| Index: src/core/SkMatrix.cpp
|
| diff --git a/src/core/SkMatrix.cpp b/src/core/SkMatrix.cpp
|
| index f32f485771ff087398e9ed21f0db7e420220b84e..33af64a41fe9f40e61756203b770f75cd1de3ee5 100644
|
| --- a/src/core/SkMatrix.cpp
|
| +++ b/src/core/SkMatrix.cpp
|
| @@ -10,7 +10,20 @@
|
| #include "SkOnce.h"
|
| #include "SkString.h"
|
|
|
| -#define kMatrix22Elem SK_Scalar1
|
| +// In a few places, we performed the following
|
| +// a * b + c * d + e
|
| +// as
|
| +// a * b + (c * d + e)
|
| +//
|
| +// sdot and scross are indended to capture these compound operations into a
|
| +// function, with an eye toward considering upscaling the intermediates to
|
| +// doubles for more precision (as we do in concat and invert).
|
| +//
|
| +// However, these few lines that performed the last add before the "dot", cause
|
| +// tiny image differences, so we guard that change until we see the impact on
|
| +// chrome's layouttests.
|
| +//
|
| +#define SK_LEGACY_MATRIX_MATH_ORDER
|
|
|
| static inline float SkDoubleToFloat(double x) {
|
| return static_cast<float>(x);
|
| @@ -22,11 +35,10 @@ static inline float SkDoubleToFloat(double x) {
|
| */
|
|
|
| void SkMatrix::reset() {
|
| - fMat[kMScaleX] = fMat[kMScaleY] = SK_Scalar1;
|
| + fMat[kMScaleX] = fMat[kMScaleY] = fMat[kMPersp2] = 1;
|
| fMat[kMSkewX] = fMat[kMSkewY] =
|
| fMat[kMTransX] = fMat[kMTransY] =
|
| fMat[kMPersp0] = fMat[kMPersp1] = 0;
|
| - fMat[kMPersp2] = kMatrix22Elem;
|
|
|
| this->setTypeMask(kIdentity_Mask | kRectStaysRect_Mask);
|
| }
|
| @@ -46,8 +58,7 @@ uint8_t SkMatrix::computePerspectiveTypeMask() const {
|
| // Benchmarking suggests that replacing this set of SkScalarAs2sCompliment
|
| // is a win, but replacing those below is not. We don't yet understand
|
| // that result.
|
| - if (fMat[kMPersp0] != 0 || fMat[kMPersp1] != 0 ||
|
| - fMat[kMPersp2] != kMatrix22Elem) {
|
| + if (fMat[kMPersp0] != 0 || fMat[kMPersp1] != 0 || fMat[kMPersp2] != 1) {
|
| // If this is a perspective transform, we return true for all other
|
| // transform flags - this does not disable any optimizations, respects
|
| // the rule that the type mask must be conservative, and speeds up
|
| @@ -61,8 +72,7 @@ uint8_t SkMatrix::computePerspectiveTypeMask() const {
|
| uint8_t SkMatrix::computeTypeMask() const {
|
| unsigned mask = 0;
|
|
|
| - if (fMat[kMPersp0] != 0 || fMat[kMPersp1] != 0 ||
|
| - fMat[kMPersp2] != kMatrix22Elem) {
|
| + if (fMat[kMPersp0] != 0 || fMat[kMPersp1] != 0 || fMat[kMPersp2] != 1) {
|
| // Once it is determined that that this is a perspective transform,
|
| // all other flags are moot as far as optimizations are concerned.
|
| return SkToU8(kORableMasks);
|
| @@ -209,15 +219,27 @@ bool SkMatrix::preservesRightAngles(SkScalar tol) const {
|
|
|
| ///////////////////////////////////////////////////////////////////////////////
|
|
|
| +static inline SkScalar sdot(SkScalar a, SkScalar b, SkScalar c, SkScalar d) {
|
| + return a * b + c * d;
|
| +}
|
| +
|
| +static inline SkScalar sdot(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
|
| + SkScalar e, SkScalar f) {
|
| + return a * b + c * d + e * f;
|
| +}
|
| +
|
| +static inline SkScalar scross(SkScalar a, SkScalar b, SkScalar c, SkScalar d) {
|
| + return a * b - c * d;
|
| +}
|
| +
|
| void SkMatrix::setTranslate(SkScalar dx, SkScalar dy) {
|
| if (dx || dy) {
|
| fMat[kMTransX] = dx;
|
| fMat[kMTransY] = dy;
|
|
|
| - fMat[kMScaleX] = fMat[kMScaleY] = SK_Scalar1;
|
| + fMat[kMScaleX] = fMat[kMScaleY] = fMat[kMPersp2] = 1;
|
| fMat[kMSkewX] = fMat[kMSkewY] =
|
| fMat[kMPersp0] = fMat[kMPersp1] = 0;
|
| - fMat[kMPersp2] = kMatrix22Elem;
|
|
|
| this->setTypeMask(kTranslate_Mask | kRectStaysRect_Mask);
|
| } else {
|
| @@ -233,10 +255,8 @@ bool SkMatrix::preTranslate(SkScalar dx, SkScalar dy) {
|
| }
|
|
|
| if (dx || dy) {
|
| - fMat[kMTransX] += SkScalarMul(fMat[kMScaleX], dx) +
|
| - SkScalarMul(fMat[kMSkewX], dy);
|
| - fMat[kMTransY] += SkScalarMul(fMat[kMSkewY], dx) +
|
| - SkScalarMul(fMat[kMScaleY], dy);
|
| + fMat[kMTransX] += sdot(fMat[kMScaleX], dx, fMat[kMSkewX], dy);
|
| + fMat[kMTransY] += sdot(fMat[kMSkewY], dx, fMat[kMScaleY], dy);
|
|
|
| this->setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask);
|
| }
|
| @@ -261,14 +281,14 @@ bool SkMatrix::postTranslate(SkScalar dx, SkScalar dy) {
|
| ///////////////////////////////////////////////////////////////////////////////
|
|
|
| void SkMatrix::setScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) {
|
| - if (SK_Scalar1 == sx && SK_Scalar1 == sy) {
|
| + if (1 == sx && 1 == sy) {
|
| this->reset();
|
| } else {
|
| fMat[kMScaleX] = sx;
|
| fMat[kMScaleY] = sy;
|
| - fMat[kMTransX] = px - SkScalarMul(sx, px);
|
| - fMat[kMTransY] = py - SkScalarMul(sy, py);
|
| - fMat[kMPersp2] = kMatrix22Elem;
|
| + fMat[kMTransX] = px - sx * px;
|
| + fMat[kMTransY] = py - sy * py;
|
| + fMat[kMPersp2] = 1;
|
|
|
| fMat[kMSkewX] = fMat[kMSkewY] =
|
| fMat[kMPersp0] = fMat[kMPersp1] = 0;
|
| @@ -278,12 +298,12 @@ void SkMatrix::setScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) {
|
| }
|
|
|
| void SkMatrix::setScale(SkScalar sx, SkScalar sy) {
|
| - if (SK_Scalar1 == sx && SK_Scalar1 == sy) {
|
| + if (1 == sx && 1 == sy) {
|
| this->reset();
|
| } else {
|
| fMat[kMScaleX] = sx;
|
| fMat[kMScaleY] = sy;
|
| - fMat[kMPersp2] = kMatrix22Elem;
|
| + fMat[kMPersp2] = 1;
|
|
|
| fMat[kMTransX] = fMat[kMTransY] =
|
| fMat[kMSkewX] = fMat[kMSkewY] =
|
| @@ -297,7 +317,7 @@ bool SkMatrix::setIDiv(int divx, int divy) {
|
| if (!divx || !divy) {
|
| return false;
|
| }
|
| - this->setScale(SK_Scalar1 / divx, SK_Scalar1 / divy);
|
| + this->setScale(SkScalarInvert(divx), SkScalarInvert(divy));
|
| return true;
|
| }
|
|
|
| @@ -308,7 +328,7 @@ bool SkMatrix::preScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) {
|
| }
|
|
|
| bool SkMatrix::preScale(SkScalar sx, SkScalar sy) {
|
| - if (SK_Scalar1 == sx && SK_Scalar1 == sy) {
|
| + if (1 == sx && 1 == sy) {
|
| return true;
|
| }
|
|
|
| @@ -317,20 +337,20 @@ bool SkMatrix::preScale(SkScalar sx, SkScalar sy) {
|
| // Also, the fixed-point case checks for overflow, but the float doesn't,
|
| // so we can get away with these blind multiplies.
