Index: src/a64/lithium-codegen-a64.cc |
diff --git a/src/a64/lithium-codegen-a64.cc b/src/a64/lithium-codegen-a64.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..da03ccc214700a949048b590d342a434f84521c2 |
--- /dev/null |
+++ b/src/a64/lithium-codegen-a64.cc |
@@ -0,0 +1,5703 @@ |
+// Copyright 2013 the V8 project authors. All rights reserved. |
+// Redistribution and use in source and binary forms, with or without |
+// modification, are permitted provided that the following conditions are |
+// met: |
+// |
+// * Redistributions of source code must retain the above copyright |
+// notice, this list of conditions and the following disclaimer. |
+// * Redistributions in binary form must reproduce the above |
+// copyright notice, this list of conditions and the following |
+// disclaimer in the documentation and/or other materials provided |
+// with the distribution. |
+// * Neither the name of Google Inc. nor the names of its |
+// contributors may be used to endorse or promote products derived |
+// from this software without specific prior written permission. |
+// |
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
+ |
+#include "v8.h" |
+ |
+#include "a64/lithium-codegen-a64.h" |
+#include "a64/lithium-gap-resolver-a64.h" |
+#include "code-stubs.h" |
+#include "stub-cache.h" |
+#include "hydrogen-osr.h" |
+ |
+namespace v8 { |
+namespace internal { |
+ |
+ |
+class SafepointGenerator V8_FINAL : public CallWrapper { |
+ public: |
+ SafepointGenerator(LCodeGen* codegen, |
+ LPointerMap* pointers, |
+ Safepoint::DeoptMode mode) |
+ : codegen_(codegen), |
+ pointers_(pointers), |
+ deopt_mode_(mode) { } |
+ virtual ~SafepointGenerator() { } |
+ |
+ virtual void BeforeCall(int call_size) const { } |
+ |
+ virtual void AfterCall() const { |
+ codegen_->RecordSafepoint(pointers_, deopt_mode_); |
+ } |
+ |
+ private: |
+ LCodeGen* codegen_; |
+ LPointerMap* pointers_; |
+ Safepoint::DeoptMode deopt_mode_; |
+}; |
+ |
+ |
+#define __ masm()-> |
+ |
+// Emit code to branch if the given condition holds. |
+// The code generated here doesn't modify the flags and they must have |
+// been set by some prior instructions. |
+// |
+// The EmitInverted function simply inverts the condition. |
+class BranchOnCondition : public BranchGenerator { |
+ public: |
+ BranchOnCondition(LCodeGen* codegen, Condition cond) |
+ : BranchGenerator(codegen), |
+ cond_(cond) { } |
+ |
+ virtual void Emit(Label* label) const { |
+ __ B(cond_, label); |
+ } |
+ |
+ virtual void EmitInverted(Label* label) const { |
+ if (cond_ != al) { |
+ __ B(InvertCondition(cond_), label); |
+ } |
+ } |
+ |
+ private: |
+ Condition cond_; |
+}; |
+ |
+ |
+// Emit code to compare lhs and rhs and branch if the condition holds. |
+// This uses MacroAssembler's CompareAndBranch function so it will handle |
+// converting the comparison to Cbz/Cbnz if the right-hand side is 0. |
+// |
+// EmitInverted still compares the two operands but inverts the condition. |
+class CompareAndBranch : public BranchGenerator { |
+ public: |
+ CompareAndBranch(LCodeGen* codegen, |
+ Condition cond, |
+ const Register& lhs, |
+ const Operand& rhs) |
+ : BranchGenerator(codegen), |
+ cond_(cond), |
+ lhs_(lhs), |
+ rhs_(rhs) { } |
+ |
+ virtual void Emit(Label* label) const { |
+ __ CompareAndBranch(lhs_, rhs_, cond_, label); |
+ } |
+ |
+ virtual void EmitInverted(Label* label) const { |
+ __ CompareAndBranch(lhs_, rhs_, InvertCondition(cond_), label); |
+ } |
+ |
+ private: |
+ Condition cond_; |
+ const Register& lhs_; |
+ const Operand& rhs_; |
+}; |
+ |
+ |
+// Test the input with the given mask and branch if the condition holds. |
+// If the condition is 'eq' or 'ne' this will use MacroAssembler's |
+// TestAndBranchIfAllClear and TestAndBranchIfAnySet so it will handle the |
+// conversion to Tbz/Tbnz when possible. |
+class TestAndBranch : public BranchGenerator { |
+ public: |
+ TestAndBranch(LCodeGen* codegen, |
+ Condition cond, |
+ const Register& value, |
+ uint64_t mask) |
+ : BranchGenerator(codegen), |
+ cond_(cond), |
+ value_(value), |
+ mask_(mask) { } |
+ |
+ virtual void Emit(Label* label) const { |
+ switch (cond_) { |
+ case eq: |
+ __ TestAndBranchIfAllClear(value_, mask_, label); |
+ break; |
+ case ne: |
+ __ TestAndBranchIfAnySet(value_, mask_, label); |
+ break; |
+ default: |
+ __ Tst(value_, mask_); |
+ __ B(cond_, label); |
+ } |
+ } |
+ |
+ virtual void EmitInverted(Label* label) const { |
+ // The inverse of "all clear" is "any set" and vice versa. |
+ switch (cond_) { |
+ case eq: |
+ __ TestAndBranchIfAnySet(value_, mask_, label); |
+ break; |
+ case ne: |
+ __ TestAndBranchIfAllClear(value_, mask_, label); |
+ break; |
+ default: |
+ __ Tst(value_, mask_); |
+ __ B(InvertCondition(cond_), label); |
+ } |
+ } |
+ |
+ private: |
+ Condition cond_; |
+ const Register& value_; |
+ uint64_t mask_; |
+}; |
+ |
+ |
+// Test the input and branch if it is non-zero and not a NaN. |
+class BranchIfNonZeroNumber : public BranchGenerator { |
+ public: |
+ BranchIfNonZeroNumber(LCodeGen* codegen, const FPRegister& value, |
+ const FPRegister& scratch) |
+ : BranchGenerator(codegen), value_(value), scratch_(scratch) { } |
+ |
+ virtual void Emit(Label* label) const { |
+ __ Fabs(scratch_, value_); |
+ // Compare with 0.0. Because scratch_ is positive, the result can be one of |
+ // nZCv (equal), nzCv (greater) or nzCV (unordered). |
+ __ Fcmp(scratch_, 0.0); |
+ __ B(gt, label); |
+ } |
+ |
+ virtual void EmitInverted(Label* label) const { |
+ __ Fabs(scratch_, value_); |
+ __ Fcmp(scratch_, 0.0); |
+ __ B(le, label); |
+ } |
+ |
+ private: |
+ const FPRegister& value_; |
+ const FPRegister& scratch_; |
+}; |
+ |
+ |
+// Test the input and branch if it is a heap number. |
+class BranchIfHeapNumber : public BranchGenerator { |
+ public: |
+ BranchIfHeapNumber(LCodeGen* codegen, const Register& value) |
+ : BranchGenerator(codegen), value_(value) { } |
+ |
+ virtual void Emit(Label* label) const { |
+ __ JumpIfHeapNumber(value_, label); |
+ } |
+ |
+ virtual void EmitInverted(Label* label) const { |
+ __ JumpIfNotHeapNumber(value_, label); |
+ } |
+ |
+ private: |
+ const Register& value_; |
+}; |
+ |
+ |
+// Test the input and branch if it is the specified root value. |
+class BranchIfRoot : public BranchGenerator { |
+ public: |
+ BranchIfRoot(LCodeGen* codegen, const Register& value, |
+ Heap::RootListIndex index) |
+ : BranchGenerator(codegen), value_(value), index_(index) { } |
+ |
+ virtual void Emit(Label* label) const { |
+ __ JumpIfRoot(value_, index_, label); |
+ } |
+ |
+ virtual void EmitInverted(Label* label) const { |
+ __ JumpIfNotRoot(value_, index_, label); |
+ } |
+ |
+ private: |
+ const Register& value_; |
+ const Heap::RootListIndex index_; |
+}; |
+ |
+ |
+void LCodeGen::WriteTranslation(LEnvironment* environment, |
+ Translation* translation) { |
+ if (environment == NULL) return; |
+ |
+ // The translation includes one command per value in the environment. |
+ int translation_size = environment->translation_size(); |
+ // The output frame height does not include the parameters. |
+ int height = translation_size - environment->parameter_count(); |
+ |
+ WriteTranslation(environment->outer(), translation); |
+ bool has_closure_id = !info()->closure().is_null() && |
+ !info()->closure().is_identical_to(environment->closure()); |
+ int closure_id = has_closure_id |
+ ? DefineDeoptimizationLiteral(environment->closure()) |
+ : Translation::kSelfLiteralId; |
+ |
+ switch (environment->frame_type()) { |
+ case JS_FUNCTION: |
+ translation->BeginJSFrame(environment->ast_id(), closure_id, height); |
+ break; |
+ case JS_CONSTRUCT: |
+ translation->BeginConstructStubFrame(closure_id, translation_size); |
+ break; |
+ case JS_GETTER: |
+ ASSERT(translation_size == 1); |
+ ASSERT(height == 0); |
+ translation->BeginGetterStubFrame(closure_id); |
+ break; |
+ case JS_SETTER: |
+ ASSERT(translation_size == 2); |
+ ASSERT(height == 0); |
+ translation->BeginSetterStubFrame(closure_id); |
+ break; |
+ case STUB: |
+ translation->BeginCompiledStubFrame(); |
+ break; |
+ case ARGUMENTS_ADAPTOR: |
+ translation->BeginArgumentsAdaptorFrame(closure_id, translation_size); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
+ |
+ int object_index = 0; |
+ int dematerialized_index = 0; |
+ for (int i = 0; i < translation_size; ++i) { |
+ LOperand* value = environment->values()->at(i); |
+ |
+ AddToTranslation(environment, |
+ translation, |
+ value, |
+ environment->HasTaggedValueAt(i), |
+ environment->HasUint32ValueAt(i), |
+ &object_index, |
+ &dematerialized_index); |
+ } |
+} |
+ |
+ |
+void LCodeGen::AddToTranslation(LEnvironment* environment, |
+ Translation* translation, |
+ LOperand* op, |
+ bool is_tagged, |
+ bool is_uint32, |
+ int* object_index_pointer, |
+ int* dematerialized_index_pointer) { |
+ if (op == LEnvironment::materialization_marker()) { |
+ int object_index = (*object_index_pointer)++; |
+ if (environment->ObjectIsDuplicateAt(object_index)) { |
+ int dupe_of = environment->ObjectDuplicateOfAt(object_index); |
+ translation->DuplicateObject(dupe_of); |
+ return; |
+ } |
+ int object_length = environment->ObjectLengthAt(object_index); |
+ if (environment->ObjectIsArgumentsAt(object_index)) { |
+ translation->BeginArgumentsObject(object_length); |
+ } else { |
+ translation->BeginCapturedObject(object_length); |
+ } |
+ int dematerialized_index = *dematerialized_index_pointer; |
+ int env_offset = environment->translation_size() + dematerialized_index; |
+ *dematerialized_index_pointer += object_length; |
+ for (int i = 0; i < object_length; ++i) { |
+ LOperand* value = environment->values()->at(env_offset + i); |
+ AddToTranslation(environment, |
+ translation, |
+ value, |
+ environment->HasTaggedValueAt(env_offset + i), |
+ environment->HasUint32ValueAt(env_offset + i), |
+ object_index_pointer, |
+ dematerialized_index_pointer); |
+ } |
+ return; |
+ } |
+ |
+ if (op->IsStackSlot()) { |
+ if (is_tagged) { |
+ translation->StoreStackSlot(op->index()); |
+ } else if (is_uint32) { |
+ translation->StoreUint32StackSlot(op->index()); |
+ } else { |
+ translation->StoreInt32StackSlot(op->index()); |
+ } |
+ } else if (op->IsDoubleStackSlot()) { |
+ translation->StoreDoubleStackSlot(op->index()); |
+ } else if (op->IsArgument()) { |
+ ASSERT(is_tagged); |
+ int src_index = GetStackSlotCount() + op->index(); |
+ translation->StoreStackSlot(src_index); |
+ } else if (op->IsRegister()) { |
+ Register reg = ToRegister(op); |
+ if (is_tagged) { |
+ translation->StoreRegister(reg); |
+ } else if (is_uint32) { |
+ translation->StoreUint32Register(reg); |
+ } else { |
+ translation->StoreInt32Register(reg); |
+ } |
+ } else if (op->IsDoubleRegister()) { |
+ DoubleRegister reg = ToDoubleRegister(op); |
+ translation->StoreDoubleRegister(reg); |
+ } else if (op->IsConstantOperand()) { |
+ HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op)); |
+ int src_index = DefineDeoptimizationLiteral(constant->handle(isolate())); |
+ translation->StoreLiteral(src_index); |
+ } else { |
+ UNREACHABLE(); |
+ } |
+} |
+ |
+ |
+int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) { |
+ int result = deoptimization_literals_.length(); |
+ for (int i = 0; i < deoptimization_literals_.length(); ++i) { |
+ if (deoptimization_literals_[i].is_identical_to(literal)) return i; |
+ } |
+ deoptimization_literals_.Add(literal, zone()); |
+ return result; |
+} |
+ |
+ |
+void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment, |
+ Safepoint::DeoptMode mode) { |
+ if (!environment->HasBeenRegistered()) { |
+ int frame_count = 0; |
+ int jsframe_count = 0; |
+ for (LEnvironment* e = environment; e != NULL; e = e->outer()) { |
+ ++frame_count; |
+ if (e->frame_type() == JS_FUNCTION) { |
+ ++jsframe_count; |
+ } |
+ } |
+ Translation translation(&translations_, frame_count, jsframe_count, zone()); |
+ WriteTranslation(environment, &translation); |
+ int deoptimization_index = deoptimizations_.length(); |
+ int pc_offset = masm()->pc_offset(); |
+ environment->Register(deoptimization_index, |
+ translation.index(), |
+ (mode == Safepoint::kLazyDeopt) ? pc_offset : -1); |
+ deoptimizations_.Add(environment, zone()); |
+ } |
+} |
+ |
+ |
+void LCodeGen::CallCode(Handle<Code> code, |
+ RelocInfo::Mode mode, |
+ LInstruction* instr) { |
+ CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT); |
+} |
+ |
+ |
+void LCodeGen::CallCodeGeneric(Handle<Code> code, |
+ RelocInfo::Mode mode, |
+ LInstruction* instr, |
+ SafepointMode safepoint_mode) { |
+ ASSERT(instr != NULL); |
+ |
+ Assembler::BlockConstPoolScope scope(masm_); |
+ __ Call(code, mode); |
+ RecordSafepointWithLazyDeopt(instr, safepoint_mode); |
+ |
+ if ((code->kind() == Code::BINARY_OP_IC) || |
+ (code->kind() == Code::COMPARE_IC)) { |
+ // Signal that we don't inline smi code before these stubs in the |
+ // optimizing code generator. |
+ InlineSmiCheckInfo::EmitNotInlined(masm()); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoCallFunction(LCallFunction* instr) { |
+ ASSERT(ToRegister(instr->context()).is(cp)); |
+ ASSERT(ToRegister(instr->function()).Is(x1)); |
+ ASSERT(ToRegister(instr->result()).Is(x0)); |
+ |
+ int arity = instr->arity(); |
+ CallFunctionStub stub(arity, instr->hydrogen()->function_flags()); |
+ CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); |
+} |
+ |
+ |
+void LCodeGen::DoCallNew(LCallNew* instr) { |
+ ASSERT(ToRegister(instr->context()).is(cp)); |
+ ASSERT(instr->IsMarkedAsCall()); |
+ ASSERT(ToRegister(instr->constructor()).is(x1)); |
+ |
+ __ Mov(x0, instr->arity()); |
+ // No cell in x2 for construct type feedback in optimized code. |
+ Handle<Object> undefined_value(isolate()->factory()->undefined_value()); |
+ __ Mov(x2, Operand(undefined_value)); |
+ |
+ CallConstructStub stub(NO_CALL_FUNCTION_FLAGS); |
+ CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr); |
+ |
+ ASSERT(ToRegister(instr->result()).is(x0)); |
+} |
+ |
+ |
+void LCodeGen::DoCallNewArray(LCallNewArray* instr) { |
+ ASSERT(instr->IsMarkedAsCall()); |
+ ASSERT(ToRegister(instr->context()).is(cp)); |
+ ASSERT(ToRegister(instr->constructor()).is(x1)); |
+ |
+ __ Mov(x0, Operand(instr->arity())); |
+ __ Mov(x2, Operand(factory()->undefined_value())); |
+ |
+ ElementsKind kind = instr->hydrogen()->elements_kind(); |
+ AllocationSiteOverrideMode override_mode = |
+ (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE) |
+ ? DISABLE_ALLOCATION_SITES |
+ : DONT_OVERRIDE; |
+ |
+ if (instr->arity() == 0) { |
+ ArrayNoArgumentConstructorStub stub(kind, override_mode); |
+ CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr); |
+ } else if (instr->arity() == 1) { |
+ Label done; |
+ if (IsFastPackedElementsKind(kind)) { |
+ Label packed_case; |
+ |
+ // We might need to create a holey array; look at the first argument. |
+ __ Peek(x10, 0); |
+ __ Cbz(x10, &packed_case); |
+ |
+ ElementsKind holey_kind = GetHoleyElementsKind(kind); |
+ ArraySingleArgumentConstructorStub stub(holey_kind, override_mode); |
+ CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr); |
+ __ B(&done); |
+ __ Bind(&packed_case); |
+ } |
+ |
+ ArraySingleArgumentConstructorStub stub(kind, override_mode); |
+ CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr); |
+ __ Bind(&done); |
+ } else { |
+ ArrayNArgumentsConstructorStub stub(kind, override_mode); |
+ CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr); |
+ } |
+ |
+ ASSERT(ToRegister(instr->result()).is(x0)); |
+} |
+ |
+ |
+void LCodeGen::CallRuntime(const Runtime::Function* function, |
+ int num_arguments, |
+ LInstruction* instr, |
+ SaveFPRegsMode save_doubles) { |
+ ASSERT(instr != NULL); |
+ |
+ __ CallRuntime(function, num_arguments, save_doubles); |
+ |
+ RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); |
+} |
+ |
+ |
+void LCodeGen::LoadContextFromDeferred(LOperand* context) { |
+ if (context->IsRegister()) { |
+ __ Mov(cp, ToRegister(context)); |
+ } else if (context->IsStackSlot()) { |
+ __ Ldr(cp, ToMemOperand(context)); |
+ } else if (context->IsConstantOperand()) { |
+ HConstant* constant = |
+ chunk_->LookupConstant(LConstantOperand::cast(context)); |
+ __ LoadHeapObject(cp, |
+ Handle<HeapObject>::cast(constant->handle(isolate()))); |
+ } else { |
+ UNREACHABLE(); |
+ } |
+} |
+ |
+ |
+void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, |
