| Index: tools/telemetry/third_party/gsutilz/third_party/boto/boto/machinelearning/layer1.py
|
| diff --git a/tools/telemetry/third_party/gsutilz/third_party/boto/boto/machinelearning/layer1.py b/tools/telemetry/third_party/gsutilz/third_party/boto/boto/machinelearning/layer1.py
|
| deleted file mode 100644
|
| index 0768fb1ea9c238ff056c2fec20d513d6f80bf3de..0000000000000000000000000000000000000000
|
| --- a/tools/telemetry/third_party/gsutilz/third_party/boto/boto/machinelearning/layer1.py
|
| +++ /dev/null
|
| @@ -1,1408 +0,0 @@
|
| -# Copyright (c) 2015 Amazon.com, Inc. or its affiliates. All Rights Reserved
|
| -#
|
| -# Permission is hereby granted, free of charge, to any person obtaining a
|
| -# copy of this software and associated documentation files (the
|
| -# "Software"), to deal in the Software without restriction, including
|
| -# without limitation the rights to use, copy, modify, merge, publish, dis-
|
| -# tribute, sublicense, and/or sell copies of the Software, and to permit
|
| -# persons to whom the Software is furnished to do so, subject to the fol-
|
| -# lowing conditions:
|
| -#
|
| -# The above copyright notice and this permission notice shall be included
|
| -# in all copies or substantial portions of the Software.
|
| -#
|
| -# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
| -# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL-
|
| -# ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
|
| -# SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
| -# WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| -# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
| -# IN THE SOFTWARE.
|
| -#
|
| -
|
| -import boto
|
| -from boto.compat import json, urlsplit
|
| -from boto.connection import AWSQueryConnection
|
| -from boto.regioninfo import RegionInfo
|
| -from boto.exception import JSONResponseError
|
| -from boto.machinelearning import exceptions
|
| -
|
| -
|
| -class MachineLearningConnection(AWSQueryConnection):
|
| - """
|
| - Definition of the public APIs exposed by Amazon Machine Learning
|
| - """
|
| - APIVersion = "2014-12-12"
|
| - AuthServiceName = 'machinelearning'
|
| - DefaultRegionName = "us-east-1"
|
| - DefaultRegionEndpoint = "machinelearning.us-east-1.amazonaws.com"
|
| - ServiceName = "MachineLearning"
|
| - TargetPrefix = "AmazonML_20141212"
|
| - ResponseError = JSONResponseError
|
| -
|
| - _faults = {
|
| - "InternalServerException": exceptions.InternalServerException,
|
| - "LimitExceededException": exceptions.LimitExceededException,
|
| - "ResourceNotFoundException": exceptions.ResourceNotFoundException,
|
| - "IdempotentParameterMismatchException": exceptions.IdempotentParameterMismatchException,
|
| - "PredictorNotMountedException": exceptions.PredictorNotMountedException,
|
| - "InvalidInputException": exceptions.InvalidInputException,
|
| - }
|
| -
|
| -
|
| - def __init__(self, **kwargs):
|
| - region = kwargs.pop('region', None)
|
| - if not region:
|
| - region = RegionInfo(self, self.DefaultRegionName,
|
| - self.DefaultRegionEndpoint)
|
| -
|
| - if 'host' not in kwargs or kwargs['host'] is None:
|
| - kwargs['host'] = region.endpoint
|
| -
|
| - super(MachineLearningConnection, self).__init__(**kwargs)
|
| - self.region = region
|
| - self.auth_region_name = self.region.name
|
| -
|
| - def _required_auth_capability(self):
|
| - return ['hmac-v4']
|
| -
|
| - def create_batch_prediction(self, batch_prediction_id, ml_model_id,
|
| - batch_prediction_data_source_id, output_uri,
|
| - batch_prediction_name=None):
|
| - """
|
| - Generates predictions for a group of observations. The
|
| - observations to process exist in one or more data files
|
| - referenced by a `DataSource`. This operation creates a new
|
| - `BatchPrediction`, and uses an `MLModel` and the data files
|
| - referenced by the `DataSource` as information sources.
|
| -
|
| - `CreateBatchPrediction` is an asynchronous operation. In
|
| - response to `CreateBatchPrediction`, Amazon Machine Learning
|
| - (Amazon ML) immediately returns and sets the `BatchPrediction`
|
| - status to `PENDING`. After the `BatchPrediction` completes,
|
| - Amazon ML sets the status to `COMPLETED`.
|
| -
|
| - You can poll for status updates by using the
|
| - GetBatchPrediction operation and checking the `Status`
|
| - parameter of the result. After the `COMPLETED` status appears,
|
| - the results are available in the location specified by the
|
| - `OutputUri` parameter.
|
| -
|
| - :type batch_prediction_id: string
|
| - :param batch_prediction_id: A user-supplied ID that uniquely identifies
|
| - the `BatchPrediction`.
|
| -
|
| - :type batch_prediction_name: string
|
| - :param batch_prediction_name: A user-supplied name or description of
|
| - the `BatchPrediction`. `BatchPredictionName` can only use the UTF-8
|
| - character set.
|
| -
|
| - :type ml_model_id: string
|
| - :param ml_model_id: The ID of the `MLModel` that will generate
|
| - predictions for the group of observations.
|
| -
|
| - :type batch_prediction_data_source_id: string
|
| - :param batch_prediction_data_source_id: The ID of the `DataSource` that
|
| - points to the group of observations to predict.
|
| -
|
| - :type output_uri: string
|
| - :param output_uri: The location of an Amazon Simple Storage Service
|
| - (Amazon S3) bucket or directory to store the batch prediction
|
| - results. The following substrings are not allowed in the s3 key
|
| - portion of the "outputURI" field: ':', '//', '/./', '/../'.
|
| - Amazon ML needs permissions to store and retrieve the logs on your
|
| - behalf. For information about how to set permissions, see the
|
| - `Amazon Machine Learning Developer Guide`_.
|
| -
|
| - """
|
| - params = {
|
| - 'BatchPredictionId': batch_prediction_id,
|
| - 'MLModelId': ml_model_id,
|
| - 'BatchPredictionDataSourceId': batch_prediction_data_source_id,
|
| - 'OutputUri': output_uri,
|
| - }
|
| - if batch_prediction_name is not None:
|
| - params['BatchPredictionName'] = batch_prediction_name
|
| - return self.make_request(action='CreateBatchPrediction',
|
| - body=json.dumps(params))
|
| -
|
| - def create_data_source_from_rds(self, data_source_id, rds_data, role_arn,
|
| - data_source_name=None,
|
| - compute_statistics=None):
|
| - """
|
| - Creates a `DataSource` object from an ` Amazon Relational
|
| - Database Service`_ (Amazon RDS). A `DataSource` references
|
| - data that can be used to perform CreateMLModel,
|
| - CreateEvaluation, or CreateBatchPrediction operations.
|
| -
|
| - `CreateDataSourceFromRDS` is an asynchronous operation. In
|
| - response to `CreateDataSourceFromRDS`, Amazon Machine Learning
|
| - (Amazon ML) immediately returns and sets the `DataSource`
|
| - status to `PENDING`. After the `DataSource` is created and
|
| - ready for use, Amazon ML sets the `Status` parameter to
|
| - `COMPLETED`. `DataSource` in `COMPLETED` or `PENDING` status
|
| - can only be used to perform CreateMLModel, CreateEvaluation,
|
| - or CreateBatchPrediction operations.
|
| -
|
| - If Amazon ML cannot accept the input source, it sets the
|
| - `Status` parameter to `FAILED` and includes an error message
|
| - in the `Message` attribute of the GetDataSource operation
|
| - response.
