| Index: tools/telemetry/third_party/gsutilz/third_party/rsa/rsa/_version200.py
|
| diff --git a/tools/telemetry/third_party/gsutilz/third_party/rsa/rsa/_version200.py b/tools/telemetry/third_party/gsutilz/third_party/rsa/rsa/_version200.py
|
| deleted file mode 100644
|
| index f9156538575d46040eef3e4795509ba961c488e9..0000000000000000000000000000000000000000
|
| --- a/tools/telemetry/third_party/gsutilz/third_party/rsa/rsa/_version200.py
|
| +++ /dev/null
|
| @@ -1,529 +0,0 @@
|
| -"""RSA module
|
| -
|
| -Module for calculating large primes, and RSA encryption, decryption,
|
| -signing and verification. Includes generating public and private keys.
|
| -
|
| -WARNING: this implementation does not use random padding, compression of the
|
| -cleartext input to prevent repetitions, or other common security improvements.
|
| -Use with care.
|
| -
|
| -"""
|
| -
|
| -__author__ = "Sybren Stuvel, Marloes de Boer, Ivo Tamboer, and Barry Mead"
|
| -__date__ = "2010-02-08"
|
| -__version__ = '2.0'
|
| -
|
| -import math
|
| -import os
|
| -import random
|
| -import sys
|
| -import types
|
| -from rsa._compat import byte
|
| -
|
| -# Display a warning that this insecure version is imported.
|
| -import warnings
|
| -warnings.warn('Insecure version of the RSA module is imported as %s' % __name__)
|
| -
|
| -
|
| -def bit_size(number):
|
| - """Returns the number of bits required to hold a specific long number"""
|
| -
|
| - return int(math.ceil(math.log(number,2)))
|
| -
|
| -def gcd(p, q):
|
| - """Returns the greatest common divisor of p and q
|
| - >>> gcd(48, 180)
|
| - 12
|
| - """
|
| - # Iterateive Version is faster and uses much less stack space
|
| - while q != 0:
|
| - if p < q: (p,q) = (q,p)
|
| - (p,q) = (q, p % q)
|
| - return p
|
| -
|
| -
|
| -def bytes2int(bytes):
|
| - """Converts a list of bytes or a string to an integer
|
| -
|
| - >>> (((128 * 256) + 64) * 256) + 15
|
| - 8405007
|
| - >>> l = [128, 64, 15]
|
| - >>> bytes2int(l) #same as bytes2int('\x80@\x0f')
|
| - 8405007
|
| - """
|
| -
|
| - if not (type(bytes) is types.ListType or type(bytes) is types.StringType):
|
| - raise TypeError("You must pass a string or a list")
|
| -
|
| - # Convert byte stream to integer
|
| - integer = 0
|
| - for byte in bytes:
|
| - integer *= 256
|
| - if type(byte) is types.StringType: byte = ord(byte)
|
| - integer += byte
|
| -
|
| - return integer
|
| -
|
| -def int2bytes(number):
|
| - """
|
| - Converts a number to a string of bytes
|
| - """
|
| -
|
| - if not (type(number) is types.LongType or type(number) is types.IntType):
|
| - raise TypeError("You must pass a long or an int")
|
| -
|
| - string = ""
|
| -
|
| - while number > 0:
|
| - string = "%s%s" % (byte(number & 0xFF), string)
|
| - number /= 256
|
| -
|
| - return string
|
| -
|
| -def to64(number):
|
| - """Converts a number in the range of 0 to 63 into base 64 digit
|
| - character in the range of '0'-'9', 'A'-'Z', 'a'-'z','-','_'.