|
|
|
| - fMat[kMScaleX] = SkScalarMul(fMat[kMScaleX], sx);
|
| - fMat[kMSkewY] = SkScalarMul(fMat[kMSkewY], sx);
|
| - fMat[kMPersp0] = SkScalarMul(fMat[kMPersp0], sx);
|
| + fMat[kMScaleX] *= sx;
|
| + fMat[kMSkewY] *= sx;
|
| + fMat[kMPersp0] *= sx;
|
|
|
| - fMat[kMSkewX] = SkScalarMul(fMat[kMSkewX], sy);
|
| - fMat[kMScaleY] = SkScalarMul(fMat[kMScaleY], sy);
|
| - fMat[kMPersp1] = SkScalarMul(fMat[kMPersp1], sy);
|
| + fMat[kMSkewX] *= sy;
|
| + fMat[kMScaleY] *= sy;
|
| + fMat[kMPersp1] *= sy;
|
|
|
| this->orTypeMask(kScale_Mask);
|
| return true;
|
| }
|
|
|
| bool SkMatrix::postScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) {
|
| - if (SK_Scalar1 == sx && SK_Scalar1 == sy) {
|
| + if (1 == sx && 1 == sy) {
|
| return true;
|
| }
|
| SkMatrix m;
|
| @@ -339,7 +359,7 @@ bool SkMatrix::postScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) {
|
| }
|
|
|
| bool SkMatrix::postScale(SkScalar sx, SkScalar sy) {
|
| - if (SK_Scalar1 == sx && SK_Scalar1 == sy) {
|
| + if (1 == sx && 1 == sy) {
|
| return true;
|
| }
|
| SkMatrix m;
|
| @@ -373,18 +393,18 @@ bool SkMatrix::postIDiv(int divx, int divy) {
|
|
|
| void SkMatrix::setSinCos(SkScalar sinV, SkScalar cosV,
|
| SkScalar px, SkScalar py) {
|
| - const SkScalar oneMinusCosV = SK_Scalar1 - cosV;
|
| + const SkScalar oneMinusCosV = 1 - cosV;
|
|
|
| fMat[kMScaleX] = cosV;
|
| fMat[kMSkewX] = -sinV;
|
| - fMat[kMTransX] = SkScalarMul(sinV, py) + SkScalarMul(oneMinusCosV, px);
|
| + fMat[kMTransX] = sdot(sinV, py, oneMinusCosV, px);
|
|
|
| fMat[kMSkewY] = sinV;
|
| fMat[kMScaleY] = cosV;
|
| - fMat[kMTransY] = SkScalarMul(-sinV, px) + SkScalarMul(oneMinusCosV, py);
|
| + fMat[kMTransY] = sdot(-sinV, px, oneMinusCosV, py);
|
|
|
| fMat[kMPersp0] = fMat[kMPersp1] = 0;
|
| - fMat[kMPersp2] = kMatrix22Elem;
|
| + fMat[kMPersp2] = 1;
|
|
|
| this->setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask);
|
| }
|
| @@ -399,7 +419,7 @@ void SkMatrix::setSinCos(SkScalar sinV, SkScalar cosV) {
|
| fMat[kMTransY] = 0;
|
|
|
| fMat[kMPersp0] = fMat[kMPersp1] = 0;
|
| - fMat[kMPersp2] = kMatrix22Elem;
|
| + fMat[kMPersp2] = 1;
|
|
|
| this->setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask);
|
| }
|
| @@ -443,31 +463,31 @@ bool SkMatrix::postRotate(SkScalar degrees) {
|
| ////////////////////////////////////////////////////////////////////////////////////
|
|
|
| void SkMatrix::setSkew(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) {
|
| - fMat[kMScaleX] = SK_Scalar1;
|
| + fMat[kMScaleX] = 1;
|
| fMat[kMSkewX] = sx;
|
| - fMat[kMTransX] = SkScalarMul(-sx, py);
|
| + fMat[kMTransX] = -sx * py;
|
|
|
| fMat[kMSkewY] = sy;
|
| - fMat[kMScaleY] = SK_Scalar1;
|
| - fMat[kMTransY] = SkScalarMul(-sy, px);
|
| + fMat[kMScaleY] = 1;
|
| + fMat[kMTransY] = -sy * px;
|
|
|
| fMat[kMPersp0] = fMat[kMPersp1] = 0;
|
| - fMat[kMPersp2] = kMatrix22Elem;
|
| + fMat[kMPersp2] = 1;
|
|
|
| this->setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask);
|
| }
|
|
|
| void SkMatrix::setSkew(SkScalar sx, SkScalar sy) {
|
| - fMat[kMScaleX] = SK_Scalar1;
|
| + fMat[kMScaleX] = 1;
|
| fMat[kMSkewX] = sx;
|
| fMat[kMTransX] = 0;
|
|
|
| fMat[kMSkewY] = sy;
|
| - fMat[kMScaleY] = SK_Scalar1;
|
| + fMat[kMScaleY] = 1;
|
| fMat[kMTransY] = 0;
|
|
|
| fMat[kMPersp0] = fMat[kMPersp1] = 0;
|
| - fMat[kMPersp2] = kMatrix22Elem;
|
| + fMat[kMPersp2] = 1;
|
|
|
| this->setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask);
|
| }
|
| @@ -510,8 +530,8 @@ bool SkMatrix::setRectToRect(const SkRect& src, const SkRect& dst,
|
| sk_bzero(fMat, 8 * sizeof(SkScalar));
|
| this->setTypeMask(kScale_Mask | kRectStaysRect_Mask);
|
| } else {
|
| - SkScalar tx, sx = SkScalarDiv(dst.width(), src.width());
|
| - SkScalar ty, sy = SkScalarDiv(dst.height(), src.height());
|
| + SkScalar tx, sx = dst.width() / src.width();
|
| + SkScalar ty, sy = dst.height() / src.height();
|
| bool xLarger = false;
|
|
|
| if (align != kFill_ScaleToFit) {
|
| @@ -523,15 +543,15 @@ bool SkMatrix::setRectToRect(const SkRect& src, const SkRect& dst,
|
| }
|
| }
|
|
|
| - tx = dst.fLeft - SkScalarMul(src.fLeft, sx);
|
| - ty = dst.fTop - SkScalarMul(src.fTop, sy);
|
| + tx = dst.fLeft - src.fLeft * sx;
|
| + ty = dst.fTop - src.fTop * sy;
|
| if (align == kCenter_ScaleToFit || align == kEnd_ScaleToFit) {