|
| -
|
| - :type data_source_id: string
|
| - :param data_source_id: A user-supplied ID that uniquely identifies the
|
| - `DataSource`. Typically, an Amazon Resource Number (ARN) becomes
|
| - the ID for a `DataSource`.
|
| -
|
| - :type data_source_name: string
|
| - :param data_source_name: A user-supplied name or description of the
|
| - `DataSource`.
|
| -
|
| - :type rds_data: dict
|
| - :param rds_data:
|
| - The data specification of an Amazon RDS `DataSource`:
|
| -
|
| -
|
| - + DatabaseInformation -
|
| -
|
| - + `DatabaseName ` - Name of the Amazon RDS database.
|
| - + ` InstanceIdentifier ` - Unique identifier for the Amazon RDS
|
| - database instance.
|
| -
|
| - + DatabaseCredentials - AWS Identity and Access Management (IAM)
|
| - credentials that are used to connect to the Amazon RDS database.
|
| - + ResourceRole - Role (DataPipelineDefaultResourceRole) assumed by an
|
| - Amazon Elastic Compute Cloud (EC2) instance to carry out the copy
|
| - task from Amazon RDS to Amazon S3. For more information, see `Role
|
| - templates`_ for data pipelines.
|
| - + ServiceRole - Role (DataPipelineDefaultRole) assumed by the AWS Data
|
| - Pipeline service to monitor the progress of the copy task from
|
| - Amazon RDS to Amazon Simple Storage Service (S3). For more
|
| - information, see `Role templates`_ for data pipelines.
|
| - + SecurityInfo - Security information to use to access an Amazon RDS
|
| - instance. You need to set up appropriate ingress rules for the
|
| - security entity IDs provided to allow access to the Amazon RDS
|
| - instance. Specify a [ `SubnetId`, `SecurityGroupIds`] pair for a
|
| - VPC-based Amazon RDS instance.
|
| - + SelectSqlQuery - Query that is used to retrieve the observation data
|
| - for the `Datasource`.
|
| - + S3StagingLocation - Amazon S3 location for staging RDS data. The data
|
| - retrieved from Amazon RDS using `SelectSqlQuery` is stored in this
|
| - location.
|
| - + DataSchemaUri - Amazon S3 location of the `DataSchema`.
|
| - + DataSchema - A JSON string representing the schema. This is not
|
| - required if `DataSchemaUri` is specified.
|
| - + DataRearrangement - A JSON string representing the splitting
|
| - requirement of a `Datasource`. Sample - ` "{\"randomSeed\":\"some-
|
| - random-seed\",
|
| - \"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"`
|
| -
|
| - :type role_arn: string
|
| - :param role_arn: The role that Amazon ML assumes on behalf of the user
|
| - to create and activate a data pipeline in the users account and
|
| - copy data (using the `SelectSqlQuery`) query from Amazon RDS to
|
| - Amazon S3.
|
| -
|
| - :type compute_statistics: boolean
|
| - :param compute_statistics: The compute statistics for a `DataSource`.
|
| - The statistics are generated from the observation data referenced
|
| - by a `DataSource`. Amazon ML uses the statistics internally during
|
| - an `MLModel` training. This parameter must be set to `True` if the
|
| - ``DataSource `` needs to be used for `MLModel` training.
|
| -
|
| - """
|
| - params = {
|
| - 'DataSourceId': data_source_id,
|
| - 'RDSData': rds_data,
|
| - 'RoleARN': role_arn,
|
| - }
|
| - if data_source_name is not None:
|
| - params['DataSourceName'] = data_source_name
|
| - if compute_statistics is not None:
|
| - params['ComputeStatistics'] = compute_statistics
|
| - return self.make_request(action='CreateDataSourceFromRDS',
|
| - body=json.dumps(params))
|
| -
|
| - def create_data_source_from_redshift(self, data_source_id, data_spec,
|
| - role_arn, data_source_name=None,
|
| - compute_statistics=None):
|
| - """
|
| - Creates a `DataSource` from `Amazon Redshift`_. A `DataSource`
|
| - references data that can be used to perform either
|
| - CreateMLModel, CreateEvaluation or CreateBatchPrediction
|
| - operations.
|
| -
|
| - `CreateDataSourceFromRedshift` is an asynchronous operation.
|
| - In response to `CreateDataSourceFromRedshift`, Amazon Machine
|
| - Learning (Amazon ML) immediately returns and sets the
|
| - `DataSource` status to `PENDING`. After the `DataSource` is
|
| - created and ready for use, Amazon ML sets the `Status`
|
| - parameter to `COMPLETED`. `DataSource` in `COMPLETED` or
|
| - `PENDING` status can only be used to perform CreateMLModel,
|
| - CreateEvaluation, or CreateBatchPrediction operations.
|
| -
|
| - If Amazon ML cannot accept the input source, it sets the
|
| - `Status` parameter to `FAILED` and includes an error message
|
| - in the `Message` attribute of the GetDataSource operation
|
| - response.
|
| -
|
| - The observations should exist in the database hosted on an
|
| - Amazon Redshift cluster and should be specified by a
|
| - `SelectSqlQuery`. Amazon ML executes ` Unload`_ command in
|
| - Amazon Redshift to transfer the result set of `SelectSqlQuery`
|
| - to `S3StagingLocation.`
|
| -
|
| - After the `DataSource` is created, it's ready for use in
|
| - evaluations and batch predictions. If you plan to use the
|
| - `DataSource` to train an `MLModel`, the `DataSource` requires
|
| - another item -- a recipe. A recipe describes the observation
|
| - variables that participate in training an `MLModel`. A recipe
|
| - describes how each input variable will be used in training.
|
| - Will the variable be included or excluded from training? Will
|
| - the variable be manipulated, for example, combined with
|
| - another variable or split apart into word combinations? The
|
| - recipe provides answers to these questions. For more
|
| - information, see the Amazon Machine Learning Developer Guide.
|
| -
|
| - :type data_source_id: string
|
| - :param data_source_id: A user-supplied ID that uniquely identifies the
|
| - `DataSource`.
|
| -
|
| - :type data_source_name: string
|
| - :param data_source_name: A user-supplied name or description of the
|
| - `DataSource`.
|
| -
|
| - :type data_spec: dict
|
| - :param data_spec:
|
| - The data specification of an Amazon Redshift `DataSource`:
|
| -
|
| -
|
| - + DatabaseInformation -
|
| -
|
| - + `DatabaseName ` - Name of the Amazon Redshift database.
|
| - + ` ClusterIdentifier ` - Unique ID for the Amazon Redshift cluster.
|
| -
|
| - + DatabaseCredentials - AWS Identity abd Access Management (IAM)
|
| - credentials that are used to connect to the Amazon Redshift
|
| - database.
|
| - + SelectSqlQuery - Query that is used to retrieve the observation data
|
| - for the `Datasource`.
|
| - + S3StagingLocation - Amazon Simple Storage Service (Amazon S3)
|
| - location for staging Amazon Redshift data. The data retrieved from
|
| - Amazon Relational Database Service (Amazon RDS) using
|
| - `SelectSqlQuery` is stored in this location.
|
| - + DataSchemaUri - Amazon S3 location of the `DataSchema`.
|
| - + DataSchema - A JSON string representing the schema. This is not
|
| - required if `DataSchemaUri` is specified.
|
| - + DataRearrangement - A JSON string representing the splitting
|
| - requirement of a `Datasource`. Sample - ` "{\"randomSeed\":\"some-
|
| - random-seed\",
|
| - \"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"`
|
| -
|
| - :type role_arn: string
|
| - :param role_arn: A fully specified role Amazon Resource Name (ARN).
