OLD | NEW |
---|---|
1 // Copyright 2015 The Chromium Authors. All rights reserved. | 1 // Copyright 2015 The Chromium Authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 #include "base/trace_event/heap_profiler_heap_dump_writer.h" | 5 #include "base/trace_event/heap_profiler_heap_dump_writer.h" |
6 | 6 |
7 #include <algorithm> | 7 #include <algorithm> |
8 #include <iterator> | 8 #include <iterator> |
9 #include <set> | |
Primiano Tucci (use gerrit)
2015/12/09 17:04:00
remove, you have this in the .h
Ruud van Asseldonk
2015/12/09 20:58:04
Done.
| |
10 #include <tuple> | |
Primiano Tucci (use gerrit)
2015/12/09 17:03:59
I think this is not needed anymore
Ruud van Asseldonk
2015/12/09 20:58:04
It is required for |std::tie| which is required fo
| |
9 #include <utility> | 11 #include <utility> |
10 #include <vector> | 12 #include <vector> |
11 | 13 |
14 #include "base/containers/hash_tables.h" | |
12 #include "base/format_macros.h" | 15 #include "base/format_macros.h" |
16 #include "base/logging.h" | |
17 #include "base/macros.h" | |
Primiano Tucci (use gerrit)
2015/12/09 17:03:59
remove, you have this in the .h
Ruud van Asseldonk
2015/12/09 20:58:05
Done.
| |
13 #include "base/strings/stringprintf.h" | 18 #include "base/strings/stringprintf.h" |
19 #include "base/trace_event/heap_profiler_allocation_context.h" | |
14 #include "base/trace_event/heap_profiler_stack_frame_deduplicator.h" | 20 #include "base/trace_event/heap_profiler_stack_frame_deduplicator.h" |
15 #include "base/trace_event/heap_profiler_type_name_deduplicator.h" | 21 #include "base/trace_event/heap_profiler_type_name_deduplicator.h" |
16 #include "base/trace_event/trace_event_argument.h" | 22 #include "base/trace_event/trace_event_argument.h" |
17 | 23 |
24 // Most of what the |HeapDumpWriter| does is aggregating detailed information | |
25 // about the heap and deciding what to dump. The Input to this process is a list | |
26 // of |AllocationContext|s and size pairs. | |
27 // | |
28 // The pairs are grouped into |Bucket|s. A bucket is a group of (context, size) | |
29 // pairs where the properties of the contexts share a prefix. (Type name is | |
30 // considered a list of length one here.) First all pairs are put into one | |
31 // bucket that represents the entire heap. Then this bucket is recursively | |
32 // broken down into smaller buckets. Each bucket keeps track of whether further | |
33 // breakdown is possible. | |
34 | |
18 namespace base { | 35 namespace base { |
19 namespace trace_event { | 36 namespace trace_event { |
20 | 37 namespace internal { |
21 namespace { | 38 namespace { |
22 | 39 |
23 template <typename T> | 40 // Denotes a property of |AllocationContext| to break down by. |
24 bool PairSizeGt(const std::pair<T, size_t>& lhs, | 41 enum class BreakDownMode { kByBacktrace, kByTypeName }; |
25 const std::pair<T, size_t>& rhs) { | 42 |
26 return lhs.second > rhs.second; | 43 // A group of bytes for which the context shares a prefix. |
27 } | 44 struct BASE_EXPORT Bucket { |
Primiano Tucci (use gerrit)
2015/12/09 17:03:59
don't think this needs BASE_EXPORT
Ruud van Asseldonk
2015/12/09 20:58:05
You are right. Fixed.
