| Index: tools/telemetry/third_party/gsutilz/third_party/rsa/rsa/key.py
|
| diff --git a/tools/telemetry/third_party/gsutilz/third_party/rsa/rsa/key.py b/tools/telemetry/third_party/gsutilz/third_party/rsa/rsa/key.py
|
| deleted file mode 100644
|
| index b6de7b3f3b0e939b9b47a74d205f9320a7c49124..0000000000000000000000000000000000000000
|
| --- a/tools/telemetry/third_party/gsutilz/third_party/rsa/rsa/key.py
|
| +++ /dev/null
|
| @@ -1,612 +0,0 @@
|
| -# -*- coding: utf-8 -*-
|
| -#
|
| -# Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
|
| -#
|
| -# Licensed under the Apache License, Version 2.0 (the "License");
|
| -# you may not use this file except in compliance with the License.
|
| -# You may obtain a copy of the License at
|
| -#
|
| -# http://www.apache.org/licenses/LICENSE-2.0
|
| -#
|
| -# Unless required by applicable law or agreed to in writing, software
|
| -# distributed under the License is distributed on an "AS IS" BASIS,
|
| -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| -# See the License for the specific language governing permissions and
|
| -# limitations under the License.
|
| -
|
| -'''RSA key generation code.
|
| -
|
| -Create new keys with the newkeys() function. It will give you a PublicKey and a
|
| -PrivateKey object.
|
| -
|
| -Loading and saving keys requires the pyasn1 module. This module is imported as
|
| -late as possible, such that other functionality will remain working in absence
|
| -of pyasn1.
|
| -
|
| -'''
|
| -
|
| -import logging
|
| -from rsa._compat import b, bytes_type
|
| -
|
| -import rsa.prime
|
| -import rsa.pem
|
| -import rsa.common
|
| -
|
| -log = logging.getLogger(__name__)
|
| -
|
| -
|
| -
|
| -class AbstractKey(object):
|
| - '''Abstract superclass for private and public keys.'''
|
| -
|
| - @classmethod
|
| - def load_pkcs1(cls, keyfile, format='PEM'):
|
| - r'''Loads a key in PKCS#1 DER or PEM format.
|
| -
|
| - :param keyfile: contents of a DER- or PEM-encoded file that contains
|
| - the public key.
|
| - :param format: the format of the file to load; 'PEM' or 'DER'
|
| -
|
| - :return: a PublicKey object
|
| -
|
| - '''
|
| -
|
| - methods = {
|
| - 'PEM': cls._load_pkcs1_pem,
|
| - 'DER': cls._load_pkcs1_der,
|
| - }
|
| -
|
| - if format not in methods:
|
| - formats = ', '.join(sorted(methods.keys()))
|
| - raise ValueError('Unsupported format: %r, try one of %s' % (format,
|
| - formats))
|
| -
|
| - method = methods[format]
|
| - return method(keyfile)
|
| -
|
| - def save_pkcs1(self, format='PEM'):
|
| - '''Saves the public key in PKCS#1 DER or PEM format.
|
| -
|
| - :param format: the format to save; 'PEM' or 'DER'
|
| - :returns: the DER- or PEM-encoded public key.
|
| -
|
| - '''
|
| -
|
| - methods = {
|
| - 'PEM': self._save_pkcs1_pem,
|
| - 'DER': self._save_pkcs1_der,
|
| - }
|
| -
|
| - if format not in methods:
|
| - formats = ', '.join(sorted(methods.keys()))
|
| - raise ValueError('Unsupported format: %r, try one of %s' % (format,
|
| - formats))
|
| -
|
| - method = methods[format]
|
| - return method()
|
| -
|
| -class PublicKey(AbstractKey):
|
| - '''Represents a public RSA key.
|
| -
|
| - This key is also known as the 'encryption key'. It contains the 'n' and 'e'
|
| - values.
|
| -
|
| - Supports attributes as well as dictionary-like access. Attribute accesss is
|
| - faster, though.