|
| -
|
| - >>> to64(10)
|
| - 'A'
|
| - """
|
| -
|
| - if not (type(number) is types.LongType or type(number) is types.IntType):
|
| - raise TypeError("You must pass a long or an int")
|
| -
|
| - if 0 <= number <= 9: #00-09 translates to '0' - '9'
|
| - return byte(number + 48)
|
| -
|
| - if 10 <= number <= 35:
|
| - return byte(number + 55) #10-35 translates to 'A' - 'Z'
|
| -
|
| - if 36 <= number <= 61:
|
| - return byte(number + 61) #36-61 translates to 'a' - 'z'
|
| -
|
| - if number == 62: # 62 translates to '-' (minus)
|
| - return byte(45)
|
| -
|
| - if number == 63: # 63 translates to '_' (underscore)
|
| - return byte(95)
|
| -
|
| - raise ValueError('Invalid Base64 value: %i' % number)
|
| -
|
| -
|
| -def from64(number):
|
| - """Converts an ordinal character value in the range of
|
| - 0-9,A-Z,a-z,-,_ to a number in the range of 0-63.
|
| -
|
| - >>> from64(49)
|
| - 1
|
| - """
|
| -
|
| - if not (type(number) is types.LongType or type(number) is types.IntType):
|
| - raise TypeError("You must pass a long or an int")
|
| -
|
| - if 48 <= number <= 57: #ord('0') - ord('9') translates to 0-9
|
| - return(number - 48)
|
| -
|
| - if 65 <= number <= 90: #ord('A') - ord('Z') translates to 10-35
|
| - return(number - 55)
|
| -
|
| - if 97 <= number <= 122: #ord('a') - ord('z') translates to 36-61
|
| - return(number - 61)
|
| -
|
| - if number == 45: #ord('-') translates to 62
|
| - return(62)
|
| -
|
| - if number == 95: #ord('_') translates to 63
|
| - return(63)
|
| -
|
| - raise ValueError('Invalid Base64 value: %i' % number)
|
| -
|
| -
|
| -def int2str64(number):
|
| - """Converts a number to a string of base64 encoded characters in
|
| - the range of '0'-'9','A'-'Z,'a'-'z','-','_'.
|
| -
|
| - >>> int2str64(123456789)
|
| - '7MyqL'
|
| - """
|
| -
|
| - if not (type(number) is types.LongType or type(number) is types.IntType):
|
| - raise TypeError("You must pass a long or an int")
|
| -
|
| - string = ""
|
| -
|
| - while number > 0:
|
| - string = "%s%s" % (to64(number & 0x3F), string)
|
| - number /= 64
|
| -
|
| - return string
|
| -
|
| -
|
| -def str642int(string):
|
| - """Converts a base64 encoded string into an integer.
|
| - The chars of this string in in the range '0'-'9','A'-'Z','a'-'z','-','_'
|
| -
|
| - >>> str642int('7MyqL')
|
| - 123456789
|
| - """
|
| -
|
| - if not (type(string) is types.ListType or type(string) is types.StringType):
|
| - raise TypeError("You must pass a string or a list")
|
| -
|
| - integer = 0
|
| - for byte in string:
|
| - integer *= 64
|
| - if type(byte) is types.StringType: byte = ord(byte)
|
| - integer += from64(byte)
|
| -
|
| - return integer
|
| -
|
| -def read_random_int(nbits):
|
| - """Reads a random integer of approximately nbits bits rounded up
|
| - to whole bytes"""
|
| -
|
| - nbytes = int(math.ceil(nbits/8.))
|
| - randomdata = os.urandom(nbytes)
|
| - return bytes2int(randomdata)
|
| -
|
| -def randint(minvalue, maxvalue):
|
| - """Returns a random integer x with minvalue <= x <= maxvalue"""
|
| -
|
| - # Safety - get a lot of random data even if the range is fairly
|
| - # small
|
| - min_nbits = 32
|
| -
|
| - # The range of the random numbers we need to generate
|
| - range = (maxvalue - minvalue) + 1
|
| -
|
| - # Which is this number of bytes
|
| - rangebytes = ((bit_size(range) + 7) / 8)
|
| -
|
| - # Convert to bits, but make sure it's always at least min_nbits*2
|
| - rangebits = max(rangebytes * 8, min_nbits * 2)
|
| -
|
| - # Take a random number of bits between min_nbits and rangebits
|
| - nbits = random.randint(min_nbits, rangebits)
|
| -
|
| - return (read_random_int(nbits) % range) + minvalue
|
| -
|
| -def jacobi(a, b):
|
| - """Calculates the value of the Jacobi symbol (a/b)
|
| - where both a and b are positive integers, and b is odd
|
| - """
|
| -
|
| - if a == 0: return 0
|
| - result = 1
|
| - while a > 1:
|
| - if a & 1:
|
| - if ((a-1)*(b-1) >> 2) & 1:
|
| - result = -result
|
| - a, b = b % a, a
|
| - else:
|
| - if (((b * b) - 1) >> 3) & 1:
|
| - result = -result
|
| - a >>= 1
|
| - if a == 0: return 0
|
| - return result
|
| -
|
| -def jacobi_witness(x, n):
|
| - """Returns False if n is an Euler pseudo-prime with base x, and
|
| - True otherwise.