|
| SkScalar diff;
|
|
|
| if (xLarger) {
|
| - diff = dst.width() - SkScalarMul(src.width(), sy);
|
| + diff = dst.width() - src.width() * sy;
|
| } else {
|
| - diff = dst.height() - SkScalarMul(src.height(), sy);
|
| + diff = dst.height() - src.height() * sy;
|
| }
|
|
|
| if (align == kCenter_ScaleToFit) {
|
| @@ -553,7 +573,7 @@ bool SkMatrix::setRectToRect(const SkRect& src, const SkRect& dst,
|
| fMat[kMPersp0] = fMat[kMPersp1] = 0;
|
|
|
| unsigned mask = kRectStaysRect_Mask;
|
| - if (sx != SK_Scalar1 || sy != SK_Scalar1) {
|
| + if (sx != 1 || sy != 1) {
|
| mask |= kScale_Mask;
|
| }
|
| if (tx || ty) {
|
| @@ -562,7 +582,7 @@ bool SkMatrix::setRectToRect(const SkRect& src, const SkRect& dst,
|
| this->setTypeMask(mask);
|
| }
|
| // shared cleanup
|
| - fMat[kMPersp2] = kMatrix22Elem;
|
| + fMat[kMPersp2] = 1;
|
| return true;
|
| }
|
|
|
| @@ -586,7 +606,7 @@ static inline int negifaddoverflows(float& result, float a, float b) {
|
| }
|
|
|
| static void normalize_perspective(SkScalar mat[9]) {
|
| - if (SkScalarAbs(mat[SkMatrix::kMPersp2]) > kMatrix22Elem) {
|
| + if (SkScalarAbs(mat[SkMatrix::kMPersp2]) > 1) {
|
| for (int i = 0; i < 9; i++)
|
| mat[i] = SkScalarHalf(mat[i]);
|
| }
|
| @@ -672,7 +692,7 @@ bool SkMatrix::setConcat(const SkMatrix& a, const SkMatrix& b) {
|
| }
|
|
|
| tmp.fMat[kMPersp0] = tmp.fMat[kMPersp1] = 0;
|
| - tmp.fMat[kMPersp2] = kMatrix22Elem;
|
| + tmp.fMat[kMPersp2] = 1;
|
| //SkDebugf("Concat mat non-persp type: %d\n", tmp.getType());
|
| //SkASSERT(!(tmp.getType() & kPerspective_Mask));
|
| tmp.setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask);
|
| @@ -702,19 +722,38 @@ bool SkMatrix::postConcat(const SkMatrix& mat) {
|
| the intermediate math, even though we know that is more expensive.
|
| */
|
|
|
| -typedef double SkDetScalar;
|
| -#define SkPerspMul(a, b) SkScalarMul(a, b)
|
| -#define SkScalarMulShift(a, b, s) SkDoubleToFloat((a) * (b))
|
| -static double sk_inv_determinant(const float mat[9], int isPerspective,
|
| - int* /* (only used in Fixed case) */) {
|
| +static inline SkScalar scross_dscale(SkScalar a, SkScalar b,
|
| + SkScalar c, SkScalar d, double scale) {
|
| + return SkDoubleToScalar(scross(a, b, c, d) * scale);
|
| +}
|
| +
|
| +static inline double dcross(double a, double b, double c, double d) {
|
| + return a * b - c * d;
|
| +}
|
| +
|
| +static inline SkScalar dcross_dscale(double a, double b,
|
| + double c, double d, double scale) {
|
| + return SkDoubleToScalar(dcross(a, b, c, d) * scale);
|
| +}
|
| +
|
| +static double sk_inv_determinant(const float mat[9], int isPerspective) {
|
| double det;
|
|
|
| if (isPerspective) {
|
| - det = mat[SkMatrix::kMScaleX] * ((double)mat[SkMatrix::kMScaleY] * mat[SkMatrix::kMPersp2] - (double)mat[SkMatrix::kMTransY] * mat[SkMatrix::kMPersp1]) +
|
| - mat[SkMatrix::kMSkewX] * ((double)mat[SkMatrix::kMTransY] * mat[SkMatrix::kMPersp0] - (double)mat[SkMatrix::kMSkewY] * mat[SkMatrix::kMPersp2]) +
|
| - mat[SkMatrix::kMTransX] * ((double)mat[SkMatrix::kMSkewY] * mat[SkMatrix::kMPersp1] - (double)mat[SkMatrix::kMScaleY] * mat[SkMatrix::kMPersp0]);
|
| + det = mat[SkMatrix::kMScaleX] *
|
| + dcross(mat[SkMatrix::kMScaleY], mat[SkMatrix::kMPersp2],
|
| + mat[SkMatrix::kMTransY], mat[SkMatrix::kMPersp1])
|
| + +
|
| + mat[SkMatrix::kMSkewX] *
|
| + dcross(mat[SkMatrix::kMTransY], mat[SkMatrix::kMPersp0],
|
| + mat[SkMatrix::kMSkewY], mat[SkMatrix::kMPersp2])
|
| + +
|
| + mat[SkMatrix::kMTransX] *
|
| + dcross(mat[SkMatrix::kMSkewY], mat[SkMatrix::kMPersp1],
|
| + mat[SkMatrix::kMScaleY], mat[SkMatrix::kMPersp0]);
|
| } else {
|
| - det = (double)mat[SkMatrix::kMScaleX] * mat[SkMatrix::kMScaleY] - (double)mat[SkMatrix::kMSkewX] * mat[SkMatrix::kMSkewY];
|
| + det = dcross(mat[SkMatrix::kMScaleX], mat[SkMatrix::kMScaleY],
|
| + mat[SkMatrix::kMSkewX], mat[SkMatrix::kMSkewY]);
|
| }
|
|
|
| // Since the determinant is on the order of the cube of the matrix members,
|
| @@ -725,19 +764,12 @@ static double sk_inv_determinant(const float mat[9], int isPerspective,
|
| }
|
| return 1.0 / det;
|
| }
|
| -// we declar a,b,c,d to all be doubles, because we want to perform
|
| -// double-precision muls and subtract, even though the original values are
|
| -// from the matrix, which are floats.
