + // If store buffer entries are not properly filtered/reset for aborted |
| + // pages we have now a broken address at an object slot in old space and |
| + // the following scavenge will crash. |
| + heap->CollectGarbage(NEW_SPACE); |
| + } |
| + } |
| +} |
| + |
| +} // namespace internal |
| +} // namespace v8 |