|
| - """
|
| -
|
| - j = jacobi(x, n) % n
|
| - f = pow(x, (n-1)/2, n)
|
| -
|
| - if j == f: return False
|
| - return True
|
| -
|
| -def randomized_primality_testing(n, k):
|
| - """Calculates whether n is composite (which is always correct) or
|
| - prime (which is incorrect with error probability 2**-k)
|
| -
|
| - Returns False if the number is composite, and True if it's
|
| - probably prime.
|
| - """
|
| -
|
| - # 50% of Jacobi-witnesses can report compositness of non-prime numbers
|
| -
|
| - for i in range(k):
|
| - x = randint(1, n-1)
|
| - if jacobi_witness(x, n): return False
|
| -
|
| - return True
|
| -
|
| -def is_prime(number):
|
| - """Returns True if the number is prime, and False otherwise.
|
| -
|
| - >>> is_prime(42)
|
| - 0
|
| - >>> is_prime(41)
|
| - 1
|
| - """
|
| -
|
| - if randomized_primality_testing(number, 6):
|
| - # Prime, according to Jacobi
|
| - return True
|
| -
|
| - # Not prime
|
| - return False
|
| -
|
| -
|
| -def getprime(nbits):
|
| - """Returns a prime number of max. 'math.ceil(nbits/8)*8' bits. In
|
| - other words: nbits is rounded up to whole bytes.
|
| -
|
| - >>> p = getprime(8)
|
| - >>> is_prime(p-1)
|
| - 0
|
| - >>> is_prime(p)
|
| - 1
|
| - >>> is_prime(p+1)
|
| - 0
|
| - """
|
| -
|
| - while True:
|
| - integer = read_random_int(nbits)
|
| -
|
| - # Make sure it's odd
|
| - integer |= 1
|
| -
|
| - # Test for primeness
|
| - if is_prime(integer): break
|
| -
|
| - # Retry if not prime
|
| -
|
| - return integer
|
| -
|
| -def are_relatively_prime(a, b):
|
| - """Returns True if a and b are relatively prime, and False if they
|
| - are not.
|
| -
|
| - >>> are_relatively_prime(2, 3)
|
| - 1
|
| - >>> are_relatively_prime(2, 4)
|
| - 0
|
| - """
|
| -
|
| - d = gcd(a, b)
|
| - return (d == 1)
|
| -
|
| -def find_p_q(nbits):
|
| - """Returns a tuple of two different primes of nbits bits"""
|
| - pbits = nbits + (nbits/16) #Make sure that p and q aren't too close
|
| - qbits = nbits - (nbits/16) #or the factoring programs can factor n
|
| - p = getprime(pbits)
|
| - while True:
|
| - q = getprime(qbits)
|
| - #Make sure p and q are different.