|
| -static float inline mul_diff_scale(double a, double b, double c, double d,
|
| - double scale) {
|
| - return SkDoubleToFloat((a * b - c * d) * scale);
|
| -}
|
|
|
| void SkMatrix::SetAffineIdentity(SkScalar affine[6]) {
|
| - affine[kAScaleX] = SK_Scalar1;
|
| + affine[kAScaleX] = 1;
|
| affine[kASkewY] = 0;
|
| affine[kASkewX] = 0;
|
| - affine[kAScaleY] = SK_Scalar1;
|
| + affine[kAScaleY] = 1;
|
| affine[kATransX] = 0;
|
| affine[kATransY] = 0;
|
| }
|
| @@ -782,9 +814,9 @@ bool SkMatrix::invertNonIdentity(SkMatrix* inv) const {
|
|
|
| inv->fMat[kMScaleX] = invX;
|
| inv->fMat[kMScaleY] = invY;
|
| - inv->fMat[kMPersp2] = kMatrix22Elem;
|
| - inv->fMat[kMTransX] = -SkScalarMul(fMat[kMTransX], invX);
|
| - inv->fMat[kMTransY] = -SkScalarMul(fMat[kMTransY], invY);
|
| + inv->fMat[kMPersp2] = 1;
|
| + inv->fMat[kMTransX] = -fMat[kMTransX] * invX;
|
| + inv->fMat[kMTransY] = -fMat[kMTransY] * invY;
|
|
|
| inv->setTypeMask(mask | kRectStaysRect_Mask);
|
| } else {
|
| @@ -799,9 +831,8 @@ bool SkMatrix::invertNonIdentity(SkMatrix* inv) const {
|
| return invertible;
|
| }
|
|
|
| - int isPersp = mask & kPerspective_Mask;
|
| - int shift;
|
| - SkDetScalar scale = sk_inv_determinant(fMat, isPersp, &shift);
|
| + int isPersp = mask & kPerspective_Mask;
|
| + double scale = sk_inv_determinant(fMat, isPersp);
|
|
|
| if (scale == 0) { // underflow
|
| return false;
|
| @@ -814,33 +845,29 @@ bool SkMatrix::invertNonIdentity(SkMatrix* inv) const {
|
| }
|
|
|
| if (isPersp) {
|
| - shift = 61 - shift;
|
| - inv->fMat[kMScaleX] = SkScalarMulShift(SkPerspMul(fMat[kMScaleY], fMat[kMPersp2]) - SkPerspMul(fMat[kMTransY], fMat[kMPersp1]), scale, shift);
|
| - inv->fMat[kMSkewX] = SkScalarMulShift(SkPerspMul(fMat[kMTransX], fMat[kMPersp1]) - SkPerspMul(fMat[kMSkewX], fMat[kMPersp2]), scale, shift);
|
| - inv->fMat[kMTransX] = SkScalarMulShift(SkScalarMul(fMat[kMSkewX], fMat[kMTransY]) - SkScalarMul(fMat[kMTransX], fMat[kMScaleY]), scale, shift);
|
| -
|
| - inv->fMat[kMSkewY] = SkScalarMulShift(SkPerspMul(fMat[kMTransY], fMat[kMPersp0]) - SkPerspMul(fMat[kMSkewY], fMat[kMPersp2]), scale, shift);
|
| - inv->fMat[kMScaleY] = SkScalarMulShift(SkPerspMul(fMat[kMScaleX], fMat[kMPersp2]) - SkPerspMul(fMat[kMTransX], fMat[kMPersp0]), scale, shift);
|
| - inv->fMat[kMTransY] = SkScalarMulShift(SkScalarMul(fMat[kMTransX], fMat[kMSkewY]) - SkScalarMul(fMat[kMScaleX], fMat[kMTransY]), scale, shift);
|
| -
|
| - inv->fMat[kMPersp0] = SkScalarMulShift(SkScalarMul(fMat[kMSkewY], fMat[kMPersp1]) - SkScalarMul(fMat[kMScaleY], fMat[kMPersp0]), scale, shift);
|
| - inv->fMat[kMPersp1] = SkScalarMulShift(SkScalarMul(fMat[kMSkewX], fMat[kMPersp0]) - SkScalarMul(fMat[kMScaleX], fMat[kMPersp1]), scale, shift);
|
| - inv->fMat[kMPersp2] = SkScalarMulShift(SkScalarMul(fMat[kMScaleX], fMat[kMScaleY]) - SkScalarMul(fMat[kMSkewX], fMat[kMSkewY]), scale, shift);
|
| + inv->fMat[kMScaleX] = scross_dscale(fMat[kMScaleY], fMat[kMPersp2], fMat[kMTransY], fMat[kMPersp1], scale);
|
| + inv->fMat[kMSkewX] = scross_dscale(fMat[kMTransX], fMat[kMPersp1], fMat[kMSkewX], fMat[kMPersp2], scale);
|
| + inv->fMat[kMTransX] = scross_dscale(fMat[kMSkewX], fMat[kMTransY], fMat[kMTransX], fMat[kMScaleY], scale);
|
| +
|
| + inv->fMat[kMSkewY] = scross_dscale(fMat[kMTransY], fMat[kMPersp0], fMat[kMSkewY], fMat[kMPersp2], scale);
|
| + inv->fMat[kMScaleY] = scross_dscale(fMat[kMScaleX], fMat[kMPersp2], fMat[kMTransX], fMat[kMPersp0], scale);
|
| + inv->fMat[kMTransY] = scross_dscale(fMat[kMTransX], fMat[kMSkewY], fMat[kMScaleX], fMat[kMTransY], scale);
|
| +
|
| + inv->fMat[kMPersp0] = scross_dscale(fMat[kMSkewY], fMat[kMPersp1], fMat[kMScaleY], fMat[kMPersp0], scale);
|
| + inv->fMat[kMPersp1] = scross_dscale(fMat[kMSkewX], fMat[kMPersp0], fMat[kMScaleX], fMat[kMPersp1], scale);
|
| + inv->fMat[kMPersp2] = scross_dscale(fMat[kMScaleX], fMat[kMScaleY], fMat[kMSkewX], fMat[kMSkewY], scale);
|
| } else { // not perspective
|
| - inv->fMat[kMScaleX] = SkDoubleToFloat(fMat[kMScaleY] * scale);
|
| - inv->fMat[kMSkewX] = SkDoubleToFloat(-fMat[kMSkewX] * scale);
|
| - inv->fMat[kMTransX] = mul_diff_scale(fMat[kMSkewX], fMat[kMTransY],
|
