Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(49)

Side by Side Diff: cc/raster/task_graph_work_queue.cc

Issue 1489233003: TaskGraphRunner Group support (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@refactor
Patch Set: feedback Created 5 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 // Copyright 2014 The Chromium Authors. All rights reserved. 1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be 2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. 3 // found in the LICENSE file.
4 4
5 #include "cc/raster/task_graph_work_queue.h" 5 #include "cc/raster/task_graph_work_queue.h"
6 6
7 #include <algorithm> 7 #include <algorithm>
8 #include <map>
8 #include <utility> 9 #include <utility>
9 10
10 #include "base/trace_event/trace_event.h" 11 #include "base/trace_event/trace_event.h"
11 12
12 namespace cc { 13 namespace cc {
14 namespace {
15
16 bool CompareTaskPriority(const TaskGraphWorkQueue::PrioritizedTask& a,
17 const TaskGraphWorkQueue::PrioritizedTask& b) {
18 // In this system, numerically lower priority is run first.
19 return a.priority > b.priority;
20 }
21
22 class CompareTaskNamespacePriority {
23 public:
24 explicit CompareTaskNamespacePriority(uint16_t category)
25 : category_(category) {}
26
27 bool operator()(const TaskGraphWorkQueue::TaskNamespace* a,
28 const TaskGraphWorkQueue::TaskNamespace* b) {
29 DCHECK(!a->ready_to_run_tasks.at(category_).empty());
30 DCHECK(!b->ready_to_run_tasks.at(category_).empty());
31
32 // Compare based on task priority of the ready_to_run_tasks heap .front()
33 // will hold the max element of the heap, except after pop_heap, when max
34 // element is moved to .back().
35 return CompareTaskPriority(a->ready_to_run_tasks.at(category_).front(),
36 b->ready_to_run_tasks.at(category_).front());
37 }
38
39 private:
40 uint16_t category_;
41 };
42 } // namespace
13 43
14 TaskGraphWorkQueue::TaskNamespace::TaskNamespace() {} 44 TaskGraphWorkQueue::TaskNamespace::TaskNamespace() {}
15 45
16 TaskGraphWorkQueue::TaskNamespace::~TaskNamespace() {} 46 TaskGraphWorkQueue::TaskNamespace::~TaskNamespace() {}
17 47
18 TaskGraphWorkQueue::TaskGraphWorkQueue() : next_namespace_id_(1) {} 48 TaskGraphWorkQueue::TaskGraphWorkQueue() : next_namespace_id_(1) {}
19 TaskGraphWorkQueue::~TaskGraphWorkQueue() {} 49 TaskGraphWorkQueue::~TaskGraphWorkQueue() {}
20 50
21 NamespaceToken TaskGraphWorkQueue::GetNamespaceToken() { 51 NamespaceToken TaskGraphWorkQueue::GetNamespaceToken() {
22 NamespaceToken token(next_namespace_id_++); 52 NamespaceToken token(next_namespace_id_++);
23 DCHECK(namespaces_.find(token) == namespaces_.end()); 53 DCHECK(namespaces_.find(token) == namespaces_.end());
24 return token; 54 return token;
25 } 55 }
26 56
27 void TaskGraphWorkQueue::ScheduleTasks(NamespaceToken token, TaskGraph* graph) { 57 void TaskGraphWorkQueue::ScheduleTasks(NamespaceToken token, TaskGraph* graph) {
28 TaskNamespace& task_namespace = namespaces_[token]; 58 TaskNamespace& task_namespace = namespaces_[token];
29 59
30 // First adjust number of dependencies to reflect completed tasks. 60 // First adjust number of dependencies to reflect completed tasks.
31 for (const scoped_refptr<Task>& task : task_namespace.completed_tasks) { 61 for (const scoped_refptr<Task>& task : task_namespace.completed_tasks) {
32 for (DependentIterator node_it(graph, task.get()); node_it; ++node_it) { 62 for (DependentIterator node_it(graph, task.get()); node_it; ++node_it) {
33 TaskGraph::Node& node = *node_it; 63 TaskGraph::Node& node = *node_it;
34 DCHECK_LT(0u, node.dependencies); 64 DCHECK_LT(0u, node.dependencies);
35 node.dependencies--; 65 node.dependencies--;
36 } 66 }
37 } 67 }
38 68
39 // Build new "ready to run" queue and remove nodes from old graph. 69 // Build new "ready to run" queue and remove nodes from old graph.
