Index: src/core/SkMatrix.cpp |
diff --git a/src/core/SkMatrix.cpp b/src/core/SkMatrix.cpp |
index f32f485771ff087398e9ed21f0db7e420220b84e..33af64a41fe9f40e61756203b770f75cd1de3ee5 100644 |
--- a/src/core/SkMatrix.cpp |
+++ b/src/core/SkMatrix.cpp |
@@ -10,7 +10,20 @@ |
#include "SkOnce.h" |
#include "SkString.h" |
-#define kMatrix22Elem SK_Scalar1 |
+// In a few places, we performed the following |
+// a * b + c * d + e |
+// as |
+// a * b + (c * d + e) |
+// |
+// sdot and scross are indended to capture these compound operations into a |
+// function, with an eye toward considering upscaling the intermediates to |
+// doubles for more precision (as we do in concat and invert). |
+// |
+// However, these few lines that performed the last add before the "dot", cause |
+// tiny image differences, so we guard that change until we see the impact on |
+// chrome's layouttests. |
+// |
+#define SK_LEGACY_MATRIX_MATH_ORDER |
static inline float SkDoubleToFloat(double x) { |
return static_cast<float>(x); |
@@ -22,11 +35,10 @@ static inline float SkDoubleToFloat(double x) { |
*/ |
void SkMatrix::reset() { |
- fMat[kMScaleX] = fMat[kMScaleY] = SK_Scalar1; |
+ fMat[kMScaleX] = fMat[kMScaleY] = fMat[kMPersp2] = 1; |
fMat[kMSkewX] = fMat[kMSkewY] = |
fMat[kMTransX] = fMat[kMTransY] = |
fMat[kMPersp0] = fMat[kMPersp1] = 0; |
- fMat[kMPersp2] = kMatrix22Elem; |
this->setTypeMask(kIdentity_Mask | kRectStaysRect_Mask); |
} |
@@ -46,8 +58,7 @@ uint8_t SkMatrix::computePerspectiveTypeMask() const { |
// Benchmarking suggests that replacing this set of SkScalarAs2sCompliment |
// is a win, but replacing those below is not. We don't yet understand |
// that result. |
- if (fMat[kMPersp0] != 0 || fMat[kMPersp1] != 0 || |
- fMat[kMPersp2] != kMatrix22Elem) { |
+ if (fMat[kMPersp0] != 0 || fMat[kMPersp1] != 0 || fMat[kMPersp2] != 1) { |
// If this is a perspective transform, we return true for all other |
// transform flags - this does not disable any optimizations, respects |
// the rule that the type mask must be conservative, and speeds up |
@@ -61,8 +72,7 @@ uint8_t SkMatrix::computePerspectiveTypeMask() const { |
uint8_t SkMatrix::computeTypeMask() const { |
unsigned mask = 0; |
- if (fMat[kMPersp0] != 0 || fMat[kMPersp1] != 0 || |
- fMat[kMPersp2] != kMatrix22Elem) { |
+ if (fMat[kMPersp0] != 0 || fMat[kMPersp1] != 0 || fMat[kMPersp2] != 1) { |
// Once it is determined that that this is a perspective transform, |
// all other flags are moot as far as optimizations are concerned. |
return SkToU8(kORableMasks); |
@@ -209,15 +219,27 @@ bool SkMatrix::preservesRightAngles(SkScalar tol) const { |
/////////////////////////////////////////////////////////////////////////////// |
+static inline SkScalar sdot(SkScalar a, SkScalar b, SkScalar c, SkScalar d) { |
+ return a * b + c * d; |
+} |
+ |
+static inline SkScalar sdot(SkScalar a, SkScalar b, SkScalar c, SkScalar d, |
+ SkScalar e, SkScalar f) { |
+ return a * b + c * d + e * f; |
+} |
+ |
+static inline SkScalar scross(SkScalar a, SkScalar b, SkScalar c, SkScalar d) { |
+ return a * b - c * d; |
+} |
+ |
void SkMatrix::setTranslate(SkScalar dx, SkScalar dy) { |
if (dx || dy) { |
fMat[kMTransX] = dx; |
fMat[kMTransY] = dy; |
- fMat[kMScaleX] = fMat[kMScaleY] = SK_Scalar1; |
+ fMat[kMScaleX] = fMat[kMScaleY] = fMat[kMPersp2] = 1; |
fMat[kMSkewX] = fMat[kMSkewY] = |
fMat[kMPersp0] = fMat[kMPersp1] = 0; |
- fMat[kMPersp2] = kMatrix22Elem; |
this->setTypeMask(kTranslate_Mask | kRectStaysRect_Mask); |
} else { |
@@ -233,10 +255,8 @@ bool SkMatrix::preTranslate(SkScalar dx, SkScalar dy) { |
} |
if (dx || dy) { |
- fMat[kMTransX] += SkScalarMul(fMat[kMScaleX], dx) + |
- SkScalarMul(fMat[kMSkewX], dy); |
- fMat[kMTransY] += SkScalarMul(fMat[kMSkewY], dx) + |
- SkScalarMul(fMat[kMScaleY], dy); |
+ fMat[kMTransX] += sdot(fMat[kMScaleX], dx, fMat[kMSkewX], dy); |
+ fMat[kMTransY] += sdot(fMat[kMSkewY], dx, fMat[kMScaleY], dy); |
this->setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask); |
} |
@@ -261,14 +281,14 @@ bool SkMatrix::postTranslate(SkScalar dx, SkScalar dy) { |