|
| - if not q == p: break
|
| - return (p, q)
|
| -
|
| -def extended_gcd(a, b):
|
| - """Returns a tuple (r, i, j) such that r = gcd(a, b) = ia + jb
|
| - """
|
| - # r = gcd(a,b) i = multiplicitive inverse of a mod b
|
| - # or j = multiplicitive inverse of b mod a
|
| - # Neg return values for i or j are made positive mod b or a respectively
|
| - # Iterateive Version is faster and uses much less stack space
|
| - x = 0
|
| - y = 1
|
| - lx = 1
|
| - ly = 0
|
| - oa = a #Remember original a/b to remove
|
| - ob = b #negative values from return results
|
| - while b != 0:
|
| - q = long(a/b)
|
| - (a, b) = (b, a % b)
|
| - (x, lx) = ((lx - (q * x)),x)
|
| - (y, ly) = ((ly - (q * y)),y)
|
| - if (lx < 0): lx += ob #If neg wrap modulo orignal b
|
| - if (ly < 0): ly += oa #If neg wrap modulo orignal a
|
| - return (a, lx, ly) #Return only positive values
|
| -
|
| -# Main function: calculate encryption and decryption keys
|
| -def calculate_keys(p, q, nbits):
|
| - """Calculates an encryption and a decryption key for p and q, and
|
| - returns them as a tuple (e, d)"""
|
| -
|
| - n = p * q
|
| - phi_n = (p-1) * (q-1)
|
| -
|
| - while True:
|
| - # Make sure e has enough bits so we ensure "wrapping" through
|
| - # modulo n
|
| - e = max(65537,getprime(nbits/4))
|
| - if are_relatively_prime(e, n) and are_relatively_prime(e, phi_n): break
|
| -
|
| - (d, i, j) = extended_gcd(e, phi_n)
|
| -
|
| - if not d == 1:
|
| - raise Exception("e (%d) and phi_n (%d) are not relatively prime" % (e, phi_n))
|
| - if (i < 0):
|
| - raise Exception("New extended_gcd shouldn't return negative values")
|
| - if not (e * i) % phi_n == 1:
|
| - raise Exception("e (%d) and i (%d) are not mult. inv. modulo phi_n (%d)" % (e, i, phi_n))
|
| -
|
| - return (e, i)
|
| -
|
| -
|
| -def gen_keys(nbits):
|
| - """Generate RSA keys of nbits bits. Returns (p, q, e, d).
|
| -
|
| - Note: this can take a long time, depending on the key size.
|
| - """
|
| -
|
| - (p, q) = find_p_q(nbits)
|
| - (e, d) = calculate_keys(p, q, nbits)
|
| -
|
| - return (p, q, e, d)
|
| -
|
| -def newkeys(nbits):
|
| - """Generates public and private keys, and returns them as (pub,
|
| - priv).
|
| -
|
| - The public key consists of a dict {e: ..., , n: ....). The private
|
| - key consists of a dict {d: ...., p: ...., q: ....).
|
| - """
|
| - nbits = max(9,nbits) # Don't let nbits go below 9 bits
|
| - (p, q, e, d) = gen_keys(nbits)
|
| -
|
| - return ( {'e': e, 'n': p*q}, {'d': d, 'p': p, 'q': q} )
|
| -
|
| -def encrypt_int(message, ekey, n):
|
| - """Encrypts a message using encryption key 'ekey', working modulo n"""
|
| -
|
| - if type(message) is types.IntType:
|
| - message = long(message)
|
| -
|
| - if not type(message) is types.LongType:
|
| - raise TypeError("You must pass a long or int")
|
| -
|
| - if message < 0 or message > n:
|
| - raise OverflowError("The message is too long")
|
| -
|
| - #Note: Bit exponents start at zero (bit counts start at 1) this is correct
|
| - safebit = bit_size(n) - 2 #compute safe bit (MSB - 1)
|
| - message += (1 << safebit) #add safebit to ensure folding
|
| -
|
| - return pow(message, ekey, n)
|
| -
|
| -def decrypt_int(cyphertext, dkey, n):
|
| - """Decrypts a cypher text using the decryption key 'dkey', working
|
| - modulo n"""
|
| -
|
| - message = pow(cyphertext, dkey, n)
|
| -
|
| - safebit = bit_size(n) - 2 #compute safe bit (MSB - 1)
|
| - message -= (1 << safebit) #remove safebit before decode
|
| -
|
| - return message
|
| -
|
| -def encode64chops(chops):
|
| - """base64encodes chops and combines them into a ',' delimited string"""
|
| -
|
| - chips = [] #chips are character chops
|
| -
|
| - for value in chops:
|
| - chips.append(int2str64(value))
|
| -
|
| - #delimit chops with comma
|
| - encoded = ','.join(chips)
|
| -
|
| - return encoded
|
| -
|
| -def decode64chops(string):
|
| - """base64decodes and makes a ',' delimited string into chops"""
|
| -
|
| - chips = string.split(',') #split chops at commas
|
| -
|
| - chops = []
|
| -
|
| - for string in chips: #make char chops (chips) into chops
|
| - chops.append(str642int(string))
|
| -
|
| - return chops
|
| -
|
| -def chopstring(message, key, n, funcref):
|
| - """Chops the 'message' into integers that fit into n,
|
| - leaving room for a safebit to be added to ensure that all
|
| - messages fold during exponentiation. The MSB of the number n
|
| - is not independant modulo n (setting it could cause overflow), so
|
| - use the next lower bit for the safebit. Therefore reserve 2-bits
|
| - in the number n for non-data bits. Calls specified encryption
|
| - function for each chop.