|
| - Amazon ML assumes the role on behalf of the user to create the
|
| - following:
|
| -
|
| -
|
| - + A security group to allow Amazon ML to execute the `SelectSqlQuery`
|
| - query on an Amazon Redshift cluster
|
| - + An Amazon S3 bucket policy to grant Amazon ML read/write permissions
|
| - on the `S3StagingLocation`
|
| -
|
| - :type compute_statistics: boolean
|
| - :param compute_statistics: The compute statistics for a `DataSource`.
|
| - The statistics are generated from the observation data referenced
|
| - by a `DataSource`. Amazon ML uses the statistics internally during
|
| - `MLModel` training. This parameter must be set to `True` if the
|
| - ``DataSource `` needs to be used for `MLModel` training
|
| -
|
| - """
|
| - params = {
|
| - 'DataSourceId': data_source_id,
|
| - 'DataSpec': data_spec,
|
| - 'RoleARN': role_arn,
|
| - }
|
| - if data_source_name is not None:
|
| - params['DataSourceName'] = data_source_name
|
| - if compute_statistics is not None:
|
| - params['ComputeStatistics'] = compute_statistics
|
| - return self.make_request(action='CreateDataSourceFromRedshift',
|
| - body=json.dumps(params))
|
| -
|
| - def create_data_source_from_s3(self, data_source_id, data_spec,
|
| - data_source_name=None,
|
| - compute_statistics=None):
|
| - """
|
| - Creates a `DataSource` object. A `DataSource` references data
|
| - that can be used to perform CreateMLModel, CreateEvaluation,
|
| - or CreateBatchPrediction operations.
|
| -
|
| - `CreateDataSourceFromS3` is an asynchronous operation. In
|
| - response to `CreateDataSourceFromS3`, Amazon Machine Learning
|
| - (Amazon ML) immediately returns and sets the `DataSource`
|
| - status to `PENDING`. After the `DataSource` is created and
|
| - ready for use, Amazon ML sets the `Status` parameter to
|
| - `COMPLETED`. `DataSource` in `COMPLETED` or `PENDING` status
|
| - can only be used to perform CreateMLModel, CreateEvaluation or
|
| - CreateBatchPrediction operations.
|
| -
|
| - If Amazon ML cannot accept the input source, it sets the
|
| - `Status` parameter to `FAILED` and includes an error message
|
| - in the `Message` attribute of the GetDataSource operation
|
| - response.
|
| -
|
| - The observation data used in a `DataSource` should be ready to
|
| - use; that is, it should have a consistent structure, and
|
| - missing data values should be kept to a minimum. The
|
| - observation data must reside in one or more CSV files in an
|
| - Amazon Simple Storage Service (Amazon S3) bucket, along with a
|
| - schema that describes the data items by name and type. The
|
| - same schema must be used for all of the data files referenced
|
| - by the `DataSource`.
|
| -
|
| - After the `DataSource` has been created, it's ready to use in
|
| - evaluations and batch predictions. If you plan to use the
|
| - `DataSource` to train an `MLModel`, the `DataSource` requires
|
| - another item: a recipe. A recipe describes the observation
|
| - variables that participate in training an `MLModel`. A recipe
|
| - describes how each input variable will be used in training.
|
| - Will the variable be included or excluded from training? Will
|
| - the variable be manipulated, for example, combined with
|
| - another variable, or split apart into word combinations? The
|
| - recipe provides answers to these questions. For more
|
| - information, see the `Amazon Machine Learning Developer
|
| - Guide`_.
|
| -
|
| - :type data_source_id: string
|
| - :param data_source_id: A user-supplied identifier that uniquely
|
| - identifies the `DataSource`.
|
| -
|
| - :type data_source_name: string
|
| - :param data_source_name: A user-supplied name or description of the
|
| - `DataSource`.
|
| -
|
| - :type data_spec: dict
|
| - :param data_spec:
|
| - The data specification of a `DataSource`:
|
| -
|
| -
|
| - + DataLocationS3 - Amazon Simple Storage Service (Amazon S3) location
|
| - of the observation data.
|
| - + DataSchemaLocationS3 - Amazon S3 location of the `DataSchema`.
|
| - + DataSchema - A JSON string representing the schema. This is not
|
| - required if `DataSchemaUri` is specified.
|
| - + DataRearrangement - A JSON string representing the splitting
|
| - requirement of a `Datasource`. Sample - ` "{\"randomSeed\":\"some-
|
| - random-seed\",
|
| - \"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"`
|
| -
|
| - :type compute_statistics: boolean
|
| - :param compute_statistics: The compute statistics for a `DataSource`.
|
| - The statistics are generated from the observation data referenced
|
| - by a `DataSource`. Amazon ML uses the statistics internally during
|
| - an `MLModel` training. This parameter must be set to `True` if the
|
| - ``DataSource `` needs to be used for `MLModel` training
|
| -
|
| - """
|
| - params = {
|
| - 'DataSourceId': data_source_id,
|
| - 'DataSpec': data_spec,
|
| - }
|
| - if data_source_name is not None:
|
| - params['DataSourceName'] = data_source_name
|
| - if compute_statistics is not None:
|
| - params['ComputeStatistics'] = compute_statistics
|
| - return self.make_request(action='CreateDataSourceFromS3',
|
| - body=json.dumps(params))
|
| -
|
| - def create_evaluation(self, evaluation_id, ml_model_id,
|
| - evaluation_data_source_id, evaluation_name=None):
|
| - """
|
| - Creates a new `Evaluation` of an `MLModel`. An `MLModel` is
|
| - evaluated on a set of observations associated to a
|
| - `DataSource`. Like a `DataSource` for an `MLModel`, the
|
| - `DataSource` for an `Evaluation` contains values for the
|
| - Target Variable. The `Evaluation` compares the predicted
|
| - result for each observation to the actual outcome and provides
|
| - a summary so that you know how effective the `MLModel`
|
| - functions on the test data. Evaluation generates a relevant
|
| - performance metric such as BinaryAUC, RegressionRMSE or
|
| - MulticlassAvgFScore based on the corresponding `MLModelType`:
|
| - `BINARY`, `REGRESSION` or `MULTICLASS`.
|
| -
|
| - `CreateEvaluation` is an asynchronous operation. In response
|
| - to `CreateEvaluation`, Amazon Machine Learning (Amazon ML)
|
| - immediately returns and sets the evaluation status to
|
| - `PENDING`. After the `Evaluation` is created and ready for
|
| - use, Amazon ML sets the status to `COMPLETED`.
|
| -
|
| - You can use the GetEvaluation operation to check progress of
|
| - the evaluation during the creation operation.
|
| -
|
| - :type evaluation_id: string
|
| - :param evaluation_id: A user-supplied ID that uniquely identifies the
|
| - `Evaluation`.
|
| -
|
| - :type evaluation_name: string
|
| - :param evaluation_name: A user-supplied name or description of the
|
| - `Evaluation`.
|
| -
|
| - :type ml_model_id: string
|
| - :param ml_model_id: The ID of the `MLModel` to evaluate.
|
| - The schema used in creating the `MLModel` must match the schema of the
|
| - `DataSource` used in the `Evaluation`.
|
| -
|
| - :type evaluation_data_source_id: string
|
| - :param evaluation_data_source_id: The ID of the `DataSource` for the
|
| - evaluation. The schema of the `DataSource` must match the schema
|
| - used to create the `MLModel`.