| - fMat[kMScaleY], fMat[kMTransX], scale);
|
| + inv->fMat[kMScaleX] = SkDoubleToScalar(fMat[kMScaleY] * scale);
|
| + inv->fMat[kMSkewX] = SkDoubleToScalar(-fMat[kMSkewX] * scale);
|
| + inv->fMat[kMTransX] = dcross_dscale(fMat[kMSkewX], fMat[kMTransY], fMat[kMScaleY], fMat[kMTransX], scale);
|
|
|
| - inv->fMat[kMSkewY] = SkDoubleToFloat(-fMat[kMSkewY] * scale);
|
| - inv->fMat[kMScaleY] = SkDoubleToFloat(fMat[kMScaleX] * scale);
|
| - inv->fMat[kMTransY] = mul_diff_scale(fMat[kMSkewY], fMat[kMTransX],
|
| - fMat[kMScaleX], fMat[kMTransY], scale);
|
| + inv->fMat[kMSkewY] = SkDoubleToScalar(-fMat[kMSkewY] * scale);
|
| + inv->fMat[kMScaleY] = SkDoubleToScalar(fMat[kMScaleX] * scale);
|
| + inv->fMat[kMTransY] = dcross_dscale(fMat[kMSkewY], fMat[kMTransX], fMat[kMScaleX], fMat[kMTransY], scale);
|
|
|
| inv->fMat[kMPersp0] = 0;
|
| inv->fMat[kMPersp1] = 0;
|
| - inv->fMat[kMPersp2] = kMatrix22Elem;
|
| -
|
| + inv->fMat[kMPersp2] = 1;
|
| }
|
|
|
| inv->setTypeMask(fTypeMask);
|
| @@ -886,8 +913,8 @@ void SkMatrix::Scale_pts(const SkMatrix& m, SkPoint dst[],
|
| SkScalar mx = m.fMat[kMScaleX];
|
| SkScalar my = m.fMat[kMScaleY];
|
| do {
|
| - dst->fY = SkScalarMul(src->fY, my);
|
| - dst->fX = SkScalarMul(src->fX, mx);
|
| + dst->fY = src->fY * my;
|
| + dst->fX = src->fX * mx;
|
| src += 1;
|
| dst += 1;
|
| } while (--count);
|
| @@ -904,8 +931,8 @@ void SkMatrix::ScaleTrans_pts(const SkMatrix& m, SkPoint dst[],
|
| SkScalar tx = m.fMat[kMTransX];
|
| SkScalar ty = m.fMat[kMTransY];
|
| do {
|
| - dst->fY = SkScalarMulAdd(src->fY, my, ty);
|
| - dst->fX = SkScalarMulAdd(src->fX, mx, tx);
|
| + dst->fY = src->fY * my + ty;
|
| + dst->fX = src->fX * mx + tx;
|
| src += 1;
|
| dst += 1;
|
| } while (--count);
|
| @@ -925,8 +952,8 @@ void SkMatrix::Rot_pts(const SkMatrix& m, SkPoint dst[],
|
| SkScalar sy = src->fY;
|
| SkScalar sx = src->fX;
|
| src += 1;
|
| - dst->fY = SkScalarMul(sx, ky) + SkScalarMul(sy, my);
|
| - dst->fX = SkScalarMul(sx, mx) + SkScalarMul(sy, kx);
|
| + dst->fY = sdot(sx, ky, sy, my);
|
| + dst->fX = sdot(sx, mx, sy, kx);
|
| dst += 1;
|
| } while (--count);
|
| }
|
| @@ -947,8 +974,13 @@ void SkMatrix::RotTrans_pts(const SkMatrix& m, SkPoint dst[],
|
| SkScalar sy = src->fY;
|
| SkScalar sx = src->fX;
|
| src += 1;
|
| - dst->fY = SkScalarMul(sx, ky) + SkScalarMulAdd(sy, my, ty);
|
| - dst->fX = SkScalarMul(sx, mx) + SkScalarMulAdd(sy, kx, tx);
|
| +#ifdef SK_LEGACY_MATRIX_MATH_ORDER
|
| + dst->fY = sx * ky + (sy * my + ty);
|
| + dst->fX = sx * mx + (sy * kx + tx);
|
| +#else
|
| + dst->fY = sdot(sx, ky, sy, my) + ty;
|
| + dst->fX = sdot(sx, mx, sy, kx) + tx;
|
| +#endif
|
| dst += 1;
|
| } while (--count);
|
| }
|
| @@ -964,18 +996,19 @@ void SkMatrix::Persp_pts(const SkMatrix& m, SkPoint dst[],
|
| SkScalar sx = src->fX;
|
| src += 1;
|
|
|
| - SkScalar x = SkScalarMul(sx, m.fMat[kMScaleX]) +
|
| - SkScalarMul(sy, m.fMat[kMSkewX]) + m.fMat[kMTransX];
|
| - SkScalar y = SkScalarMul(sx, m.fMat[kMSkewY]) +
|
| - SkScalarMul(sy, m.fMat[kMScaleY]) + m.fMat[kMTransY];
|
| - SkScalar z = SkScalarMul(sx, m.fMat[kMPersp0]) +
|
| - SkScalarMulAdd(sy, m.fMat[kMPersp1], m.fMat[kMPersp2]);
|
| + SkScalar x = sdot(sx, m.fMat[kMScaleX], sy, m.fMat[kMSkewX]) + m.fMat[kMTransX];
|
| + SkScalar y = sdot(sx, m.fMat[kMSkewY], sy, m.fMat[kMScaleY]) + m.fMat[kMTransY];
|
| +#ifdef SK_LEGACY_MATRIX_MATH_ORDER
|
| + SkScalar z = sx * m.fMat[kMPersp0] + (sy * m.fMat[kMPersp1] + m.fMat[kMPersp2]);
|
| +#else
|
| + SkScalar z = sdot(sx, m.fMat[kMPersp0], sy, m.fMat[kMPersp1]) + m.fMat[kMPersp2];
|
| +#endif
|
| if (z) {
|
| z = SkScalarFastInvert(z);
|
| }
|
|
|
| - dst->fY = SkScalarMul(y, z);
|
| - dst->fX = SkScalarMul(x, z);
|
| + dst->fY = y * z;
|
| + dst->fX = x * z;
|
| dst += 1;
|
| } while (--count);
|
| }
|
| @@ -1019,15 +1052,9 @@ void SkMatrix::mapHomogeneousPoints(SkScalar dst[], const SkScalar src[], int co
|
| SkScalar sw = src[2];
|
| src += 3;
|
|
|
| - SkScalar x = SkScalarMul(sx, fMat[kMScaleX]) +
|
| - SkScalarMul(sy, fMat[kMSkewX]) +
|
| - SkScalarMul(sw, fMat[kMTransX]);
|
| - SkScalar y = SkScalarMul(sx, fMat[kMSkewY]) +
|
| - SkScalarMul(sy, fMat[kMScaleY]) +
|
| - SkScalarMul(sw, fMat[kMTransY]);