|
| -
|
| - >>> PublicKey(5, 3)
|
| - PublicKey(5, 3)
|
| -
|
| - >>> key = PublicKey(5, 3)
|
| - >>> key.n
|
| - 5
|
| - >>> key['n']
|
| - 5
|
| - >>> key.e
|
| - 3
|
| - >>> key['e']
|
| - 3
|
| -
|
| - '''
|
| -
|
| - __slots__ = ('n', 'e')
|
| -
|
| - def __init__(self, n, e):
|
| - self.n = n
|
| - self.e = e
|
| -
|
| - def __getitem__(self, key):
|
| - return getattr(self, key)
|
| -
|
| - def __repr__(self):
|
| - return 'PublicKey(%i, %i)' % (self.n, self.e)
|
| -
|
| - def __eq__(self, other):
|
| - if other is None:
|
| - return False
|
| -
|
| - if not isinstance(other, PublicKey):
|
| - return False
|
| -
|
| - return self.n == other.n and self.e == other.e
|
| -
|
| - def __ne__(self, other):
|
| - return not (self == other)
|
| -
|
| - @classmethod
|
| - def _load_pkcs1_der(cls, keyfile):
|
| - r'''Loads a key in PKCS#1 DER format.
|
| -
|
| - @param keyfile: contents of a DER-encoded file that contains the public
|
| - key.
|
| - @return: a PublicKey object
|
| -
|
| - First let's construct a DER encoded key:
|
| -
|
| - >>> import base64
|
| - >>> b64der = 'MAwCBQCNGmYtAgMBAAE='
|
| - >>> der = base64.decodestring(b64der)
|
| -
|
| - This loads the file:
|
| -
|
| - >>> PublicKey._load_pkcs1_der(der)
|
| - PublicKey(2367317549, 65537)
|
| -
|
| - '''
|
| -
|
| - from pyasn1.codec.der import decoder
|
| - from rsa.asn1 import AsnPubKey
|
| -
|
| - (priv, _) = decoder.decode(keyfile, asn1Spec=AsnPubKey())
|
| - return cls(n=int(priv['modulus']), e=int(priv['publicExponent']))
|
| -
|
| - def _save_pkcs1_der(self):
|
| - '''Saves the public key in PKCS#1 DER format.
|
| -
|
| - @returns: the DER-encoded public key.
|
| - '''
|
| -
|
| - from pyasn1.codec.der import encoder
|
| - from rsa.asn1 import AsnPubKey
|
| -
|
| - # Create the ASN object
|
| - asn_key = AsnPubKey()
|
| - asn_key.setComponentByName('modulus', self.n)
|
| - asn_key.setComponentByName('publicExponent', self.e)
|
| -
|
| - return encoder.encode(asn_key)
|
| -
|
| - @classmethod
|
| - def _load_pkcs1_pem(cls, keyfile):
|
| - '''Loads a PKCS#1 PEM-encoded public key file.
|
| -
|
| - The contents of the file before the "-----BEGIN RSA PUBLIC KEY-----" and
|
| - after the "-----END RSA PUBLIC KEY-----" lines is ignored.
|
| -
|
| - @param keyfile: contents of a PEM-encoded file that contains the public
|
| - key.
|
| - @return: a PublicKey object
|
| - '''
|
| -
|
| - der = rsa.pem.load_pem(keyfile, 'RSA PUBLIC KEY')
|
| - return cls._load_pkcs1_der(der)
|
| -
|
| - def _save_pkcs1_pem(self):
|
| - '''Saves a PKCS#1 PEM-encoded public key file.
|
| -
|
| - @return: contents of a PEM-encoded file that contains the public key.
|
| - '''
|
| -
|
| - der = self._save_pkcs1_der()
|
| - return rsa.pem.save_pem(der, 'RSA PUBLIC KEY')
|
| -
|
| - @classmethod
|
| - def load_pkcs1_openssl_pem(cls, keyfile):
|
| - '''Loads a PKCS#1.5 PEM-encoded public key file from OpenSSL.
|
| -
|
| - These files can be recognised in that they start with BEGIN PUBLIC KEY
|
| - rather than BEGIN RSA PUBLIC KEY.