/////////////////////////////////////////////////////////////////////////////// |
void SkMatrix::setScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) { |
- if (SK_Scalar1 == sx && SK_Scalar1 == sy) { |
+ if (1 == sx && 1 == sy) { |
this->reset(); |
} else { |
fMat[kMScaleX] = sx; |
fMat[kMScaleY] = sy; |
- fMat[kMTransX] = px - SkScalarMul(sx, px); |
- fMat[kMTransY] = py - SkScalarMul(sy, py); |
- fMat[kMPersp2] = kMatrix22Elem; |
+ fMat[kMTransX] = px - sx * px; |
+ fMat[kMTransY] = py - sy * py; |
+ fMat[kMPersp2] = 1; |
fMat[kMSkewX] = fMat[kMSkewY] = |
fMat[kMPersp0] = fMat[kMPersp1] = 0; |
@@ -278,12 +298,12 @@ void SkMatrix::setScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) { |
} |
void SkMatrix::setScale(SkScalar sx, SkScalar sy) { |
- if (SK_Scalar1 == sx && SK_Scalar1 == sy) { |
+ if (1 == sx && 1 == sy) { |
this->reset(); |
} else { |
fMat[kMScaleX] = sx; |
fMat[kMScaleY] = sy; |
- fMat[kMPersp2] = kMatrix22Elem; |
+ fMat[kMPersp2] = 1; |
fMat[kMTransX] = fMat[kMTransY] = |
fMat[kMSkewX] = fMat[kMSkewY] = |
@@ -297,7 +317,7 @@ bool SkMatrix::setIDiv(int divx, int divy) { |
if (!divx || !divy) { |
return false; |
} |
- this->setScale(SK_Scalar1 / divx, SK_Scalar1 / divy); |
+ this->setScale(SkScalarInvert(divx), SkScalarInvert(divy)); |
return true; |
} |
@@ -308,7 +328,7 @@ bool SkMatrix::preScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) { |
} |
bool SkMatrix::preScale(SkScalar sx, SkScalar sy) { |
- if (SK_Scalar1 == sx && SK_Scalar1 == sy) { |
+ if (1 == sx && 1 == sy) { |
return true; |
} |
@@ -317,20 +337,20 @@ bool SkMatrix::preScale(SkScalar sx, SkScalar sy) { |
// Also, the fixed-point case checks for overflow, but the float doesn't, |
// so we can get away with these blind multiplies. |
- fMat[kMScaleX] = SkScalarMul(fMat[kMScaleX], sx); |
- fMat[kMSkewY] = SkScalarMul(fMat[kMSkewY], sx); |
- fMat[kMPersp0] = SkScalarMul(fMat[kMPersp0], sx); |
+ fMat[kMScaleX] *= sx; |
+ fMat[kMSkewY] *= sx; |
+ fMat[kMPersp0] *= sx; |
- fMat[kMSkewX] = SkScalarMul(fMat[kMSkewX], sy); |
- fMat[kMScaleY] = SkScalarMul(fMat[kMScaleY], sy); |
- fMat[kMPersp1] = SkScalarMul(fMat[kMPersp1], sy); |
+ fMat[kMSkewX] *= sy; |
+ fMat[kMScaleY] *= sy; |
+ fMat[kMPersp1] *= sy; |
this->orTypeMask(kScale_Mask); |
return true; |
} |
bool SkMatrix::postScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) { |
- if (SK_Scalar1 == sx && SK_Scalar1 == sy) { |
+ if (1 == sx && 1 == sy) { |
return true; |
} |
SkMatrix m; |
@@ -339,7 +359,7 @@ bool SkMatrix::postScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) { |
} |
bool SkMatrix::postScale(SkScalar sx, SkScalar sy) { |
- if (SK_Scalar1 == sx && SK_Scalar1 == sy) { |
+ if (1 == sx && 1 == sy) { |
return true; |
} |
SkMatrix m; |
@@ -373,18 +393,18 @@ bool SkMatrix::postIDiv(int divx, int divy) { |
void SkMatrix::setSinCos(SkScalar sinV, SkScalar cosV, |
SkScalar px, SkScalar py) { |
- const SkScalar oneMinusCosV = SK_Scalar1 - cosV; |
+ const SkScalar oneMinusCosV = 1 - cosV; |
fMat[kMScaleX] = cosV; |
fMat[kMSkewX] = -sinV; |
- fMat[kMTransX] = SkScalarMul(sinV, py) + SkScalarMul(oneMinusCosV, px); |
+ fMat[kMTransX] = sdot(sinV, py, oneMinusCosV, px); |
fMat[kMSkewY] = sinV; |
fMat[kMScaleY] = cosV; |
- fMat[kMTransY] = SkScalarMul(-sinV, px) + SkScalarMul(oneMinusCosV, py); |
+ fMat[kMTransY] = sdot(-sinV, px, oneMinusCosV, py); |
fMat[kMPersp0] = fMat[kMPersp1] = 0; |
- fMat[kMPersp2] = kMatrix22Elem; |
+ fMat[kMPersp2] = 1; |
this->setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask); |
} |
@@ -399,7 +419,7 @@ void SkMatrix::setSinCos(SkScalar sinV, SkScalar cosV) { |
fMat[kMTransY] = 0; |
fMat[kMPersp0] = fMat[kMPersp1] = 0; |
- fMat[kMPersp2] = kMatrix22Elem; |
+ fMat[kMPersp2] = 1; |
this->setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask); |
} |
@@ -443,31 +463,31 @@ bool SkMatrix::postRotate(SkScalar degrees) { |
//////////////////////////////////////////////////////////////////////////////////// |
void SkMatrix::setSkew(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) { |
- fMat[kMScaleX] = SK_Scalar1; |
+ fMat[kMScaleX] = 1; |