|
| - SkScalar w = SkScalarMul(sx, fMat[kMPersp0]) +
|
| - SkScalarMul(sy, fMat[kMPersp1]) +
|
| - SkScalarMul(sw, fMat[kMPersp2]);
|
| + SkScalar x = sdot(sx, fMat[kMScaleX], sy, fMat[kMSkewX], sw, fMat[kMTransX]);
|
| + SkScalar y = sdot(sx, fMat[kMSkewY], sy, fMat[kMScaleY], sw, fMat[kMTransY]);
|
| + SkScalar w = sdot(sx, fMat[kMPersp0], sy, fMat[kMPersp1], sw, fMat[kMPersp2]);
|
|
|
| dst[0] = x;
|
| dst[1] = y;
|
| @@ -1098,27 +1125,27 @@ void SkMatrix::Persp_xy(const SkMatrix& m, SkScalar sx, SkScalar sy,
|
| SkPoint* pt) {
|
| SkASSERT(m.hasPerspective());
|
|
|
| - SkScalar x = SkScalarMul(sx, m.fMat[kMScaleX]) +
|
| - SkScalarMul(sy, m.fMat[kMSkewX]) + m.fMat[kMTransX];
|
| - SkScalar y = SkScalarMul(sx, m.fMat[kMSkewY]) +
|
| - SkScalarMul(sy, m.fMat[kMScaleY]) + m.fMat[kMTransY];
|
| - SkScalar z = SkScalarMul(sx, m.fMat[kMPersp0]) +
|
| - SkScalarMul(sy, m.fMat[kMPersp1]) + m.fMat[kMPersp2];
|
| + SkScalar x = sdot(sx, m.fMat[kMScaleX], sy, m.fMat[kMSkewX]) + m.fMat[kMTransX];
|
| + SkScalar y = sdot(sx, m.fMat[kMSkewY], sy, m.fMat[kMScaleY]) + m.fMat[kMTransY];
|
| + SkScalar z = sdot(sx, m.fMat[kMPersp0], sy, m.fMat[kMPersp1]) + m.fMat[kMPersp2];
|
| if (z) {
|
| z = SkScalarFastInvert(z);
|
| }
|
| - pt->fX = SkScalarMul(x, z);
|
| - pt->fY = SkScalarMul(y, z);
|
| + pt->fX = x * z;
|
| + pt->fY = y * z;
|
| }
|
|
|
| void SkMatrix::RotTrans_xy(const SkMatrix& m, SkScalar sx, SkScalar sy,
|
| SkPoint* pt) {
|
| SkASSERT((m.getType() & (kAffine_Mask | kPerspective_Mask)) == kAffine_Mask);
|
|
|
| - pt->fX = SkScalarMul(sx, m.fMat[kMScaleX]) +
|
| - SkScalarMulAdd(sy, m.fMat[kMSkewX], m.fMat[kMTransX]);
|
| - pt->fY = SkScalarMul(sx, m.fMat[kMSkewY]) +
|
| - SkScalarMulAdd(sy, m.fMat[kMScaleY], m.fMat[kMTransY]);
|
| +#ifdef SK_LEGACY_MATRIX_MATH_ORDER
|
| + pt->fX = sx * m.fMat[kMScaleX] + (sy * m.fMat[kMSkewX] + m.fMat[kMTransX]);
|
| + pt->fY = sx * m.fMat[kMSkewY] + (sy * m.fMat[kMScaleY] + m.fMat[kMTransY]);
|
| +#else
|
| + pt->fX = sdot(sx, m.fMat[kMScaleX], sy, m.fMat[kMSkewX]) + m.fMat[kMTransX];
|
| + pt->fY = sdot(sx, m.fMat[kMSkewY], sy, m.fMat[kMScaleY]) + m.fMat[kMTransY];
|
| +#endif
|
| }
|
|
|
| void SkMatrix::Rot_xy(const SkMatrix& m, SkScalar sx, SkScalar sy,
|
| @@ -1127,10 +1154,13 @@ void SkMatrix::Rot_xy(const SkMatrix& m, SkScalar sx, SkScalar sy,
|
| SkASSERT(0 == m.fMat[kMTransX]);
|
| SkASSERT(0 == m.fMat[kMTransY]);
|
|
|
| - pt->fX = SkScalarMul(sx, m.fMat[kMScaleX]) +
|
| - SkScalarMulAdd(sy, m.fMat[kMSkewX], m.fMat[kMTransX]);
|
| - pt->fY = SkScalarMul(sx, m.fMat[kMSkewY]) +
|
| - SkScalarMulAdd(sy, m.fMat[kMScaleY], m.fMat[kMTransY]);
|
| +#ifdef SK_LEGACY_MATRIX_MATH_ORDER
|
| + pt->fX = sx * m.fMat[kMScaleX] + (sy * m.fMat[kMSkewX] + m.fMat[kMTransX]);
|
| + pt->fY = sx * m.fMat[kMSkewY] + (sy * m.fMat[kMScaleY] + m.fMat[kMTransY]);
|
| +#else
|
| + pt->fX = sdot(sx, m.fMat[kMScaleX], sy, m.fMat[kMSkewX]) + m.fMat[kMTransX];
|
| + pt->fY = sdot(sx, m.fMat[kMSkewY], sy, m.fMat[kMScaleY]) + m.fMat[kMTransY];
|
| +#endif
|
| }
|
|
|
| void SkMatrix::ScaleTrans_xy(const SkMatrix& m, SkScalar sx, SkScalar sy,
|
| @@ -1138,8 +1168,8 @@ void SkMatrix::ScaleTrans_xy(const SkMatrix& m, SkScalar sx, SkScalar sy,
|
| SkASSERT((m.getType() & (kScale_Mask | kAffine_Mask | kPerspective_Mask))
|
| == kScale_Mask);
|
|
|
| - pt->fX = SkScalarMulAdd(sx, m.fMat[kMScaleX], m.fMat[kMTransX]);
|
| - pt->fY = SkScalarMulAdd(sy, m.fMat[kMScaleY], m.fMat[kMTransY]);
|
| + pt->fX = sx * m.fMat[kMScaleX] + m.fMat[kMTransX];
|
| + pt->fY = sy * m.fMat[kMScaleY] + m.fMat[kMTransY];
|
| }
|
|
|
| void SkMatrix::Scale_xy(const SkMatrix& m, SkScalar sx, SkScalar sy,
|
| @@ -1149,8 +1179,8 @@ void SkMatrix::Scale_xy(const SkMatrix& m, SkScalar sx, SkScalar sy,
|
| SkASSERT(0 == m.fMat[kMTransX]);
|
| SkASSERT(0 == m.fMat[kMTransY]);
|
|
|
| - pt->fX = SkScalarMul(sx, m.fMat[kMScaleX]);
|
| - pt->fY = SkScalarMul(sy, m.fMat[kMScaleY]);
|
| + pt->fX = sx * m.fMat[kMScaleX];
|
| + pt->fY = sy * m.fMat[kMScaleY];
|
| }
|
|
|
| void SkMatrix::Trans_xy(const SkMatrix& m, SkScalar sx, SkScalar sy,
|
| @@ -1190,7 +1220,7 @@ bool SkMatrix::fixedStepInX(SkScalar y, SkFixed* stepX, SkFixed* stepY) const {