|
| -
|
| - The contents of the file before the "-----BEGIN PUBLIC KEY-----" and
|
| - after the "-----END PUBLIC KEY-----" lines is ignored.
|
| -
|
| - @param keyfile: contents of a PEM-encoded file that contains the public
|
| - key, from OpenSSL.
|
| - @return: a PublicKey object
|
| - '''
|
| -
|
| - der = rsa.pem.load_pem(keyfile, 'PUBLIC KEY')
|
| - return cls.load_pkcs1_openssl_der(der)
|
| -
|
| - @classmethod
|
| - def load_pkcs1_openssl_der(cls, keyfile):
|
| - '''Loads a PKCS#1 DER-encoded public key file from OpenSSL.
|
| -
|
| - @param keyfile: contents of a DER-encoded file that contains the public
|
| - key, from OpenSSL.
|
| - @return: a PublicKey object
|
| - '''
|
| -
|
| - from rsa.asn1 import OpenSSLPubKey
|
| - from pyasn1.codec.der import decoder
|
| - from pyasn1.type import univ
|
| -
|
| - (keyinfo, _) = decoder.decode(keyfile, asn1Spec=OpenSSLPubKey())
|
| -
|
| - if keyinfo['header']['oid'] != univ.ObjectIdentifier('1.2.840.113549.1.1.1'):
|
| - raise TypeError("This is not a DER-encoded OpenSSL-compatible public key")
|
| -
|
| - return cls._load_pkcs1_der(keyinfo['key'][1:])
|
| -
|
| -
|
| -
|
| -
|
| -class PrivateKey(AbstractKey):
|
| - '''Represents a private RSA key.
|
| -
|
| - This key is also known as the 'decryption key'. It contains the 'n', 'e',
|
| - 'd', 'p', 'q' and other values.
|
| -
|
| - Supports attributes as well as dictionary-like access. Attribute accesss is
|
| - faster, though.
|
| -
|
| - >>> PrivateKey(3247, 65537, 833, 191, 17)
|
| - PrivateKey(3247, 65537, 833, 191, 17)
|
| -
|
| - exp1, exp2 and coef don't have to be given, they will be calculated:
|
| -
|
| - >>> pk = PrivateKey(3727264081, 65537, 3349121513, 65063, 57287)
|
| - >>> pk.exp1
|
| - 55063
|
| - >>> pk.exp2
|
| - 10095
|
| - >>> pk.coef
|
| - 50797
|
| -
|
| - If you give exp1, exp2 or coef, they will be used as-is:
|
| -
|
| - >>> pk = PrivateKey(1, 2, 3, 4, 5, 6, 7, 8)
|
| - >>> pk.exp1
|
| - 6
|
| - >>> pk.exp2
|
| - 7
|
| - >>> pk.coef
|
| - 8
|
| -
|
| - '''
|
| -
|
| - __slots__ = ('n', 'e', 'd', 'p', 'q', 'exp1', 'exp2', 'coef')
|
| -
|
| - def __init__(self, n, e, d, p, q, exp1=None, exp2=None, coef=None):
|
| - self.n = n
|
| - self.e = e
|
| - self.d = d
|
| - self.p = p
|
| - self.q = q
|
| -
|
| - # Calculate the other values if they aren't supplied
|
| - if exp1 is None:
|
| - self.exp1 = int(d % (p - 1))
|
| - else:
|
| - self.exp1 = exp1
|
| -
|
| - if exp1 is None:
|
| - self.exp2 = int(d % (q - 1))
|
| - else:
|
| - self.exp2 = exp2
|
| -
|
| - if coef is None:
|
| - self.coef = rsa.common.inverse(q, p)
|
| - else:
|
| - self.coef = coef
|
| -
|
| - def __getitem__(self, key):
|
| - return getattr(self, key)
|
| -
|
| - def __repr__(self):
|
| - return 'PrivateKey(%(n)i, %(e)i, %(d)i, %(p)i, %(q)i)' % self
|
| -
|
| - def __eq__(self, other):
|
| - if other is None:
|
| - return False
|
| -
|
| - if not isinstance(other, PrivateKey):
|
| - return False
|
| -
|
| - return (self.n == other.n and
|
| - self.e == other.e and
|
| - self.d == other.d and
|
| - self.p == other.p and
|
| - self.q == other.q and
|
| - self.exp1 == other.exp1 and
|
| - self.exp2 == other.exp2 and
|
| - self.coef == other.coef)
|
| -
|
| - def __ne__(self, other):
|
| - return not (self == other)
|
| -
|
| - @classmethod
|
| - def _load_pkcs1_der(cls, keyfile):
|
| - r'''Loads a key in PKCS#1 DER format.