+ int argc, |
+ LInstruction* instr, |
+ LOperand* context) { |
+ LoadContextFromDeferred(context); |
+ __ CallRuntimeSaveDoubles(id); |
+ RecordSafepointWithRegisters( |
+ instr->pointer_map(), argc, Safepoint::kNoLazyDeopt); |
+} |
+ |
+ |
+void LCodeGen::RecordAndWritePosition(int position) { |
+ if (position == RelocInfo::kNoPosition) return; |
+ masm()->positions_recorder()->RecordPosition(position); |
+ masm()->positions_recorder()->WriteRecordedPositions(); |
+} |
+ |
+ |
+void LCodeGen::RecordSafepointWithLazyDeopt(LInstruction* instr, |
+ SafepointMode safepoint_mode) { |
+ if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) { |
+ RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt); |
+ } else { |
+ ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); |
+ RecordSafepointWithRegisters( |
+ instr->pointer_map(), 0, Safepoint::kLazyDeopt); |
+ } |
+} |
+ |
+ |
+void LCodeGen::RecordSafepoint(LPointerMap* pointers, |
+ Safepoint::Kind kind, |
+ int arguments, |
+ Safepoint::DeoptMode deopt_mode) { |
+ ASSERT(expected_safepoint_kind_ == kind); |
+ |
+ const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands(); |
+ Safepoint safepoint = safepoints_.DefineSafepoint( |
+ masm(), kind, arguments, deopt_mode); |
+ |
+ for (int i = 0; i < operands->length(); i++) { |
+ LOperand* pointer = operands->at(i); |
+ if (pointer->IsStackSlot()) { |
+ safepoint.DefinePointerSlot(pointer->index(), zone()); |
+ } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) { |
+ safepoint.DefinePointerRegister(ToRegister(pointer), zone()); |
+ } |
+ } |
+ |
+ if (kind & Safepoint::kWithRegisters) { |
+ // Register cp always contains a pointer to the context. |
+ safepoint.DefinePointerRegister(cp, zone()); |
+ } |
+} |
+ |
+void LCodeGen::RecordSafepoint(LPointerMap* pointers, |
+ Safepoint::DeoptMode deopt_mode) { |
+ RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode); |
+} |
+ |
+ |
+void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) { |
+ LPointerMap empty_pointers(zone()); |
+ RecordSafepoint(&empty_pointers, deopt_mode); |
+} |
+ |
+ |
+void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers, |
+ int arguments, |
+ Safepoint::DeoptMode deopt_mode) { |
+ RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode); |
+} |
+ |
+ |
+void LCodeGen::RecordSafepointWithRegistersAndDoubles( |
+ LPointerMap* pointers, int arguments, Safepoint::DeoptMode deopt_mode) { |
+ RecordSafepoint( |
+ pointers, Safepoint::kWithRegistersAndDoubles, arguments, deopt_mode); |
+} |
+ |
+ |
+bool LCodeGen::GenerateCode() { |
+ LPhase phase("Z_Code generation", chunk()); |
+ ASSERT(is_unused()); |
+ status_ = GENERATING; |
+ |
+ // Open a frame scope to indicate that there is a frame on the stack. The |
+ // NONE indicates that the scope shouldn't actually generate code to set up |
+ // the frame (that is done in GeneratePrologue). |
+ FrameScope frame_scope(masm_, StackFrame::NONE); |
+ |
+ return GeneratePrologue() && |
+ GenerateBody() && |
+ GenerateDeferredCode() && |
+ GenerateDeoptJumpTable() && |
+ GenerateSafepointTable(); |
+} |
+ |
+ |
+void LCodeGen::SaveCallerDoubles() { |
+ ASSERT(info()->saves_caller_doubles()); |
+ ASSERT(NeedsEagerFrame()); |
+ Comment(";;; Save clobbered callee double registers"); |
+ BitVector* doubles = chunk()->allocated_double_registers(); |
+ BitVector::Iterator iterator(doubles); |
+ int count = 0; |
+ while (!iterator.Done()) { |
+ // TODO(all): Is this supposed to save just the callee-saved doubles? It |
+ // looks like it's saving all of them. |
+ FPRegister value = FPRegister::FromAllocationIndex(iterator.Current()); |
+ __ Poke(value, count * kDoubleSize); |
+ iterator.Advance(); |
+ count++; |
+ } |
+} |
+ |
+ |
+void LCodeGen::RestoreCallerDoubles() { |
+ ASSERT(info()->saves_caller_doubles()); |
+ ASSERT(NeedsEagerFrame()); |
+ Comment(";;; Restore clobbered callee double registers"); |
+ BitVector* doubles = chunk()->allocated_double_registers(); |
+ BitVector::Iterator iterator(doubles); |
+ int count = 0; |
+ while (!iterator.Done()) { |
+ // TODO(all): Is this supposed to restore just the callee-saved doubles? It |
+ // looks like it's restoring all of them. |
+ FPRegister value = FPRegister::FromAllocationIndex(iterator.Current()); |
+ __ Peek(value, count * kDoubleSize); |
+ iterator.Advance(); |
+ count++; |
+ } |
+} |
+ |
+ |
+bool LCodeGen::GeneratePrologue() { |
+ ASSERT(is_generating()); |
+ |
+ if (info()->IsOptimizing()) { |
+ ProfileEntryHookStub::MaybeCallEntryHook(masm_); |
+ |
+ // TODO(all): Add support for stop_t FLAG in DEBUG mode. |
+ |
+ // Classic mode functions and builtins need to replace the receiver with the |
+ // global proxy when called as functions (without an explicit receiver |
+ // object). |
+ if (info_->this_has_uses() && |
+ info_->is_classic_mode() && |
+ !info_->is_native()) { |
+ Label ok; |
+ int receiver_offset = info_->scope()->num_parameters() * kXRegSizeInBytes; |
+ __ Peek(x10, receiver_offset); |
+ __ JumpIfNotRoot(x10, Heap::kUndefinedValueRootIndex, &ok); |
+ |
+ __ Ldr(x10, GlobalObjectMemOperand()); |
+ __ Ldr(x10, FieldMemOperand(x10, GlobalObject::kGlobalReceiverOffset)); |
+ __ Poke(x10, receiver_offset); |
+ |
+ __ Bind(&ok); |
+ } |
+ } |
+ |
+ ASSERT(__ StackPointer().Is(jssp)); |
+ info()->set_prologue_offset(masm_->pc_offset()); |
+ if (NeedsEagerFrame()) { |
+ __ Prologue(info()->IsStub() ? BUILD_STUB_FRAME : BUILD_FUNCTION_FRAME); |
+ frame_is_built_ = true; |
+ info_->AddNoFrameRange(0, masm_->pc_offset()); |
+ } |
+ |
+ // Reserve space for the stack slots needed by the code. |
+ int slots = GetStackSlotCount(); |
+ if (slots > 0) { |
+ __ Claim(slots, kPointerSize); |
+ } |
+ |
+ if (info()->saves_caller_doubles()) { |
+ SaveCallerDoubles(); |
+ } |
+ |
+ // Allocate a local context if needed. |
+ int heap_slots = info()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; |
+ if (heap_slots > 0) { |
+ Comment(";;; Allocate local context"); |
+ // Argument to NewContext is the function, which is in x1. |
+ if (heap_slots <= FastNewContextStub::kMaximumSlots) { |
+ FastNewContextStub stub(heap_slots); |
+ __ CallStub(&stub); |
+ } else { |
+ __ Push(x1); |
+ __ CallRuntime(Runtime::kNewFunctionContext, 1); |
+ } |
+ RecordSafepoint(Safepoint::kNoLazyDeopt); |
+ // Context is returned in x0. It replaces the context passed to us. It's |
+ // saved in the stack and kept live in cp. |
+ __ Mov(cp, x0); |
+ __ Str(x0, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
+ // Copy any necessary parameters into the context. |
+ int num_parameters = scope()->num_parameters(); |
+ for (int i = 0; i < num_parameters; i++) { |
+ Variable* var = scope()->parameter(i); |
+ if (var->IsContextSlot()) { |
+ Register value = x0; |
+ Register scratch = x3; |
+ |
+ int parameter_offset = StandardFrameConstants::kCallerSPOffset + |
+ (num_parameters - 1 - i) * kPointerSize; |
+ // Load parameter from stack. |
+ __ Ldr(value, MemOperand(fp, parameter_offset)); |
+ // Store it in the context. |
+ MemOperand target = ContextMemOperand(cp, var->index()); |
+ __ Str(value, target); |
+ // Update the write barrier. This clobbers value and scratch. |
+ __ RecordWriteContextSlot(cp, target.offset(), value, scratch, |
+ GetLinkRegisterState(), kSaveFPRegs); |
+ } |
+ } |
+ Comment(";;; End allocate local context"); |
+ } |
+ |
+ // Trace the call. |
+ if (FLAG_trace && info()->IsOptimizing()) { |
+ // We have not executed any compiled code yet, so cp still holds the |
+ // incoming context. |
+ __ CallRuntime(Runtime::kTraceEnter, 0); |
+ } |
+ |
+ return !is_aborted(); |
+} |
+ |
+ |
+void LCodeGen::GenerateOsrPrologue() { |
+ // Generate the OSR entry prologue at the first unknown OSR value, or if there |
+ // are none, at the OSR entrypoint instruction. |
+ if (osr_pc_offset_ >= 0) return; |
+ |
+ osr_pc_offset_ = masm()->pc_offset(); |
+ |
+ // Adjust the frame size, subsuming the unoptimized frame into the |
+ // optimized frame. |
+ int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots(); |
+ ASSERT(slots >= 0); |
+ __ Claim(slots); |
+} |
+ |
+ |
+bool LCodeGen::GenerateDeferredCode() { |
+ ASSERT(is_generating()); |
+ if (deferred_.length() > 0) { |
+ for (int i = 0; !is_aborted() && (i < deferred_.length()); i++) { |
+ LDeferredCode* code = deferred_[i]; |
+ |
+ HValue* value = |
+ instructions_->at(code->instruction_index())->hydrogen_value(); |
+ RecordAndWritePosition(value->position()); |
+ |
+ Comment(";;; <@%d,#%d> " |
+ "-------------------- Deferred %s --------------------", |
+ code->instruction_index(), |
+ code->instr()->hydrogen_value()->id(), |
+ code->instr()->Mnemonic()); |
+ |
+ __ Bind(code->entry()); |
+ |
+ if (NeedsDeferredFrame()) { |
+ Comment(";;; Build frame"); |
+ ASSERT(!frame_is_built_); |
+ ASSERT(info()->IsStub()); |
+ frame_is_built_ = true; |
+ __ Push(lr, fp, cp); |
+ __ Mov(fp, Operand(Smi::FromInt(StackFrame::STUB))); |
+ __ Push(fp); |
+ __ Add(fp, __ StackPointer(), |
+ StandardFrameConstants::kFixedFrameSizeFromFp); |
+ Comment(";;; Deferred code"); |
+ } |
+ |
+ code->Generate(); |
+ |
+ if (NeedsDeferredFrame()) { |
+ Comment(";;; Destroy frame"); |
+ ASSERT(frame_is_built_); |
+ __ Pop(xzr, cp, fp, lr); |
+ frame_is_built_ = false; |
+ } |
+ |
+ __ B(code->exit()); |
+ } |
+ } |
+ |
+ // Force constant pool emission at the end of the deferred code to make |
+ // sure that no constant pools are emitted after deferred code because |
+ // deferred code generation is the last step which generates code. The two |
+ // following steps will only output data used by crakshaft. |
+ masm()->CheckConstPool(true, false); |
+ |
+ return !is_aborted(); |
+} |
+ |
+ |
+bool LCodeGen::GenerateDeoptJumpTable() { |
+ if (deopt_jump_table_.length() > 0) { |
+ Comment(";;; -------------------- Jump table --------------------"); |
+ } |
+ Label table_start; |
+ __ bind(&table_start); |
+ Label needs_frame; |
+ for (int i = 0; i < deopt_jump_table_.length(); i++) { |
+ __ Bind(&deopt_jump_table_[i].label); |
+ Address entry = deopt_jump_table_[i].address; |
+ Deoptimizer::BailoutType type = deopt_jump_table_[i].bailout_type; |
+ int id = Deoptimizer::GetDeoptimizationId(isolate(), entry, type); |
+ if (id == Deoptimizer::kNotDeoptimizationEntry) { |
+ Comment(";;; jump table entry %d.", i); |
+ } else { |
+ Comment(";;; jump table entry %d: deoptimization bailout %d.", i, id); |
+ } |
+ if (deopt_jump_table_[i].needs_frame) { |
+ ASSERT(!info()->saves_caller_doubles()); |
+ __ Mov(__ Tmp0(), Operand(ExternalReference::ForDeoptEntry(entry))); |
+ if (needs_frame.is_bound()) { |
+ __ B(&needs_frame); |
+ } else { |
+ __ Bind(&needs_frame); |
+ // This variant of deopt can only be used with stubs. Since we don't |
+ // have a function pointer to install in the stack frame that we're |
+ // building, install a special marker there instead. |
+ // TODO(jochen): Revisit the use of TmpX(). |
+ ASSERT(info()->IsStub()); |
+ __ Mov(__ Tmp1(), Operand(Smi::FromInt(StackFrame::STUB))); |
+ __ Push(lr, fp, cp, __ Tmp1()); |
+ __ Add(fp, __ StackPointer(), 2 * kPointerSize); |
+ __ Call(__ Tmp0()); |
+ } |
+ } else { |
+ if (info()->saves_caller_doubles()) { |
+ ASSERT(info()->IsStub()); |
+ RestoreCallerDoubles(); |
+ } |
+ __ Call(entry, RelocInfo::RUNTIME_ENTRY); |
+ } |
+ masm()->CheckConstPool(false, false); |
+ } |
+ |
+ // Force constant pool emission at the end of the deopt jump table to make |
+ // sure that no constant pools are emitted after. |
+ masm()->CheckConstPool(true, false); |
+ |
+ // The deoptimization jump table is the last part of the instruction |
+ // sequence. Mark the generated code as done unless we bailed out. |
+ if (!is_aborted()) status_ = DONE; |
+ return !is_aborted(); |
+} |
+ |
+ |
+bool LCodeGen::GenerateSafepointTable() { |
+ ASSERT(is_done()); |
+ safepoints_.Emit(masm(), GetStackSlotCount()); |
+ return !is_aborted(); |
+} |
+ |
+ |
+void LCodeGen::FinishCode(Handle<Code> code) { |
+ ASSERT(is_done()); |
+ code->set_stack_slots(GetStackSlotCount()); |
+ code->set_safepoint_table_offset(safepoints_.GetCodeOffset()); |
+ RegisterDependentCodeForEmbeddedMaps(code); |
+ PopulateDeoptimizationData(code); |
+ info()->CommitDependencies(code); |
+} |
+ |
+ |
+void LCodeGen::Abort(BailoutReason reason) { |
+ info()->set_bailout_reason(reason); |
+ status_ = ABORTED; |
+} |
+ |
+ |
+void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) { |
+ int length = deoptimizations_.length(); |
+ if (length == 0) return; |
+ |
+ Handle<DeoptimizationInputData> data = |
+ factory()->NewDeoptimizationInputData(length, TENURED); |
+ |
+ Handle<ByteArray> translations = |
+ translations_.CreateByteArray(isolate()->factory()); |
+ data->SetTranslationByteArray(*translations); |
+ data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_)); |
+ |
+ Handle<FixedArray> literals = |
+ factory()->NewFixedArray(deoptimization_literals_.length(), TENURED); |
+ { AllowDeferredHandleDereference copy_handles; |
+ for (int i = 0; i < deoptimization_literals_.length(); i++) { |
+ literals->set(i, *deoptimization_literals_[i]); |
+ } |
+ data->SetLiteralArray(*literals); |
+ } |
+ |
+ data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt())); |
+ data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_)); |
+ |
+ // Populate the deoptimization entries. |
+ for (int i = 0; i < length; i++) { |
+ LEnvironment* env = deoptimizations_[i]; |
+ data->SetAstId(i, env->ast_id()); |
+ data->SetTranslationIndex(i, Smi::FromInt(env->translation_index())); |
+ data->SetArgumentsStackHeight(i, |
+ Smi::FromInt(env->arguments_stack_height())); |
+ data->SetPc(i, Smi::FromInt(env->pc_offset())); |
+ } |
+ |
+ code->set_deoptimization_data(*data); |
+} |
+ |
+ |
+void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() { |
+ ASSERT(deoptimization_literals_.length() == 0); |
+ |
+ const ZoneList<Handle<JSFunction> >* inlined_closures = |
+ chunk()->inlined_closures(); |
+ |
+ for (int i = 0, length = inlined_closures->length(); i < length; i++) { |
+ DefineDeoptimizationLiteral(inlined_closures->at(i)); |
+ } |
+ |
+ inlined_function_count_ = deoptimization_literals_.length(); |
+} |
+ |
+ |
+Deoptimizer::BailoutType LCodeGen::DeoptimizeHeader( |
+ LEnvironment* environment, |
+ Deoptimizer::BailoutType* override_bailout_type) { |
+ RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); |
+ ASSERT(environment->HasBeenRegistered()); |
+ ASSERT(info()->IsOptimizing() || info()->IsStub()); |
+ int id = environment->deoptimization_index(); |
+ Deoptimizer::BailoutType bailout_type = |
+ info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER; |
+ if (override_bailout_type) bailout_type = *override_bailout_type; |
+ Address entry = |
+ Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type); |
+ |
+ if (entry == NULL) { |
+ Abort(kBailoutWasNotPrepared); |
+ return bailout_type; |
+ } |
+ |
+ if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) { |
+ Label not_zero; |
+ ExternalReference count = ExternalReference::stress_deopt_count(isolate()); |
+ |
+ __ Push(x0, x1, x2); |
+ __ Mrs(x2, NZCV); |
+ __ Mov(x0, Operand(count)); |
+ __ Ldr(w1, MemOperand(x0)); |
+ __ Subs(x1, x1, 1); |
+ __ B(gt, ¬_zero); |
+ __ Mov(w1, FLAG_deopt_every_n_times); |
+ __ Str(w1, MemOperand(x0)); |
+ __ Pop(x0, x1, x2); |
+ ASSERT(frame_is_built_); |
+ __ Call(entry, RelocInfo::RUNTIME_ENTRY); |
+ __ Unreachable(); |
+ |
+ __ Bind(¬_zero); |
+ __ Str(w1, MemOperand(x0)); |
+ __ Msr(NZCV, x2); |
+ __ Pop(x0, x1, x2); |
+ } |
+ |
+ return bailout_type; |
+} |
+ |
+ |
+void LCodeGen::Deoptimize(LEnvironment* environment, |
+ Deoptimizer::BailoutType bailout_type) { |
+ ASSERT(environment->HasBeenRegistered()); |
+ ASSERT(info()->IsOptimizing() || info()->IsStub()); |
+ int id = environment->deoptimization_index(); |
+ Address entry = |
+ Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type); |
+ |
+ if (info()->ShouldTrapOnDeopt()) { |
+ __ Debug("trap_on_deopt", __LINE__, BREAK); |
+ } |
+ |
+ ASSERT(info()->IsStub() || frame_is_built_); |
+ // Go through jump table if we need to build frame, or restore caller doubles. |
+ if (frame_is_built_ && !info()->saves_caller_doubles()) { |
+ __ Call(entry, RelocInfo::RUNTIME_ENTRY); |
+ } else { |
+ // We often have several deopts to the same entry, reuse the last |
+ // jump entry if this is the case. |