| |
28 | 45 Bucket() : size(0), backtrace_cursor(0), is_broken_down_by_type_name(false) {} |
29 // Converts a |hash_map<T, size_t>| into a vector of (T, size_t) pairs that is | 46 |
30 // ordered from high |size_t| to low |size_t|. | 47 std::vector<std::pair<const AllocationContext*, size_t>> bytes_by_context; |
31 template <typename T> | 48 |
32 std::vector<std::pair<T, size_t>> SortBySizeDescending( | 49 // The sum of the sizes of |bytes_by_context|. |
33 const hash_map<T, size_t>& grouped) { | 50 size_t size; |
34 std::vector<std::pair<T, size_t>> sorted; | 51 |
35 sorted.reserve(grouped.size()); | 52 // The index of the stack frame that has not yet been broken down by. For all |
36 std::copy(grouped.begin(), grouped.end(), std::back_inserter(sorted)); | 53 // elements in this bucket, the stack frames 0 up to (but not including) the |
37 std::sort(sorted.begin(), sorted.end(), PairSizeGt<T>); | 54 // cursor, must be equal. |
38 return sorted; | 55 size_t backtrace_cursor; |
56 | |
57 // When true, the type name for all elements in this bucket must be equal. | |
58 bool is_broken_down_by_type_name; | |
59 }; | |
60 | |
61 // Comparison operator to order buckets by their size. | |
62 bool operator<(const Bucket& lhs, const Bucket& rhs) { | |
63 return lhs.size < rhs.size; | |
64 } | |
65 | |
66 // Groups the allocations in the bucket by |breakBy|. The buckets in the | |
67 // returned list will have |backtrace_cursor| advanced or | |
68 // |is_broken_down_by_type_name| set depending on the property to group by. | |
69 std::vector<Bucket> GetSubbuckets(const Bucket& bucket, BreakDownMode breakBy) { | |
70 base::hash_map<const char*, Bucket> breakdown; | |
71 | |
72 if (breakBy == BreakDownMode::kByBacktrace) { | |
73 for (const auto& context_and_size : bucket.bytes_by_context) { | |
74 const Backtrace& backtrace = context_and_size.first->backtrace; | |
75 const char* const* begin = std::begin(backtrace.frames); | |
76 const char* const* end = std::end(backtrace.frames); | |
77 const char* const* cursor = begin + bucket.backtrace_cursor; | |
78 | |
79 // The backtrace in the context is padded with null pointers, but these | |
80 // should not be considered for breakdown. Adjust end to point past the | |
81 // last non-null frame. | |
82 while (begin != end && *(end - 1) == nullptr) | |
83 end--; | |
84 | |
85 DCHECK_LE(cursor, end); | |
86 | |
87 if (cursor != end) { | |
88 Bucket& subbucket = breakdown[*cursor]; | |
89 subbucket.size += context_and_size.second; | |
90 subbucket.bytes_by_context.push_back(context_and_size); | |
91 subbucket.backtrace_cursor = bucket.backtrace_cursor + 1; | |
92 subbucket.is_broken_down_by_type_name = | |
93 bucket.is_broken_down_by_type_name; | |
94 DCHECK_GT(subbucket.size, 0u); | |
95 } | |
96 } | |
97 } else if (breakBy == BreakDownMode::kByTypeName) { | |
98 if (!bucket.is_broken_down_by_type_name) { | |
99 for (const auto& context_and_size : bucket.bytes_by_context) { | |
100 const AllocationContext* context = context_and_size.first; | |
101 Bucket& subbucket = breakdown[context->type_name]; | |
102 subbucket.size += context_and_size.second; | |
103 subbucket.bytes_by_context.push_back(context_and_size); | |
104 subbucket.backtrace_cursor = bucket.backtrace_cursor; | |
105 subbucket.is_broken_down_by_type_name = true; | |
106 DCHECK_GT(subbucket.size, 0u); | |
107 } | |
108 } | |
109 } | |
110 | |
111 std::vector<Bucket> buckets; | |
112 buckets.reserve(breakdown.size()); | |
113 for (auto key_bucket : breakdown) | |
114 buckets.push_back(key_bucket.second); | |
115 | |
116 return buckets; | |
117 } | |
118 | |