40 task_namespace.ready_to_run_tasks.clear(); 70 for (auto& ready_to_run_tasks_it : task_namespace.ready_to_run_tasks) {
71 ready_to_run_tasks_it.second.clear();
72 }
41 for (const TaskGraph::Node& node : graph->nodes) { 73 for (const TaskGraph::Node& node : graph->nodes) {
42 // Remove any old nodes that are associated with this task. The result is 74 // Remove any old nodes that are associated with this task. The result is
43 // that the old graph is left with all nodes not present in this graph, 75 // that the old graph is left with all nodes not present in this graph,
44 // which we use below to determine what tasks need to be canceled. 76 // which we use below to determine what tasks need to be canceled.
45 TaskGraph::Node::Vector::iterator old_it = std::find_if( 77 TaskGraph::Node::Vector::iterator old_it = std::find_if(
46 task_namespace.graph.nodes.begin(), task_namespace.graph.nodes.end(), 78 task_namespace.graph.nodes.begin(), task_namespace.graph.nodes.end(),
47 [node](const TaskGraph::Node& other) { 79 [node](const TaskGraph::Node& other) {
48 return node.task == other.task; 80 return node.task == other.task;
49 }); 81 });
50 if (old_it != task_namespace.graph.nodes.end()) { 82 if (old_it != task_namespace.graph.nodes.end()) {
51 std::swap(*old_it, task_namespace.graph.nodes.back()); 83 std::swap(*old_it, task_namespace.graph.nodes.back());
52 task_namespace.graph.nodes.pop_back(); 84 task_namespace.graph.nodes.pop_back();
53 } 85 }
54 86
55 // Task is not ready to run if dependencies are not yet satisfied. 87 // Task is not ready to run if dependencies are not yet satisfied.
56 if (node.dependencies) 88 if (node.dependencies)
57 continue; 89 continue;
58 90
59 // Skip if already finished running task. 91 // Skip if already finished running task.
60 if (node.task->HasFinishedRunning()) 92 if (node.task->HasFinishedRunning())
61 continue; 93 continue;
62 94
63 // Skip if already running. 95 // Skip if already running.
64 if (std::find(task_namespace.running_tasks.begin(), 96 if (std::find(task_namespace.running_tasks.begin(),
65 task_namespace.running_tasks.end(), 97 task_namespace.running_tasks.end(),
66 node.task) != task_namespace.running_tasks.end()) 98 node.task) != task_namespace.running_tasks.end())
67 continue; 99 continue;
68 100
69 task_namespace.ready_to_run_tasks.push_back( 101 task_namespace.ready_to_run_tasks[node.category].push_back(PrioritizedTask(
70 PrioritizedTask(node.task, &task_namespace, node.priority)); 102 node.task, &task_namespace, node.category, node.priority));
71 } 103 }
72 104
73 // Rearrange the elements in |ready_to_run_tasks| in such a way that they 105 // Rearrange the elements in each vector within |ready_to_run_tasks| in such a
74 // form a heap. 106 // way that they form a heap.
75 std::make_heap(task_namespace.ready_to_run_tasks.begin(), 107 for (auto& it : task_namespace.ready_to_run_tasks) {
76 task_namespace.ready_to_run_tasks.end(), CompareTaskPriority); 108 auto& ready_to_run_tasks = it.second;
109 std::make_heap(ready_to_run_tasks.begin(), ready_to_run_tasks.end(),
110 CompareTaskPriority);
111 }
77 112
78 // Swap task graph. 113 // Swap task graph.
79 task_namespace.graph.Swap(graph); 114 task_namespace.graph.Swap(graph);
80 115
81 // Determine what tasks in old graph need to be canceled. 116 // Determine what tasks in old graph need to be canceled.
82 for (TaskGraph::Node::Vector::iterator it = graph->nodes.begin(); 117 for (TaskGraph::Node::Vector::iterator it = graph->nodes.begin();
83 it != graph->nodes.end(); ++it) { 118 it != graph->nodes.end(); ++it) {
84 TaskGraph::Node& node = *it; 119 TaskGraph::Node& node = *it;
85 120
86 // Skip if already finished running task. 121 // Skip if already finished running task.
87 if (node.task->HasFinishedRunning()) 122 if (node.task->HasFinishedRunning())
88 continue; 123 continue;
89 124
90 // Skip if already running. 125 // Skip if already running.