+ if (deopt_jump_table_.is_empty() || |
+ (deopt_jump_table_.last().address != entry) || |
+ (deopt_jump_table_.last().bailout_type != bailout_type) || |
+ (deopt_jump_table_.last().needs_frame != !frame_is_built_)) { |
+ Deoptimizer::JumpTableEntry table_entry(entry, |
+ bailout_type, |
+ !frame_is_built_); |
+ deopt_jump_table_.Add(table_entry, zone()); |
+ } |
+ __ B(&deopt_jump_table_.last().label); |
+ } |
+} |
+ |
+ |
+void LCodeGen::Deoptimize(LEnvironment* environment) { |
+ Deoptimizer::BailoutType bailout_type = DeoptimizeHeader(environment, NULL); |
+ Deoptimize(environment, bailout_type); |
+} |
+ |
+ |
+void LCodeGen::DeoptimizeIf(Condition cond, LEnvironment* environment) { |
+ Label dont_deopt; |
+ Deoptimizer::BailoutType bailout_type = DeoptimizeHeader(environment, NULL); |
+ __ B(InvertCondition(cond), &dont_deopt); |
+ Deoptimize(environment, bailout_type); |
+ __ Bind(&dont_deopt); |
+} |
+ |
+ |
+void LCodeGen::DeoptimizeIfZero(Register rt, LEnvironment* environment) { |
+ Label dont_deopt; |
+ Deoptimizer::BailoutType bailout_type = DeoptimizeHeader(environment, NULL); |
+ __ Cbnz(rt, &dont_deopt); |
+ Deoptimize(environment, bailout_type); |
+ __ Bind(&dont_deopt); |
+} |
+ |
+ |
+void LCodeGen::DeoptimizeIfNegative(Register rt, LEnvironment* environment) { |
+ Label dont_deopt; |
+ Deoptimizer::BailoutType bailout_type = DeoptimizeHeader(environment, NULL); |
+ __ Tbz(rt, rt.Is64Bits() ? kXSignBit : kWSignBit, &dont_deopt); |
+ Deoptimize(environment, bailout_type); |
+ __ Bind(&dont_deopt); |
+} |
+ |
+ |
+void LCodeGen::DeoptimizeIfSmi(Register rt, |
+ LEnvironment* environment) { |
+ Label dont_deopt; |
+ Deoptimizer::BailoutType bailout_type = DeoptimizeHeader(environment, NULL); |
+ __ JumpIfNotSmi(rt, &dont_deopt); |
+ Deoptimize(environment, bailout_type); |
+ __ Bind(&dont_deopt); |
+} |
+ |
+ |
+void LCodeGen::DeoptimizeIfNotSmi(Register rt, LEnvironment* environment) { |
+ Label dont_deopt; |
+ Deoptimizer::BailoutType bailout_type = DeoptimizeHeader(environment, NULL); |
+ __ JumpIfSmi(rt, &dont_deopt); |
+ Deoptimize(environment, bailout_type); |
+ __ Bind(&dont_deopt); |
+} |
+ |
+ |
+void LCodeGen::DeoptimizeIfRoot(Register rt, |
+ Heap::RootListIndex index, |
+ LEnvironment* environment) { |
+ Label dont_deopt; |
+ Deoptimizer::BailoutType bailout_type = DeoptimizeHeader(environment, NULL); |
+ __ JumpIfNotRoot(rt, index, &dont_deopt); |
+ Deoptimize(environment, bailout_type); |
+ __ Bind(&dont_deopt); |
+} |
+ |
+ |
+void LCodeGen::DeoptimizeIfNotRoot(Register rt, |
+ Heap::RootListIndex index, |
+ LEnvironment* environment) { |
+ Label dont_deopt; |
+ Deoptimizer::BailoutType bailout_type = DeoptimizeHeader(environment, NULL); |
+ __ JumpIfRoot(rt, index, &dont_deopt); |
+ Deoptimize(environment, bailout_type); |
+ __ Bind(&dont_deopt); |
+} |
+ |
+ |
+void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) { |
+ if (!info()->IsStub()) { |
+ // Ensure that we have enough space after the previous lazy-bailout |
+ // instruction for patching the code here. |
+ intptr_t current_pc = masm()->pc_offset(); |
+ |
+ if (current_pc < (last_lazy_deopt_pc_ + space_needed)) { |
+ ptrdiff_t padding_size = last_lazy_deopt_pc_ + space_needed - current_pc; |
+ ASSERT((padding_size % kInstructionSize) == 0); |
+ InstructionAccurateScope instruction_accurate( |
+ masm(), padding_size / kInstructionSize); |
+ |
+ while (padding_size > 0) { |
+ __ nop(); |
+ padding_size -= kInstructionSize; |
+ } |
+ } |
+ } |
+ last_lazy_deopt_pc_ = masm()->pc_offset(); |
+} |
+ |
+ |
+Register LCodeGen::ToRegister(LOperand* op) const { |
+ // TODO(all): support zero register results, as ToRegister32. |
+ ASSERT((op != NULL) && op->IsRegister()); |
+ return Register::FromAllocationIndex(op->index()); |
+} |
+ |
+ |
+Register LCodeGen::ToRegister32(LOperand* op) const { |
+ ASSERT(op != NULL); |
+ if (op->IsConstantOperand()) { |
+ // If this is a constant operand, the result must be the zero register. |
+ ASSERT(ToInteger32(LConstantOperand::cast(op)) == 0); |
+ return wzr; |
+ } else { |
+ return ToRegister(op).W(); |
+ } |
+} |
+ |
+ |
+Smi* LCodeGen::ToSmi(LConstantOperand* op) const { |
+ HConstant* constant = chunk_->LookupConstant(op); |
+ return Smi::FromInt(constant->Integer32Value()); |
+} |
+ |
+ |
+DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const { |
+ ASSERT((op != NULL) && op->IsDoubleRegister()); |
+ return DoubleRegister::FromAllocationIndex(op->index()); |
+} |
+ |
+ |
+Operand LCodeGen::ToOperand(LOperand* op) { |
+ ASSERT(op != NULL); |
+ if (op->IsConstantOperand()) { |
+ LConstantOperand* const_op = LConstantOperand::cast(op); |
+ HConstant* constant = chunk()->LookupConstant(const_op); |
+ Representation r = chunk_->LookupLiteralRepresentation(const_op); |
+ if (r.IsSmi()) { |
+ ASSERT(constant->HasSmiValue()); |
+ return Operand(Smi::FromInt(constant->Integer32Value())); |
+ } else if (r.IsInteger32()) { |
+ ASSERT(constant->HasInteger32Value()); |
+ return Operand(constant->Integer32Value()); |
+ } else if (r.IsDouble()) { |
+ Abort(kToOperandUnsupportedDoubleImmediate); |
+ } |
+ ASSERT(r.IsTagged()); |
+ return Operand(constant->handle(isolate())); |
+ } else if (op->IsRegister()) { |
+ return Operand(ToRegister(op)); |
+ } else if (op->IsDoubleRegister()) { |
+ Abort(kToOperandIsDoubleRegisterUnimplemented); |
+ return Operand(0); |
+ } |
+ // Stack slots not implemented, use ToMemOperand instead. |
+ UNREACHABLE(); |
+ return Operand(0); |
+} |
+ |
+ |
+Operand LCodeGen::ToOperand32I(LOperand* op) { |
+ return ToOperand32(op, SIGNED_INT32); |
+} |
+ |
+ |
+Operand LCodeGen::ToOperand32U(LOperand* op) { |
+ return ToOperand32(op, UNSIGNED_INT32); |
+} |
+ |
+ |
+Operand LCodeGen::ToOperand32(LOperand* op, IntegerSignedness signedness) { |
+ ASSERT(op != NULL); |
+ if (op->IsRegister()) { |
+ return Operand(ToRegister32(op)); |
+ } else if (op->IsConstantOperand()) { |
+ LConstantOperand* const_op = LConstantOperand::cast(op); |
+ HConstant* constant = chunk()->LookupConstant(const_op); |
+ Representation r = chunk_->LookupLiteralRepresentation(const_op); |
+ if (r.IsInteger32()) { |
+ ASSERT(constant->HasInteger32Value()); |
+ return Operand(signedness == SIGNED_INT32 |
+ ? constant->Integer32Value() |
+ : static_cast<uint32_t>(constant->Integer32Value())); |
+ } else { |
+ // Other constants not implemented. |
+ Abort(kToOperand32UnsupportedImmediate); |
+ } |
+ } |
+ // Other cases are not implemented. |
+ UNREACHABLE(); |
+ return Operand(0); |
+} |
+ |
+ |
+static ptrdiff_t ArgumentsOffsetWithoutFrame(ptrdiff_t index) { |
+ ASSERT(index < 0); |
+ return -(index + 1) * kPointerSize; |
+} |
+ |
+ |
+MemOperand LCodeGen::ToMemOperand(LOperand* op) const { |
+ ASSERT(op != NULL); |
+ ASSERT(!op->IsRegister()); |
+ ASSERT(!op->IsDoubleRegister()); |
+ ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot()); |
+ if (NeedsEagerFrame()) { |
+ return MemOperand(fp, StackSlotOffset(op->index())); |
+ } else { |
+ // Retrieve parameter without eager stack-frame relative to the |
+ // stack-pointer. |
+ return MemOperand(masm()->StackPointer(), |
+ ArgumentsOffsetWithoutFrame(op->index())); |
+ } |
+} |
+ |
+ |
+Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const { |
+ HConstant* constant = chunk_->LookupConstant(op); |
+ ASSERT(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged()); |
+ return constant->handle(isolate()); |
+} |
+ |
+ |
+bool LCodeGen::IsSmi(LConstantOperand* op) const { |
+ return chunk_->LookupLiteralRepresentation(op).IsSmi(); |
+} |
+ |
+ |
+bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const { |
+ return op->IsConstantOperand() && |
+ chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32(); |
+} |
+ |
+ |
+int32_t LCodeGen::ToInteger32(LConstantOperand* op) const { |
+ HConstant* constant = chunk_->LookupConstant(op); |
+ return constant->Integer32Value(); |
+} |
+ |
+ |
+double LCodeGen::ToDouble(LConstantOperand* op) const { |
+ HConstant* constant = chunk_->LookupConstant(op); |
+ ASSERT(constant->HasDoubleValue()); |
+ return constant->DoubleValue(); |
+} |
+ |
+ |
+Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) { |
+ Condition cond = nv; |
+ switch (op) { |
+ case Token::EQ: |
+ case Token::EQ_STRICT: |
+ cond = eq; |
+ break; |
+ case Token::NE: |
+ case Token::NE_STRICT: |
+ cond = ne; |
+ break; |
+ case Token::LT: |
+ cond = is_unsigned ? lo : lt; |
+ break; |
+ case Token::GT: |
+ cond = is_unsigned ? hi : gt; |
+ break; |
+ case Token::LTE: |
+ cond = is_unsigned ? ls : le; |
+ break; |
+ case Token::GTE: |
+ cond = is_unsigned ? hs : ge; |
+ break; |
+ case Token::IN: |
+ case Token::INSTANCEOF: |
+ default: |
+ UNREACHABLE(); |
+ } |
+ return cond; |
+} |
+ |
+ |
+template<class InstrType> |
+void LCodeGen::EmitBranchGeneric(InstrType instr, |
+ const BranchGenerator& branch) { |
+ int left_block = instr->TrueDestination(chunk_); |
+ int right_block = instr->FalseDestination(chunk_); |
+ |
+ int next_block = GetNextEmittedBlock(); |
+ |
+ if (right_block == left_block) { |
+ EmitGoto(left_block); |
+ } else if (left_block == next_block) { |
+ branch.EmitInverted(chunk_->GetAssemblyLabel(right_block)); |
+ } else if (right_block == next_block) { |
+ branch.Emit(chunk_->GetAssemblyLabel(left_block)); |
+ } else { |
+ branch.Emit(chunk_->GetAssemblyLabel(left_block)); |
+ __ B(chunk_->GetAssemblyLabel(right_block)); |
+ } |
+} |
+ |
+ |
+template<class InstrType> |
+void LCodeGen::EmitBranch(InstrType instr, Condition condition) { |
+ ASSERT((condition != al) && (condition != nv)); |
+ BranchOnCondition branch(this, condition); |
+ EmitBranchGeneric(instr, branch); |
+} |
+ |
+ |
+template<class InstrType> |
+void LCodeGen::EmitCompareAndBranch(InstrType instr, |
+ Condition condition, |
+ const Register& lhs, |
+ const Operand& rhs) { |
+ ASSERT((condition != al) && (condition != nv)); |
+ CompareAndBranch branch(this, condition, lhs, rhs); |
+ EmitBranchGeneric(instr, branch); |
+} |
+ |
+ |
+template<class InstrType> |
+void LCodeGen::EmitTestAndBranch(InstrType instr, |
+ Condition condition, |
+ const Register& value, |
+ uint64_t mask) { |
+ ASSERT((condition != al) && (condition != nv)); |
+ TestAndBranch branch(this, condition, value, mask); |
+ EmitBranchGeneric(instr, branch); |
+} |
+ |
+ |
+template<class InstrType> |
+void LCodeGen::EmitBranchIfNonZeroNumber(InstrType instr, |
+ const FPRegister& value, |
+ const FPRegister& scratch) { |
+ BranchIfNonZeroNumber branch(this, value, scratch); |
+ EmitBranchGeneric(instr, branch); |
+} |
+ |
+ |
+template<class InstrType> |
+void LCodeGen::EmitBranchIfHeapNumber(InstrType instr, |
+ const Register& value) { |
+ BranchIfHeapNumber branch(this, value); |
+ EmitBranchGeneric(instr, branch); |
+} |
+ |
+ |
+template<class InstrType> |
+void LCodeGen::EmitBranchIfRoot(InstrType instr, |
+ const Register& value, |
+ Heap::RootListIndex index) { |
+ BranchIfRoot branch(this, value, index); |
+ EmitBranchGeneric(instr, branch); |
+} |
+ |
+ |
+void LCodeGen::DoGap(LGap* gap) { |
+ for (int i = LGap::FIRST_INNER_POSITION; |
+ i <= LGap::LAST_INNER_POSITION; |
+ i++) { |
+ LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i); |
+ LParallelMove* move = gap->GetParallelMove(inner_pos); |
+ if (move != NULL) { |
+ resolver_.Resolve(move); |
+ } |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) { |
+ // TODO(all): Try to improve this, like ARM r17925. |
+ Register arguments = ToRegister(instr->arguments()); |
+ Register result = ToRegister(instr->result()); |
+ |
+ if (instr->length()->IsConstantOperand() && |
+ instr->index()->IsConstantOperand()) { |
+ ASSERT(instr->temp() == NULL); |
+ int index = ToInteger32(LConstantOperand::cast(instr->index())); |
+ int length = ToInteger32(LConstantOperand::cast(instr->length())); |
+ int offset = ((length - index) + 1) * kPointerSize; |
+ __ Ldr(result, MemOperand(arguments, offset)); |
+ } else { |
+ ASSERT(instr->temp() != NULL); |
+ Register temp = ToRegister32(instr->temp()); |
+ Register length = ToRegister32(instr->length()); |
+ Operand index = ToOperand32I(instr->index()); |
+ // There are two words between the frame pointer and the last arguments. |
+ // Subtracting from length accounts for only one, so we add one more. |
+ __ Sub(temp, length, index); |
+ __ Add(temp, temp, 1); |
+ __ Ldr(result, MemOperand(arguments, temp, UXTW, kPointerSizeLog2)); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoAddE(LAddE* instr) { |
+ Register result = ToRegister(instr->result()); |
+ Register left = ToRegister(instr->left()); |
+ Operand right = (instr->right()->IsConstantOperand()) |
+ ? ToInteger32(LConstantOperand::cast(instr->right())) |
+ : Operand(ToRegister32(instr->right()), SXTW); |
+ |
+ ASSERT(!instr->hydrogen()->CheckFlag(HValue::kCanOverflow)); |
+ __ Add(result, left, right); |
+} |
+ |
+ |
+void LCodeGen::DoAddI(LAddI* instr) { |
+ bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); |
+ Register result = ToRegister32(instr->result()); |
+ Register left = ToRegister32(instr->left()); |
+ Operand right = ToOperand32I(instr->right()); |
+ if (can_overflow) { |
+ __ Adds(result, left, right); |
+ DeoptimizeIf(vs, instr->environment()); |
+ } else { |
+ __ Add(result, left, right); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoAddS(LAddS* instr) { |
+ bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); |
+ Register result = ToRegister(instr->result()); |
+ Register left = ToRegister(instr->left()); |
+ Operand right = ToOperand(instr->right()); |
+ if (can_overflow) { |
+ __ Adds(result, left, right); |
+ DeoptimizeIf(vs, instr->environment()); |
+ } else { |
+ __ Add(result, left, right); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoAllocate(LAllocate* instr) { |
+ class DeferredAllocate: public LDeferredCode { |
+ public: |
+ DeferredAllocate(LCodeGen* codegen, LAllocate* instr) |
+ : LDeferredCode(codegen), instr_(instr) { } |
+ virtual void Generate() { codegen()->DoDeferredAllocate(instr_); } |
+ virtual LInstruction* instr() { return instr_; } |
+ private: |
+ LAllocate* instr_; |
+ }; |
+ |
+ DeferredAllocate* deferred = new(zone()) DeferredAllocate(this, instr); |
+ |
+ Register result = ToRegister(instr->result()); |
+ Register temp1 = ToRegister(instr->temp1()); |
+ Register temp2 = ToRegister(instr->temp2()); |
+ |
+ // Allocate memory for the object. |
+ AllocationFlags flags = TAG_OBJECT; |
+ if (instr->hydrogen()->MustAllocateDoubleAligned()) { |
+ flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT); |
+ } |
+ |
+ if (instr->hydrogen()->IsOldPointerSpaceAllocation()) { |
+ ASSERT(!instr->hydrogen()->IsOldDataSpaceAllocation()); |
+ ASSERT(!instr->hydrogen()->IsNewSpaceAllocation()); |
+ flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_POINTER_SPACE); |
+ } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) { |
+ ASSERT(!instr->hydrogen()->IsNewSpaceAllocation()); |
+ flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_DATA_SPACE); |
+ } |
+ |
+ if (instr->size()->IsConstantOperand()) { |
+ int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); |
+ __ Allocate(size, result, temp1, temp2, deferred->entry(), flags); |
+ } else { |
+ Register size = ToRegister(instr->size()); |
+ __ Allocate(size, result, temp1, temp2, deferred->entry(), flags); |
+ } |
+ |
+ __ Bind(deferred->exit()); |
+ |
+ if (instr->hydrogen()->MustPrefillWithFiller()) { |
+ if (instr->size()->IsConstantOperand()) { |
+ int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); |
+ __ Mov(temp1, size - kPointerSize); |
+ } else { |
+ __ Sub(temp1, ToRegister(instr->size()), kPointerSize); |
+ } |
+ __ Sub(result, result, kHeapObjectTag); |
+ |
+ // TODO(jbramley): Optimize this loop using stp. |
+ Label loop; |
+ __ Bind(&loop); |
+ __ Mov(temp2, Operand(isolate()->factory()->one_pointer_filler_map())); |
+ __ Str(temp2, MemOperand(result, temp1)); |
+ __ Subs(temp1, temp1, kPointerSize); |
+ __ B(ge, &loop); |
+ |
+ __ Add(result, result, kHeapObjectTag); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoDeferredAllocate(LAllocate* instr) { |
+ // TODO(3095996): Get rid of this. For now, we need to make the |
+ // result register contain a valid pointer because it is already |
+ // contained in the register pointer map. |
+ __ Mov(ToRegister(instr->result()), Operand(Smi::FromInt(0))); |
+ |
+ PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); |
+ // We're in a SafepointRegistersScope so we can use any scratch registers. |
+ Register size = x0; |
+ if (instr->size()->IsConstantOperand()) { |
+ __ Mov(size, Operand(ToSmi(LConstantOperand::cast(instr->size())))); |
+ } else { |
+ __ SmiTag(size, ToRegister(instr->size())); |
+ } |
+ int flags = AllocateDoubleAlignFlag::encode( |
+ instr->hydrogen()->MustAllocateDoubleAligned()); |
+ if (instr->hydrogen()->IsOldPointerSpaceAllocation()) { |
+ ASSERT(!instr->hydrogen()->IsOldDataSpaceAllocation()); |
+ ASSERT(!instr->hydrogen()->IsNewSpaceAllocation()); |
+ flags = AllocateTargetSpace::update(flags, OLD_POINTER_SPACE); |
+ } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) { |
+ ASSERT(!instr->hydrogen()->IsNewSpaceAllocation()); |
+ flags = AllocateTargetSpace::update(flags, OLD_DATA_SPACE); |
+ } else { |
+ flags = AllocateTargetSpace::update(flags, NEW_SPACE); |
+ } |
+ __ Mov(x10, Operand(Smi::FromInt(flags))); |
+ __ Push(size, x10); |
+ |
+ CallRuntimeFromDeferred( |
+ Runtime::kAllocateInTargetSpace, 2, instr, instr->context()); |
+ __ StoreToSafepointRegisterSlot(x0, ToRegister(instr->result())); |
+} |
+ |
+ |
+void LCodeGen::DoApplyArguments(LApplyArguments* instr) { |
+ Register receiver = ToRegister(instr->receiver()); |
+ Register function = ToRegister(instr->function()); |
+ Register length = ToRegister(instr->length()); |
+ Register elements = ToRegister(instr->elements()); |
+ Register scratch = x5; |
+ ASSERT(receiver.Is(x0)); // Used for parameter count. |
+ ASSERT(function.Is(x1)); // Required by InvokeFunction. |
+ ASSERT(ToRegister(instr->result()).Is(x0)); |
+ ASSERT(instr->IsMarkedAsCall()); |
+ |
+ // Copy the arguments to this function possibly from the |
+ // adaptor frame below it. |
+ const uint32_t kArgumentsLimit = 1 * KB; |
+ __ Cmp(length, kArgumentsLimit); |
+ DeoptimizeIf(hi, instr->environment()); |
+ |
+ // Push the receiver and use the register to keep the original |
+ // number of arguments. |
+ __ Push(receiver); |
+ Register argc = receiver; |
+ receiver = NoReg; |
+ __ Mov(argc, length); |
+ // The arguments are at a one pointer size offset from elements. |
+ __ Add(elements, elements, 1 * kPointerSize); |
+ |
+ // Loop through the arguments pushing them onto the execution |
+ // stack. |
+ Label invoke, loop; |
+ // length is a small non-negative integer, due to the test above. |
+ __ Cbz(length, &invoke); |
+ __ Bind(&loop); |
+ __ Ldr(scratch, MemOperand(elements, length, LSL, kPointerSizeLog2)); |
+ __ Push(scratch); |
+ __ Subs(length, length, 1); |
+ __ B(ne, &loop); |
+ |
+ __ Bind(&invoke); |
+ ASSERT(instr->HasPointerMap()); |
+ LPointerMap* pointers = instr->pointer_map(); |
+ SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt); |
+ // The number of arguments is stored in argc (receiver) which is x0, as |
+ // expected by InvokeFunction. |
+ ParameterCount actual(argc); |
+ __ InvokeFunction(function, actual, CALL_FUNCTION, safepoint_generator); |
+} |
+ |
+ |
+void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) { |
+ Register result = ToRegister(instr->result()); |
+ |
+ if (instr->hydrogen()->from_inlined()) { |
+ // When we are inside an inlined function, the arguments are the last things |
+ // that have been pushed on the stack. Therefore the arguments array can be |
+ // accessed directly from jssp. |
+ // However in the normal case, it is accessed via fp but there are two words |
+ // on the stack between fp and the arguments (the saved lr and fp) and the |
+ // LAccessArgumentsAt implementation take that into account. |
+ // In the inlined case we need to subtract the size of 2 words to jssp to |
+ // get a pointer which will work well with LAccessArgumentsAt. |
+ ASSERT(masm()->StackPointer().Is(jssp)); |
+ __ Sub(result, jssp, 2 * kPointerSize); |
+ } else { |
+ ASSERT(instr->temp() != NULL); |
+ Register previous_fp = ToRegister(instr->temp()); |
+ |
+ __ Ldr(previous_fp, |
+ MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
+ __ Ldr(result, |
+ MemOperand(previous_fp, StandardFrameConstants::kContextOffset)); |
+ __ Cmp(result, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
+ __ Csel(result, fp, previous_fp, ne); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) { |
+ Register elements = ToRegister(instr->elements()); |
+ Register result = ToRegister(instr->result()); |
+ Label done; |
+ |
+ // If no arguments adaptor frame the number of arguments is fixed. |
+ __ Cmp(fp, elements); |
+ __ Mov(result, scope()->num_parameters()); |
+ __ B(eq, &done); |
+ |
+ // Arguments adaptor frame present. Get argument length from there. |
+ __ Ldr(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
+ __ Ldrsw(result, |
+ UntagSmiMemOperand(result, |
+ ArgumentsAdaptorFrameConstants::kLengthOffset)); |
+ |
+ // Argument length is in result register. |
+ __ Bind(&done); |
+} |
+ |
+ |
+void LCodeGen::DoArithmeticD(LArithmeticD* instr) { |
+ DoubleRegister left = ToDoubleRegister(instr->left()); |
+ DoubleRegister right = ToDoubleRegister(instr->right()); |
+ DoubleRegister result = ToDoubleRegister(instr->result()); |
+ |
+ switch (instr->op()) { |
+ case Token::ADD: __ Fadd(result, left, right); break; |
+ case Token::SUB: __ Fsub(result, left, right); break; |
+ case Token::MUL: __ Fmul(result, left, right); break; |
+ case Token::DIV: __ Fdiv(result, left, right); break; |
+ case Token::MOD: { |
+ // The ECMA-262 remainder operator is the remainder from a truncating |
+ // (round-towards-zero) division. Note that this differs from IEEE-754. |
+ // |
+ // TODO(jbramley): See if it's possible to do this inline, rather than by |
+ // calling a helper function. With frintz (to produce the intermediate |
+ // quotient) and fmsub (to calculate the remainder without loss of |
+ // precision), it should be possible. However, we would need support for |
+ // fdiv in round-towards-zero mode, and the A64 simulator doesn't support |
+ // that yet. |
+ ASSERT(left.Is(d0)); |
+ ASSERT(right.Is(d1)); |
+ __ CallCFunction( |
+ ExternalReference::mod_two_doubles_operation(isolate()), |
+ 0, 2); |
+ ASSERT(result.Is(d0)); |
+ break; |
+ } |
+ default: |
+ UNREACHABLE(); |
+ break; |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoArithmeticT(LArithmeticT* instr) { |
+ ASSERT(ToRegister(instr->context()).is(cp)); |
+ ASSERT(ToRegister(instr->left()).is(x1)); |
+ ASSERT(ToRegister(instr->right()).is(x0)); |
+ ASSERT(ToRegister(instr->result()).is(x0)); |
+ |
+ BinaryOpICStub stub(instr->op(), NO_OVERWRITE); |
+ CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); |
+} |
+ |
+ |
+void LCodeGen::DoBitI(LBitI* instr) { |
+ Register result = ToRegister32(instr->result()); |
+ Register left = ToRegister32(instr->left()); |
+ Operand right = ToOperand32U(instr->right()); |
+ |
+ switch (instr->op()) { |
+ case Token::BIT_AND: __ And(result, left, right); break; |
+ case Token::BIT_OR: __ Orr(result, left, right); break; |
+ case Token::BIT_XOR: __ Eor(result, left, right); break; |
+ default: |
+ UNREACHABLE(); |
+ break; |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoBitS(LBitS* instr) { |
+ Register result = ToRegister(instr->result()); |
+ Register left = ToRegister(instr->left()); |
+ Operand right = ToOperand(instr->right()); |
+ |
+ switch (instr->op()) { |
+ case Token::BIT_AND: __ And(result, left, right); break; |
+ case Token::BIT_OR: __ Orr(result, left, right); break; |
+ case Token::BIT_XOR: __ Eor(result, left, right); break; |
+ default: |
+ UNREACHABLE(); |
+ break; |
+ } |
+} |
+ |
+ |
+void LCodeGen::ApplyCheckIf(Condition cc, LBoundsCheck* check) { |
+ if (FLAG_debug_code && check->hydrogen()->skip_check()) { |
+ __ Assert(InvertCondition(cc), kEliminatedBoundsCheckFailed); |
+ } else { |
+ DeoptimizeIf(cc, check->environment()); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoBoundsCheck(LBoundsCheck *instr) { |
+ if (instr->hydrogen()->skip_check()) return; |
+ |
+ Register length = ToRegister(instr->length()); |
+ |
+ if (instr->index()->IsConstantOperand()) { |
+ int constant_index = |
+ ToInteger32(LConstantOperand::cast(instr->index())); |
+ |
+ if (instr->hydrogen()->length()->representation().IsSmi()) { |
+ __ Cmp(length, Operand(Smi::FromInt(constant_index))); |
+ } else { |
+ __ Cmp(length, Operand(constant_index)); |
+ } |
+ } else { |
+ __ Cmp(length, ToRegister(instr->index())); |
+ } |
+ Condition condition = instr->hydrogen()->allow_equality() ? lo : ls; |
+ ApplyCheckIf(condition, instr); |
+} |
+ |
+ |
+void LCodeGen::DoBranch(LBranch* instr) { |
+ Representation r = instr->hydrogen()->value()->representation(); |
+ Label* true_label = instr->TrueLabel(chunk_); |
+ Label* false_label = instr->FalseLabel(chunk_); |
+ |
+ if (r.IsInteger32()) { |
+ ASSERT(!info()->IsStub()); |
+ EmitCompareAndBranch(instr, ne, ToRegister32(instr->value()), 0); |
+ } else if (r.IsSmi()) { |
+ ASSERT(!info()->IsStub()); |
+ STATIC_ASSERT(kSmiTag == 0); |
+ EmitCompareAndBranch(instr, ne, ToRegister(instr->value()), 0); |
+ } else if (r.IsDouble()) { |
+ DoubleRegister value = ToDoubleRegister(instr->value()); |
+ // Test the double value. Zero and NaN are false. |
+ EmitBranchIfNonZeroNumber(instr, value, double_scratch()); |
+ } else { |
+ ASSERT(r.IsTagged()); |
+ Register value = ToRegister(instr->value()); |
+ HType type = instr->hydrogen()->value()->type(); |
+ |
+ if (type.IsBoolean()) { |
+ ASSERT(!info()->IsStub()); |
+ __ CompareRoot(value, Heap::kTrueValueRootIndex); |
+ EmitBranch(instr, eq); |
+ } else if (type.IsSmi()) { |
+ ASSERT(!info()->IsStub()); |
+ EmitCompareAndBranch(instr, ne, value, Operand(Smi::FromInt(0))); |
+ } else if (type.IsJSArray()) { |
+ ASSERT(!info()->IsStub()); |
+ EmitGoto(instr->TrueDestination(chunk())); |
+ } else if (type.IsHeapNumber()) { |
+ ASSERT(!info()->IsStub()); |
+ __ Ldr(double_scratch(), FieldMemOperand(value, |
+ HeapNumber::kValueOffset)); |
+ // Test the double value. Zero and NaN are false. |
+ EmitBranchIfNonZeroNumber(instr, double_scratch(), double_scratch()); |
+ } else if (type.IsString()) { |
+ ASSERT(!info()->IsStub()); |
+ Register temp = ToRegister(instr->temp1()); |
+ __ Ldr(temp, FieldMemOperand(value, String::kLengthOffset)); |
+ EmitCompareAndBranch(instr, ne, temp, 0); |
+ } else { |
+ ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types(); |
+ // Avoid deopts in the case where we've never executed this path before. |
+ if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic(); |
+ |
+ if (expected.Contains(ToBooleanStub::UNDEFINED)) { |
+ // undefined -> false. |
+ __ JumpIfRoot( |
+ value, Heap::kUndefinedValueRootIndex, false_label); |
+ } |
+ |
+ if (expected.Contains(ToBooleanStub::BOOLEAN)) { |
+ // Boolean -> its value. |
+ __ JumpIfRoot( |
+ value, Heap::kTrueValueRootIndex, true_label); |
+ __ JumpIfRoot( |
+ value, Heap::kFalseValueRootIndex, false_label); |
+ } |
+ |
+ if (expected.Contains(ToBooleanStub::NULL_TYPE)) { |
+ // 'null' -> false. |
+ __ JumpIfRoot( |
+ value, Heap::kNullValueRootIndex, false_label); |
+ } |
+ |
+ if (expected.Contains(ToBooleanStub::SMI)) { |
+ // Smis: 0 -> false, all other -> true. |
+ ASSERT(Smi::FromInt(0) == 0); |
+ __ Cbz(value, false_label); |
+ __ JumpIfSmi(value, true_label); |
+ } else if (expected.NeedsMap()) { |
+ // If we need a map later and have a smi, deopt. |
+ DeoptimizeIfSmi(value, instr->environment()); |
+ } |
+ |
+ Register map = NoReg; |
+ Register scratch = NoReg; |
+ |
+ if (expected.NeedsMap()) { |
+ ASSERT((instr->temp1() != NULL) && (instr->temp2() != NULL)); |
+ map = ToRegister(instr->temp1()); |
+ scratch = ToRegister(instr->temp2()); |
+ |
+ __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset)); |
+ |
+ if (expected.CanBeUndetectable()) { |
+ // Undetectable -> false. |
+ __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset)); |
+ __ TestAndBranchIfAnySet( |
+ scratch, 1 << Map::kIsUndetectable, false_label); |
+ } |
+ } |
+ |
+ if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) { |
+ // spec object -> true. |
+ __ CompareInstanceType(map, scratch, FIRST_SPEC_OBJECT_TYPE); |
+ __ B(ge, true_label); |
+ } |
+ |
+ if (expected.Contains(ToBooleanStub::STRING)) { |
+ // String value -> false iff empty. |
+ Label not_string; |
+ __ CompareInstanceType(map, scratch, FIRST_NONSTRING_TYPE); |
+ __ B(ge, ¬_string); |
+ __ Ldr(scratch, FieldMemOperand(value, String::kLengthOffset)); |
+ __ Cbz(scratch, false_label); |
+ __ B(true_label); |
+ __ Bind(¬_string); |
+ } |
+ |
+ if (expected.Contains(ToBooleanStub::SYMBOL)) { |
+ // Symbol value -> true. |
+ __ CompareInstanceType(map, scratch, SYMBOL_TYPE); |
+ __ B(eq, true_label); |
+ } |
+ |
+ if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) { |
+ Label not_heap_number; |
+ __ JumpIfNotRoot(map, Heap::kHeapNumberMapRootIndex, ¬_heap_number); |
+ |
+ __ Ldr(double_scratch(), |
+ FieldMemOperand(value, HeapNumber::kValueOffset)); |
+ __ Fcmp(double_scratch(), 0.0); |
+ // If we got a NaN (overflow bit is set), jump to the false branch. |
+ __ B(vs, false_label); |
+ __ B(eq, false_label); |
+ __ B(true_label); |
+ __ Bind(¬_heap_number); |
+ } |
+ |
+ if (!expected.IsGeneric()) { |
+ // We've seen something for the first time -> deopt. |
+ // This can only happen if we are not generic already. |
+ Deoptimize(instr->environment()); |
+ } |
+ } |
+ } |
+} |
+ |
+ |
+void LCodeGen::CallKnownFunction(Handle<JSFunction> function, |
+ int formal_parameter_count, |
+ int arity, |
+ LInstruction* instr, |
+ Register function_reg) { |
+ bool dont_adapt_arguments = |
+ formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel; |
+ bool can_invoke_directly = |
+ dont_adapt_arguments || formal_parameter_count == arity; |
+ |
+ // The function interface relies on the following register assignments. |
+ ASSERT(function_reg.Is(x1) || function_reg.IsNone()); |
+ Register arity_reg = x0; |
+ |
+ LPointerMap* pointers = instr->pointer_map(); |
+ |
+ // If necessary, load the function object. |
+ if (function_reg.IsNone()) { |
+ function_reg = x1; |
+ __ LoadObject(function_reg, function); |
+ } |
+ |
+ if (FLAG_debug_code) { |
+ Label is_not_smi; |
+ // Try to confirm that function_reg (x1) is a tagged pointer. |
+ __ JumpIfNotSmi(function_reg, &is_not_smi); |
+ __ Abort(kExpectedFunctionObject); |
+ __ Bind(&is_not_smi); |
+ } |
+ |
+ if (can_invoke_directly) { |
+ // Change context. |
+ __ Ldr(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset)); |
+ |
+ // Set the arguments count if adaption is not needed. Assumes that x0 is |
+ // available to write to at this point. |
+ if (dont_adapt_arguments) { |
+ __ Mov(arity_reg, arity); |
+ } |
+ |
+ // Invoke function. |
+ __ Ldr(x10, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset)); |
+ __ Call(x10); |
+ |
+ // Set up deoptimization. |
+ RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); |
+ } else { |
+ SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); |
+ ParameterCount count(arity); |
+ ParameterCount expected(formal_parameter_count); |
+ __ InvokeFunction(function_reg, expected, count, CALL_FUNCTION, generator); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) { |
+ ASSERT(instr->IsMarkedAsCall()); |
+ ASSERT(ToRegister(instr->result()).Is(x0)); |
+ |
+ LPointerMap* pointers = instr->pointer_map(); |
+ SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); |
+ |
+ if (instr->target()->IsConstantOperand()) { |
+ LConstantOperand* target = LConstantOperand::cast(instr->target()); |
+ Handle<Code> code = Handle<Code>::cast(ToHandle(target)); |
+ generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET)); |
+ // TODO(all): on ARM we use a call descriptor to specify a storage mode |
+ // but on A64 we only have one storage mode so it isn't necessary. Check |
+ // this understanding is correct. |
+ __ Call(code, RelocInfo::CODE_TARGET, TypeFeedbackId::None()); |
+ } else { |
+ ASSERT(instr->target()->IsRegister()); |
+ Register target = ToRegister(instr->target()); |
+ generator.BeforeCall(__ CallSize(target)); |
+ __ Add(target, target, Code::kHeaderSize - kHeapObjectTag); |
+ __ Call(target); |
+ } |
+ generator.AfterCall(); |
+} |
+ |
+ |
+void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) { |
+ ASSERT(instr->IsMarkedAsCall()); |
+ ASSERT(ToRegister(instr->function()).is(x1)); |
+ |
+ if (instr->hydrogen()->pass_argument_count()) { |