fMat[kMSkewX] = sx; |
- fMat[kMTransX] = SkScalarMul(-sx, py); |
+ fMat[kMTransX] = -sx * py; |
fMat[kMSkewY] = sy; |
- fMat[kMScaleY] = SK_Scalar1; |
- fMat[kMTransY] = SkScalarMul(-sy, px); |
+ fMat[kMScaleY] = 1; |
+ fMat[kMTransY] = -sy * px; |
fMat[kMPersp0] = fMat[kMPersp1] = 0; |
- fMat[kMPersp2] = kMatrix22Elem; |
+ fMat[kMPersp2] = 1; |
this->setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask); |
} |
void SkMatrix::setSkew(SkScalar sx, SkScalar sy) { |
- fMat[kMScaleX] = SK_Scalar1; |
+ fMat[kMScaleX] = 1; |
fMat[kMSkewX] = sx; |
fMat[kMTransX] = 0; |
fMat[kMSkewY] = sy; |
- fMat[kMScaleY] = SK_Scalar1; |
+ fMat[kMScaleY] = 1; |
fMat[kMTransY] = 0; |
fMat[kMPersp0] = fMat[kMPersp1] = 0; |
- fMat[kMPersp2] = kMatrix22Elem; |
+ fMat[kMPersp2] = 1; |
this->setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask); |
} |
@@ -510,8 +530,8 @@ bool SkMatrix::setRectToRect(const SkRect& src, const SkRect& dst, |
sk_bzero(fMat, 8 * sizeof(SkScalar)); |
this->setTypeMask(kScale_Mask | kRectStaysRect_Mask); |
} else { |
- SkScalar tx, sx = SkScalarDiv(dst.width(), src.width()); |
- SkScalar ty, sy = SkScalarDiv(dst.height(), src.height()); |
+ SkScalar tx, sx = dst.width() / src.width(); |
+ SkScalar ty, sy = dst.height() / src.height(); |
bool xLarger = false; |
if (align != kFill_ScaleToFit) { |
@@ -523,15 +543,15 @@ bool SkMatrix::setRectToRect(const SkRect& src, const SkRect& dst, |
} |
} |
- tx = dst.fLeft - SkScalarMul(src.fLeft, sx); |
- ty = dst.fTop - SkScalarMul(src.fTop, sy); |
+ tx = dst.fLeft - src.fLeft * sx; |
+ ty = dst.fTop - src.fTop * sy; |
if (align == kCenter_ScaleToFit || align == kEnd_ScaleToFit) { |
SkScalar diff; |
if (xLarger) { |
- diff = dst.width() - SkScalarMul(src.width(), sy); |
+ diff = dst.width() - src.width() * sy; |
} else { |
- diff = dst.height() - SkScalarMul(src.height(), sy); |
+ diff = dst.height() - src.height() * sy; |
} |
if (align == kCenter_ScaleToFit) { |
@@ -553,7 +573,7 @@ bool SkMatrix::setRectToRect(const SkRect& src, const SkRect& dst, |
fMat[kMPersp0] = fMat[kMPersp1] = 0; |
unsigned mask = kRectStaysRect_Mask; |
- if (sx != SK_Scalar1 || sy != SK_Scalar1) { |
+ if (sx != 1 || sy != 1) { |
mask |= kScale_Mask; |
} |
if (tx || ty) { |
@@ -562,7 +582,7 @@ bool SkMatrix::setRectToRect(const SkRect& src, const SkRect& dst, |
this->setTypeMask(mask); |
} |
// shared cleanup |
- fMat[kMPersp2] = kMatrix22Elem; |
+ fMat[kMPersp2] = 1; |
return true; |
} |
@@ -586,7 +606,7 @@ static inline int negifaddoverflows(float& result, float a, float b) { |
} |
static void normalize_perspective(SkScalar mat[9]) { |
- if (SkScalarAbs(mat[SkMatrix::kMPersp2]) > kMatrix22Elem) { |
+ if (SkScalarAbs(mat[SkMatrix::kMPersp2]) > 1) { |
for (int i = 0; i < 9; i++) |
mat[i] = SkScalarHalf(mat[i]); |
} |
@@ -672,7 +692,7 @@ bool SkMatrix::setConcat(const SkMatrix& a, const SkMatrix& b) { |
} |
tmp.fMat[kMPersp0] = tmp.fMat[kMPersp1] = 0; |
- tmp.fMat[kMPersp2] = kMatrix22Elem; |
+ tmp.fMat[kMPersp2] = 1; |
//SkDebugf("Concat mat non-persp type: %d\n", tmp.getType()); |
//SkASSERT(!(tmp.getType() & kPerspective_Mask)); |
tmp.setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask); |
@@ -702,19 +722,38 @@ bool SkMatrix::postConcat(const SkMatrix& mat) { |
the intermediate math, even though we know that is more expensive. |
*/ |
-typedef double SkDetScalar; |
-#define SkPerspMul(a, b) SkScalarMul(a, b) |
-#define SkScalarMulShift(a, b, s) SkDoubleToFloat((a) * (b)) |
-static double sk_inv_determinant(const float mat[9], int isPerspective, |
- int* /* (only used in Fixed case) */) { |
+static inline SkScalar scross_dscale(SkScalar a, SkScalar b, |
+ SkScalar c, SkScalar d, double scale) { |
+ return SkDoubleToScalar(scross(a, b, c, d) * scale); |
+} |
+ |
+static inline double dcross(double a, double b, double c, double d) { |
+ return a * b - c * d; |
+} |
+ |
+static inline SkScalar dcross_dscale(double a, double b, |
+ double c, double d, double scale) { |
+ return SkDoubleToScalar(dcross(a, b, c, d) * scale); |
+} |
+ |
+static double sk_inv_determinant(const float mat[9], int isPerspective) { |