91 if (std::find(task_namespace.running_tasks.begin(), 126 if (std::find(task_namespace.running_tasks.begin(),
92 task_namespace.running_tasks.end(), 127 task_namespace.running_tasks.end(),
93 node.task) != task_namespace.running_tasks.end()) 128 node.task) != task_namespace.running_tasks.end())
94 continue; 129 continue;
95 130
96 DCHECK(std::find(task_namespace.completed_tasks.begin(), 131 DCHECK(std::find(task_namespace.completed_tasks.begin(),
97 task_namespace.completed_tasks.end(), 132 task_namespace.completed_tasks.end(),
98 node.task) == task_namespace.completed_tasks.end()); 133 node.task) == task_namespace.completed_tasks.end());
99 task_namespace.completed_tasks.push_back(node.task); 134 task_namespace.completed_tasks.push_back(node.task);
100 } 135 }
101 136
102 // Build new "ready to run" task namespaces queue. 137 // Build new "ready to run" task namespaces queue.
103 ready_to_run_namespaces_.clear(); 138 for (auto& ready_to_run_namespaces_it : ready_to_run_namespaces_) {
104 for (auto& it : namespaces_) { 139 ready_to_run_namespaces_it.second.clear();
105 if (!it.second.ready_to_run_tasks.empty()) 140 }
106 ready_to_run_namespaces_.push_back(&it.second); 141 for (auto& namespace_it : namespaces_) {
142 auto& task_namespace = namespace_it.second;
143 for (auto& ready_to_run_tasks_it : task_namespace.ready_to_run_tasks) {
144 auto& ready_to_run_tasks = ready_to_run_tasks_it.second;
145 uint16_t category = ready_to_run_tasks_it.first;
146 if (!ready_to_run_tasks.empty()) {
147 ready_to_run_namespaces_[category].push_back(&task_namespace);
148 }
149 }
107 } 150 }
108 151
109 // Rearrange the task namespaces in |ready_to_run_namespaces| in such a 152 // Rearrange the task namespaces in |ready_to_run_namespaces| in such a
110 // way that they form a heap. 153 // way that they form a heap.
111 std::make_heap(ready_to_run_namespaces_.begin(), 154 for (auto& it : ready_to_run_namespaces_) {
112 ready_to_run_namespaces_.end(), CompareTaskNamespacePriority); 155 uint16_t category = it.first;
156 auto& task_namespace = it.second;
157 std::make_heap(task_namespace.begin(), task_namespace.end(),
158 CompareTaskNamespacePriority(category));
159 }
113 } 160 }
114 161
115 TaskGraphWorkQueue::PrioritizedTask TaskGraphWorkQueue::GetNextTaskToRun() { 162 TaskGraphWorkQueue::PrioritizedTask TaskGraphWorkQueue::GetNextTaskToRun(
116 DCHECK(!ready_to_run_namespaces_.empty()); 163 uint16_t category) {
164 TaskNamespace::Vector& ready_to_run_namespaces =
165 ready_to_run_namespaces_[category];
166 DCHECK(!ready_to_run_namespaces.empty());
117 167
118 // Take top priority TaskNamespace from |ready_to_run_namespaces_|. 168 // Take top priority TaskNamespace from |ready_to_run_namespaces|.
119 std::pop_heap(ready_to_run_namespaces_.begin(), 169 std::pop_heap(ready_to_run_namespaces.begin(), ready_to_run_namespaces.end(),
120 ready_to_run_namespaces_.end(), CompareTaskNamespacePriority); 170 CompareTaskNamespacePriority(category));
121 TaskNamespace* task_namespace = ready_to_run_namespaces_.back(); 171 TaskNamespace* task_namespace = ready_to_run_namespaces.back();
122 ready_to_run_namespaces_.pop_back(); 172 ready_to_run_namespaces.pop_back();
123 DCHECK(!task_namespace->ready_to_run_tasks.empty()); 173
174 PrioritizedTask::Vector& ready_to_run_tasks =
175 task_namespace->ready_to_run_tasks[category];
176 DCHECK(!ready_to_run_tasks.empty());
124 177
125 // Take top priority task from |ready_to_run_tasks|. 178 // Take top priority task from |ready_to_run_tasks|.
126 std::pop_heap(task_namespace->ready_to_run_tasks.begin(), 179 std::pop_heap(ready_to_run_tasks.begin(), ready_to_run_tasks.end(),
127 task_namespace->ready_to_run_tasks.end(), CompareTaskPriority); 180 CompareTaskPriority);
128 PrioritizedTask task = task_namespace->ready_to_run_tasks.back(); 181 PrioritizedTask task = ready_to_run_tasks.back();
129 task_namespace->ready_to_run_tasks.pop_back(); 182 ready_to_run_tasks.pop_back();
130 183
131 // Add task namespace back to |ready_to_run_namespaces_| if not empty after 184 // Add task namespace back to |ready_to_run_namespaces| if not empty after
132 // taking top priority task. 185 // taking top priority task.