+ __ Mov(x0, Operand(instr->arity())); |
+ } |
+ |
+ // Change context. |
+ __ Ldr(cp, FieldMemOperand(x1, JSFunction::kContextOffset)); |
+ |
+ // Load the code entry address |
+ __ Ldr(x10, FieldMemOperand(x1, JSFunction::kCodeEntryOffset)); |
+ __ Call(x10); |
+ |
+ RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); |
+} |
+ |
+ |
+void LCodeGen::DoCallRuntime(LCallRuntime* instr) { |
+ CallRuntime(instr->function(), instr->arity(), instr); |
+} |
+ |
+ |
+void LCodeGen::DoCallStub(LCallStub* instr) { |
+ ASSERT(ToRegister(instr->context()).is(cp)); |
+ ASSERT(ToRegister(instr->result()).is(x0)); |
+ switch (instr->hydrogen()->major_key()) { |
+ case CodeStub::RegExpExec: { |
+ RegExpExecStub stub; |
+ CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); |
+ break; |
+ } |
+ case CodeStub::SubString: { |
+ SubStringStub stub; |
+ CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); |
+ break; |
+ } |
+ case CodeStub::StringCompare: { |
+ StringCompareStub stub; |
+ CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); |
+ break; |
+ } |
+ default: |
+ UNREACHABLE(); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) { |
+ GenerateOsrPrologue(); |
+} |
+ |
+ |
+void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) { |
+ Register temp = ToRegister(instr->temp()); |
+ { |
+ PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); |
+ __ Push(object); |
+ __ Mov(cp, 0); |
+ __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance); |
+ RecordSafepointWithRegisters( |
+ instr->pointer_map(), 1, Safepoint::kNoLazyDeopt); |
+ __ StoreToSafepointRegisterSlot(x0, temp); |
+ } |
+ DeoptimizeIfSmi(temp, instr->environment()); |
+} |
+ |
+ |
+void LCodeGen::DoCheckMaps(LCheckMaps* instr) { |
+ class DeferredCheckMaps: public LDeferredCode { |
+ public: |
+ DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object) |
+ : LDeferredCode(codegen), instr_(instr), object_(object) { |
+ SetExit(check_maps()); |
+ } |
+ virtual void Generate() { |
+ codegen()->DoDeferredInstanceMigration(instr_, object_); |
+ } |
+ Label* check_maps() { return &check_maps_; } |
+ virtual LInstruction* instr() { return instr_; } |
+ private: |
+ LCheckMaps* instr_; |
+ Label check_maps_; |
+ Register object_; |
+ }; |
+ |
+ if (instr->hydrogen()->CanOmitMapChecks()) { |
+ ASSERT(instr->value() == NULL); |
+ ASSERT(instr->temp() == NULL); |
+ return; |
+ } |
+ |
+ Register object = ToRegister(instr->value()); |
+ Register map_reg = ToRegister(instr->temp()); |
+ |
+ __ Ldr(map_reg, FieldMemOperand(object, HeapObject::kMapOffset)); |
+ |
+ DeferredCheckMaps* deferred = NULL; |
+ if (instr->hydrogen()->has_migration_target()) { |
+ deferred = new(zone()) DeferredCheckMaps(this, instr, object); |
+ __ Bind(deferred->check_maps()); |
+ } |
+ |
+ UniqueSet<Map> map_set = instr->hydrogen()->map_set(); |
+ Label success; |
+ for (int i = 0; i < map_set.size(); i++) { |
+ Handle<Map> map = map_set.at(i).handle(); |
+ __ CompareMap(map_reg, map, &success); |
+ __ B(eq, &success); |
+ } |
+ |
+ // We didn't match a map. |
+ if (instr->hydrogen()->has_migration_target()) { |
+ __ B(deferred->entry()); |
+ } else { |
+ Deoptimize(instr->environment()); |
+ } |
+ |
+ __ Bind(&success); |
+} |
+ |
+ |
+void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) { |
+ if (!instr->hydrogen()->value()->IsHeapObject()) { |
+ // TODO(all): Depending of how we chose to implement the deopt, if we could |
+ // guarantee that we have a deopt handler reachable by a tbz instruction, |
+ // we could use tbz here and produce less code to support this instruction. |
+ DeoptimizeIfSmi(ToRegister(instr->value()), instr->environment()); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoCheckSmi(LCheckSmi* instr) { |
+ Register value = ToRegister(instr->value()); |
+ ASSERT(!instr->result() || ToRegister(instr->result()).Is(value)); |
+ // TODO(all): See DoCheckNonSmi for comments on use of tbz. |
+ DeoptimizeIfNotSmi(value, instr->environment()); |
+} |
+ |
+ |
+void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) { |
+ Register input = ToRegister(instr->value()); |
+ Register scratch = ToRegister(instr->temp()); |
+ |
+ __ Ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); |
+ __ Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); |
+ |
+ if (instr->hydrogen()->is_interval_check()) { |
+ InstanceType first, last; |
+ instr->hydrogen()->GetCheckInterval(&first, &last); |
+ |
+ __ Cmp(scratch, first); |
+ if (first == last) { |
+ // If there is only one type in the interval check for equality. |
+ DeoptimizeIf(ne, instr->environment()); |
+ } else if (last == LAST_TYPE) { |
+ // We don't need to compare with the higher bound of the interval. |
+ DeoptimizeIf(lo, instr->environment()); |
+ } else { |
+ // If we are below the lower bound, set the C flag and clear the Z flag |
+ // to force a deopt. |
+ __ Ccmp(scratch, last, CFlag, hs); |
+ DeoptimizeIf(hi, instr->environment()); |
+ } |
+ } else { |
+ uint8_t mask; |
+ uint8_t tag; |
+ instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag); |
+ |
+ if (IsPowerOf2(mask)) { |
+ ASSERT((tag == 0) || (tag == mask)); |
+ // TODO(all): We might be able to use tbz/tbnz if we can guarantee that |
+ // the deopt handler is reachable by a tbz instruction. |
+ __ Tst(scratch, mask); |
+ DeoptimizeIf(tag == 0 ? ne : eq, instr->environment()); |
+ } else { |
+ if (tag == 0) { |
+ __ Tst(scratch, mask); |
+ } else { |
+ __ And(scratch, scratch, mask); |
+ __ Cmp(scratch, tag); |
+ } |
+ DeoptimizeIf(ne, instr->environment()); |
+ } |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) { |
+ DoubleRegister input = ToDoubleRegister(instr->unclamped()); |
+ Register result = ToRegister(instr->result()); |
+ __ ClampDoubleToUint8(result, input, double_scratch()); |
+} |
+ |
+ |
+void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) { |
+ Register input = ToRegister32(instr->unclamped()); |
+ Register result = ToRegister32(instr->result()); |
+ __ ClampInt32ToUint8(result, input); |
+} |
+ |
+ |
+void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) { |
+ Register input = ToRegister(instr->unclamped()); |
+ Register result = ToRegister(instr->result()); |
+ Register scratch = ToRegister(instr->temp1()); |
+ Label done; |
+ |
+ // Both smi and heap number cases are handled. |
+ Label is_not_smi; |
+ __ JumpIfNotSmi(input, &is_not_smi); |
+ __ SmiUntag(result, input); |
+ __ ClampInt32ToUint8(result); |
+ __ B(&done); |
+ |
+ __ Bind(&is_not_smi); |
+ |
+ // Check for heap number. |
+ Label is_heap_number; |
+ __ Ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); |
+ __ JumpIfRoot(scratch, Heap::kHeapNumberMapRootIndex, &is_heap_number); |
+ |
+ // Check for undefined. Undefined is coverted to zero for clamping conversion. |
+ DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, |
+ instr->environment()); |
+ __ Mov(result, 0); |
+ __ B(&done); |
+ |
+ // Heap number case. |
+ __ Bind(&is_heap_number); |
+ DoubleRegister dbl_scratch = double_scratch(); |
+ DoubleRegister dbl_scratch2 = ToDoubleRegister(instr->temp2()); |
+ __ Ldr(dbl_scratch, FieldMemOperand(input, HeapNumber::kValueOffset)); |
+ __ ClampDoubleToUint8(result, dbl_scratch, dbl_scratch2); |
+ |
+ __ Bind(&done); |
+} |
+ |
+ |
+void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) { |
+ Handle<String> class_name = instr->hydrogen()->class_name(); |
+ Label* true_label = instr->TrueLabel(chunk_); |
+ Label* false_label = instr->FalseLabel(chunk_); |
+ Register input = ToRegister(instr->value()); |
+ Register scratch1 = ToRegister(instr->temp1()); |
+ Register scratch2 = ToRegister(instr->temp2()); |
+ |
+ __ JumpIfSmi(input, false_label); |
+ |
+ Register map = scratch2; |
+ if (class_name->IsUtf8EqualTo(CStrVector("Function"))) { |
+ // Assuming the following assertions, we can use the same compares to test |
+ // for both being a function type and being in the object type range. |
+ STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); |
+ STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE == |
+ FIRST_SPEC_OBJECT_TYPE + 1); |
+ STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == |
+ LAST_SPEC_OBJECT_TYPE - 1); |
+ STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); |
+ |
+ // We expect CompareObjectType to load the object instance type in scratch1. |
+ __ CompareObjectType(input, map, scratch1, FIRST_SPEC_OBJECT_TYPE); |
+ __ B(lt, false_label); |
+ __ B(eq, true_label); |
+ __ Cmp(scratch1, LAST_SPEC_OBJECT_TYPE); |
+ __ B(eq, true_label); |
+ } else { |
+ __ IsObjectJSObjectType(input, map, scratch1, false_label); |
+ } |
+ |
+ // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range. |
+ // Check if the constructor in the map is a function. |
+ __ Ldr(scratch1, FieldMemOperand(map, Map::kConstructorOffset)); |
+ |
+ // Objects with a non-function constructor have class 'Object'. |
+ if (class_name->IsUtf8EqualTo(CStrVector("Object"))) { |
+ __ JumpIfNotObjectType( |
+ scratch1, scratch2, scratch2, JS_FUNCTION_TYPE, true_label); |
+ } else { |
+ __ JumpIfNotObjectType( |
+ scratch1, scratch2, scratch2, JS_FUNCTION_TYPE, false_label); |
+ } |
+ |
+ // The constructor function is in scratch1. Get its instance class name. |
+ __ Ldr(scratch1, |
+ FieldMemOperand(scratch1, JSFunction::kSharedFunctionInfoOffset)); |
+ __ Ldr(scratch1, |
+ FieldMemOperand(scratch1, |
+ SharedFunctionInfo::kInstanceClassNameOffset)); |
+ |
+ // The class name we are testing against is internalized since it's a literal. |
+ // The name in the constructor is internalized because of the way the context |
+ // is booted. This routine isn't expected to work for random API-created |
+ // classes and it doesn't have to because you can't access it with natives |
+ // syntax. Since both sides are internalized it is sufficient to use an |
+ // identity comparison. |
+ EmitCompareAndBranch(instr, eq, scratch1, Operand(class_name)); |
+} |
+ |
+ |
+void LCodeGen::DoCmpHoleAndBranchD(LCmpHoleAndBranchD* instr) { |
+ ASSERT(instr->hydrogen()->representation().IsDouble()); |
+ FPRegister object = ToDoubleRegister(instr->object()); |
+ Register temp = ToRegister(instr->temp()); |
+ |
+ // If we don't have a NaN, we don't have the hole, so branch now to avoid the |
+ // (relatively expensive) hole-NaN check. |
+ __ Fcmp(object, object); |
+ __ B(vc, instr->FalseLabel(chunk_)); |
+ |
+ // We have a NaN, but is it the hole? |
+ __ Fmov(temp, object); |
+ EmitCompareAndBranch(instr, eq, temp, kHoleNanInt64); |
+} |
+ |
+ |
+void LCodeGen::DoCmpHoleAndBranchT(LCmpHoleAndBranchT* instr) { |
+ ASSERT(instr->hydrogen()->representation().IsTagged()); |
+ Register object = ToRegister(instr->object()); |
+ |
+ EmitBranchIfRoot(instr, object, Heap::kTheHoleValueRootIndex); |
+} |
+ |
+ |
+void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) { |
+ Register value = ToRegister(instr->value()); |
+ Register map = ToRegister(instr->temp()); |
+ |
+ __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset)); |
+ EmitCompareAndBranch(instr, eq, map, Operand(instr->map())); |
+} |
+ |
+ |
+void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) { |
+ Representation rep = instr->hydrogen()->value()->representation(); |
+ ASSERT(!rep.IsInteger32()); |
+ Register scratch = ToRegister(instr->temp()); |
+ |
+ if (rep.IsDouble()) { |
+ __ JumpIfMinusZero(ToDoubleRegister(instr->value()), |
+ instr->TrueLabel(chunk())); |
+ } else { |
+ Register value = ToRegister(instr->value()); |
+ __ CheckMap(value, scratch, Heap::kHeapNumberMapRootIndex, |
+ instr->FalseLabel(chunk()), DO_SMI_CHECK); |
+ __ Ldr(double_scratch(), FieldMemOperand(value, HeapNumber::kValueOffset)); |
+ __ JumpIfMinusZero(double_scratch(), instr->TrueLabel(chunk())); |
+ } |
+ EmitGoto(instr->FalseDestination(chunk())); |
+} |
+ |
+ |
+void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) { |
+ LOperand* left = instr->left(); |
+ LOperand* right = instr->right(); |
+ Condition cond = TokenToCondition(instr->op(), false); |
+ |
+ if (left->IsConstantOperand() && right->IsConstantOperand()) { |
+ // We can statically evaluate the comparison. |
+ double left_val = ToDouble(LConstantOperand::cast(left)); |
+ double right_val = ToDouble(LConstantOperand::cast(right)); |
+ int next_block = EvalComparison(instr->op(), left_val, right_val) ? |
+ instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_); |
+ EmitGoto(next_block); |
+ } else { |
+ if (instr->is_double()) { |
+ if (right->IsConstantOperand()) { |
+ __ Fcmp(ToDoubleRegister(left), |
+ ToDouble(LConstantOperand::cast(right))); |
+ } else if (left->IsConstantOperand()) { |
+ // Transpose the operands and reverse the condition. |
+ __ Fcmp(ToDoubleRegister(right), |
+ ToDouble(LConstantOperand::cast(left))); |
+ cond = ReverseConditionForCmp(cond); |
+ } else { |
+ __ Fcmp(ToDoubleRegister(left), ToDoubleRegister(right)); |
+ } |
+ |
+ // If a NaN is involved, i.e. the result is unordered (V set), |
+ // jump to false block label. |
+ __ B(vs, instr->FalseLabel(chunk_)); |
+ EmitBranch(instr, cond); |
+ } else { |
+ if (instr->hydrogen_value()->representation().IsInteger32()) { |
+ if (right->IsConstantOperand()) { |
+ EmitCompareAndBranch(instr, |
+ cond, |
+ ToRegister32(left), |
+ ToOperand32I(right)); |
+ } else { |
+ // Transpose the operands and reverse the condition. |
+ EmitCompareAndBranch(instr, |
+ ReverseConditionForCmp(cond), |
+ ToRegister32(right), |
+ ToOperand32I(left)); |
+ } |
+ } else { |
+ ASSERT(instr->hydrogen_value()->representation().IsSmi()); |
+ if (right->IsConstantOperand()) { |
+ int32_t value = ToInteger32(LConstantOperand::cast(right)); |
+ EmitCompareAndBranch(instr, |
+ cond, |
+ ToRegister(left), |
+ Operand(Smi::FromInt(value))); |
+ } else if (left->IsConstantOperand()) { |
+ // Transpose the operands and reverse the condition. |
+ int32_t value = ToInteger32(LConstantOperand::cast(left)); |
+ EmitCompareAndBranch(instr, |
+ ReverseConditionForCmp(cond), |
+ ToRegister(right), |
+ Operand(Smi::FromInt(value))); |
+ } else { |
+ EmitCompareAndBranch(instr, |
+ cond, |
+ ToRegister(left), |
+ ToRegister(right)); |
+ } |
+ } |
+ } |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) { |
+ Register left = ToRegister(instr->left()); |
+ Register right = ToRegister(instr->right()); |
+ EmitCompareAndBranch(instr, eq, left, right); |
+} |
+ |
+ |
+void LCodeGen::DoCmpT(LCmpT* instr) { |
+ ASSERT(ToRegister(instr->context()).is(cp)); |
+ Token::Value op = instr->op(); |
+ Condition cond = TokenToCondition(op, false); |
+ |
+ ASSERT(ToRegister(instr->left()).Is(x1)); |
+ ASSERT(ToRegister(instr->right()).Is(x0)); |
+ Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op); |
+ CallCode(ic, RelocInfo::CODE_TARGET, instr); |
+ // Signal that we don't inline smi code before this stub. |
+ InlineSmiCheckInfo::EmitNotInlined(masm()); |
+ |
+ // Return true or false depending on CompareIC result. |
+ // This instruction is marked as call. We can clobber any register. |
+ ASSERT(instr->IsMarkedAsCall()); |
+ __ LoadTrueFalseRoots(x1, x2); |
+ __ Cmp(x0, 0); |
+ __ Csel(ToRegister(instr->result()), x1, x2, cond); |
+} |
+ |
+ |
+void LCodeGen::DoConstantD(LConstantD* instr) { |
+ ASSERT(instr->result()->IsDoubleRegister()); |
+ DoubleRegister result = ToDoubleRegister(instr->result()); |
+ __ Fmov(result, instr->value()); |
+} |
+ |
+ |
+void LCodeGen::DoConstantE(LConstantE* instr) { |
+ __ Mov(ToRegister(instr->result()), Operand(instr->value())); |
+} |
+ |
+ |
+void LCodeGen::DoConstantI(LConstantI* instr) { |
+ __ Mov(ToRegister(instr->result()), instr->value()); |
+} |
+ |
+ |
+void LCodeGen::DoConstantS(LConstantS* instr) { |
+ __ Mov(ToRegister(instr->result()), Operand(instr->value())); |
+} |
+ |
+ |
+void LCodeGen::DoConstantT(LConstantT* instr) { |
+ Handle<Object> value = instr->value(isolate()); |
+ AllowDeferredHandleDereference smi_check; |
+ __ LoadObject(ToRegister(instr->result()), value); |
+} |
+ |
+ |
+void LCodeGen::DoContext(LContext* instr) { |
+ // If there is a non-return use, the context must be moved to a register. |
+ Register result = ToRegister(instr->result()); |
+ if (info()->IsOptimizing()) { |
+ __ Ldr(result, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
+ } else { |
+ // If there is no frame, the context must be in cp. |