|
| if (PerspNearlyZero(fMat[kMPersp0])) {
|
| if (stepX || stepY) {
|
| if (PerspNearlyZero(fMat[kMPersp1]) &&
|
| - PerspNearlyZero(fMat[kMPersp2] - kMatrix22Elem)) {
|
| + PerspNearlyZero(fMat[kMPersp2] - 1)) {
|
| if (stepX) {
|
| *stepX = SkScalarToFixed(fMat[kMScaleX]);
|
| }
|
| @@ -1200,10 +1230,10 @@ bool SkMatrix::fixedStepInX(SkScalar y, SkFixed* stepX, SkFixed* stepY) const {
|
| } else {
|
| SkScalar z = y * fMat[kMPersp1] + fMat[kMPersp2];
|
| if (stepX) {
|
| - *stepX = SkScalarToFixed(SkScalarDiv(fMat[kMScaleX], z));
|
| + *stepX = SkScalarToFixed(fMat[kMScaleX] / z);
|
| }
|
| if (stepY) {
|
| - *stepY = SkScalarToFixed(SkScalarDiv(fMat[kMSkewY], z));
|
| + *stepY = SkScalarToFixed(fMat[kMSkewY] / z);
|
| }
|
| }
|
| }
|
| @@ -1291,8 +1321,7 @@ static inline bool poly_to_point(SkPoint* pt, const SkPoint poly[], int count) {
|
| pt2.fX = poly[0].fY - poly[3].fY;
|
| pt2.fY = poly[3].fX - poly[0].fX;
|
| CALC_X:
|
| - x = SkScalarDiv(SkScalarMul(pt1.fX, pt2.fX) +
|
| - SkScalarMul(pt1.fY, pt2.fY), y);
|
| + x = sdot(pt1.fX, pt2.fX, pt1.fY, pt2.fY) / y;
|
| break;
|
| }
|
| }
|
| @@ -1354,13 +1383,13 @@ bool SkMatrix::Poly4Proc(const SkPoint srcPt[], SkMatrix* dst,
|
| if (checkForZero(denom)) {
|
| return false;
|
| }
|
| - a1 = SkScalarDiv(SkScalarMulDiv(x0 - x1, y2, x2) - y0 + y1, denom);
|
| + a1 = (SkScalarMulDiv(x0 - x1, y2, x2) - y0 + y1) / denom;
|
| } else {
|
| float denom = x1 - SkScalarMulDiv(y1, x2, y2);
|
| if (checkForZero(denom)) {
|
| return false;
|
| }
|
| - a1 = SkScalarDiv(x0 - x1 - SkScalarMulDiv(y0 - y1, x2, y2), denom);
|
| + a1 = (x0 - x1 - SkScalarMulDiv(y0 - y1, x2, y2)) / denom;
|
| }
|
|
|
| /* check if abs(x1) > abs(y1) */
|
| @@ -1369,27 +1398,25 @@ bool SkMatrix::Poly4Proc(const SkPoint srcPt[], SkMatrix* dst,
|
| if (checkForZero(denom)) {
|
| return false;
|
| }
|
| - a2 = SkScalarDiv(y0 - y2 - SkScalarMulDiv(x0 - x2, y1, x1), denom);
|
| + a2 = (y0 - y2 - SkScalarMulDiv(x0 - x2, y1, x1)) / denom;
|
| } else {
|
| float denom = SkScalarMulDiv(y2, x1, y1) - x2;
|
| if (checkForZero(denom)) {
|
| return false;
|
| }
|
| - a2 = SkScalarDiv(SkScalarMulDiv(y0 - y2, x1, y1) - x0 + x2, denom);
|
| + a2 = (SkScalarMulDiv(y0 - y2, x1, y1) - x0 + x2) / denom;
|
| }
|
|
|
| - float invScale = 1 / scale.fX;
|
| - dst->fMat[kMScaleX] = SkScalarMul(SkScalarMul(a2, srcPt[3].fX) +
|
| - srcPt[3].fX - srcPt[0].fX, invScale);
|
| - dst->fMat[kMSkewY] = SkScalarMul(SkScalarMul(a2, srcPt[3].fY) +
|
| - srcPt[3].fY - srcPt[0].fY, invScale);
|
| - dst->fMat[kMPersp0] = SkScalarMul(a2, invScale);
|
| - invScale = 1 / scale.fY;
|
| - dst->fMat[kMSkewX] = SkScalarMul(SkScalarMul(a1, srcPt[1].fX) +
|
| - srcPt[1].fX - srcPt[0].fX, invScale);
|
| - dst->fMat[kMScaleY] = SkScalarMul(SkScalarMul(a1, srcPt[1].fY) +
|
| - srcPt[1].fY - srcPt[0].fY, invScale);
|
| - dst->fMat[kMPersp1] = SkScalarMul(a1, invScale);
|
| + float invScale = SkScalarInvert(scale.fX);
|
| + dst->fMat[kMScaleX] = (a2 * srcPt[3].fX + srcPt[3].fX - srcPt[0].fX) * invScale;
|
| + dst->fMat[kMSkewY] = (a2 * srcPt[3].fY + srcPt[3].fY - srcPt[0].fY) * invScale;
|
| + dst->fMat[kMPersp0] = a2 * invScale;
|
| +
|
| + invScale = SkScalarInvert(scale.fY);
|
| + dst->fMat[kMSkewX] = (a1 * srcPt[1].fX + srcPt[1].fX - srcPt[0].fX) * invScale;
|
| + dst->fMat[kMScaleY] = (a1 * srcPt[1].fY + srcPt[1].fY - srcPt[0].fY) * invScale;
|
| + dst->fMat[kMPersp1] = a1 * invScale;
|
| +
|
| dst->fMat[kMTransX] = srcPt[0].fX;
|
| dst->fMat[kMTransY] = srcPt[0].fY;
|
| dst->fMat[kMPersp2] = 1;
|
| @@ -1458,10 +1485,10 @@ enum MinOrMax {
|
| template <MinOrMax MIN_OR_MAX> SkScalar get_stretch_factor(SkMatrix::TypeMask typeMask,
|
| const SkScalar m[9]) {
|
| if (typeMask & SkMatrix::kPerspective_Mask) {
|
| - return -SK_Scalar1;
|
| + return -1;
|
| }
|
| if (SkMatrix::kIdentity_Mask == typeMask) {
|
| - return SK_Scalar1;
|
| + return 1;
|
| }
|
| if (!(typeMask & SkMatrix::kAffine_Mask)) {
|
| if (kMin_MinOrMax == MIN_OR_MAX) {
|
| @@ -1475,19 +1502,19 @@ template <MinOrMax MIN_OR_MAX> SkScalar get_stretch_factor(SkMatrix::TypeMask ty
|
| // ignore the translation part of the matrix, just look at 2x2 portion.