|
| -
|
| - Used by 'encrypt' and 'sign'.
|
| - """
|
| -
|
| - msglen = len(message)
|
| - mbits = msglen * 8
|
| - #Set aside 2-bits so setting of safebit won't overflow modulo n.
|
| - nbits = bit_size(n) - 2 # leave room for safebit
|
| - nbytes = nbits / 8
|
| - blocks = msglen / nbytes
|
| -
|
| - if msglen % nbytes > 0:
|
| - blocks += 1
|
| -
|
| - cypher = []
|
| -
|
| - for bindex in range(blocks):
|
| - offset = bindex * nbytes
|
| - block = message[offset:offset+nbytes]
|
| - value = bytes2int(block)
|
| - cypher.append(funcref(value, key, n))
|
| -
|
| - return encode64chops(cypher) #Encode encrypted ints to base64 strings
|
| -
|
| -def gluechops(string, key, n, funcref):
|
| - """Glues chops back together into a string. calls
|
| - funcref(integer, key, n) for each chop.
|
| -
|
| - Used by 'decrypt' and 'verify'.
|
| - """
|
| - message = ""
|
| -
|
| - chops = decode64chops(string) #Decode base64 strings into integer chops
|
| -
|
| - for cpart in chops:
|
| - mpart = funcref(cpart, key, n) #Decrypt each chop
|
| - message += int2bytes(mpart) #Combine decrypted strings into a msg
|
| -
|
| - return message
|
| -
|
| -def encrypt(message, key):
|
| - """Encrypts a string 'message' with the public key 'key'"""
|
| - if 'n' not in key:
|
| - raise Exception("You must use the public key with encrypt")
|
| -
|
| - return chopstring(message, key['e'], key['n'], encrypt_int)
|
| -
|
| -def sign(message, key):
|
| - """Signs a string 'message' with the private key 'key'"""
|
| - if 'p' not in key:
|
| - raise Exception("You must use the private key with sign")
|
| -
|
| - return chopstring(message, key['d'], key['p']*key['q'], encrypt_int)
|
| -
|
| -def decrypt(cypher, key):
|
| - """Decrypts a string 'cypher' with the private key 'key'"""
|
| - if 'p' not in key:
|
| - raise Exception("You must use the private key with decrypt")
|
| -
|
| - return gluechops(cypher, key['d'], key['p']*key['q'], decrypt_int)
|
| -
|
| -def verify(cypher, key):
|
| - """Verifies a string 'cypher' with the public key 'key'"""
|
| - if 'n' not in key:
|
| - raise Exception("You must use the public key with verify")
|
| -
|
| - return gluechops(cypher, key['e'], key['n'], decrypt_int)
|
| -
|
| -# Do doctest if we're not imported
|
| -if __name__ == "__main__":
|
| - import doctest
|
| - doctest.testmod()
|
| -
|
| -__all__ = ["newkeys", "encrypt", "decrypt", "sign", "verify"]
|
| -
|
|
|