double det; |
if (isPerspective) { |
- det = mat[SkMatrix::kMScaleX] * ((double)mat[SkMatrix::kMScaleY] * mat[SkMatrix::kMPersp2] - (double)mat[SkMatrix::kMTransY] * mat[SkMatrix::kMPersp1]) + |
- mat[SkMatrix::kMSkewX] * ((double)mat[SkMatrix::kMTransY] * mat[SkMatrix::kMPersp0] - (double)mat[SkMatrix::kMSkewY] * mat[SkMatrix::kMPersp2]) + |
- mat[SkMatrix::kMTransX] * ((double)mat[SkMatrix::kMSkewY] * mat[SkMatrix::kMPersp1] - (double)mat[SkMatrix::kMScaleY] * mat[SkMatrix::kMPersp0]); |
+ det = mat[SkMatrix::kMScaleX] * |
+ dcross(mat[SkMatrix::kMScaleY], mat[SkMatrix::kMPersp2], |
+ mat[SkMatrix::kMTransY], mat[SkMatrix::kMPersp1]) |
+ + |
+ mat[SkMatrix::kMSkewX] * |
+ dcross(mat[SkMatrix::kMTransY], mat[SkMatrix::kMPersp0], |
+ mat[SkMatrix::kMSkewY], mat[SkMatrix::kMPersp2]) |
+ + |
+ mat[SkMatrix::kMTransX] * |
+ dcross(mat[SkMatrix::kMSkewY], mat[SkMatrix::kMPersp1], |
+ mat[SkMatrix::kMScaleY], mat[SkMatrix::kMPersp0]); |
} else { |
- det = (double)mat[SkMatrix::kMScaleX] * mat[SkMatrix::kMScaleY] - (double)mat[SkMatrix::kMSkewX] * mat[SkMatrix::kMSkewY]; |
+ det = dcross(mat[SkMatrix::kMScaleX], mat[SkMatrix::kMScaleY], |
+ mat[SkMatrix::kMSkewX], mat[SkMatrix::kMSkewY]); |
} |
// Since the determinant is on the order of the cube of the matrix members, |
@@ -725,19 +764,12 @@ static double sk_inv_determinant(const float mat[9], int isPerspective, |
} |
return 1.0 / det; |
} |
-// we declar a,b,c,d to all be doubles, because we want to perform |
-// double-precision muls and subtract, even though the original values are |
-// from the matrix, which are floats. |
-static float inline mul_diff_scale(double a, double b, double c, double d, |
- double scale) { |
- return SkDoubleToFloat((a * b - c * d) * scale); |
-} |
void SkMatrix::SetAffineIdentity(SkScalar affine[6]) { |
- affine[kAScaleX] = SK_Scalar1; |
+ affine[kAScaleX] = 1; |
affine[kASkewY] = 0; |
affine[kASkewX] = 0; |
- affine[kAScaleY] = SK_Scalar1; |
+ affine[kAScaleY] = 1; |
affine[kATransX] = 0; |
affine[kATransY] = 0; |
} |
@@ -782,9 +814,9 @@ bool SkMatrix::invertNonIdentity(SkMatrix* inv) const { |
inv->fMat[kMScaleX] = invX; |
inv->fMat[kMScaleY] = invY; |
- inv->fMat[kMPersp2] = kMatrix22Elem; |
- inv->fMat[kMTransX] = -SkScalarMul(fMat[kMTransX], invX); |
- inv->fMat[kMTransY] = -SkScalarMul(fMat[kMTransY], invY); |
+ inv->fMat[kMPersp2] = 1; |
+ inv->fMat[kMTransX] = -fMat[kMTransX] * invX; |
+ inv->fMat[kMTransY] = -fMat[kMTransY] * invY; |
inv->setTypeMask(mask | kRectStaysRect_Mask); |
} else { |
@@ -799,9 +831,8 @@ bool SkMatrix::invertNonIdentity(SkMatrix* inv) const { |
return invertible; |
} |
- int isPersp = mask & kPerspective_Mask; |
- int shift; |
- SkDetScalar scale = sk_inv_determinant(fMat, isPersp, &shift); |
+ int isPersp = mask & kPerspective_Mask; |
+ double scale = sk_inv_determinant(fMat, isPersp); |
if (scale == 0) { // underflow |
return false; |
@@ -814,33 +845,29 @@ bool SkMatrix::invertNonIdentity(SkMatrix* inv) const { |
} |
if (isPersp) { |
- shift = 61 - shift; |
- inv->fMat[kMScaleX] = SkScalarMulShift(SkPerspMul(fMat[kMScaleY], fMat[kMPersp2]) - SkPerspMul(fMat[kMTransY], fMat[kMPersp1]), scale, shift); |
- inv->fMat[kMSkewX] = SkScalarMulShift(SkPerspMul(fMat[kMTransX], fMat[kMPersp1]) - SkPerspMul(fMat[kMSkewX], fMat[kMPersp2]), scale, shift); |
- inv->fMat[kMTransX] = SkScalarMulShift(SkScalarMul(fMat[kMSkewX], fMat[kMTransY]) - SkScalarMul(fMat[kMTransX], fMat[kMScaleY]), scale, shift); |
- |
- inv->fMat[kMSkewY] = SkScalarMulShift(SkPerspMul(fMat[kMTransY], fMat[kMPersp0]) - SkPerspMul(fMat[kMSkewY], fMat[kMPersp2]), scale, shift); |
- inv->fMat[kMScaleY] = SkScalarMulShift(SkPerspMul(fMat[kMScaleX], fMat[kMPersp2]) - SkPerspMul(fMat[kMTransX], fMat[kMPersp0]), scale, shift); |
- inv->fMat[kMTransY] = SkScalarMulShift(SkScalarMul(fMat[kMTransX], fMat[kMSkewY]) - SkScalarMul(fMat[kMScaleX], fMat[kMTransY]), scale, shift); |
- |
- inv->fMat[kMPersp0] = SkScalarMulShift(SkScalarMul(fMat[kMSkewY], fMat[kMPersp1]) - SkScalarMul(fMat[kMScaleY], fMat[kMPersp0]), scale, shift); |