|
| -
|
| - """
|
| - params = {
|
| - 'EvaluationId': evaluation_id,
|
| - 'MLModelId': ml_model_id,
|
| - 'EvaluationDataSourceId': evaluation_data_source_id,
|
| - }
|
| - if evaluation_name is not None:
|
| - params['EvaluationName'] = evaluation_name
|
| - return self.make_request(action='CreateEvaluation',
|
| - body=json.dumps(params))
|
| -
|
| - def create_ml_model(self, ml_model_id, ml_model_type,
|
| - training_data_source_id, ml_model_name=None,
|
| - parameters=None, recipe=None, recipe_uri=None):
|
| - """
|
| - Creates a new `MLModel` using the data files and the recipe as
|
| - information sources.
|
| -
|
| - An `MLModel` is nearly immutable. Users can only update the
|
| - `MLModelName` and the `ScoreThreshold` in an `MLModel` without
|
| - creating a new `MLModel`.
|
| -
|
| - `CreateMLModel` is an asynchronous operation. In response to
|
| - `CreateMLModel`, Amazon Machine Learning (Amazon ML)
|
| - immediately returns and sets the `MLModel` status to
|
| - `PENDING`. After the `MLModel` is created and ready for use,
|
| - Amazon ML sets the status to `COMPLETED`.
|
| -
|
| - You can use the GetMLModel operation to check progress of the
|
| - `MLModel` during the creation operation.
|
| -
|
| - CreateMLModel requires a `DataSource` with computed
|
| - statistics, which can be created by setting
|
| - `ComputeStatistics` to `True` in CreateDataSourceFromRDS,
|
| - CreateDataSourceFromS3, or CreateDataSourceFromRedshift
|
| - operations.
|
| -
|
| - :type ml_model_id: string
|
| - :param ml_model_id: A user-supplied ID that uniquely identifies the
|
| - `MLModel`.
|
| -
|
| - :type ml_model_name: string
|
| - :param ml_model_name: A user-supplied name or description of the
|
| - `MLModel`.
|
| -
|
| - :type ml_model_type: string
|
| - :param ml_model_type: The category of supervised learning that this
|
| - `MLModel` will address. Choose from the following types:
|
| -
|
| - + Choose `REGRESSION` if the `MLModel` will be used to predict a
|
| - numeric value.
|
| - + Choose `BINARY` if the `MLModel` result has two possible values.
|
| - + Choose `MULTICLASS` if the `MLModel` result has a limited number of
|
| - values.
|
| -
|
| -
|
| - For more information, see the `Amazon Machine Learning Developer
|
| - Guide`_.
|
| -
|
| - :type parameters: map
|
| - :param parameters:
|
| - A list of the training parameters in the `MLModel`. The list is
|
| - implemented as a map of key/value pairs.
|
| -
|
| - The following is the current set of training parameters:
|
| -
|
| -
|
| - + `sgd.l1RegularizationAmount` - Coefficient regularization L1 norm. It
|
| - controls overfitting the data by penalizing large coefficients.
|
| - This tends to drive coefficients to zero, resulting in sparse
|
| - feature set. If you use this parameter, start by specifying a small
|
| - value such as 1.0E-08. The value is a double that ranges from 0 to
|
| - MAX_DOUBLE. The default is not to use L1 normalization. The
|
| - parameter cannot be used when `L2` is specified. Use this parameter
|
| - sparingly.
|
| - + `sgd.l2RegularizationAmount` - Coefficient regularization L2 norm. It
|
| - controls overfitting the data by penalizing large coefficients.
|
| - This tends to drive coefficients to small, nonzero values. If you
|
| - use this parameter, start by specifying a small value such as
|
| - 1.0E-08. The valuseis a double that ranges from 0 to MAX_DOUBLE.
|
| - The default is not to use L2 normalization. This cannot be used
|
| - when `L1` is specified. Use this parameter sparingly.
|
| - + `sgd.maxPasses` - Number of times that the training process traverses
|
| - the observations to build the `MLModel`. The value is an integer
|
| - that ranges from 1 to 10000. The default value is 10.
|
| - + `sgd.maxMLModelSizeInBytes` - Maximum allowed size of the model.
|
| - Depending on the input data, the size of the model might affect its
|
| - performance. The value is an integer that ranges from 100000 to
|
| - 2147483648. The default value is 33554432.
|
| -
|
| - :type training_data_source_id: string
|
| - :param training_data_source_id: The `DataSource` that points to the
|
| - training data.
|
| -
|
| - :type recipe: string
|
| - :param recipe: The data recipe for creating `MLModel`. You must specify
|
| - either the recipe or its URI. If you dont specify a recipe or its
|
| - URI, Amazon ML creates a default.
|
| -
|
| - :type recipe_uri: string
|
| - :param recipe_uri: The Amazon Simple Storage Service (Amazon S3)
|
| - location and file name that contains the `MLModel` recipe. You must
|
| - specify either the recipe or its URI. If you dont specify a recipe
|
| - or its URI, Amazon ML creates a default.
|
| -
|
| - """
|
| - params = {
|
| - 'MLModelId': ml_model_id,
|
| - 'MLModelType': ml_model_type,
|
| - 'TrainingDataSourceId': training_data_source_id,
|
| - }
|
| - if ml_model_name is not None:
|
| - params['MLModelName'] = ml_model_name
|
| - if parameters is not None:
|
| - params['Parameters'] = parameters
|
| - if recipe is not None:
|
| - params['Recipe'] = recipe
|
| - if recipe_uri is not None:
|
| - params['RecipeUri'] = recipe_uri
|
| - return self.make_request(action='CreateMLModel',
|
| - body=json.dumps(params))
|
| -
|
| - def create_realtime_endpoint(self, ml_model_id):
|
| - """
|
| - Creates a real-time endpoint for the `MLModel`. The endpoint
|
| - contains the URI of the `MLModel`; that is, the location to
|
| - send real-time prediction requests for the specified
|
| - `MLModel`.
|
| -
|
| - :type ml_model_id: string
|
| - :param ml_model_id: The ID assigned to the `MLModel` during creation.
|
| -
|
| - """
|
| - params = {'MLModelId': ml_model_id, }
|
| - return self.make_request(action='CreateRealtimeEndpoint',
|
| - body=json.dumps(params))
|
| -
|
| - def delete_batch_prediction(self, batch_prediction_id):
|
| - """
|
| - Assigns the DELETED status to a `BatchPrediction`, rendering
|
| - it unusable.
|
| -
|
| - After using the `DeleteBatchPrediction` operation, you can use
|
| - the GetBatchPrediction operation to verify that the status of
|
| - the `BatchPrediction` changed to DELETED.
|
| -
|
| - The result of the `DeleteBatchPrediction` operation is
|
| - irreversible.
|
| -
|
| - :type batch_prediction_id: string
|
| - :param batch_prediction_id: A user-supplied ID that uniquely identifies
|
| - the `BatchPrediction`.
|
| -
|
| - """
|
| - params = {'BatchPredictionId': batch_prediction_id, }
|
| - return self.make_request(action='DeleteBatchPrediction',
|
| - body=json.dumps(params))
|
| -
|
| - def delete_data_source(self, data_source_id):
|
| - """
|
| - Assigns the DELETED status to a `DataSource`, rendering it
|
| - unusable.
|
| -
|
| - After using the `DeleteDataSource` operation, you can use the
|
| - GetDataSource operation to verify that the status of the
|
| - `DataSource` changed to DELETED.
|
| -
|
| - The results of the `DeleteDataSource` operation are
|
| - irreversible.
|
| -
|
| - :type data_source_id: string
|
| - :param data_source_id: A user-supplied ID that uniquely identifies the
|
| - `DataSource`.