+ ASSERT(result.is(cp)); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoCheckValue(LCheckValue* instr) { |
+ Register reg = ToRegister(instr->value()); |
+ Handle<HeapObject> object = instr->hydrogen()->object().handle(); |
+ AllowDeferredHandleDereference smi_check; |
+ if (isolate()->heap()->InNewSpace(*object)) { |
+ Register temp = ToRegister(instr->temp()); |
+ Handle<Cell> cell = isolate()->factory()->NewCell(object); |
+ __ Mov(temp, Operand(Handle<Object>(cell))); |
+ __ Ldr(temp, FieldMemOperand(temp, Cell::kValueOffset)); |
+ __ Cmp(reg, temp); |
+ } else { |
+ __ Cmp(reg, Operand(object)); |
+ } |
+ DeoptimizeIf(ne, instr->environment()); |
+} |
+ |
+ |
+void LCodeGen::DoLazyBailout(LLazyBailout* instr) { |
+ EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); |
+ ASSERT(instr->HasEnvironment()); |
+ LEnvironment* env = instr->environment(); |
+ RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); |
+ safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); |
+} |
+ |
+ |
+void LCodeGen::DoDateField(LDateField* instr) { |
+ Register object = ToRegister(instr->date()); |
+ Register result = ToRegister(instr->result()); |
+ Register temp1 = x10; |
+ Register temp2 = x11; |
+ Smi* index = instr->index(); |
+ Label runtime, done, deopt, obj_ok; |
+ |
+ ASSERT(object.is(result) && object.Is(x0)); |
+ ASSERT(instr->IsMarkedAsCall()); |
+ |
+ __ JumpIfSmi(object, &deopt); |
+ __ CompareObjectType(object, temp1, temp1, JS_DATE_TYPE); |
+ __ B(eq, &obj_ok); |
+ |
+ __ Bind(&deopt); |
+ Deoptimize(instr->environment()); |
+ |
+ __ Bind(&obj_ok); |
+ if (index->value() == 0) { |
+ __ Ldr(result, FieldMemOperand(object, JSDate::kValueOffset)); |
+ } else { |
+ if (index->value() < JSDate::kFirstUncachedField) { |
+ ExternalReference stamp = ExternalReference::date_cache_stamp(isolate()); |
+ __ Mov(temp1, Operand(stamp)); |
+ __ Ldr(temp1, MemOperand(temp1)); |
+ __ Ldr(temp2, FieldMemOperand(object, JSDate::kCacheStampOffset)); |
+ __ Cmp(temp1, temp2); |
+ __ B(ne, &runtime); |
+ __ Ldr(result, FieldMemOperand(object, JSDate::kValueOffset + |
+ kPointerSize * index->value())); |
+ __ B(&done); |
+ } |
+ |
+ __ Bind(&runtime); |
+ __ Mov(x1, Operand(index)); |
+ __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2); |
+ } |
+ |
+ __ Bind(&done); |
+} |
+ |
+ |
+void LCodeGen::DoDeoptimize(LDeoptimize* instr) { |
+ Deoptimizer::BailoutType type = instr->hydrogen()->type(); |
+ // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the |
+ // needed return address), even though the implementation of LAZY and EAGER is |
+ // now identical. When LAZY is eventually completely folded into EAGER, remove |
+ // the special case below. |
+ if (info()->IsStub() && (type == Deoptimizer::EAGER)) { |
+ type = Deoptimizer::LAZY; |
+ } |
+ |
+ Comment(";;; deoptimize: %s", instr->hydrogen()->reason()); |
+ DeoptimizeHeader(instr->environment(), &type); |
+ Deoptimize(instr->environment(), type); |
+} |
+ |
+ |
+void LCodeGen::DoDivI(LDivI* instr) { |
+ Register dividend = ToRegister32(instr->left()); |
+ Register result = ToRegister32(instr->result()); |
+ |
+ bool has_power_of_2_divisor = instr->hydrogen()->RightIsPowerOf2(); |
+ bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); |
+ bool bailout_on_minus_zero = |
+ instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero); |
+ bool can_be_div_by_zero = |
+ instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero); |
+ bool all_uses_truncating_to_int32 = |
+ instr->hydrogen()->CheckFlag(HInstruction::kAllUsesTruncatingToInt32); |
+ |
+ if (has_power_of_2_divisor) { |
+ ASSERT(instr->temp() == NULL); |
+ int32_t divisor = ToInteger32(LConstantOperand::cast(instr->right())); |
+ int32_t power; |
+ int32_t power_mask; |
+ Label deopt, done; |
+ |
+ ASSERT(divisor != 0); |
+ if (divisor > 0) { |
+ power = WhichPowerOf2(divisor); |
+ power_mask = divisor - 1; |
+ } else { |
+ // Check for (0 / -x) as that will produce negative zero. |
+ if (bailout_on_minus_zero) { |
+ if (all_uses_truncating_to_int32) { |
+ // If all uses truncate, and the dividend is zero, the truncated |
+ // result is zero. |
+ __ Mov(result, 0); |
+ __ Cbz(dividend, &done); |
+ } else { |
+ __ Cbz(dividend, &deopt); |
+ } |
+ } |
+ // Check for (kMinInt / -1). |
+ if ((divisor == -1) && can_overflow && !all_uses_truncating_to_int32) { |
+ // Check for kMinInt by subtracting one and checking for overflow. |
+ __ Cmp(dividend, 1); |
+ __ B(vs, &deopt); |
+ } |
+ power = WhichPowerOf2(-divisor); |
+ power_mask = -divisor - 1; |
+ } |
+ |
+ if (power_mask != 0) { |
+ if (all_uses_truncating_to_int32) { |
+ __ Cmp(dividend, 0); |
+ __ Cneg(result, dividend, lt); |
+ __ Asr(result, result, power); |
+ if (divisor > 0) __ Cneg(result, result, lt); |
+ if (divisor < 0) __ Cneg(result, result, gt); |
+ return; // Don't fall through to negation below. |
+ } else { |
+ // Deoptimize if remainder is not 0. If the least-significant |
+ // power bits aren't 0, it's not a multiple of 2^power, and |
+ // therefore, there will be a remainder. |
+ __ TestAndBranchIfAnySet(dividend, power_mask, &deopt); |
+ __ Asr(result, dividend, power); |
+ if (divisor < 0) __ Neg(result, result); |
+ } |
+ } else { |
+ ASSERT((divisor == 1) || (divisor == -1)); |
+ if (divisor < 0) { |
+ __ Neg(result, dividend); |
+ } else { |
+ __ Mov(result, dividend); |
+ } |
+ } |
+ __ B(&done); |
+ __ Bind(&deopt); |
+ Deoptimize(instr->environment()); |
+ __ Bind(&done); |
+ } else { |
+ Register divisor = ToRegister32(instr->right()); |
+ |
+ // Issue the division first, and then check for any deopt cases whilst the |
+ // result is computed. |
+ __ Sdiv(result, dividend, divisor); |
+ |
+ if (!all_uses_truncating_to_int32) { |
+ Label deopt; |
+ // Check for x / 0. |
+ if (can_be_div_by_zero) { |
+ __ Cbz(divisor, &deopt); |
+ } |
+ |
+ // Check for (0 / -x) as that will produce negative zero. |
+ if (bailout_on_minus_zero) { |
+ __ Cmp(divisor, 0); |
+ |
+ // If the divisor < 0 (mi), compare the dividend, and deopt if it is |
+ // zero, ie. zero dividend with negative divisor deopts. |
+ // If the divisor >= 0 (pl, the opposite of mi) set the flags to |
+ // condition ne, so we don't deopt, ie. positive divisor doesn't deopt. |
+ __ Ccmp(dividend, 0, NoFlag, mi); |
+ __ B(eq, &deopt); |
+ } |
+ |
+ // Check for (kMinInt / -1). |
+ if (can_overflow) { |
+ // Test dividend for kMinInt by subtracting one (cmp) and checking for |
+ // overflow. |
+ __ Cmp(dividend, 1); |
+ // If overflow is set, ie. dividend = kMinInt, compare the divisor with |
+ // -1. If overflow is clear, set the flags for condition ne, as the |
+ // dividend isn't -1, and thus we shouldn't deopt. |
+ __ Ccmp(divisor, -1, NoFlag, vs); |
+ __ B(eq, &deopt); |
+ } |
+ |
+ // Compute remainder and deopt if it's not zero. |
+ Register remainder = ToRegister32(instr->temp()); |
+ __ Msub(remainder, result, divisor, dividend); |
+ __ Cbnz(remainder, &deopt); |
+ |
+ Label div_ok; |
+ __ B(&div_ok); |
+ __ Bind(&deopt); |
+ Deoptimize(instr->environment()); |
+ __ Bind(&div_ok); |
+ } else { |
+ ASSERT(instr->temp() == NULL); |
+ } |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoDoubleToIntOrSmi(LDoubleToIntOrSmi* instr) { |
+ DoubleRegister input = ToDoubleRegister(instr->value()); |
+ Register result = ToRegister32(instr->result()); |
+ Label done, deopt; |
+ |
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
+ __ JumpIfMinusZero(input, &deopt); |
+ } |
+ |
+ __ TryConvertDoubleToInt32(result, input, double_scratch(), &done); |
+ __ Bind(&deopt); |
+ Deoptimize(instr->environment()); |
+ __ Bind(&done); |
+ |
+ if (instr->tag_result()) { |
+ __ SmiTag(result.X()); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoDrop(LDrop* instr) { |
+ __ Drop(instr->count()); |
+} |
+ |
+ |
+void LCodeGen::DoDummy(LDummy* instr) { |
+ // Nothing to see here, move on! |
+} |
+ |
+ |
+void LCodeGen::DoDummyUse(LDummyUse* instr) { |
+ // Nothing to see here, move on! |
+} |
+ |
+ |
+void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) { |
+ ASSERT(ToRegister(instr->context()).is(cp)); |
+ // FunctionLiteral instruction is marked as call, we can trash any register. |
+ ASSERT(instr->IsMarkedAsCall()); |
+ |
+ // Use the fast case closure allocation code that allocates in new |
+ // space for nested functions that don't need literals cloning. |
+ bool pretenure = instr->hydrogen()->pretenure(); |
+ if (!pretenure && instr->hydrogen()->has_no_literals()) { |
+ FastNewClosureStub stub(instr->hydrogen()->language_mode(), |
+ instr->hydrogen()->is_generator()); |
+ __ Mov(x2, Operand(instr->hydrogen()->shared_info())); |
+ CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); |
+ } else { |
+ __ Mov(x2, Operand(instr->hydrogen()->shared_info())); |
+ __ Mov(x1, Operand(pretenure ? factory()->true_value() |
+ : factory()->false_value())); |
+ __ Push(cp, x2, x1); |
+ CallRuntime(Runtime::kNewClosure, 3, instr); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) { |
+ Register map = ToRegister(instr->map()); |
+ Register result = ToRegister(instr->result()); |
+ Label load_cache, done; |
+ |
+ __ EnumLengthUntagged(result, map); |
+ __ Cbnz(result, &load_cache); |
+ |
+ __ Mov(result, Operand(isolate()->factory()->empty_fixed_array())); |
+ __ B(&done); |
+ |
+ __ Bind(&load_cache); |
+ __ LoadInstanceDescriptors(map, result); |
+ __ Ldr(result, FieldMemOperand(result, DescriptorArray::kEnumCacheOffset)); |
+ __ Ldr(result, FieldMemOperand(result, FixedArray::SizeFor(instr->idx()))); |
+ DeoptimizeIfZero(result, instr->environment()); |
+ |
+ __ Bind(&done); |
+} |
+ |
+ |
+void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) { |
+ Register object = ToRegister(instr->object()); |
+ Register null_value = x5; |
+ |
+ ASSERT(instr->IsMarkedAsCall()); |
+ ASSERT(object.Is(x0)); |
+ |
+ Label deopt; |
+ |
+ __ JumpIfRoot(object, Heap::kUndefinedValueRootIndex, &deopt); |
+ |
+ __ LoadRoot(null_value, Heap::kNullValueRootIndex); |
+ __ Cmp(object, null_value); |
+ __ B(eq, &deopt); |
+ |
+ __ JumpIfSmi(object, &deopt); |
+ |
+ STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE); |
+ __ CompareObjectType(object, x1, x1, LAST_JS_PROXY_TYPE); |
+ __ B(le, &deopt); |
+ |
+ Label use_cache, call_runtime; |
+ __ CheckEnumCache(object, null_value, x1, x2, x3, x4, &call_runtime); |
+ |
+ __ Ldr(object, FieldMemOperand(object, HeapObject::kMapOffset)); |
+ __ B(&use_cache); |
+ |
+ __ Bind(&deopt); |
+ Deoptimize(instr->environment()); |
+ |
+ // Get the set of properties to enumerate. |
+ __ Bind(&call_runtime); |
+ __ Push(object); |
+ CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr); |
+ |
+ __ Ldr(x1, FieldMemOperand(object, HeapObject::kMapOffset)); |
+ __ JumpIfNotRoot(x1, Heap::kMetaMapRootIndex, &deopt); |
+ |
+ __ Bind(&use_cache); |
+} |
+ |
+ |
+void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) { |
+ Register input = ToRegister(instr->value()); |
+ Register result = ToRegister(instr->result()); |
+ |
+ __ AssertString(input); |
+ |
+ // Assert that we can use a W register load to get the hash. |
+ ASSERT((String::kHashShift + String::kArrayIndexValueBits) < kWRegSize); |
+ __ Ldr(result.W(), FieldMemOperand(input, String::kHashFieldOffset)); |
+ __ IndexFromHash(result, result); |
+} |
+ |
+ |
+void LCodeGen::EmitGoto(int block) { |
+ // Do not emit jump if we are emitting a goto to the next block. |
+ if (!IsNextEmittedBlock(block)) { |
+ __ B(chunk_->GetAssemblyLabel(LookupDestination(block))); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoGoto(LGoto* instr) { |
+ EmitGoto(instr->block_id()); |
+} |
+ |
+ |
+void LCodeGen::DoHasCachedArrayIndexAndBranch( |
+ LHasCachedArrayIndexAndBranch* instr) { |
+ Register input = ToRegister(instr->value()); |
+ Register temp = ToRegister32(instr->temp()); |
+ |
+ // Assert that the cache status bits fit in a W register. |
+ ASSERT(is_uint32(String::kContainsCachedArrayIndexMask)); |
+ __ Ldr(temp, FieldMemOperand(input, String::kHashFieldOffset)); |
+ __ Tst(temp, String::kContainsCachedArrayIndexMask); |
+ EmitBranch(instr, eq); |
+} |
+ |
+ |
+// HHasInstanceTypeAndBranch instruction is built with an interval of type |
+// to test but is only used in very restricted ways. The only possible kinds |
+// of intervals are: |
+// - [ FIRST_TYPE, instr->to() ] |
+// - [ instr->form(), LAST_TYPE ] |
+// - instr->from() == instr->to() |
+// |
+// These kinds of intervals can be check with only one compare instruction |
+// providing the correct value and test condition are used. |
+// |
+// TestType() will return the value to use in the compare instruction and |
+// BranchCondition() will return the condition to use depending on the kind |
+// of interval actually specified in the instruction. |
+static InstanceType TestType(HHasInstanceTypeAndBranch* instr) { |
+ InstanceType from = instr->from(); |
+ InstanceType to = instr->to(); |
+ if (from == FIRST_TYPE) return to; |
+ ASSERT((from == to) || (to == LAST_TYPE)); |
+ return from; |
+} |
+ |
+ |
+// See comment above TestType function for what this function does. |
+static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) { |
+ InstanceType from = instr->from(); |
+ InstanceType to = instr->to(); |
+ if (from == to) return eq; |
+ if (to == LAST_TYPE) return hs; |
+ if (from == FIRST_TYPE) return ls; |
+ UNREACHABLE(); |
+ return eq; |
+} |
+ |
+ |
+void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) { |
+ Register input = ToRegister(instr->value()); |
+ Register scratch = ToRegister(instr->temp()); |
+ |
+ if (!instr->hydrogen()->value()->IsHeapObject()) { |
+ __ JumpIfSmi(input, instr->FalseLabel(chunk_)); |
+ } |
+ __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen())); |
+ EmitBranch(instr, BranchCondition(instr->hydrogen())); |
+} |
+ |
+ |
+void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) { |
+ Register result = ToRegister(instr->result()); |
+ Register base = ToRegister(instr->base_object()); |
+ __ Add(result, base, ToOperand(instr->offset())); |
+} |
+ |
+ |
+void LCodeGen::DoInstanceOf(LInstanceOf* instr) { |
+ ASSERT(ToRegister(instr->context()).is(cp)); |
+ // Assert that the arguments are in the registers expected by InstanceofStub. |
+ ASSERT(ToRegister(instr->left()).Is(InstanceofStub::left())); |
+ ASSERT(ToRegister(instr->right()).Is(InstanceofStub::right())); |
+ |
+ InstanceofStub stub(InstanceofStub::kArgsInRegisters); |
+ CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); |
+ |
+ // InstanceofStub returns a result in x0: |
+ // 0 => not an instance |
+ // smi 1 => instance. |
+ __ Cmp(x0, 0); |
+ __ LoadTrueFalseRoots(x0, x1); |
+ __ Csel(x0, x0, x1, eq); |
+} |
+ |
+ |
+void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) { |
+ class DeferredInstanceOfKnownGlobal: public LDeferredCode { |
+ public: |
+ DeferredInstanceOfKnownGlobal(LCodeGen* codegen, |
+ LInstanceOfKnownGlobal* instr) |
+ : LDeferredCode(codegen), instr_(instr) { } |
+ virtual void Generate() { |
+ codegen()->DoDeferredInstanceOfKnownGlobal(instr_); |
+ } |
+ virtual LInstruction* instr() { return instr_; } |
+ private: |
+ LInstanceOfKnownGlobal* instr_; |
+ }; |
+ |
+ DeferredInstanceOfKnownGlobal* deferred = |
+ new(zone()) DeferredInstanceOfKnownGlobal(this, instr); |
+ |
+ Label map_check, return_false, cache_miss, done; |
+ Register object = ToRegister(instr->value()); |
+ Register result = ToRegister(instr->result()); |
+ // x4 is expected in the associated deferred code and stub. |
+ Register map_check_site = x4; |
+ Register map = x5; |
+ |
+ // This instruction is marked as call. We can clobber any register. |
+ ASSERT(instr->IsMarkedAsCall()); |
+ |
+ // We must take into account that object is in x11. |
+ ASSERT(object.Is(x11)); |
+ Register scratch = x10; |
+ |
+ // A Smi is not instance of anything. |
+ __ JumpIfSmi(object, &return_false); |
+ |
+ // This is the inlined call site instanceof cache. The two occurences of the |
+ // hole value will be patched to the last map/result pair generated by the |
+ // instanceof stub. |
+ __ Ldr(map, FieldMemOperand(object, HeapObject::kMapOffset)); |
+ { |
+ // Below we use Factory::the_hole_value() on purpose instead of loading from |
+ // the root array to force relocation and later be able to patch with a |
+ // custom value. |
+ InstructionAccurateScope scope(masm(), 5); |
+ __ bind(&map_check); |