- inv->fMat[kMPersp1] = SkScalarMulShift(SkScalarMul(fMat[kMSkewX], fMat[kMPersp0]) - SkScalarMul(fMat[kMScaleX], fMat[kMPersp1]), scale, shift); |
- inv->fMat[kMPersp2] = SkScalarMulShift(SkScalarMul(fMat[kMScaleX], fMat[kMScaleY]) - SkScalarMul(fMat[kMSkewX], fMat[kMSkewY]), scale, shift); |
+ inv->fMat[kMScaleX] = scross_dscale(fMat[kMScaleY], fMat[kMPersp2], fMat[kMTransY], fMat[kMPersp1], scale); |
+ inv->fMat[kMSkewX] = scross_dscale(fMat[kMTransX], fMat[kMPersp1], fMat[kMSkewX], fMat[kMPersp2], scale); |
+ inv->fMat[kMTransX] = scross_dscale(fMat[kMSkewX], fMat[kMTransY], fMat[kMTransX], fMat[kMScaleY], scale); |
+ |
+ inv->fMat[kMSkewY] = scross_dscale(fMat[kMTransY], fMat[kMPersp0], fMat[kMSkewY], fMat[kMPersp2], scale); |
+ inv->fMat[kMScaleY] = scross_dscale(fMat[kMScaleX], fMat[kMPersp2], fMat[kMTransX], fMat[kMPersp0], scale); |
+ inv->fMat[kMTransY] = scross_dscale(fMat[kMTransX], fMat[kMSkewY], fMat[kMScaleX], fMat[kMTransY], scale); |
+ |
+ inv->fMat[kMPersp0] = scross_dscale(fMat[kMSkewY], fMat[kMPersp1], fMat[kMScaleY], fMat[kMPersp0], scale); |
+ inv->fMat[kMPersp1] = scross_dscale(fMat[kMSkewX], fMat[kMPersp0], fMat[kMScaleX], fMat[kMPersp1], scale); |
+ inv->fMat[kMPersp2] = scross_dscale(fMat[kMScaleX], fMat[kMScaleY], fMat[kMSkewX], fMat[kMSkewY], scale); |
} else { // not perspective |
- inv->fMat[kMScaleX] = SkDoubleToFloat(fMat[kMScaleY] * scale); |
- inv->fMat[kMSkewX] = SkDoubleToFloat(-fMat[kMSkewX] * scale); |
- inv->fMat[kMTransX] = mul_diff_scale(fMat[kMSkewX], fMat[kMTransY], |
- fMat[kMScaleY], fMat[kMTransX], scale); |
+ inv->fMat[kMScaleX] = SkDoubleToScalar(fMat[kMScaleY] * scale); |
+ inv->fMat[kMSkewX] = SkDoubleToScalar(-fMat[kMSkewX] * scale); |
+ inv->fMat[kMTransX] = dcross_dscale(fMat[kMSkewX], fMat[kMTransY], fMat[kMScaleY], fMat[kMTransX], scale); |
- inv->fMat[kMSkewY] = SkDoubleToFloat(-fMat[kMSkewY] * scale); |
- inv->fMat[kMScaleY] = SkDoubleToFloat(fMat[kMScaleX] * scale); |
- inv->fMat[kMTransY] = mul_diff_scale(fMat[kMSkewY], fMat[kMTransX], |
- fMat[kMScaleX], fMat[kMTransY], scale); |
+ inv->fMat[kMSkewY] = SkDoubleToScalar(-fMat[kMSkewY] * scale); |
+ inv->fMat[kMScaleY] = SkDoubleToScalar(fMat[kMScaleX] * scale); |
+ inv->fMat[kMTransY] = dcross_dscale(fMat[kMSkewY], fMat[kMTransX], fMat[kMScaleX], fMat[kMTransY], scale); |
inv->fMat[kMPersp0] = 0; |
inv->fMat[kMPersp1] = 0; |
- inv->fMat[kMPersp2] = kMatrix22Elem; |
- |
+ inv->fMat[kMPersp2] = 1; |
} |
inv->setTypeMask(fTypeMask); |
@@ -886,8 +913,8 @@ void SkMatrix::Scale_pts(const SkMatrix& m, SkPoint dst[], |
SkScalar mx = m.fMat[kMScaleX]; |
SkScalar my = m.fMat[kMScaleY]; |
do { |
- dst->fY = SkScalarMul(src->fY, my); |
- dst->fX = SkScalarMul(src->fX, mx); |
+ dst->fY = src->fY * my; |
+ dst->fX = src->fX * mx; |
src += 1; |
dst += 1; |
} while (--count); |
@@ -904,8 +931,8 @@ void SkMatrix::ScaleTrans_pts(const SkMatrix& m, SkPoint dst[], |
SkScalar tx = m.fMat[kMTransX]; |
SkScalar ty = m.fMat[kMTransY]; |
do { |
- dst->fY = SkScalarMulAdd(src->fY, my, ty); |
- dst->fX = SkScalarMulAdd(src->fX, mx, tx); |
+ dst->fY = src->fY * my + ty; |
+ dst->fX = src->fX * mx + tx; |
src += 1; |
dst += 1; |
} while (--count); |
@@ -925,8 +952,8 @@ void SkMatrix::Rot_pts(const SkMatrix& m, SkPoint dst[], |
SkScalar sy = src->fY; |
SkScalar sx = src->fX; |
src += 1; |
- dst->fY = SkScalarMul(sx, ky) + SkScalarMul(sy, my); |
- dst->fX = SkScalarMul(sx, mx) + SkScalarMul(sy, kx); |
+ dst->fY = sdot(sx, ky, sy, my); |
+ dst->fX = sdot(sx, mx, sy, kx); |
dst += 1; |
} while (--count); |
} |
@@ -947,8 +974,13 @@ void SkMatrix::RotTrans_pts(const SkMatrix& m, SkPoint dst[], |
SkScalar sy = src->fY; |
SkScalar sx = src->fX; |
src += 1; |
- dst->fY = SkScalarMul(sx, ky) + SkScalarMulAdd(sy, my, ty); |
- dst->fX = SkScalarMul(sx, mx) + SkScalarMulAdd(sy, kx, tx); |
+#ifdef SK_LEGACY_MATRIX_MATH_ORDER |
+ dst->fY = sx * ky + (sy * my + ty); |
+ dst->fX = sx * mx + (sy * kx + tx); |
+#else |
+ dst->fY = sdot(sx, ky, sy, my) + ty; |
+ dst->fX = sdot(sx, mx, sy, kx) + tx; |
+#endif |
dst += 1; |
} while (--count); |
} |