|
| -
|
| - """
|
| - params = {'DataSourceId': data_source_id, }
|
| - return self.make_request(action='DeleteDataSource',
|
| - body=json.dumps(params))
|
| -
|
| - def delete_evaluation(self, evaluation_id):
|
| - """
|
| - Assigns the `DELETED` status to an `Evaluation`, rendering it
|
| - unusable.
|
| -
|
| - After invoking the `DeleteEvaluation` operation, you can use
|
| - the GetEvaluation operation to verify that the status of the
|
| - `Evaluation` changed to `DELETED`.
|
| -
|
| - The results of the `DeleteEvaluation` operation are
|
| - irreversible.
|
| -
|
| - :type evaluation_id: string
|
| - :param evaluation_id: A user-supplied ID that uniquely identifies the
|
| - `Evaluation` to delete.
|
| -
|
| - """
|
| - params = {'EvaluationId': evaluation_id, }
|
| - return self.make_request(action='DeleteEvaluation',
|
| - body=json.dumps(params))
|
| -
|
| - def delete_ml_model(self, ml_model_id):
|
| - """
|
| - Assigns the DELETED status to an `MLModel`, rendering it
|
| - unusable.
|
| -
|
| - After using the `DeleteMLModel` operation, you can use the
|
| - GetMLModel operation to verify that the status of the
|
| - `MLModel` changed to DELETED.
|
| -
|
| - The result of the `DeleteMLModel` operation is irreversible.
|
| -
|
| - :type ml_model_id: string
|
| - :param ml_model_id: A user-supplied ID that uniquely identifies the
|
| - `MLModel`.
|
| -
|
| - """
|
| - params = {'MLModelId': ml_model_id, }
|
| - return self.make_request(action='DeleteMLModel',
|
| - body=json.dumps(params))
|
| -
|
| - def delete_realtime_endpoint(self, ml_model_id):
|
| - """
|
| - Deletes a real time endpoint of an `MLModel`.
|
| -
|
| - :type ml_model_id: string
|
| - :param ml_model_id: The ID assigned to the `MLModel` during creation.
|
| -
|
| - """
|
| - params = {'MLModelId': ml_model_id, }
|
| - return self.make_request(action='DeleteRealtimeEndpoint',
|
| - body=json.dumps(params))
|
| -
|
| - def describe_batch_predictions(self, filter_variable=None, eq=None,
|
| - gt=None, lt=None, ge=None, le=None,
|
| - ne=None, prefix=None, sort_order=None,
|
| - next_token=None, limit=None):
|
| - """
|
| - Returns a list of `BatchPrediction` operations that match the
|
| - search criteria in the request.
|
| -
|
| - :type filter_variable: string
|
| - :param filter_variable:
|
| - Use one of the following variables to filter a list of
|
| - `BatchPrediction`:
|
| -
|
| -
|
| - + `CreatedAt` - Sets the search criteria to the `BatchPrediction`
|
| - creation date.
|
| - + `Status` - Sets the search criteria to the `BatchPrediction` status.
|
| - + `Name` - Sets the search criteria to the contents of the
|
| - `BatchPrediction` ** ** `Name`.
|
| - + `IAMUser` - Sets the search criteria to the user account that invoked
|
| - the `BatchPrediction` creation.
|
| - + `MLModelId` - Sets the search criteria to the `MLModel` used in the
|
| - `BatchPrediction`.
|
| - + `DataSourceId` - Sets the search criteria to the `DataSource` used in
|
| - the `BatchPrediction`.
|
| - + `DataURI` - Sets the search criteria to the data file(s) used in the
|
| - `BatchPrediction`. The URL can identify either a file or an Amazon
|
| - Simple Storage Solution (Amazon S3) bucket or directory.
|
| -
|
| - :type eq: string
|
| - :param eq: The equal to operator. The `BatchPrediction` results will
|
| - have `FilterVariable` values that exactly match the value specified
|
| - with `EQ`.
|
| -
|
| - :type gt: string
|
| - :param gt: The greater than operator. The `BatchPrediction` results
|
| - will have `FilterVariable` values that are greater than the value
|
| - specified with `GT`.
|
| -
|
| - :type lt: string
|
| - :param lt: The less than operator. The `BatchPrediction` results will
|
| - have `FilterVariable` values that are less than the value specified
|
| - with `LT`.
|
| -
|
| - :type ge: string
|
| - :param ge: The greater than or equal to operator. The `BatchPrediction`
|
| - results will have `FilterVariable` values that are greater than or
|
| - equal to the value specified with `GE`.
|
| -
|
| - :type le: string
|
| - :param le: The less than or equal to operator. The `BatchPrediction`
|
| - results will have `FilterVariable` values that are less than or
|
| - equal to the value specified with `LE`.
|
| -
|
| - :type ne: string
|
| - :param ne: The not equal to operator. The `BatchPrediction` results
|
| - will have `FilterVariable` values not equal to the value specified
|
| - with `NE`.
|
| -
|
| - :type prefix: string
|
| - :param prefix:
|
| - A string that is found at the beginning of a variable, such as `Name`
|
| - or `Id`.
|
| -
|
| - For example, a `Batch Prediction` operation could have the `Name`
|
| - `2014-09-09-HolidayGiftMailer`. To search for this
|
| - `BatchPrediction`, select `Name` for the `FilterVariable` and any
|
| - of the following strings for the `Prefix`:
|
| -
|
| -
|
| - + 2014-09
|
| - + 2014-09-09
|
| - + 2014-09-09-Holiday
|
| -
|
| - :type sort_order: string
|
| - :param sort_order: A two-value parameter that determines the sequence
|
| - of the resulting list of `MLModel`s.
|
| -
|
| - + `asc` - Arranges the list in ascending order (A-Z, 0-9).
|
| - + `dsc` - Arranges the list in descending order (Z-A, 9-0).
|
| -
|
| -
|
| - Results are sorted by `FilterVariable`.
|
| -
|
| - :type next_token: string
|
| - :param next_token: An ID of the page in the paginated results.
|
| -
|
| - :type limit: integer
|
| - :param limit: The number of pages of information to include in the
|
| - result. The range of acceptable values is 1 through 100. The
|
| - default value is 100.
|
| -
|
| - """
|
| - params = {}
|
| - if filter_variable is not None:
|
| - params['FilterVariable'] = filter_variable
|
| - if eq is not None:
|
| - params['EQ'] = eq
|
| - if gt is not None:
|
| - params['GT'] = gt
|
| - if lt is not None:
|
| - params['LT'] = lt
|
| - if ge is not None:
|
| - params['GE'] = ge
|
| - if le is not None:
|
| - params['LE'] = le
|
| - if ne is not None:
|
| - params['NE'] = ne
|
| - if prefix is not None:
|
| - params['Prefix'] = prefix
|
| - if sort_order is not None:
|
| - params['SortOrder'] = sort_order
|
| - if next_token is not None:
|
| - params['NextToken'] = next_token
|
| - if limit is not None:
|
| - params['Limit'] = limit
|
| - return self.make_request(action='DescribeBatchPredictions',
|
| - body=json.dumps(params))
|
| -
|
| - def describe_data_sources(self, filter_variable=None, eq=None, gt=None,
|
| - lt=None, ge=None, le=None, ne=None,
|
| - prefix=None, sort_order=None, next_token=None,
|
| - limit=None):
|
| - """
|
| - Returns a list of `DataSource` that match the search criteria
|
| - in the request.
|
| -
|
| - :type filter_variable: string
|
| - :param filter_variable:
|
| - Use one of the following variables to filter a list of `DataSource`:
|
| -
|
| -
|
| - + `CreatedAt` - Sets the search criteria to `DataSource` creation
|
| - dates.
|
| - + `Status` - Sets the search criteria to `DataSource` statuses.