133 if (!task_namespace->ready_to_run_tasks.empty()) { 186 if (!ready_to_run_tasks.empty()) {
134 ready_to_run_namespaces_.push_back(task_namespace); 187 ready_to_run_namespaces.push_back(task_namespace);
135 std::push_heap(ready_to_run_namespaces_.begin(), 188 std::push_heap(ready_to_run_namespaces.begin(),
136 ready_to_run_namespaces_.end(), 189 ready_to_run_namespaces.end(),
137 CompareTaskNamespacePriority); 190 CompareTaskNamespacePriority(category));
138 } 191 }
139 192
140 // Add task to |running_tasks|. 193 // Add task to |running_tasks|.
141 task_namespace->running_tasks.push_back(task.task); 194 task_namespace->running_tasks.push_back(task.task);
142 195
143 return task; 196 return task;
144 } 197 }
145 198
146 void TaskGraphWorkQueue::CompleteTask(const PrioritizedTask& completed_task) { 199 void TaskGraphWorkQueue::CompleteTask(const PrioritizedTask& completed_task) {
147 TaskNamespace* task_namespace = completed_task.task_namespace; 200 TaskNamespace* task_namespace = completed_task.task_namespace;
148 scoped_refptr<Task> task(completed_task.task); 201 scoped_refptr<Task> task(completed_task.task);
149 202
150 // Remove task from |running_tasks|. 203 // Remove task from |running_tasks|.
151 auto it = std::find(task_namespace->running_tasks.begin(), 204 auto it = std::find(task_namespace->running_tasks.begin(),
152 task_namespace->running_tasks.end(), task); 205 task_namespace->running_tasks.end(), task);
153 DCHECK(it != task_namespace->running_tasks.end()); 206 DCHECK(it != task_namespace->running_tasks.end());
154 std::swap(*it, task_namespace->running_tasks.back()); 207 std::swap(*it, task_namespace->running_tasks.back());
155 task_namespace->running_tasks.pop_back(); 208 task_namespace->running_tasks.pop_back();
156 209
157 // Now iterate over all dependents to decrement dependencies and check if they 210 // Now iterate over all dependents to decrement dependencies and check if they
158 // are ready to run. 211 // are ready to run.
159 bool ready_to_run_namespaces_has_heap_properties = true; 212 bool ready_to_run_namespaces_has_heap_properties = true;
160 for (DependentIterator it(&task_namespace->graph, task.get()); it; ++it) { 213 for (DependentIterator it(&task_namespace->graph, task.get()); it; ++it) {
161 TaskGraph::Node& dependent_node = *it; 214 TaskGraph::Node& dependent_node = *it;
162 215
163 DCHECK_LT(0u, dependent_node.dependencies); 216 DCHECK_LT(0u, dependent_node.dependencies);
164 dependent_node.dependencies--; 217 dependent_node.dependencies--;
165 // Task is ready if it has no dependencies. Add it to |ready_to_run_tasks_|. 218 // Task is ready if it has no dependencies. Add it to |ready_to_run_tasks_|.
166 if (!dependent_node.dependencies) { 219 if (!dependent_node.dependencies) {
167 bool was_empty = task_namespace->ready_to_run_tasks.empty(); 220 PrioritizedTask::Vector& ready_to_run_tasks =
168 task_namespace->ready_to_run_tasks.push_back(PrioritizedTask( 221 task_namespace->ready_to_run_tasks[dependent_node.category];
169 dependent_node.task, task_namespace, dependent_node.priority)); 222
170 std::push_heap(task_namespace->ready_to_run_tasks.begin(), 223 bool was_empty = ready_to_run_tasks.empty();
171 task_namespace->ready_to_run_tasks.end(), 224 ready_to_run_tasks.push_back(
225 PrioritizedTask(dependent_node.task, task_namespace,
226 dependent_node.category, dependent_node.priority));
227 std::push_heap(ready_to_run_tasks.begin(), ready_to_run_tasks.end(),
172 CompareTaskPriority); 228 CompareTaskPriority);
229
173 // Task namespace is ready if it has at least one ready to run task. Add 230 // Task namespace is ready if it has at least one ready to run task. Add
174 // it to |ready_to_run_namespaces_| if it just become ready. 231 // it to |ready_to_run_namespaces_| if it just become ready.