119 // Breaks down the bucket by |breakBy|. Returns only buckets that contribute | |
120 // significantly to the total size. The long tail is omitted. | |
121 std::vector<Bucket> BreakDownBy(const Bucket& bucket, BreakDownMode breakBy) { | |
122 std::vector<Bucket> buckets = GetSubbuckets(bucket, breakBy); | |
123 | |
124 // Ensure that |buckets| is a max-heap (the data structure, not memory heap), | |
125 // so its front contains the largest bucket. Buckets should be iterated | |
126 // ordered by size, but sorting the vector is overkill because the long tail | |
127 // of small buckets will be discarded. By using a max-heap, the optimal case | |
128 // where all but the first bucket are discarded is O(n). The worst case where | |
129 // no bucket is discarded is doing a heap sort, which is O(n log n). | |
130 std::make_heap(buckets.begin(), buckets.end()); | |
131 | |
132 // Keep including buckets until adding one would increase the number of | |
133 // bytes accounted for by less than a percent. The large buckets end up in | |
134 // [it, end()), [begin(), it) is the part that contains the max-heap of small | |
135 // buckets. TODO(ruuda): tweak the heuristic. | |
136 size_t accounted_for = 0; | |
137 std::vector<Bucket>::iterator it; | |
138 for (it = buckets.end(); it != buckets.begin(); --it) { | |
139 // Compute contribution to number of bytes accounted for in percent, rounded | |
140 // down due to integer division. Buckets are iterated by descending size, | |
141 // so later buckets cannot have a larger contribution than this one. | |
142 accounted_for += buckets.front().size; | |
143 size_t contribution = buckets.front().size * 100 / accounted_for; | |
144 if (contribution == 0) | |
145 break; | |
146 | |
147 // Put the largest bucket in [begin, it) at |it - 1| and max-heapify | |
148 // [begin, it - 1). This puts the next largest bucket at |buckets.front()|. | |
149 std::pop_heap(buckets.begin(), it); | |
150 } | |
151 | |
152 // At this point, |buckets| looks like this (numbers are bucket sizes): | |
153 // | |
154 // <-- max-heap of small buckets ---> | |
155 // <-- large buckets by ascending size --> | |
156 // [ 19 | 11 | 13 | 7 | 2 | 5 | ... | 83 | 89 | 97 ] | |
157 // ^ ^ ^ | |
158 // | | | | |
159 // begin() it end() | |
160 | |
161 // Discard the long tail of buckets that contribute less than a percent. | |
162 buckets.erase(buckets.begin(), it); | |
Primiano Tucci (use gerrit)
2015/12/09 17:04:00
I wonder whether resize() here is more efficient o
Ruud van Asseldonk
2015/12/09 20:58:04
Resize discards elements at the end, I want to dis
| |
163 | |
164 return buckets; | |
39 } | 165 } |
40 | 166 |
41 } // namespace | 167 } // namespace |
42 | 168 |
169 bool operator<(Entry lhs, Entry rhs) { | |
170 // There is no need to compare |size|. If the backtrace and type name are | |
171 // equal then the sizes must be equal as well. | |
172 return std::tie(lhs.stack_frame_id, lhs.type_id) < | |
173 std::tie(rhs.stack_frame_id, rhs.type_id); | |
174 } | |
175 | |
43 HeapDumpWriter::HeapDumpWriter(StackFrameDeduplicator* stack_frame_deduplicator, | 176 HeapDumpWriter::HeapDumpWriter(StackFrameDeduplicator* stack_frame_deduplicator, |
44 TypeNameDeduplicator* type_name_deduplicator) | 177 TypeNameDeduplicator* type_name_deduplicator) |
45 : traced_value_(new TracedValue()), | 178 : stack_frame_deduplicator_(stack_frame_deduplicator), |
46 stack_frame_deduplicator_(stack_frame_deduplicator), | |
47 type_name_deduplicator_(type_name_deduplicator) {} | 179 type_name_deduplicator_(type_name_deduplicator) {} |
48 | 180 |
49 HeapDumpWriter::~HeapDumpWriter() {} | 181 HeapDumpWriter::~HeapDumpWriter() {} |
50 | 182 |