|
| - + `Name` - Sets the search criteria to the contents of `DataSource` **
|
| - ** `Name`.
|
| - + `DataUri` - Sets the search criteria to the URI of data files used to
|
| - create the `DataSource`. The URI can identify either a file or an
|
| - Amazon Simple Storage Service (Amazon S3) bucket or directory.
|
| - + `IAMUser` - Sets the search criteria to the user account that invoked
|
| - the `DataSource` creation.
|
| -
|
| - :type eq: string
|
| - :param eq: The equal to operator. The `DataSource` results will have
|
| - `FilterVariable` values that exactly match the value specified with
|
| - `EQ`.
|
| -
|
| - :type gt: string
|
| - :param gt: The greater than operator. The `DataSource` results will
|
| - have `FilterVariable` values that are greater than the value
|
| - specified with `GT`.
|
| -
|
| - :type lt: string
|
| - :param lt: The less than operator. The `DataSource` results will have
|
| - `FilterVariable` values that are less than the value specified with
|
| - `LT`.
|
| -
|
| - :type ge: string
|
| - :param ge: The greater than or equal to operator. The `DataSource`
|
| - results will have `FilterVariable` values that are greater than or
|
| - equal to the value specified with `GE`.
|
| -
|
| - :type le: string
|
| - :param le: The less than or equal to operator. The `DataSource` results
|
| - will have `FilterVariable` values that are less than or equal to
|
| - the value specified with `LE`.
|
| -
|
| - :type ne: string
|
| - :param ne: The not equal to operator. The `DataSource` results will
|
| - have `FilterVariable` values not equal to the value specified with
|
| - `NE`.
|
| -
|
| - :type prefix: string
|
| - :param prefix:
|
| - A string that is found at the beginning of a variable, such as `Name`
|
| - or `Id`.
|
| -
|
| - For example, a `DataSource` could have the `Name`
|
| - `2014-09-09-HolidayGiftMailer`. To search for this `DataSource`,
|
| - select `Name` for the `FilterVariable` and any of the following
|
| - strings for the `Prefix`:
|
| -
|
| -
|
| - + 2014-09
|
| - + 2014-09-09
|
| - + 2014-09-09-Holiday
|
| -
|
| - :type sort_order: string
|
| - :param sort_order: A two-value parameter that determines the sequence
|
| - of the resulting list of `DataSource`.
|
| -
|
| - + `asc` - Arranges the list in ascending order (A-Z, 0-9).
|
| - + `dsc` - Arranges the list in descending order (Z-A, 9-0).
|
| -
|
| -
|
| - Results are sorted by `FilterVariable`.
|
| -
|
| - :type next_token: string
|
| - :param next_token: The ID of the page in the paginated results.
|
| -
|
| - :type limit: integer
|
| - :param limit: The maximum number of `DataSource` to include in the
|
| - result.
|
| -
|
| - """
|
| - params = {}
|
| - if filter_variable is not None:
|
| - params['FilterVariable'] = filter_variable
|
| - if eq is not None:
|
| - params['EQ'] = eq
|
| - if gt is not None:
|
| - params['GT'] = gt
|
| - if lt is not None:
|
| - params['LT'] = lt
|
| - if ge is not None:
|
| - params['GE'] = ge
|
| - if le is not None:
|
| - params['LE'] = le
|
| - if ne is not None:
|
| - params['NE'] = ne
|
| - if prefix is not None:
|
| - params['Prefix'] = prefix
|
| - if sort_order is not None:
|
| - params['SortOrder'] = sort_order
|
| - if next_token is not None:
|
| - params['NextToken'] = next_token
|
| - if limit is not None:
|
| - params['Limit'] = limit
|
| - return self.make_request(action='DescribeDataSources',
|
| - body=json.dumps(params))
|
| -
|
| - def describe_evaluations(self, filter_variable=None, eq=None, gt=None,
|
| - lt=None, ge=None, le=None, ne=None, prefix=None,
|
| - sort_order=None, next_token=None, limit=None):
|
| - """
|
| - Returns a list of `DescribeEvaluations` that match the search
|
| - criteria in the request.
|
| -
|
| - :type filter_variable: string
|
| - :param filter_variable:
|
| - Use one of the following variable to filter a list of `Evaluation`
|
| - objects:
|
| -
|
| -
|
| - + `CreatedAt` - Sets the search criteria to the `Evaluation` creation
|
| - date.
|
| - + `Status` - Sets the search criteria to the `Evaluation` status.
|
| - + `Name` - Sets the search criteria to the contents of `Evaluation` **
|
| - ** `Name`.
|
| - + `IAMUser` - Sets the search criteria to the user account that invoked
|
| - an `Evaluation`.
|
| - + `MLModelId` - Sets the search criteria to the `MLModel` that was
|
| - evaluated.
|
| - + `DataSourceId` - Sets the search criteria to the `DataSource` used in
|
| - `Evaluation`.
|
| - + `DataUri` - Sets the search criteria to the data file(s) used in
|
| - `Evaluation`. The URL can identify either a file or an Amazon
|
| - Simple Storage Solution (Amazon S3) bucket or directory.
|
| -
|
| - :type eq: string
|
| - :param eq: The equal to operator. The `Evaluation` results will have
|
| - `FilterVariable` values that exactly match the value specified with
|
| - `EQ`.
|
| -
|
| - :type gt: string
|
| - :param gt: The greater than operator. The `Evaluation` results will
|
| - have `FilterVariable` values that are greater than the value
|
| - specified with `GT`.
|
| -
|
| - :type lt: string
|
| - :param lt: The less than operator. The `Evaluation` results will have
|
| - `FilterVariable` values that are less than the value specified with
|
| - `LT`.
|
| -
|
| - :type ge: string
|
| - :param ge: The greater than or equal to operator. The `Evaluation`
|
| - results will have `FilterVariable` values that are greater than or
|
| - equal to the value specified with `GE`.
|
| -
|
| - :type le: string
|
| - :param le: The less than or equal to operator. The `Evaluation` results
|
| - will have `FilterVariable` values that are less than or equal to
|
| - the value specified with `LE`.
|
| -
|
| - :type ne: string
|
| - :param ne: The not equal to operator. The `Evaluation` results will
|
| - have `FilterVariable` values not equal to the value specified with
|
| - `NE`.
|
| -
|
| - :type prefix: string
|
| - :param prefix:
|
| - A string that is found at the beginning of a variable, such as `Name`
|
| - or `Id`.
|
| -
|
| - For example, an `Evaluation` could have the `Name`
|
| - `2014-09-09-HolidayGiftMailer`. To search for this `Evaluation`,
|
| - select `Name` for the `FilterVariable` and any of the following
|
| - strings for the `Prefix`:
|
| -
|
| -
|
| - + 2014-09
|
| - + 2014-09-09
|
| - + 2014-09-09-Holiday
|
| -
|
| - :type sort_order: string
|
| - :param sort_order: A two-value parameter that determines the sequence
|
| - of the resulting list of `Evaluation`.
|
| -
|
| - + `asc` - Arranges the list in ascending order (A-Z, 0-9).
|
| - + `dsc` - Arranges the list in descending order (Z-A, 9-0).
|
| -
|
| -
|
| - Results are sorted by `FilterVariable`.
|
| -
|
| - :type next_token: string
|
| - :param next_token: The ID of the page in the paginated results.
|
| -
|
| - :type limit: integer
|
| - :param limit: The maximum number of `Evaluation` to include in the
|
| - result.