175 if (was_empty) { 232 if (was_empty) {
176 DCHECK(std::find(ready_to_run_namespaces_.begin(), 233 TaskNamespace::Vector& ready_to_run_namespaces =
177 ready_to_run_namespaces_.end(), 234 ready_to_run_namespaces_[dependent_node.category];
178 task_namespace) == ready_to_run_namespaces_.end()); 235
179 ready_to_run_namespaces_.push_back(task_namespace); 236 DCHECK(std::find(ready_to_run_namespaces.begin(),
237 ready_to_run_namespaces.end(),
238 task_namespace) == ready_to_run_namespaces.end());
239 ready_to_run_namespaces.push_back(task_namespace);
180 } 240 }
181 ready_to_run_namespaces_has_heap_properties = false; 241 ready_to_run_namespaces_has_heap_properties = false;
182 } 242 }
183 } 243 }
184 244
185 // Rearrange the task namespaces in |ready_to_run_namespaces_| in such a way 245 // Rearrange the task namespaces in |ready_to_run_namespaces_| in such a way
186 // that they yet again form a heap. 246 // that they yet again form a heap.
187 if (!ready_to_run_namespaces_has_heap_properties) { 247 if (!ready_to_run_namespaces_has_heap_properties) {
188 std::make_heap(ready_to_run_namespaces_.begin(), 248 for (auto& it : ready_to_run_namespaces_) {
189 ready_to_run_namespaces_.end(), 249 uint16_t category = it.first;
190 CompareTaskNamespacePriority); 250 auto& ready_to_run_namespaces = it.second;
251 std::make_heap(ready_to_run_namespaces.begin(),
252 ready_to_run_namespaces.end(),
253 CompareTaskNamespacePriority(category));
254 }
191 } 255 }
192 256
193 // Finally add task to |completed_tasks_|. 257 // Finally add task to |completed_tasks_|.
194 task_namespace->completed_tasks.push_back(task); 258 task_namespace->completed_tasks.push_back(task);
195 } 259 }
196 260
197 void TaskGraphWorkQueue::CollectCompletedTasks(NamespaceToken token, 261 void TaskGraphWorkQueue::CollectCompletedTasks(NamespaceToken token,
198 Task::Vector* completed_tasks) { 262 Task::Vector* completed_tasks) {
199 TaskNamespaceMap::iterator it = namespaces_.find(token); 263 TaskNamespaceMap::iterator it = namespaces_.find(token);
200 if (it == namespaces_.end()) 264 if (it == namespaces_.end())
201 return; 265 return;
202 266
203 TaskNamespace& task_namespace = it->second; 267 TaskNamespace& task_namespace = it->second;
204 268
205 DCHECK_EQ(0u, completed_tasks->size()); 269 DCHECK_EQ(0u, completed_tasks->size());
206 completed_tasks->swap(task_namespace.completed_tasks); 270 completed_tasks->swap(task_namespace.completed_tasks);
207 if (!HasFinishedRunningTasksInNamespace(&task_namespace)) 271 if (!HasFinishedRunningTasksInNamespace(&task_namespace))
208 return; 272 return;
209 273
210 // Remove namespace if finished running tasks. 274 // Remove namespace if finished running tasks.
211 DCHECK_EQ(0u, task_namespace.completed_tasks.size()); 275 DCHECK_EQ(0u, task_namespace.completed_tasks.size());
212 DCHECK_EQ(0u, task_namespace.ready_to_run_tasks.size()); 276 DCHECK(!HasReadyToRunTasksInNamespace(&task_namespace));
213 DCHECK_EQ(0u, task_namespace.running_tasks.size()); 277 DCHECK_EQ(0u, task_namespace.running_tasks.size());
214 namespaces_.erase(it); 278 namespaces_.erase(it);
215 } 279 }
216 280
217 bool TaskGraphWorkQueue::DependencyMismatch(const TaskGraph* graph) { 281 bool TaskGraphWorkQueue::DependencyMismatch(const TaskGraph* graph) {
218 // Value storage will be 0-initialized. 282 // Value storage will be 0-initialized.
219 base::hash_map<const Task*, size_t> dependents; 283 base::hash_map<const Task*, size_t> dependents;
220 for (const TaskGraph::Edge& edge : graph->edges) 284 for (const TaskGraph::Edge& edge : graph->edges)
221 dependents[edge.dependent]++; 285 dependents[edge.dependent]++;
222 286
223 for (const TaskGraph::Node& node : graph->nodes) { 287 for (const TaskGraph::Node& node : graph->nodes) {
224 if (dependents[node.task] != node.dependencies) 288 if (dependents[node.task] != node.dependencies)
225 return true; 289 return true;
226 } 290 }
227 291
228 return false; 292 return false;
229 } 293 }
230 294
231 } // namespace cc 295 } // namespace cc
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698