|
| -
|
| - @param keyfile: contents of a DER-encoded file that contains the private
|
| - key.
|
| - @return: a PrivateKey object
|
| -
|
| - First let's construct a DER encoded key:
|
| -
|
| - >>> import base64
|
| - >>> b64der = 'MC4CAQACBQDeKYlRAgMBAAECBQDHn4npAgMA/icCAwDfxwIDANcXAgInbwIDAMZt'
|
| - >>> der = base64.decodestring(b64der)
|
| -
|
| - This loads the file:
|
| -
|
| - >>> PrivateKey._load_pkcs1_der(der)
|
| - PrivateKey(3727264081, 65537, 3349121513, 65063, 57287)
|
| -
|
| - '''
|
| -
|
| - from pyasn1.codec.der import decoder
|
| - (priv, _) = decoder.decode(keyfile)
|
| -
|
| - # ASN.1 contents of DER encoded private key:
|
| - #
|
| - # RSAPrivateKey ::= SEQUENCE {
|
| - # version Version,
|
| - # modulus INTEGER, -- n
|
| - # publicExponent INTEGER, -- e
|
| - # privateExponent INTEGER, -- d
|
| - # prime1 INTEGER, -- p
|
| - # prime2 INTEGER, -- q
|
| - # exponent1 INTEGER, -- d mod (p-1)
|
| - # exponent2 INTEGER, -- d mod (q-1)
|
| - # coefficient INTEGER, -- (inverse of q) mod p
|
| - # otherPrimeInfos OtherPrimeInfos OPTIONAL
|
| - # }
|
| -
|
| - if priv[0] != 0:
|
| - raise ValueError('Unable to read this file, version %s != 0' % priv[0])
|
| -
|
| - as_ints = tuple(int(x) for x in priv[1:9])
|
| - return cls(*as_ints)
|
| -
|
| - def _save_pkcs1_der(self):
|
| - '''Saves the private key in PKCS#1 DER format.
|
| -
|
| - @returns: the DER-encoded private key.
|
| - '''
|
| -
|
| - from pyasn1.type import univ, namedtype
|
| - from pyasn1.codec.der import encoder
|
| -
|
| - class AsnPrivKey(univ.Sequence):
|
| - componentType = namedtype.NamedTypes(
|
| - namedtype.NamedType('version', univ.Integer()),
|
| - namedtype.NamedType('modulus', univ.Integer()),
|
| - namedtype.NamedType('publicExponent', univ.Integer()),
|
| - namedtype.NamedType('privateExponent', univ.Integer()),
|
| - namedtype.NamedType('prime1', univ.Integer()),
|
| - namedtype.NamedType('prime2', univ.Integer()),
|
| - namedtype.NamedType('exponent1', univ.Integer()),
|
| - namedtype.NamedType('exponent2', univ.Integer()),
|
| - namedtype.NamedType('coefficient', univ.Integer()),
|
| - )
|
| -
|
| - # Create the ASN object
|
| - asn_key = AsnPrivKey()
|
| - asn_key.setComponentByName('version', 0)
|
| - asn_key.setComponentByName('modulus', self.n)
|
| - asn_key.setComponentByName('publicExponent', self.e)
|
| - asn_key.setComponentByName('privateExponent', self.d)
|
| - asn_key.setComponentByName('prime1', self.p)
|
| - asn_key.setComponentByName('prime2', self.q)
|
| - asn_key.setComponentByName('exponent1', self.exp1)
|
| - asn_key.setComponentByName('exponent2', self.exp2)
|
| - asn_key.setComponentByName('coefficient', self.coef)
|
| -
|
| - return encoder.encode(asn_key)
|
| -
|
| - @classmethod
|
| - def _load_pkcs1_pem(cls, keyfile):
|
| - '''Loads a PKCS#1 PEM-encoded private key file.