@@ -964,18 +996,19 @@ void SkMatrix::Persp_pts(const SkMatrix& m, SkPoint dst[], |
SkScalar sx = src->fX; |
src += 1; |
- SkScalar x = SkScalarMul(sx, m.fMat[kMScaleX]) + |
- SkScalarMul(sy, m.fMat[kMSkewX]) + m.fMat[kMTransX]; |
- SkScalar y = SkScalarMul(sx, m.fMat[kMSkewY]) + |
- SkScalarMul(sy, m.fMat[kMScaleY]) + m.fMat[kMTransY]; |
- SkScalar z = SkScalarMul(sx, m.fMat[kMPersp0]) + |
- SkScalarMulAdd(sy, m.fMat[kMPersp1], m.fMat[kMPersp2]); |
+ SkScalar x = sdot(sx, m.fMat[kMScaleX], sy, m.fMat[kMSkewX]) + m.fMat[kMTransX]; |
+ SkScalar y = sdot(sx, m.fMat[kMSkewY], sy, m.fMat[kMScaleY]) + m.fMat[kMTransY]; |
+#ifdef SK_LEGACY_MATRIX_MATH_ORDER |
+ SkScalar z = sx * m.fMat[kMPersp0] + (sy * m.fMat[kMPersp1] + m.fMat[kMPersp2]); |
+#else |
+ SkScalar z = sdot(sx, m.fMat[kMPersp0], sy, m.fMat[kMPersp1]) + m.fMat[kMPersp2]; |
+#endif |
if (z) { |
z = SkScalarFastInvert(z); |
} |
- dst->fY = SkScalarMul(y, z); |
- dst->fX = SkScalarMul(x, z); |
+ dst->fY = y * z; |
+ dst->fX = x * z; |
dst += 1; |
} while (--count); |
} |
@@ -1019,15 +1052,9 @@ void SkMatrix::mapHomogeneousPoints(SkScalar dst[], const SkScalar src[], int co |
SkScalar sw = src[2]; |
src += 3; |
- SkScalar x = SkScalarMul(sx, fMat[kMScaleX]) + |
- SkScalarMul(sy, fMat[kMSkewX]) + |
- SkScalarMul(sw, fMat[kMTransX]); |
- SkScalar y = SkScalarMul(sx, fMat[kMSkewY]) + |
- SkScalarMul(sy, fMat[kMScaleY]) + |
- SkScalarMul(sw, fMat[kMTransY]); |
- SkScalar w = SkScalarMul(sx, fMat[kMPersp0]) + |
- SkScalarMul(sy, fMat[kMPersp1]) + |
- SkScalarMul(sw, fMat[kMPersp2]); |
+ SkScalar x = sdot(sx, fMat[kMScaleX], sy, fMat[kMSkewX], sw, fMat[kMTransX]); |
+ SkScalar y = sdot(sx, fMat[kMSkewY], sy, fMat[kMScaleY], sw, fMat[kMTransY]); |
+ SkScalar w = sdot(sx, fMat[kMPersp0], sy, fMat[kMPersp1], sw, fMat[kMPersp2]); |
dst[0] = x; |
dst[1] = y; |
@@ -1098,27 +1125,27 @@ void SkMatrix::Persp_xy(const SkMatrix& m, SkScalar sx, SkScalar sy, |
SkPoint* pt) { |
SkASSERT(m.hasPerspective()); |
- SkScalar x = SkScalarMul(sx, m.fMat[kMScaleX]) + |
- SkScalarMul(sy, m.fMat[kMSkewX]) + m.fMat[kMTransX]; |
- SkScalar y = SkScalarMul(sx, m.fMat[kMSkewY]) + |
- SkScalarMul(sy, m.fMat[kMScaleY]) + m.fMat[kMTransY]; |
- SkScalar z = SkScalarMul(sx, m.fMat[kMPersp0]) + |
- SkScalarMul(sy, m.fMat[kMPersp1]) + m.fMat[kMPersp2]; |
+ SkScalar x = sdot(sx, m.fMat[kMScaleX], sy, m.fMat[kMSkewX]) + m.fMat[kMTransX]; |
+ SkScalar y = sdot(sx, m.fMat[kMSkewY], sy, m.fMat[kMScaleY]) + m.fMat[kMTransY]; |
+ SkScalar z = sdot(sx, m.fMat[kMPersp0], sy, m.fMat[kMPersp1]) + m.fMat[kMPersp2]; |
if (z) { |
z = SkScalarFastInvert(z); |
} |
- pt->fX = SkScalarMul(x, z); |
- pt->fY = SkScalarMul(y, z); |
+ pt->fX = x * z; |
+ pt->fY = y * z; |
} |
void SkMatrix::RotTrans_xy(const SkMatrix& m, SkScalar sx, SkScalar sy, |
SkPoint* pt) { |
SkASSERT((m.getType() & (kAffine_Mask | kPerspective_Mask)) == kAffine_Mask); |
- pt->fX = SkScalarMul(sx, m.fMat[kMScaleX]) + |
- SkScalarMulAdd(sy, m.fMat[kMSkewX], m.fMat[kMTransX]); |
- pt->fY = SkScalarMul(sx, m.fMat[kMSkewY]) + |
- SkScalarMulAdd(sy, m.fMat[kMScaleY], m.fMat[kMTransY]); |
+#ifdef SK_LEGACY_MATRIX_MATH_ORDER |
+ pt->fX = sx * m.fMat[kMScaleX] + (sy * m.fMat[kMSkewX] + m.fMat[kMTransX]); |
+ pt->fY = sx * m.fMat[kMSkewY] + (sy * m.fMat[kMScaleY] + m.fMat[kMTransY]); |
+#else |
+ pt->fX = sdot(sx, m.fMat[kMScaleX], sy, m.fMat[kMSkewX]) + m.fMat[kMTransX]; |
+ pt->fY = sdot(sx, m.fMat[kMSkewY], sy, m.fMat[kMScaleY]) + m.fMat[kMTransY]; |
+#endif |
} |
void SkMatrix::Rot_xy(const SkMatrix& m, SkScalar sx, SkScalar sy, |
@@ -1127,10 +1154,13 @@ void SkMatrix::Rot_xy(const SkMatrix& m, SkScalar sx, SkScalar sy, |
SkASSERT(0 == m.fMat[kMTransX]); |
SkASSERT(0 == m.fMat[kMTransY]); |
- pt->fX = SkScalarMul(sx, m.fMat[kMScaleX]) + |
- SkScalarMulAdd(sy, m.fMat[kMSkewX], m.fMat[kMTransX]); |
- pt->fY = SkScalarMul(sx, m.fMat[kMSkewY]) + |
- SkScalarMulAdd(sy, m.fMat[kMScaleY], m.fMat[kMTransY]); |
+#ifdef SK_LEGACY_MATRIX_MATH_ORDER |
+ pt->fX = sx * m.fMat[kMScaleX] + (sy * m.fMat[kMSkewX] + m.fMat[kMTransX]); |
+ pt->fY = sx * m.fMat[kMSkewY] + (sy * m.fMat[kMScaleY] + m.fMat[kMTransY]); |