|
| -
|
| - """
|
| - params = {}
|
| - if filter_variable is not None:
|
| - params['FilterVariable'] = filter_variable
|
| - if eq is not None:
|
| - params['EQ'] = eq
|
| - if gt is not None:
|
| - params['GT'] = gt
|
| - if lt is not None:
|
| - params['LT'] = lt
|
| - if ge is not None:
|
| - params['GE'] = ge
|
| - if le is not None:
|
| - params['LE'] = le
|
| - if ne is not None:
|
| - params['NE'] = ne
|
| - if prefix is not None:
|
| - params['Prefix'] = prefix
|
| - if sort_order is not None:
|
| - params['SortOrder'] = sort_order
|
| - if next_token is not None:
|
| - params['NextToken'] = next_token
|
| - if limit is not None:
|
| - params['Limit'] = limit
|
| - return self.make_request(action='DescribeEvaluations',
|
| - body=json.dumps(params))
|
| -
|
| - def describe_ml_models(self, filter_variable=None, eq=None, gt=None,
|
| - lt=None, ge=None, le=None, ne=None, prefix=None,
|
| - sort_order=None, next_token=None, limit=None):
|
| - """
|
| - Returns a list of `MLModel` that match the search criteria in
|
| - the request.
|
| -
|
| - :type filter_variable: string
|
| - :param filter_variable:
|
| - Use one of the following variables to filter a list of `MLModel`:
|
| -
|
| -
|
| - + `CreatedAt` - Sets the search criteria to `MLModel` creation date.
|
| - + `Status` - Sets the search criteria to `MLModel` status.
|
| - + `Name` - Sets the search criteria to the contents of `MLModel` ** **
|
| - `Name`.
|
| - + `IAMUser` - Sets the search criteria to the user account that invoked
|
| - the `MLModel` creation.
|
| - + `TrainingDataSourceId` - Sets the search criteria to the `DataSource`
|
| - used to train one or more `MLModel`.
|
| - + `RealtimeEndpointStatus` - Sets the search criteria to the `MLModel`
|
| - real-time endpoint status.
|
| - + `MLModelType` - Sets the search criteria to `MLModel` type: binary,
|
| - regression, or multi-class.
|
| - + `Algorithm` - Sets the search criteria to the algorithm that the
|
| - `MLModel` uses.
|
| - + `TrainingDataURI` - Sets the search criteria to the data file(s) used
|
| - in training a `MLModel`. The URL can identify either a file or an
|
| - Amazon Simple Storage Service (Amazon S3) bucket or directory.
|
| -
|
| - :type eq: string
|
| - :param eq: The equal to operator. The `MLModel` results will have
|
| - `FilterVariable` values that exactly match the value specified with
|
| - `EQ`.
|
| -
|
| - :type gt: string
|
| - :param gt: The greater than operator. The `MLModel` results will have
|
| - `FilterVariable` values that are greater than the value specified
|
| - with `GT`.
|
| -
|
| - :type lt: string
|
| - :param lt: The less than operator. The `MLModel` results will have
|
| - `FilterVariable` values that are less than the value specified with
|
| - `LT`.
|
| -
|
| - :type ge: string
|
| - :param ge: The greater than or equal to operator. The `MLModel` results
|
| - will have `FilterVariable` values that are greater than or equal to
|
| - the value specified with `GE`.
|
| -
|
| - :type le: string
|
| - :param le: The less than or equal to operator. The `MLModel` results
|
| - will have `FilterVariable` values that are less than or equal to
|
| - the value specified with `LE`.
|
| -
|
| - :type ne: string
|
| - :param ne: The not equal to operator. The `MLModel` results will have
|
| - `FilterVariable` values not equal to the value specified with `NE`.
|
| -
|
| - :type prefix: string
|
| - :param prefix:
|
| - A string that is found at the beginning of a variable, such as `Name`
|
| - or `Id`.
|
| -
|
| - For example, an `MLModel` could have the `Name`
|
| - `2014-09-09-HolidayGiftMailer`. To search for this `MLModel`,
|
| - select `Name` for the `FilterVariable` and any of the following
|
| - strings for the `Prefix`:
|
| -
|
| -
|
| - + 2014-09
|
| - + 2014-09-09
|
| - + 2014-09-09-Holiday
|
| -
|
| - :type sort_order: string
|
| - :param sort_order: A two-value parameter that determines the sequence
|
| - of the resulting list of `MLModel`.
|
| -
|
| - + `asc` - Arranges the list in ascending order (A-Z, 0-9).
|
| - + `dsc` - Arranges the list in descending order (Z-A, 9-0).
|
| -
|
| -
|
| - Results are sorted by `FilterVariable`.
|
| -
|
| - :type next_token: string
|
| - :param next_token: The ID of the page in the paginated results.
|
| -
|
| - :type limit: integer
|
| - :param limit: The number of pages of information to include in the
|
| - result. The range of acceptable values is 1 through 100. The
|
| - default value is 100.
|
| -
|
| - """
|
| - params = {}
|
| - if filter_variable is not None:
|
| - params['FilterVariable'] = filter_variable
|
| - if eq is not None:
|
| - params['EQ'] = eq
|
| - if gt is not None:
|
| - params['GT'] = gt
|
| - if lt is not None:
|
| - params['LT'] = lt
|
| - if ge is not None:
|
| - params['GE'] = ge
|
| - if le is not None:
|
| - params['LE'] = le
|
| - if ne is not None:
|
| - params['NE'] = ne
|
| - if prefix is not None:
|
| - params['Prefix'] = prefix
|
| - if sort_order is not None:
|
| - params['SortOrder'] = sort_order
|
| - if next_token is not None:
|
| - params['NextToken'] = next_token
|
| - if limit is not None:
|
| - params['Limit'] = limit
|
| - return self.make_request(action='DescribeMLModels',
|
| - body=json.dumps(params))
|
| -
|
| - def get_batch_prediction(self, batch_prediction_id):
|
| - """
|
| - Returns a `BatchPrediction` that includes detailed metadata,
|
| - status, and data file information for a `Batch Prediction`
|
| - request.
|
| -
|
| - :type batch_prediction_id: string
|
| - :param batch_prediction_id: An ID assigned to the `BatchPrediction` at
|
| - creation.
|
| -
|
| - """
|
| - params = {'BatchPredictionId': batch_prediction_id, }
|
| - return self.make_request(action='GetBatchPrediction',
|
| - body=json.dumps(params))
|
| -
|
| - def get_data_source(self, data_source_id, verbose=None):
|
| - """
|
| - Returns a `DataSource` that includes metadata and data file
|
| - information, as well as the current status of the
|
| - `DataSource`.
|
| -
|
| - `GetDataSource` provides results in normal or verbose format.
|
| - The verbose format adds the schema description and the list of
|
| - files pointed to by the DataSource to the normal format.
|
| -
|
| - :type data_source_id: string
|
| - :param data_source_id: The ID assigned to the `DataSource` at creation.
|
| -
|
| - :type verbose: boolean
|
| - :param verbose: Specifies whether the `GetDataSource` operation should
|
| - return `DataSourceSchema`.
|
| - If true, `DataSourceSchema` is returned.
|
| -
|
| - If false, `DataSourceSchema` is not returned.
|
| -
|
| - """
|
| - params = {'DataSourceId': data_source_id, }
|
| - if verbose is not None:
|
| - params['Verbose'] = verbose
|
| - return self.make_request(action='GetDataSource',
|
| - body=json.dumps(params))
|
| -
|
| - def get_evaluation(self, evaluation_id):
|
| - """
|
| - Returns an `Evaluation` that includes metadata as well as the
|
| - current status of the `Evaluation`.
|
| -
|
| - :type evaluation_id: string
|
| - :param evaluation_id: The ID of the `Evaluation` to retrieve. The
|
| - evaluation of each `MLModel` is recorded and cataloged. The ID
|
| - provides the means to access the information.