|
| -
|
| - The contents of the file before the "-----BEGIN RSA PRIVATE KEY-----" and
|
| - after the "-----END RSA PRIVATE KEY-----" lines is ignored.
|
| -
|
| - @param keyfile: contents of a PEM-encoded file that contains the private
|
| - key.
|
| - @return: a PrivateKey object
|
| - '''
|
| -
|
| - der = rsa.pem.load_pem(keyfile, b('RSA PRIVATE KEY'))
|
| - return cls._load_pkcs1_der(der)
|
| -
|
| - def _save_pkcs1_pem(self):
|
| - '''Saves a PKCS#1 PEM-encoded private key file.
|
| -
|
| - @return: contents of a PEM-encoded file that contains the private key.
|
| - '''
|
| -
|
| - der = self._save_pkcs1_der()
|
| - return rsa.pem.save_pem(der, b('RSA PRIVATE KEY'))
|
| -
|
| -def find_p_q(nbits, getprime_func=rsa.prime.getprime, accurate=True):
|
| - ''''Returns a tuple of two different primes of nbits bits each.
|
| -
|
| - The resulting p * q has exacty 2 * nbits bits, and the returned p and q
|
| - will not be equal.
|
| -
|
| - :param nbits: the number of bits in each of p and q.
|
| - :param getprime_func: the getprime function, defaults to
|
| - :py:func:`rsa.prime.getprime`.
|
| -
|
| - *Introduced in Python-RSA 3.1*
|
| -
|
| - :param accurate: whether to enable accurate mode or not.
|
| - :returns: (p, q), where p > q
|
| -
|
| - >>> (p, q) = find_p_q(128)
|
| - >>> from rsa import common
|
| - >>> common.bit_size(p * q)
|
| - 256
|
| -
|
| - When not in accurate mode, the number of bits can be slightly less
|
| -
|
| - >>> (p, q) = find_p_q(128, accurate=False)
|
| - >>> from rsa import common
|
| - >>> common.bit_size(p * q) <= 256
|
| - True
|
| - >>> common.bit_size(p * q) > 240
|
| - True
|
| -
|
| - '''
|
| -
|
| - total_bits = nbits * 2
|
| -
|
| - # Make sure that p and q aren't too close or the factoring programs can
|
| - # factor n.
|
| - shift = nbits // 16
|
| - pbits = nbits + shift
|
| - qbits = nbits - shift
|
| -
|
| - # Choose the two initial primes
|
| - log.debug('find_p_q(%i): Finding p', nbits)
|
| - p = getprime_func(pbits)
|
| - log.debug('find_p_q(%i): Finding q', nbits)
|
| - q = getprime_func(qbits)
|
| -
|
| - def is_acceptable(p, q):
|
| - '''Returns True iff p and q are acceptable:
|
| -
|
| - - p and q differ
|
| - - (p * q) has the right nr of bits (when accurate=True)
|
| - '''
|
| -
|
| - if p == q:
|
| - return False
|
| -
|
| - if not accurate:
|
| - return True
|
| -
|
| - # Make sure we have just the right amount of bits
|
| - found_size = rsa.common.bit_size(p * q)
|
| - return total_bits == found_size
|
| -
|
| - # Keep choosing other primes until they match our requirements.