+#else |
+ pt->fX = sdot(sx, m.fMat[kMScaleX], sy, m.fMat[kMSkewX]) + m.fMat[kMTransX]; |
+ pt->fY = sdot(sx, m.fMat[kMSkewY], sy, m.fMat[kMScaleY]) + m.fMat[kMTransY]; |
+#endif |
} |
void SkMatrix::ScaleTrans_xy(const SkMatrix& m, SkScalar sx, SkScalar sy, |
@@ -1138,8 +1168,8 @@ void SkMatrix::ScaleTrans_xy(const SkMatrix& m, SkScalar sx, SkScalar sy, |
SkASSERT((m.getType() & (kScale_Mask | kAffine_Mask | kPerspective_Mask)) |
== kScale_Mask); |
- pt->fX = SkScalarMulAdd(sx, m.fMat[kMScaleX], m.fMat[kMTransX]); |
- pt->fY = SkScalarMulAdd(sy, m.fMat[kMScaleY], m.fMat[kMTransY]); |
+ pt->fX = sx * m.fMat[kMScaleX] + m.fMat[kMTransX]; |
+ pt->fY = sy * m.fMat[kMScaleY] + m.fMat[kMTransY]; |
} |
void SkMatrix::Scale_xy(const SkMatrix& m, SkScalar sx, SkScalar sy, |
@@ -1149,8 +1179,8 @@ void SkMatrix::Scale_xy(const SkMatrix& m, SkScalar sx, SkScalar sy, |
SkASSERT(0 == m.fMat[kMTransX]); |
SkASSERT(0 == m.fMat[kMTransY]); |
- pt->fX = SkScalarMul(sx, m.fMat[kMScaleX]); |
- pt->fY = SkScalarMul(sy, m.fMat[kMScaleY]); |
+ pt->fX = sx * m.fMat[kMScaleX]; |
+ pt->fY = sy * m.fMat[kMScaleY]; |
} |
void SkMatrix::Trans_xy(const SkMatrix& m, SkScalar sx, SkScalar sy, |
@@ -1190,7 +1220,7 @@ bool SkMatrix::fixedStepInX(SkScalar y, SkFixed* stepX, SkFixed* stepY) const { |
if (PerspNearlyZero(fMat[kMPersp0])) { |
if (stepX || stepY) { |
if (PerspNearlyZero(fMat[kMPersp1]) && |
- PerspNearlyZero(fMat[kMPersp2] - kMatrix22Elem)) { |
+ PerspNearlyZero(fMat[kMPersp2] - 1)) { |
if (stepX) { |
*stepX = SkScalarToFixed(fMat[kMScaleX]); |
} |
@@ -1200,10 +1230,10 @@ bool SkMatrix::fixedStepInX(SkScalar y, SkFixed* stepX, SkFixed* stepY) const { |
} else { |
SkScalar z = y * fMat[kMPersp1] + fMat[kMPersp2]; |
if (stepX) { |
- *stepX = SkScalarToFixed(SkScalarDiv(fMat[kMScaleX], z)); |
+ *stepX = SkScalarToFixed(fMat[kMScaleX] / z); |
} |
if (stepY) { |
- *stepY = SkScalarToFixed(SkScalarDiv(fMat[kMSkewY], z)); |
+ *stepY = SkScalarToFixed(fMat[kMSkewY] / z); |
} |
} |
} |
@@ -1291,8 +1321,7 @@ static inline bool poly_to_point(SkPoint* pt, const SkPoint poly[], int count) { |
pt2.fX = poly[0].fY - poly[3].fY; |
pt2.fY = poly[3].fX - poly[0].fX; |
CALC_X: |
- x = SkScalarDiv(SkScalarMul(pt1.fX, pt2.fX) + |
- SkScalarMul(pt1.fY, pt2.fY), y); |
+ x = sdot(pt1.fX, pt2.fX, pt1.fY, pt2.fY) / y; |
break; |
} |
} |
@@ -1354,13 +1383,13 @@ bool SkMatrix::Poly4Proc(const SkPoint srcPt[], SkMatrix* dst, |
if (checkForZero(denom)) { |
return false; |
} |
- a1 = SkScalarDiv(SkScalarMulDiv(x0 - x1, y2, x2) - y0 + y1, denom); |
+ a1 = (SkScalarMulDiv(x0 - x1, y2, x2) - y0 + y1) / denom; |
} else { |
float denom = x1 - SkScalarMulDiv(y1, x2, y2); |
if (checkForZero(denom)) { |
return false; |
} |
- a1 = SkScalarDiv(x0 - x1 - SkScalarMulDiv(y0 - y1, x2, y2), denom); |
+ a1 = (x0 - x1 - SkScalarMulDiv(y0 - y1, x2, y2)) / denom; |
} |
/* check if abs(x1) > abs(y1) */ |
@@ -1369,27 +1398,25 @@ bool SkMatrix::Poly4Proc(const SkPoint srcPt[], SkMatrix* dst, |
if (checkForZero(denom)) { |
return false; |
} |
- a2 = SkScalarDiv(y0 - y2 - SkScalarMulDiv(x0 - x2, y1, x1), denom); |
+ a2 = (y0 - y2 - SkScalarMulDiv(x0 - x2, y1, x1)) / denom; |
} else { |
float denom = SkScalarMulDiv(y2, x1, y1) - x2; |
if (checkForZero(denom)) { |
return false; |
} |
- a2 = SkScalarDiv(SkScalarMulDiv(y0 - y2, x1, y1) - x0 + x2, denom); |
+ a2 = (SkScalarMulDiv(y0 - y2, x1, y1) - x0 + x2) / denom; |
} |
- float invScale = 1 / scale.fX; |
- dst->fMat[kMScaleX] = SkScalarMul(SkScalarMul(a2, srcPt[3].fX) + |
- srcPt[3].fX - srcPt[0].fX, invScale); |
- dst->fMat[kMSkewY] = SkScalarMul(SkScalarMul(a2, srcPt[3].fY) + |
- srcPt[3].fY - srcPt[0].fY, invScale); |
- dst->fMat[kMPersp0] = SkScalarMul(a2, invScale); |
- invScale = 1 / scale.fY; |
- dst->fMat[kMSkewX] = SkScalarMul(SkScalarMul(a1, srcPt[1].fX) + |
- srcPt[1].fX - srcPt[0].fX, invScale); |
- dst->fMat[kMScaleY] = SkScalarMul(SkScalarMul(a1, srcPt[1].fY) + |
- srcPt[1].fY - srcPt[0].fY, invScale); |
- dst->fMat[kMPersp1] = SkScalarMul(a1, invScale); |
+ float invScale = SkScalarInvert(scale.fX); |