|
| -
|
| - """
|
| - params = {'EvaluationId': evaluation_id, }
|
| - return self.make_request(action='GetEvaluation',
|
| - body=json.dumps(params))
|
| -
|
| - def get_ml_model(self, ml_model_id, verbose=None):
|
| - """
|
| - Returns an `MLModel` that includes detailed metadata, and data
|
| - source information as well as the current status of the
|
| - `MLModel`.
|
| -
|
| - `GetMLModel` provides results in normal or verbose format.
|
| -
|
| - :type ml_model_id: string
|
| - :param ml_model_id: The ID assigned to the `MLModel` at creation.
|
| -
|
| - :type verbose: boolean
|
| - :param verbose: Specifies whether the `GetMLModel` operation should
|
| - return `Recipe`.
|
| - If true, `Recipe` is returned.
|
| -
|
| - If false, `Recipe` is not returned.
|
| -
|
| - """
|
| - params = {'MLModelId': ml_model_id, }
|
| - if verbose is not None:
|
| - params['Verbose'] = verbose
|
| - return self.make_request(action='GetMLModel',
|
| - body=json.dumps(params))
|
| -
|
| - def predict(self, ml_model_id, record, predict_endpoint):
|
| - """
|
| - Generates a prediction for the observation using the specified
|
| - `MLModel`.
|
| -
|
| -
|
| - Not all response parameters will be populated because this is
|
| - dependent on the type of requested model.
|
| -
|
| - :type ml_model_id: string
|
| - :param ml_model_id: A unique identifier of the `MLModel`.
|
| -
|
| - :type record: map
|
| - :param record: A map of variable name-value pairs that represent an
|
| - observation.
|
| -
|
| - :type predict_endpoint: string
|
| - :param predict_endpoint: The endpoint to send the predict request to.
|
| -
|
| - """
|
| - predict_host = urlsplit(predict_endpoint).hostname
|
| - if predict_host is None:
|
| - predict_host = predict_endpoint
|
| -
|
| - params = {
|
| - 'MLModelId': ml_model_id,
|
| - 'Record': record,
|
| - 'PredictEndpoint': predict_host,
|
| - }
|
| - return self.make_request(action='Predict',
|
| - body=json.dumps(params),
|
| - host=predict_host)
|
| -
|
| - def update_batch_prediction(self, batch_prediction_id,
|
| - batch_prediction_name):
|
| - """
|
| - Updates the `BatchPredictionName` of a `BatchPrediction`.
|
| -
|
| - You can use the GetBatchPrediction operation to view the
|
| - contents of the updated data element.
|
| -
|
| - :type batch_prediction_id: string
|
| - :param batch_prediction_id: The ID assigned to the `BatchPrediction`
|
| - during creation.
|
| -
|
| - :type batch_prediction_name: string
|
| - :param batch_prediction_name: A new user-supplied name or description
|
| - of the `BatchPrediction`.
|
| -
|
| - """
|
| - params = {
|
| - 'BatchPredictionId': batch_prediction_id,
|
| - 'BatchPredictionName': batch_prediction_name,
|
| - }
|
| - return self.make_request(action='UpdateBatchPrediction',
|
| - body=json.dumps(params))
|
| -
|
| - def update_data_source(self, data_source_id, data_source_name):
|
| - """
|
| - Updates the `DataSourceName` of a `DataSource`.
|
| -
|
| - You can use the GetDataSource operation to view the contents
|
| - of the updated data element.
|
| -
|
| - :type data_source_id: string
|
| - :param data_source_id: The ID assigned to the `DataSource` during
|
| - creation.
|
| -
|
| - :type data_source_name: string
|
| - :param data_source_name: A new user-supplied name or description of the
|
| - `DataSource` that will replace the current description.
|
| -
|
| - """
|
| - params = {
|
| - 'DataSourceId': data_source_id,
|
| - 'DataSourceName': data_source_name,
|
| - }
|
| - return self.make_request(action='UpdateDataSource',
|
| - body=json.dumps(params))
|
| -
|
| - def update_evaluation(self, evaluation_id, evaluation_name):
|
| - """
|
| - Updates the `EvaluationName` of an `Evaluation`.
|
| -
|
| - You can use the GetEvaluation operation to view the contents
|
| - of the updated data element.
|
| -
|
| - :type evaluation_id: string
|
| - :param evaluation_id: The ID assigned to the `Evaluation` during
|
| - creation.
|
| -
|
| - :type evaluation_name: string
|
| - :param evaluation_name: A new user-supplied name or description of the
|
| - `Evaluation` that will replace the current content.
|
| -
|
| - """
|
| - params = {
|
| - 'EvaluationId': evaluation_id,
|
| - 'EvaluationName': evaluation_name,
|
| - }
|
| - return self.make_request(action='UpdateEvaluation',
|
| - body=json.dumps(params))
|
| -
|
| - def update_ml_model(self, ml_model_id, ml_model_name=None,
|
| - score_threshold=None):
|
| - """
|
| - Updates the `MLModelName` and the `ScoreThreshold` of an
|
| - `MLModel`.
|
| -
|
| - You can use the GetMLModel operation to view the contents of
|
| - the updated data element.
|
| -
|
| - :type ml_model_id: string
|
| - :param ml_model_id: The ID assigned to the `MLModel` during creation.
|
| -
|
| - :type ml_model_name: string
|
| - :param ml_model_name: A user-supplied name or description of the
|
| - `MLModel`.
|
| -
|
| - :type score_threshold: float
|
| - :param score_threshold: The `ScoreThreshold` used in binary
|
| - classification `MLModel` that marks the boundary between a positive
|
| - prediction and a negative prediction.
|
| - Output values greater than or equal to the `ScoreThreshold` receive a
|
| - positive result from the `MLModel`, such as `True`. Output values
|
| - less than the `ScoreThreshold` receive a negative response from the
|
| - `MLModel`, such as `False`.
|
| -
|
| - """
|
| - params = {'MLModelId': ml_model_id, }
|
| - if ml_model_name is not None:
|
| - params['MLModelName'] = ml_model_name
|
| - if score_threshold is not None:
|
| - params['ScoreThreshold'] = score_threshold
|
| - return self.make_request(action='UpdateMLModel',
|
| - body=json.dumps(params))
|
| -
|
| - def make_request(self, action, body, host=None):
|
| - headers = {
|
| - 'X-Amz-Target': '%s.%s' % (self.TargetPrefix, action),
|
| - 'Host': self.region.endpoint,
|
| - 'Content-Type': 'application/x-amz-json-1.1',
|
| - 'Content-Length': str(len(body)),
|
| - }
|
| - http_request_kwargs = {
|
| - 'method':'POST', 'path':'/', 'auth_path':'/', 'params':{},
|
| - 'headers': headers, 'data':body
|
| - }
|
| - if host is not None:
|
| - headers['Host'] = host
|
| - http_request_kwargs['host'] = host
|
| - http_request = self.build_base_http_request(**http_request_kwargs)
|
| - response = self._mexe(http_request, sender=None,
|
| - override_num_retries=10)
|
| - response_body = response.read().decode('utf-8')
|
| - boto.log.debug(response_body)
|
| - if response.status == 200:
|
| - if response_body:
|
| - return json.loads(response_body)
|
| - else:
|
| - json_body = json.loads(response_body)
|
| - fault_name = json_body.get('__type', None)
|
| - exception_class = self._faults.get(fault_name, self.ResponseError)
|
| - raise exception_class(response.status, response.reason,
|
| - body=json_body)
|
| -
|
|
|