51 void HeapDumpWriter::InsertAllocation(const AllocationContext& context, | 183 bool HeapDumpWriter::AddEntryForBucket(const Bucket& bucket) { |
52 size_t size) { | 184 // The contexts in the bucket are all different, but the [begin, cursor) range |
53 bytes_by_context_[context] += size; | 185 // is equal for all contexts in the bucket, and the type names are the same if |
54 } | 186 // |is_broken_down_by_type_name| is set. |
55 | 187 DCHECK(!bucket.bytes_by_context.empty()); |
56 scoped_refptr<TracedValue> HeapDumpWriter::WriteHeapDump() { | 188 |
57 // Group by backtrace and by type ID, and compute the total heap size while | 189 const AllocationContext* context = bucket.bytes_by_context.front().first; |
58 // iterating anyway. | 190 |
59 size_t total_size = 0; | 191 const char* const* backtrace_begin = std::begin(context->backtrace.frames); |
60 hash_map<Backtrace, size_t> bytes_by_backtrace; | 192 const char* const* backtrace_end = backtrace_begin + bucket.backtrace_cursor; |
61 hash_map<const char*, size_t> bytes_by_type; | 193 DCHECK_LE(bucket.backtrace_cursor, arraysize(context->backtrace.frames)); |
62 | 194 |
63 for (auto context_size : bytes_by_context_) { | 195 Entry entry; |
64 total_size += context_size.second; | 196 entry.stack_frame_id = |
65 bytes_by_backtrace[context_size.first.backtrace] += context_size.second; | 197 stack_frame_deduplicator_->Insert(backtrace_begin, backtrace_end); |
66 bytes_by_type[context_size.first.type_name] += context_size.second; | 198 |
67 } | 199 // Deduplicate the type name, or use ID -1 if type name is not set. |
68 | 200 entry.type_id = bucket.is_broken_down_by_type_name |
69 auto sorted_bytes_by_backtrace = SortBySizeDescending(bytes_by_backtrace); | 201 ? type_name_deduplicator_->Insert(context->type_name) |
70 auto sorted_bytes_by_type = SortBySizeDescending(bytes_by_type); | 202 : -1; |
71 | 203 |
72 traced_value_->BeginArray("entries"); | 204 entry.size = bucket.size; |
73 | 205 |
74 // The global size, no column specified. | 206 auto position_and_inserted = entries_.insert(entry); |
75 { | 207 return position_and_inserted.second; |
76 traced_value_->BeginDictionary(); | 208 } |
77 WriteSize(total_size); | 209 |
78 traced_value_->EndDictionary(); | 210 void HeapDumpWriter::BreakDown(const Bucket& bucket) { |
79 } | 211 auto by_backtrace = BreakDownBy(bucket, BreakDownMode::kByBacktrace); |
80 | 212 auto by_type_name = BreakDownBy(bucket, BreakDownMode::kByTypeName); |
81 // Entries with the size per backtrace. | 213 |
82 for (const auto& entry : sorted_bytes_by_backtrace) { | 214 // Insert entries for the buckets. If a bucket was not present before, it has |
83 traced_value_->BeginDictionary(); | 215 // not been broken down before, so recursively continue breaking down in that |
84 // Insert a forward reference to the backtrace that will be written to the | 216 // case. There might be multiple routes to the same entry (first break down |
85 // |stackFrames| dictionary later on. | 217 // by type name, then by backtrace, or first by backtrace and then by type), |
86 int idx = stack_frame_deduplicator_->Insert(std::begin(entry.first.frames), | 218 // so a set is used to avoid dumping and breaking down entries more than once. |
87 std::end(entry.first.frames)); | 219 |
88 WriteStackFrameIndex(idx); | 220 for (const Bucket& subbucket : by_backtrace) |
89 WriteSize(entry.second); | 221 if (AddEntryForBucket(subbucket)) |
90 traced_value_->EndDictionary(); | 222 BreakDown(subbucket); |
Ruud van Asseldonk
2015/12/09 16:16:01
I prefer to keep the call to |BreakDown| here inst
Primiano Tucci (use gerrit)
2015/12/09 17:04:00
Acknowledged.