+ dst->fMat[kMScaleX] = (a2 * srcPt[3].fX + srcPt[3].fX - srcPt[0].fX) * invScale; |
+ dst->fMat[kMSkewY] = (a2 * srcPt[3].fY + srcPt[3].fY - srcPt[0].fY) * invScale; |
+ dst->fMat[kMPersp0] = a2 * invScale; |
+ |
+ invScale = SkScalarInvert(scale.fY); |
+ dst->fMat[kMSkewX] = (a1 * srcPt[1].fX + srcPt[1].fX - srcPt[0].fX) * invScale; |
+ dst->fMat[kMScaleY] = (a1 * srcPt[1].fY + srcPt[1].fY - srcPt[0].fY) * invScale; |
+ dst->fMat[kMPersp1] = a1 * invScale; |
+ |
dst->fMat[kMTransX] = srcPt[0].fX; |
dst->fMat[kMTransY] = srcPt[0].fY; |
dst->fMat[kMPersp2] = 1; |
@@ -1458,10 +1485,10 @@ enum MinOrMax { |
template <MinOrMax MIN_OR_MAX> SkScalar get_stretch_factor(SkMatrix::TypeMask typeMask, |
const SkScalar m[9]) { |
if (typeMask & SkMatrix::kPerspective_Mask) { |
- return -SK_Scalar1; |
+ return -1; |
} |
if (SkMatrix::kIdentity_Mask == typeMask) { |
- return SK_Scalar1; |
+ return 1; |
} |
if (!(typeMask & SkMatrix::kAffine_Mask)) { |
if (kMin_MinOrMax == MIN_OR_MAX) { |
@@ -1475,19 +1502,19 @@ template <MinOrMax MIN_OR_MAX> SkScalar get_stretch_factor(SkMatrix::TypeMask ty |
// ignore the translation part of the matrix, just look at 2x2 portion. |
// compute singular values, take largest or smallest abs value. |
// [a b; b c] = A^T*A |
- SkScalar a = SkScalarMul(m[SkMatrix::kMScaleX], m[SkMatrix::kMScaleX]) + |
- SkScalarMul(m[SkMatrix::kMSkewY], m[SkMatrix::kMSkewY]); |
- SkScalar b = SkScalarMul(m[SkMatrix::kMScaleX], m[SkMatrix::kMSkewX]) + |
- SkScalarMul(m[SkMatrix::kMScaleY], m[SkMatrix::kMSkewY]); |
- SkScalar c = SkScalarMul(m[SkMatrix::kMSkewX], m[SkMatrix::kMSkewX]) + |
- SkScalarMul(m[SkMatrix::kMScaleY], m[SkMatrix::kMScaleY]); |
+ SkScalar a = sdot(m[SkMatrix::kMScaleX], m[SkMatrix::kMScaleX], |
+ m[SkMatrix::kMSkewY], m[SkMatrix::kMSkewY]); |
+ SkScalar b = sdot(m[SkMatrix::kMScaleX], m[SkMatrix::kMSkewX], |
+ m[SkMatrix::kMScaleY], m[SkMatrix::kMSkewY]); |
+ SkScalar c = sdot(m[SkMatrix::kMSkewX], m[SkMatrix::kMSkewX], |
+ m[SkMatrix::kMScaleY], m[SkMatrix::kMScaleY]); |
// eigenvalues of A^T*A are the squared singular values of A. |
// characteristic equation is det((A^T*A) - l*I) = 0 |
// l^2 - (a + c)l + (ac-b^2) |
// solve using quadratic equation (divisor is non-zero since l^2 has 1 coeff |
// and roots are guaranteed to be pos and real). |
SkScalar chosenRoot; |
- SkScalar bSqd = SkScalarMul(b,b); |
+ SkScalar bSqd = b * b; |
// if upper left 2x2 is orthogonal save some math |
if (bSqd <= SK_ScalarNearlyZero*SK_ScalarNearlyZero) { |
if (kMin_MinOrMax == MIN_OR_MAX) { |
@@ -1498,7 +1525,7 @@ template <MinOrMax MIN_OR_MAX> SkScalar get_stretch_factor(SkMatrix::TypeMask ty |
} else { |
SkScalar aminusc = a - c; |
SkScalar apluscdiv2 = SkScalarHalf(a + c); |
- SkScalar x = SkScalarHalf(SkScalarSqrt(SkScalarMul(aminusc, aminusc) + 4 * bSqd)); |
+ SkScalar x = SkScalarHalf(SkScalarSqrt(aminusc * aminusc + 4 * bSqd)); |
if (kMin_MinOrMax == MIN_OR_MAX) { |
chosenRoot = apluscdiv2 - x; |
} else { |
@@ -1661,7 +1688,7 @@ bool SkDecomposeUpper2x2(const SkMatrix& matrix, |
double Sa, Sb, Sd; |
// if M is already symmetric (i.e., M = I*S) |
if (SkScalarNearlyEqual(B, C)) { |
- cosQ = SK_Scalar1; |
+ cosQ = 1; |
sinQ = 0; |
Sa = A; |
@@ -1670,7 +1697,7 @@ bool SkDecomposeUpper2x2(const SkMatrix& matrix, |
} else { |
cosQ = A + D; |
sinQ = C - B; |
- SkScalar reciplen = SK_Scalar1/SkScalarSqrt(cosQ*cosQ + sinQ*sinQ); |
+ SkScalar reciplen = SkScalarInvert(SkScalarSqrt(cosQ*cosQ + sinQ*sinQ)); |
cosQ *= reciplen; |
sinQ *= reciplen; |
@@ -1686,7 +1713,7 @@ bool SkDecomposeUpper2x2(const SkMatrix& matrix, |
// From this, should be able to reconstruct S as U*W*U^T |
if (SkScalarNearlyZero(SkDoubleToScalar(Sb))) { |
// already diagonalized |
- cos1 = SK_Scalar1; |
+ cos1 = 1; |
sin1 = 0; |
w1 = Sa; |
w2 = Sd; |
@@ -1705,7 +1732,7 @@ bool SkDecomposeUpper2x2(const SkMatrix& matrix, |
} |
cos1 = SkDoubleToScalar(Sb); sin1 = SkDoubleToScalar(w1 - Sa); |
- SkScalar reciplen = SK_Scalar1/SkScalarSqrt(cos1*cos1 + sin1*sin1); |
+ SkScalar reciplen = SkScalarInvert(SkScalarSqrt(cos1*cos1 + sin1*sin1)); |
cos1 *= reciplen; |
sin1 *= reciplen; |