+ // Will be patched with the cached map. |
+ Handle<Cell> cell = factory()->NewCell(factory()->the_hole_value()); |
+ __ LoadRelocated(scratch, Operand(Handle<Object>(cell))); |
+ __ ldr(scratch, FieldMemOperand(scratch, PropertyCell::kValueOffset)); |
+ __ cmp(map, Operand(scratch)); |
+ __ b(&cache_miss, ne); |
+ // The address of this instruction is computed relative to the map check |
+ // above, so check the size of the code generated. |
+ ASSERT(masm()->InstructionsGeneratedSince(&map_check) == 4); |
+ // Will be patched with the cached result. |
+ __ LoadRelocated(result, Operand(factory()->the_hole_value())); |
+ } |
+ __ B(&done); |
+ |
+ // The inlined call site cache did not match. |
+ // Check null and string before calling the deferred code. |
+ __ Bind(&cache_miss); |
+ // Compute the address of the map check. It must not be clobbered until the |
+ // InstanceOfStub has used it. |
+ __ Adr(map_check_site, &map_check); |
+ // Null is not instance of anything. |
+ __ JumpIfRoot(object, Heap::kNullValueRootIndex, &return_false); |
+ |
+ // String values are not instances of anything. |
+ // Return false if the object is a string. Otherwise, jump to the deferred |
+ // code. |
+ // Note that we can't jump directly to deferred code from |
+ // IsObjectJSStringType, because it uses tbz for the jump and the deferred |
+ // code can be out of range. |
+ __ IsObjectJSStringType(object, scratch, NULL, &return_false); |
+ __ B(deferred->entry()); |
+ |
+ __ Bind(&return_false); |
+ __ LoadRoot(result, Heap::kFalseValueRootIndex); |
+ |
+ // Here result is either true or false. |
+ __ Bind(deferred->exit()); |
+ __ Bind(&done); |
+} |
+ |
+ |
+void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) { |
+ Register result = ToRegister(instr->result()); |
+ ASSERT(result.Is(x0)); // InstanceofStub returns its result in x0. |
+ InstanceofStub::Flags flags = InstanceofStub::kNoFlags; |
+ flags = static_cast<InstanceofStub::Flags>( |
+ flags | InstanceofStub::kArgsInRegisters); |
+ flags = static_cast<InstanceofStub::Flags>( |
+ flags | InstanceofStub::kReturnTrueFalseObject); |
+ flags = static_cast<InstanceofStub::Flags>( |
+ flags | InstanceofStub::kCallSiteInlineCheck); |
+ |
+ PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); |
+ LoadContextFromDeferred(instr->context()); |
+ |
+ // Prepare InstanceofStub arguments. |
+ ASSERT(ToRegister(instr->value()).Is(InstanceofStub::left())); |
+ __ LoadObject(InstanceofStub::right(), instr->function()); |
+ |
+ InstanceofStub stub(flags); |
+ CallCodeGeneric(stub.GetCode(isolate()), |
+ RelocInfo::CODE_TARGET, |
+ instr, |
+ RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); |
+ LEnvironment* env = instr->GetDeferredLazyDeoptimizationEnvironment(); |
+ safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); |
+ |
+ // Put the result value into the result register slot. |
+ __ StoreToSafepointRegisterSlot(result, result); |
+} |
+ |
+ |
+void LCodeGen::DoInstructionGap(LInstructionGap* instr) { |
+ DoGap(instr); |
+} |
+ |
+ |
+void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) { |
+ Register value = ToRegister32(instr->value()); |
+ DoubleRegister result = ToDoubleRegister(instr->result()); |
+ __ Scvtf(result, value); |
+} |
+ |
+ |
+void LCodeGen::DoInteger32ToSmi(LInteger32ToSmi* instr) { |
+ // A64 smis can represent all Integer32 values, so this cannot deoptimize. |
+ ASSERT(!instr->hydrogen()->value()->HasRange() || |
+ instr->hydrogen()->value()->range()->IsInSmiRange()); |
+ |
+ Register value = ToRegister(instr->value()); |
+ Register result = ToRegister(instr->result()); |
+ __ SmiTag(result, value); |
+} |
+ |
+ |
+void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) { |
+ ASSERT(ToRegister(instr->context()).is(cp)); |
+ // The function is required to be in x1. |
+ ASSERT(ToRegister(instr->function()).is(x1)); |
+ ASSERT(instr->HasPointerMap()); |
+ |
+ Handle<JSFunction> known_function = instr->hydrogen()->known_function(); |
+ if (known_function.is_null()) { |
+ LPointerMap* pointers = instr->pointer_map(); |
+ SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); |
+ ParameterCount count(instr->arity()); |
+ __ InvokeFunction(x1, count, CALL_FUNCTION, generator); |
+ } else { |
+ CallKnownFunction(known_function, |
+ instr->hydrogen()->formal_parameter_count(), |
+ instr->arity(), |
+ instr, |
+ x1); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) { |
+ Register temp1 = ToRegister(instr->temp1()); |
+ Register temp2 = ToRegister(instr->temp2()); |
+ |
+ // Get the frame pointer for the calling frame. |
+ __ Ldr(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
+ |
+ // Skip the arguments adaptor frame if it exists. |
+ Label check_frame_marker; |
+ __ Ldr(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset)); |
+ __ Cmp(temp2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
+ __ B(ne, &check_frame_marker); |
+ __ Ldr(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset)); |
+ |
+ // Check the marker in the calling frame. |
+ __ Bind(&check_frame_marker); |
+ __ Ldr(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset)); |
+ |
+ EmitCompareAndBranch( |
+ instr, eq, temp1, Operand(Smi::FromInt(StackFrame::CONSTRUCT))); |
+} |
+ |
+ |
+void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) { |
+ Label* is_object = instr->TrueLabel(chunk_); |
+ Label* is_not_object = instr->FalseLabel(chunk_); |
+ Register value = ToRegister(instr->value()); |
+ Register map = ToRegister(instr->temp1()); |
+ Register scratch = ToRegister(instr->temp2()); |
+ |
+ __ JumpIfSmi(value, is_not_object); |
+ __ JumpIfRoot(value, Heap::kNullValueRootIndex, is_object); |
+ |
+ __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset)); |
+ |
+ // Check for undetectable objects. |
+ __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset)); |
+ __ TestAndBranchIfAnySet(scratch, 1 << Map::kIsUndetectable, is_not_object); |
+ |
+ // Check that instance type is in object type range. |
+ __ IsInstanceJSObjectType(map, scratch, NULL); |
+ // Flags have been updated by IsInstanceJSObjectType. We can now test the |
+ // flags for "le" condition to check if the object's type is a valid |
+ // JS object type. |
+ EmitBranch(instr, le); |
+} |
+ |
+ |
+Condition LCodeGen::EmitIsString(Register input, |
+ Register temp1, |
+ Label* is_not_string, |
+ SmiCheck check_needed = INLINE_SMI_CHECK) { |
+ if (check_needed == INLINE_SMI_CHECK) { |
+ __ JumpIfSmi(input, is_not_string); |
+ } |
+ __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE); |
+ |
+ return lt; |
+} |
+ |
+ |
+void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) { |
+ Register val = ToRegister(instr->value()); |
+ Register scratch = ToRegister(instr->temp()); |
+ |
+ SmiCheck check_needed = |
+ instr->hydrogen()->value()->IsHeapObject() |
+ ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; |
+ Condition true_cond = |
+ EmitIsString(val, scratch, instr->FalseLabel(chunk_), check_needed); |
+ |
+ EmitBranch(instr, true_cond); |
+} |
+ |
+ |
+void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) { |
+ Register value = ToRegister(instr->value()); |
+ STATIC_ASSERT(kSmiTag == 0); |
+ EmitTestAndBranch(instr, eq, value, kSmiTagMask); |
+} |
+ |
+ |
+void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) { |
+ Register input = ToRegister(instr->value()); |
+ Register temp = ToRegister(instr->temp()); |
+ |
+ if (!instr->hydrogen()->value()->IsHeapObject()) { |
+ __ JumpIfSmi(input, instr->FalseLabel(chunk_)); |
+ } |
+ __ Ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset)); |
+ __ Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset)); |
+ |
+ EmitTestAndBranch(instr, ne, temp, 1 << Map::kIsUndetectable); |
+} |
+ |
+ |
+static const char* LabelType(LLabel* label) { |
+ if (label->is_loop_header()) return " (loop header)"; |
+ if (label->is_osr_entry()) return " (OSR entry)"; |
+ return ""; |
+} |
+ |
+ |
+void LCodeGen::DoLabel(LLabel* label) { |
+ Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------", |
+ current_instruction_, |
+ label->hydrogen_value()->id(), |
+ label->block_id(), |
+ LabelType(label)); |
+ |
+ __ Bind(label->label()); |
+ current_block_ = label->block_id(); |
+ DoGap(label); |
+} |
+ |
+ |
+void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) { |
+ Register context = ToRegister(instr->context()); |
+ Register result = ToRegister(instr->result()); |
+ __ Ldr(result, ContextMemOperand(context, instr->slot_index())); |
+ if (instr->hydrogen()->RequiresHoleCheck()) { |
+ if (instr->hydrogen()->DeoptimizesOnHole()) { |
+ DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, |
+ instr->environment()); |
+ } else { |
+ Label not_the_hole; |
+ __ JumpIfNotRoot(result, Heap::kTheHoleValueRootIndex, ¬_the_hole); |
+ __ LoadRoot(result, Heap::kUndefinedValueRootIndex); |
+ __ Bind(¬_the_hole); |
+ } |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) { |
+ Register function = ToRegister(instr->function()); |
+ Register result = ToRegister(instr->result()); |
+ Register temp = ToRegister(instr->temp()); |
+ Label deopt; |
+ |
+ // Check that the function really is a function. Leaves map in the result |
+ // register. |
+ __ JumpIfNotObjectType(function, result, temp, JS_FUNCTION_TYPE, &deopt); |
+ |
+ // Make sure that the function has an instance prototype. |
+ Label non_instance; |
+ __ Ldrb(temp, FieldMemOperand(result, Map::kBitFieldOffset)); |
+ __ Tbnz(temp, Map::kHasNonInstancePrototype, &non_instance); |
+ |
+ // Get the prototype or initial map from the function. |
+ __ Ldr(result, FieldMemOperand(function, |
+ JSFunction::kPrototypeOrInitialMapOffset)); |
+ |
+ // Check that the function has a prototype or an initial map. |
+ __ JumpIfRoot(result, Heap::kTheHoleValueRootIndex, &deopt); |
+ |
+ // If the function does not have an initial map, we're done. |
+ Label done; |
+ __ CompareObjectType(result, temp, temp, MAP_TYPE); |
+ __ B(ne, &done); |
+ |
+ // Get the prototype from the initial map. |
+ __ Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset)); |
+ __ B(&done); |
+ |
+ // Non-instance prototype: fetch prototype from constructor field in initial |
+ // map. |
+ __ Bind(&non_instance); |
+ __ Ldr(result, FieldMemOperand(result, Map::kConstructorOffset)); |
+ __ B(&done); |
+ |
+ // Deoptimize case. |
+ __ Bind(&deopt); |
+ Deoptimize(instr->environment()); |
+ |
+ // All done. |
+ __ Bind(&done); |
+} |
+ |
+ |
+void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) { |
+ Register result = ToRegister(instr->result()); |
+ __ Mov(result, Operand(Handle<Object>(instr->hydrogen()->cell().handle()))); |
+ __ Ldr(result, FieldMemOperand(result, Cell::kValueOffset)); |
+ if (instr->hydrogen()->RequiresHoleCheck()) { |
+ DeoptimizeIfRoot( |
+ result, Heap::kTheHoleValueRootIndex, instr->environment()); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) { |
+ ASSERT(ToRegister(instr->context()).is(cp)); |
+ ASSERT(ToRegister(instr->global_object()).Is(x0)); |
+ ASSERT(ToRegister(instr->result()).Is(x0)); |
+ __ Mov(x2, Operand(instr->name())); |
+ ContextualMode mode = instr->for_typeof() ? NOT_CONTEXTUAL : CONTEXTUAL; |
+ Handle<Code> ic = LoadIC::initialize_stub(isolate(), mode); |
+ CallCode(ic, RelocInfo::CODE_TARGET, instr); |
+} |
+ |
+ |
+MemOperand LCodeGen::PrepareKeyedExternalArrayOperand( |
+ Register key, |
+ Register base, |
+ Register scratch, |
+ bool key_is_smi, |
+ bool key_is_constant, |
+ int constant_key, |
+ ElementsKind elements_kind, |
+ int additional_index) { |
+ int element_size_shift = ElementsKindToShiftSize(elements_kind); |
+ int additional_offset = IsFixedTypedArrayElementsKind(elements_kind) |
+ ? FixedTypedArrayBase::kDataOffset - kHeapObjectTag |
+ : 0; |
+ |
+ if (key_is_constant) { |
+ int base_offset = ((constant_key + additional_index) << element_size_shift); |
+ return MemOperand(base, base_offset + additional_offset); |
+ } |
+ |
+ if (additional_index == 0) { |
+ if (key_is_smi) { |
+ // Key is smi: untag, and scale by element size. |
+ __ Add(scratch, base, Operand::UntagSmiAndScale(key, element_size_shift)); |
+ return MemOperand(scratch, additional_offset); |
+ } else { |
+ // Key is not smi, and element size is not byte: scale by element size. |
+ if (additional_offset == 0) { |
+ return MemOperand(base, key, LSL, element_size_shift); |
+ } else { |
+ __ Add(scratch, base, Operand(key, LSL, element_size_shift)); |
+ return MemOperand(scratch, additional_offset); |
+ } |
+ } |
+ } else { |
+ // TODO(all): Try to combine these cases a bit more intelligently. |
+ if (additional_offset == 0) { |
+ if (key_is_smi) { |
+ __ SmiUntag(scratch, key); |
+ __ Add(scratch, scratch, additional_index); |
+ } else { |
+ __ Add(scratch, key, additional_index); |
+ } |
+ return MemOperand(base, scratch, LSL, element_size_shift); |
+ } else { |
+ if (key_is_smi) { |
+ __ Add(scratch, base, |
+ Operand::UntagSmiAndScale(key, element_size_shift)); |
+ } else { |
+ __ Add(scratch, base, Operand(key, LSL, element_size_shift)); |
+ } |
+ return MemOperand( |
+ scratch, |
+ (additional_index << element_size_shift) + additional_offset); |
+ } |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoLoadKeyedExternal(LLoadKeyedExternal* instr) { |
+ Register ext_ptr = ToRegister(instr->elements()); |
+ Register scratch; |
+ ElementsKind elements_kind = instr->elements_kind(); |
+ |
+ bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi(); |
+ bool key_is_constant = instr->key()->IsConstantOperand(); |
+ Register key = no_reg; |
+ int constant_key = 0; |
+ if (key_is_constant) { |
+ ASSERT(instr->temp() == NULL); |
+ constant_key = ToInteger32(LConstantOperand::cast(instr->key())); |
+ if (constant_key & 0xf0000000) { |
+ Abort(kArrayIndexConstantValueTooBig); |
+ } |
+ } else { |
+ scratch = ToRegister(instr->temp()); |
+ key = ToRegister(instr->key()); |
+ } |
+ |
+ MemOperand mem_op = |
+ PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi, |
+ key_is_constant, constant_key, |
+ elements_kind, |
+ instr->additional_index()); |
+ |
+ if ((elements_kind == EXTERNAL_FLOAT32_ELEMENTS) || |
+ (elements_kind == FLOAT32_ELEMENTS)) { |
+ DoubleRegister result = ToDoubleRegister(instr->result()); |
+ __ Ldr(result.S(), mem_op); |
+ __ Fcvt(result, result.S()); |
+ } else if ((elements_kind == EXTERNAL_FLOAT64_ELEMENTS) || |
+ (elements_kind == FLOAT64_ELEMENTS)) { |
+ DoubleRegister result = ToDoubleRegister(instr->result()); |
+ __ Ldr(result, mem_op); |
+ } else { |
+ Register result = ToRegister(instr->result()); |
+ |
+ switch (elements_kind) { |
+ case EXTERNAL_INT8_ELEMENTS: |
+ case INT8_ELEMENTS: |
+ __ Ldrsb(result, mem_op); |
+ break; |
+ case EXTERNAL_UINT8_CLAMPED_ELEMENTS: |
+ case EXTERNAL_UINT8_ELEMENTS: |
+ case UINT8_ELEMENTS: |
+ case UINT8_CLAMPED_ELEMENTS: |
+ __ Ldrb(result, mem_op); |
+ break; |
+ case EXTERNAL_INT16_ELEMENTS: |
+ case INT16_ELEMENTS: |
+ __ Ldrsh(result, mem_op); |
+ break; |
+ case EXTERNAL_UINT16_ELEMENTS: |
+ case UINT16_ELEMENTS: |
+ __ Ldrh(result, mem_op); |
+ break; |
+ case EXTERNAL_INT32_ELEMENTS: |
+ case INT32_ELEMENTS: |
+ __ Ldrsw(result, mem_op); |
+ break; |
+ case EXTERNAL_UINT32_ELEMENTS: |
+ case UINT32_ELEMENTS: |
+ __ Ldr(result.W(), mem_op); |
+ if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) { |
+ // Deopt if value > 0x80000000. |
+ __ Tst(result, 0xFFFFFFFF80000000); |
+ DeoptimizeIf(ne, instr->environment()); |
+ } |
+ break; |
+ case FLOAT32_ELEMENTS: |
+ case FLOAT64_ELEMENTS: |
+ case EXTERNAL_FLOAT32_ELEMENTS: |
+ case EXTERNAL_FLOAT64_ELEMENTS: |
+ case FAST_HOLEY_DOUBLE_ELEMENTS: |
+ case FAST_HOLEY_ELEMENTS: |
+ case FAST_HOLEY_SMI_ELEMENTS: |
+ case FAST_DOUBLE_ELEMENTS: |
+ case FAST_ELEMENTS: |
+ case FAST_SMI_ELEMENTS: |
+ case DICTIONARY_ELEMENTS: |
+ case NON_STRICT_ARGUMENTS_ELEMENTS: |
+ UNREACHABLE(); |
+ break; |
+ } |
+ } |
+} |
+ |
+ |
+void LCodeGen::CalcKeyedArrayBaseRegister(Register base, |
+ Register elements, |
+ Register key, |
+ bool key_is_tagged, |
+ ElementsKind elements_kind) { |
+ int element_size_shift = ElementsKindToShiftSize(elements_kind); |
+ |
+ // Even though the HLoad/StoreKeyed instructions force the input |
+ // representation for the key to be an integer, the input gets replaced during |
+ // bounds check elimination with the index argument to the bounds check, which |