|
| - change_p = False
|
| - while not is_acceptable(p, q):
|
| - # Change p on one iteration and q on the other
|
| - if change_p:
|
| - p = getprime_func(pbits)
|
| - else:
|
| - q = getprime_func(qbits)
|
| -
|
| - change_p = not change_p
|
| -
|
| - # We want p > q as described on
|
| - # http://www.di-mgt.com.au/rsa_alg.html#crt
|
| - return (max(p, q), min(p, q))
|
| -
|
| -def calculate_keys(p, q, nbits):
|
| - '''Calculates an encryption and a decryption key given p and q, and
|
| - returns them as a tuple (e, d)
|
| -
|
| - '''
|
| -
|
| - phi_n = (p - 1) * (q - 1)
|
| -
|
| - # A very common choice for e is 65537
|
| - e = 65537
|
| -
|
| - try:
|
| - d = rsa.common.inverse(e, phi_n)
|
| - except ValueError:
|
| - raise ValueError("e (%d) and phi_n (%d) are not relatively prime" %
|
| - (e, phi_n))
|
| -
|
| - if (e * d) % phi_n != 1:
|
| - raise ValueError("e (%d) and d (%d) are not mult. inv. modulo "
|
| - "phi_n (%d)" % (e, d, phi_n))
|
| -
|
| - return (e, d)
|
| -
|
| -def gen_keys(nbits, getprime_func, accurate=True):
|
| - '''Generate RSA keys of nbits bits. Returns (p, q, e, d).
|
| -
|
| - Note: this can take a long time, depending on the key size.
|
| -
|
| - :param nbits: the total number of bits in ``p`` and ``q``. Both ``p`` and
|
| - ``q`` will use ``nbits/2`` bits.
|
| - :param getprime_func: either :py:func:`rsa.prime.getprime` or a function
|
| - with similar signature.
|
| - '''
|
| -
|
| - (p, q) = find_p_q(nbits // 2, getprime_func, accurate)
|
| - (e, d) = calculate_keys(p, q, nbits // 2)
|
| -
|
| - return (p, q, e, d)
|
| -
|
| -def newkeys(nbits, accurate=True, poolsize=1):
|
| - '''Generates public and private keys, and returns them as (pub, priv).
|
| -
|
| - The public key is also known as the 'encryption key', and is a
|
| - :py:class:`rsa.PublicKey` object. The private key is also known as the
|
| - 'decryption key' and is a :py:class:`rsa.PrivateKey` object.
|
| -
|
| - :param nbits: the number of bits required to store ``n = p*q``.
|
| - :param accurate: when True, ``n`` will have exactly the number of bits you
|
| - asked for. However, this makes key generation much slower. When False,
|
| - `n`` may have slightly less bits.
|
| - :param poolsize: the number of processes to use to generate the prime
|
| - numbers. If set to a number > 1, a parallel algorithm will be used.
|
| - This requires Python 2.6 or newer.
|
| -
|
| - :returns: a tuple (:py:class:`rsa.PublicKey`, :py:class:`rsa.PrivateKey`)
|
| -
|
| - The ``poolsize`` parameter was added in *Python-RSA 3.1* and requires
|
| - Python 2.6 or newer.
|
| -
|
| - '''
|
| -
|
| - if nbits < 16:
|
| - raise ValueError('Key too small')
|
| -
|
| - if poolsize < 1:
|
| - raise ValueError('Pool size (%i) should be >= 1' % poolsize)
|
| -
|
| - # Determine which getprime function to use
|
| - if poolsize > 1:
|
| - from rsa import parallel
|
| - import functools
|
| -
|
| - getprime_func = functools.partial(parallel.getprime, poolsize=poolsize)
|
| - else: getprime_func = rsa.prime.getprime
|
| -
|
| - # Generate the key components
|
| - (p, q, e, d) = gen_keys(nbits, getprime_func)
|
| -
|
| - # Create the key objects
|
| - n = p * q
|
| -
|
| - return (
|
| - PublicKey(n, e),
|
| - PrivateKey(n, e, d, p, q)
|
| - )
|
| -
|
| -__all__ = ['PublicKey', 'PrivateKey', 'newkeys']
|
| -
|
| -if __name__ == '__main__':
|
| - import doctest
|
| -
|
| - try:
|
| - for count in range(100):
|
| - (failures, tests) = doctest.testmod()
|
| - if failures:
|
| - break
|
| -
|
| - if (count and count % 10 == 0) or count == 1:
|
| - print('%i times' % count)
|
| - except KeyboardInterrupt:
|
| - print('Aborted')
|
| - else:
|
| - print('Doctests done')
|
|
|