|
| // compute singular values, take largest or smallest abs value.
|
| // [a b; b c] = A^T*A
|
| - SkScalar a = SkScalarMul(m[SkMatrix::kMScaleX], m[SkMatrix::kMScaleX]) +
|
| - SkScalarMul(m[SkMatrix::kMSkewY], m[SkMatrix::kMSkewY]);
|
| - SkScalar b = SkScalarMul(m[SkMatrix::kMScaleX], m[SkMatrix::kMSkewX]) +
|
| - SkScalarMul(m[SkMatrix::kMScaleY], m[SkMatrix::kMSkewY]);
|
| - SkScalar c = SkScalarMul(m[SkMatrix::kMSkewX], m[SkMatrix::kMSkewX]) +
|
| - SkScalarMul(m[SkMatrix::kMScaleY], m[SkMatrix::kMScaleY]);
|
| + SkScalar a = sdot(m[SkMatrix::kMScaleX], m[SkMatrix::kMScaleX],
|
| + m[SkMatrix::kMSkewY], m[SkMatrix::kMSkewY]);
|
| + SkScalar b = sdot(m[SkMatrix::kMScaleX], m[SkMatrix::kMSkewX],
|
| + m[SkMatrix::kMScaleY], m[SkMatrix::kMSkewY]);
|
| + SkScalar c = sdot(m[SkMatrix::kMSkewX], m[SkMatrix::kMSkewX],
|
| + m[SkMatrix::kMScaleY], m[SkMatrix::kMScaleY]);
|
| // eigenvalues of A^T*A are the squared singular values of A.
|
| // characteristic equation is det((A^T*A) - l*I) = 0
|
| // l^2 - (a + c)l + (ac-b^2)
|
| // solve using quadratic equation (divisor is non-zero since l^2 has 1 coeff
|
| // and roots are guaranteed to be pos and real).
|
| SkScalar chosenRoot;
|
| - SkScalar bSqd = SkScalarMul(b,b);
|
| + SkScalar bSqd = b * b;
|
| // if upper left 2x2 is orthogonal save some math
|
| if (bSqd <= SK_ScalarNearlyZero*SK_ScalarNearlyZero) {
|
| if (kMin_MinOrMax == MIN_OR_MAX) {
|
| @@ -1498,7 +1525,7 @@ template <MinOrMax MIN_OR_MAX> SkScalar get_stretch_factor(SkMatrix::TypeMask ty
|
| } else {
|
| SkScalar aminusc = a - c;
|
| SkScalar apluscdiv2 = SkScalarHalf(a + c);
|
| - SkScalar x = SkScalarHalf(SkScalarSqrt(SkScalarMul(aminusc, aminusc) + 4 * bSqd));
|
| + SkScalar x = SkScalarHalf(SkScalarSqrt(aminusc * aminusc + 4 * bSqd));
|
| if (kMin_MinOrMax == MIN_OR_MAX) {
|
| chosenRoot = apluscdiv2 - x;
|
| } else {
|
| @@ -1661,7 +1688,7 @@ bool SkDecomposeUpper2x2(const SkMatrix& matrix,
|
| double Sa, Sb, Sd;
|
| // if M is already symmetric (i.e., M = I*S)
|
| if (SkScalarNearlyEqual(B, C)) {
|
| - cosQ = SK_Scalar1;
|
| + cosQ = 1;
|
| sinQ = 0;
|
|
|
| Sa = A;
|
| @@ -1670,7 +1697,7 @@ bool SkDecomposeUpper2x2(const SkMatrix& matrix,
|
| } else {
|
| cosQ = A + D;
|
| sinQ = C - B;
|
| - SkScalar reciplen = SK_Scalar1/SkScalarSqrt(cosQ*cosQ + sinQ*sinQ);
|
| + SkScalar reciplen = SkScalarInvert(SkScalarSqrt(cosQ*cosQ + sinQ*sinQ));
|
| cosQ *= reciplen;
|
| sinQ *= reciplen;
|
|
|
| @@ -1686,7 +1713,7 @@ bool SkDecomposeUpper2x2(const SkMatrix& matrix,
|
| // From this, should be able to reconstruct S as U*W*U^T
|
| if (SkScalarNearlyZero(SkDoubleToScalar(Sb))) {
|
| // already diagonalized
|
| - cos1 = SK_Scalar1;
|
| + cos1 = 1;
|
| sin1 = 0;
|
| w1 = Sa;
|
| w2 = Sd;
|
| @@ -1705,7 +1732,7 @@ bool SkDecomposeUpper2x2(const SkMatrix& matrix,
|
| }
|
|
|
| cos1 = SkDoubleToScalar(Sb); sin1 = SkDoubleToScalar(w1 - Sa);
|
| - SkScalar reciplen = SK_Scalar1/SkScalarSqrt(cos1*cos1 + sin1*sin1);
|
| + SkScalar reciplen = SkScalarInvert(SkScalarSqrt(cos1*cos1 + sin1*sin1));
|
| cos1 *= reciplen;
|
| sin1 *= reciplen;
|
|
|
|
|