| |
91 } | 223 |
92 | 224 for (const Bucket& subbucket : by_type_name) |
93 // Entries with the size per type. | 225 if (AddEntryForBucket(subbucket)) |
94 for (const auto& entry : sorted_bytes_by_type) { | 226 BreakDown(subbucket); |
95 traced_value_->BeginDictionary(); | 227 } |
96 // Insert a forward reference to the type name that will be written to the | 228 |
97 // trace when it is flushed. | 229 const std::set<Entry>& HeapDumpWriter::Dump( |
Primiano Tucci (use gerrit)
2015/12/09 17:04:00
I wonder if we can get a better name here. I think
| |
98 WriteTypeId(type_name_deduplicator_->Insert(entry.first)); | 230 const hash_map<AllocationContext, size_t>& bytes_by_context) { |
99 WriteSize(entry.second); | 231 // Start with one bucket that represents the entire heap. Iterate by |
100 traced_value_->EndDictionary(); | 232 // reference, because the allocation contexts are going to point to allocation |
101 } | 233 // contexts stored in |bytes_by_context|. |
102 | 234 Bucket root_bucket; |
103 traced_value_->EndArray(); // "entries" | 235 for (const auto& context_and_size : bytes_by_context) { |
104 | 236 const AllocationContext* context = &context_and_size.first; |
105 return traced_value_; | 237 const size_t size = context_and_size.second; |
106 } | 238 root_bucket.bytes_by_context.push_back(std::make_pair(context, size)); |
107 | 239 root_bucket.size += size; |
108 void HeapDumpWriter::WriteStackFrameIndex(int index) { | 240 } |
109 if (index == -1) { | 241 |
110 // An empty backtrace (which will have index -1) is represented by the empty | 242 AddEntryForBucket(root_bucket); |
111 // string, because there is no leaf frame to reference in |stackFrames|. | 243 |
112 traced_value_->SetString("bt", ""); | 244 // Recursively break down the heap and fill |entries_| with entries to dump. |
113 } else { | 245 BreakDown(root_bucket); |
114 // Format index of the leaf frame as a string, because |stackFrames| is a | 246 |
115 // dictionary, not an array. | 247 return entries_; |
116 SStringPrintf(&buffer_, "%i", index); | 248 } |
117 traced_value_->SetString("bt", buffer_); | 249 |
118 } | 250 scoped_refptr<TracedValue> Write(const std::set<Entry>& entries) { |
119 } | 251 std::string buffer; |
120 | 252 scoped_refptr<TracedValue> traced_value = new TracedValue; |
121 void HeapDumpWriter::WriteTypeId(int type_id) { | 253 |
122 // Format the type ID as a string. | 254 traced_value->BeginArray("entries"); |
123 SStringPrintf(&buffer_, "%i", type_id); | 255 |
124 traced_value_->SetString("type", buffer_); | 256 for (const Entry& entry : entries) { |
125 } | 257 traced_value->BeginDictionary(); |
126 | 258 |
127 void HeapDumpWriter::WriteSize(size_t size) { | 259 // Format size as hexadecimal string into |buffer|. |
128 // Format size as hexadecimal string into |buffer_|. | 260 SStringPrintf(&buffer, "%" PRIx64, static_cast<uint64_t>(entry.size)); |
129 SStringPrintf(&buffer_, "%" PRIx64, static_cast<uint64_t>(size)); | 261 traced_value->SetString("size", buffer); |
130 traced_value_->SetString("size", buffer_); | 262 |
131 } | 263 if (entry.stack_frame_id == -1) { |
264 // An empty backtrace (which will have ID -1) is represented by the empty | |
265 // string, because there is no leaf frame to reference in |stackFrames|. | |
266 traced_value->SetString("bt", ""); | |
267 } else { | |
268 // Format index of the leaf frame as a string, because |stackFrames| is a | |
269 // dictionary, not an array. | |
270 SStringPrintf(&buffer, "%i", entry.stack_frame_id); | |
271 traced_value->SetString("bt", buffer); | |
272 } | |
273 | |
274 // Type ID -1 (cumulative size for all types) is represented by the absence | |
275 // of the "type" key in the dictionary. | |
276 if (entry.type_id != -1) { | |
277 // Format the type ID as a string. | |
278 SStringPrintf(&buffer, "%i", entry.type_id); | |
279 traced_value->SetString("type", buffer); | |
280 } | |
281 | |
282 traced_value->EndDictionary(); | |
283 } | |
284 | |
285 traced_value->EndArray(); // "entries" | |
286 return traced_value; | |
287 } | |
288 | |
289 } // namespace internal | |
132 | 290 |
133 } // namespace trace_event | 291 } // namespace trace_event |
134 } // namespace base | 292 } // namespace base |
OLD | NEW |