+ // can be tagged, so that case must be handled here, too. |
+ if (key_is_tagged) { |
+ __ Add(base, elements, Operand::UntagSmiAndScale(key, element_size_shift)); |
+ } else { |
+ // Sign extend key because it could be a 32-bit negative value and the |
+ // address computation happens in 64-bit. |
+ ASSERT((element_size_shift >= 0) && (element_size_shift <= 4)); |
+ __ Add(base, elements, Operand(key, SXTW, element_size_shift)); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoLoadKeyedFixedDouble(LLoadKeyedFixedDouble* instr) { |
+ Register elements = ToRegister(instr->elements()); |
+ DoubleRegister result = ToDoubleRegister(instr->result()); |
+ Register load_base; |
+ int offset = 0; |
+ |
+ if (instr->key()->IsConstantOperand()) { |
+ ASSERT(instr->hydrogen()->RequiresHoleCheck() || |
+ (instr->temp() == NULL)); |
+ |
+ int constant_key = ToInteger32(LConstantOperand::cast(instr->key())); |
+ if (constant_key & 0xf0000000) { |
+ Abort(kArrayIndexConstantValueTooBig); |
+ } |
+ offset = FixedDoubleArray::OffsetOfElementAt(constant_key + |
+ instr->additional_index()); |
+ load_base = elements; |
+ } else { |
+ load_base = ToRegister(instr->temp()); |
+ Register key = ToRegister(instr->key()); |
+ bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi(); |
+ CalcKeyedArrayBaseRegister(load_base, elements, key, key_is_tagged, |
+ instr->hydrogen()->elements_kind()); |
+ offset = FixedDoubleArray::OffsetOfElementAt(instr->additional_index()); |
+ } |
+ __ Ldr(result, FieldMemOperand(load_base, offset)); |
+ |
+ if (instr->hydrogen()->RequiresHoleCheck()) { |
+ Register scratch = ToRegister(instr->temp()); |
+ |
+ // TODO(all): Is it faster to reload this value to an integer register, or |
+ // move from fp to integer? |
+ __ Fmov(scratch, result); |
+ __ Cmp(scratch, kHoleNanInt64); |
+ DeoptimizeIf(eq, instr->environment()); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoLoadKeyedFixed(LLoadKeyedFixed* instr) { |
+ Register elements = ToRegister(instr->elements()); |
+ Register result = ToRegister(instr->result()); |
+ Register load_base; |
+ int offset = 0; |
+ |
+ if (instr->key()->IsConstantOperand()) { |
+ ASSERT(instr->temp() == NULL); |
+ LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); |
+ offset = FixedArray::OffsetOfElementAt(ToInteger32(const_operand) + |
+ instr->additional_index()); |
+ load_base = elements; |
+ } else { |
+ load_base = ToRegister(instr->temp()); |
+ Register key = ToRegister(instr->key()); |
+ bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi(); |
+ CalcKeyedArrayBaseRegister(load_base, elements, key, key_is_tagged, |
+ instr->hydrogen()->elements_kind()); |
+ offset = FixedArray::OffsetOfElementAt(instr->additional_index()); |
+ } |
+ Representation representation = instr->hydrogen()->representation(); |
+ |
+ if (representation.IsInteger32() && |
+ instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS) { |
+ STATIC_ASSERT(kSmiValueSize == 32 && kSmiShift == 32 && kSmiTag == 0); |
+ __ Load(result, UntagSmiFieldMemOperand(load_base, offset), |
+ Representation::Integer32()); |
+ } else { |
+ __ Load(result, FieldMemOperand(load_base, offset), |
+ representation); |
+ } |
+ |
+ if (instr->hydrogen()->RequiresHoleCheck()) { |
+ if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) { |
+ DeoptimizeIfNotSmi(result, instr->environment()); |
+ } else { |
+ DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, |
+ instr->environment()); |
+ } |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) { |
+ ASSERT(ToRegister(instr->context()).is(cp)); |
+ ASSERT(ToRegister(instr->object()).Is(x1)); |
+ ASSERT(ToRegister(instr->key()).Is(x0)); |
+ |
+ Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize(); |
+ CallCode(ic, RelocInfo::CODE_TARGET, instr); |
+ |
+ ASSERT(ToRegister(instr->result()).Is(x0)); |
+} |
+ |
+ |
+void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) { |
+ HObjectAccess access = instr->hydrogen()->access(); |
+ int offset = access.offset(); |
+ Register object = ToRegister(instr->object()); |
+ |
+ if (access.IsExternalMemory()) { |
+ Register result = ToRegister(instr->result()); |
+ __ Load(result, MemOperand(object, offset), access.representation()); |
+ return; |
+ } |
+ |
+ if (instr->hydrogen()->representation().IsDouble()) { |
+ FPRegister result = ToDoubleRegister(instr->result()); |
+ __ Ldr(result, FieldMemOperand(object, offset)); |
+ return; |
+ } |
+ |
+ Register result = ToRegister(instr->result()); |
+ Register source; |
+ if (access.IsInobject()) { |
+ source = object; |
+ } else { |
+ // Load the properties array, using result as a scratch register. |
+ __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); |
+ source = result; |
+ } |
+ |
+ if (access.representation().IsSmi() && |
+ instr->hydrogen()->representation().IsInteger32()) { |
+ // Read int value directly from upper half of the smi. |
+ STATIC_ASSERT(kSmiValueSize == 32 && kSmiShift == 32 && kSmiTag == 0); |
+ __ Load(result, UntagSmiFieldMemOperand(source, offset), |
+ Representation::Integer32()); |
+ } else { |
+ __ Load(result, FieldMemOperand(source, offset), access.representation()); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) { |
+ ASSERT(ToRegister(instr->context()).is(cp)); |
+ // LoadIC expects x2 to hold the name, and x0 to hold the receiver. |
+ ASSERT(ToRegister(instr->object()).is(x0)); |
+ __ Mov(x2, Operand(instr->name())); |
+ |
+ Handle<Code> ic = LoadIC::initialize_stub(isolate(), NOT_CONTEXTUAL); |
+ CallCode(ic, RelocInfo::CODE_TARGET, instr); |
+ |
+ ASSERT(ToRegister(instr->result()).is(x0)); |
+} |
+ |
+ |
+void LCodeGen::DoLoadRoot(LLoadRoot* instr) { |
+ Register result = ToRegister(instr->result()); |
+ __ LoadRoot(result, instr->index()); |
+} |
+ |
+ |
+void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) { |
+ Register result = ToRegister(instr->result()); |
+ Register map = ToRegister(instr->value()); |
+ __ EnumLengthSmi(result, map); |
+} |
+ |
+ |
+void LCodeGen::DoMathAbs(LMathAbs* instr) { |
+ Representation r = instr->hydrogen()->value()->representation(); |
+ if (r.IsDouble()) { |
+ DoubleRegister input = ToDoubleRegister(instr->value()); |
+ DoubleRegister result = ToDoubleRegister(instr->result()); |
+ __ Fabs(result, input); |
+ } else if (r.IsSmi() || r.IsInteger32()) { |
+ Register input = r.IsSmi() ? ToRegister(instr->value()) |
+ : ToRegister32(instr->value()); |
+ Register result = r.IsSmi() ? ToRegister(instr->result()) |
+ : ToRegister32(instr->result()); |
+ Label done; |
+ __ Abs(result, input, NULL, &done); |
+ Deoptimize(instr->environment()); |
+ __ Bind(&done); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoDeferredMathAbsTagged(LMathAbsTagged* instr, |
+ Label* exit, |
+ Label* allocation_entry) { |
+ // Handle the tricky cases of MathAbsTagged: |
+ // - HeapNumber inputs. |
+ // - Negative inputs produce a positive result, so a new HeapNumber is |
+ // allocated to hold it. |
+ // - Positive inputs are returned as-is, since there is no need to allocate |
+ // a new HeapNumber for the result. |
+ // - The (smi) input -0x80000000, produces +0x80000000, which does not fit |
+ // a smi. In this case, the inline code sets the result and jumps directly |
+ // to the allocation_entry label. |
+ ASSERT(instr->context() != NULL); |
+ ASSERT(ToRegister(instr->context()).is(cp)); |
+ Register input = ToRegister(instr->value()); |
+ Register temp1 = ToRegister(instr->temp1()); |
+ Register temp2 = ToRegister(instr->temp2()); |
+ Register result_bits = ToRegister(instr->temp3()); |
+ Register result = ToRegister(instr->result()); |
+ |
+ Label runtime_allocation; |
+ |
+ // Deoptimize if the input is not a HeapNumber. |
+ __ Ldr(temp1, FieldMemOperand(input, HeapObject::kMapOffset)); |
+ DeoptimizeIfNotRoot(temp1, Heap::kHeapNumberMapRootIndex, |
+ instr->environment()); |
+ |
+ // If the argument is positive, we can return it as-is, without any need to |
+ // allocate a new HeapNumber for the result. We have to do this in integer |
+ // registers (rather than with fabs) because we need to be able to distinguish |
+ // the two zeroes. |
+ __ Ldr(result_bits, FieldMemOperand(input, HeapNumber::kValueOffset)); |
+ __ Mov(result, input); |
+ __ Tbz(result_bits, kXSignBit, exit); |
+ |
+ // Calculate abs(input) by clearing the sign bit. |
+ __ Bic(result_bits, result_bits, kXSignMask); |
+ |
+ // Allocate a new HeapNumber to hold the result. |
+ // result_bits The bit representation of the (double) result. |
+ __ Bind(allocation_entry); |
+ __ AllocateHeapNumber(result, &runtime_allocation, temp1, temp2); |
+ // The inline (non-deferred) code will store result_bits into result. |
+ __ B(exit); |
+ |
+ __ Bind(&runtime_allocation); |
+ if (FLAG_debug_code) { |
+ // Because result is in the pointer map, we need to make sure it has a valid |
+ // tagged value before we call the runtime. We speculatively set it to the |
+ // input (for abs(+x)) or to a smi (for abs(-SMI_MIN)), so it should already |
+ // be valid. |
+ Label result_ok; |
+ Register input = ToRegister(instr->value()); |
+ __ JumpIfSmi(result, &result_ok); |
+ __ Cmp(input, result); |
+ // TODO(all): Shouldn't we assert here? |
+ DeoptimizeIf(ne, instr->environment()); |
+ __ Bind(&result_ok); |
+ } |
+ |
+ { PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); |
+ CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr, |
+ instr->context()); |
+ __ StoreToSafepointRegisterSlot(x0, result); |
+ } |
+ // The inline (non-deferred) code will store result_bits into result. |
+} |
+ |
+ |
+void LCodeGen::DoMathAbsTagged(LMathAbsTagged* instr) { |
+ // Class for deferred case. |
+ class DeferredMathAbsTagged: public LDeferredCode { |
+ public: |
+ DeferredMathAbsTagged(LCodeGen* codegen, LMathAbsTagged* instr) |
+ : LDeferredCode(codegen), instr_(instr) { } |
+ virtual void Generate() { |
+ codegen()->DoDeferredMathAbsTagged(instr_, exit(), |
+ allocation_entry()); |
+ } |
+ virtual LInstruction* instr() { return instr_; } |
+ Label* allocation_entry() { return &allocation; } |
+ private: |
+ LMathAbsTagged* instr_; |
+ Label allocation; |
+ }; |
+ |
+ // TODO(jbramley): The early-exit mechanism would skip the new frame handling |
+ // in GenerateDeferredCode. Tidy this up. |
+ ASSERT(!NeedsDeferredFrame()); |
+ |
+ DeferredMathAbsTagged* deferred = |
+ new(zone()) DeferredMathAbsTagged(this, instr); |
+ |
+ ASSERT(instr->hydrogen()->value()->representation().IsTagged() || |
+ instr->hydrogen()->value()->representation().IsSmi()); |
+ Register input = ToRegister(instr->value()); |
+ Register result_bits = ToRegister(instr->temp3()); |
+ Register result = ToRegister(instr->result()); |
+ Label done; |
+ |
+ // Handle smis inline. |
+ // We can treat smis as 64-bit integers, since the (low-order) tag bits will |
+ // never get set by the negation. This is therefore the same as the Integer32 |
+ // case in DoMathAbs, except that it operates on 64-bit values. |
+ STATIC_ASSERT((kSmiValueSize == 32) && (kSmiShift == 32) && (kSmiTag == 0)); |
+ |
+ // TODO(jbramley): We can't use JumpIfNotSmi here because the tbz it uses |
+ // doesn't always have enough range. Consider making a variant of it, or a |
+ // TestIsSmi helper. |
+ STATIC_ASSERT(kSmiTag == 0); |
+ __ Tst(input, kSmiTagMask); |
+ __ B(ne, deferred->entry()); |
+ |
+ __ Abs(result, input, NULL, &done); |
+ |
+ // The result is the magnitude (abs) of the smallest value a smi can |
+ // represent, encoded as a double. |
+ __ Mov(result_bits, double_to_rawbits(0x80000000)); |
+ __ B(deferred->allocation_entry()); |
+ |
+ __ Bind(deferred->exit()); |
+ __ Str(result_bits, FieldMemOperand(result, HeapNumber::kValueOffset)); |
+ |
+ __ Bind(&done); |
+} |
+ |
+ |
+void LCodeGen::DoMathExp(LMathExp* instr) { |
+ DoubleRegister input = ToDoubleRegister(instr->value()); |
+ DoubleRegister result = ToDoubleRegister(instr->result()); |
+ DoubleRegister double_temp1 = ToDoubleRegister(instr->double_temp1()); |
+ DoubleRegister double_temp2 = double_scratch(); |
+ Register temp1 = ToRegister(instr->temp1()); |
+ Register temp2 = ToRegister(instr->temp2()); |
+ Register temp3 = ToRegister(instr->temp3()); |
+ |
+ MathExpGenerator::EmitMathExp(masm(), input, result, |
+ double_temp1, double_temp2, |
+ temp1, temp2, temp3); |
+} |
+ |
+ |
+void LCodeGen::DoMathFloor(LMathFloor* instr) { |
+ // TODO(jbramley): If we could provide a double result, we could use frintm |
+ // and produce a valid double result in a single instruction. |
+ DoubleRegister input = ToDoubleRegister(instr->value()); |
+ Register result = ToRegister(instr->result()); |
+ Label deopt; |
+ Label done; |
+ |
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
+ __ JumpIfMinusZero(input, &deopt); |
+ } |
+ |
+ __ Fcvtms(result, input); |
+ |
+ // Check that the result fits into a 32-bit integer. |
+ // - The result did not overflow. |
+ __ Cmp(result, Operand(result, SXTW)); |
+ // - The input was not NaN. |
+ __ Fccmp(input, input, NoFlag, eq); |
+ __ B(&done, eq); |
+ |
+ __ Bind(&deopt); |
+ Deoptimize(instr->environment()); |
+ |
+ __ Bind(&done); |
+} |
+ |
+ |
+void LCodeGen::DoMathFloorOfDiv(LMathFloorOfDiv* instr) { |
+ Register result = ToRegister32(instr->result()); |
+ Register left = ToRegister32(instr->left()); |
+ Register right = ToRegister32(instr->right()); |
+ Register remainder = ToRegister32(instr->temp()); |
+ |
+ // This can't cause an exception on ARM, so we can speculatively |
+ // execute it already now. |
+ __ Sdiv(result, left, right); |
+ |
+ // Check for x / 0. |
+ DeoptimizeIfZero(right, instr->environment()); |
+ |
+ // Check for (kMinInt / -1). |
+ if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { |
+ // The V flag will be set iff left == kMinInt. |
+ __ Cmp(left, 1); |
+ __ Ccmp(right, -1, NoFlag, vs); |
+ DeoptimizeIf(eq, instr->environment()); |
+ } |
+ |
+ // Check for (0 / -x) that will produce negative zero. |
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
+ __ Cmp(right, 0); |
+ __ Ccmp(left, 0, ZFlag, mi); |
+ // "right" can't be null because the code would have already been |
+ // deoptimized. The Z flag is set only if (right < 0) and (left == 0). |
+ // In this case we need to deoptimize to produce a -0. |
+ DeoptimizeIf(eq, instr->environment()); |
+ } |
+ |
+ Label done; |
+ // If both operands have the same sign then we are done. |
+ __ Eor(remainder, left, right); |
+ __ Tbz(remainder, kWSignBit, &done); |
+ |
+ // Check if the result needs to be corrected. |
+ __ Msub(remainder, result, right, left); |
+ __ Cbz(remainder, &done); |
+ __ Sub(result, result, 1); |
+ |
+ __ Bind(&done); |
+} |
+ |
+ |
+void LCodeGen::DoMathLog(LMathLog* instr) { |
+ ASSERT(instr->IsMarkedAsCall()); |
+ ASSERT(ToDoubleRegister(instr->value()).is(d0)); |
+ __ CallCFunction(ExternalReference::math_log_double_function(isolate()), |
+ 0, 1); |
+ ASSERT(ToDoubleRegister(instr->result()).Is(d0)); |
+} |
+ |
+ |
+void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) { |
+ DoubleRegister input = ToDoubleRegister(instr->value()); |
+ DoubleRegister result = ToDoubleRegister(instr->result()); |
+ Label done; |
+ |
+ // Math.pow(x, 0.5) differs from fsqrt(x) in the following cases: |
+ // Math.pow(-Infinity, 0.5) == +Infinity |
+ // Math.pow(-0.0, 0.5) == +0.0 |
+ |
+ // Catch -infinity inputs first. |
+ // TODO(jbramley): A constant infinity register would be helpful here. |
+ __ Fmov(double_scratch(), kFP64NegativeInfinity); |
+ __ Fcmp(double_scratch(), input); |
+ __ Fabs(result, input); |
+ __ B(&done, eq); |
+ |
+ // Add +0.0 to convert -0.0 to +0.0. |
+ // TODO(jbramley): A constant zero register would be helpful here. |
+ __ Fmov(double_scratch(), 0.0); |
+ __ Fadd(double_scratch(), input, double_scratch()); |
+ __ Fsqrt(result, double_scratch()); |
+ |
+ __ Bind(&done); |
+} |
+ |
+ |
+void LCodeGen::DoPower(LPower* instr) { |
+ Representation exponent_type = instr->hydrogen()->right()->representation(); |
+ // Having marked this as a call, we can use any registers. |
+ // Just make sure that the input/output registers are the expected ones. |
+ ASSERT(!instr->right()->IsDoubleRegister() || |
+ ToDoubleRegister(instr->right()).is(d1)); |
+ ASSERT(exponent_type.IsInteger32() || !instr->right()->IsRegister() || |
+ ToRegister(instr->right()).is(x11)); |
+ ASSERT(!exponent_type.IsInteger32() || ToRegister(instr->right()).is(x12)); |
+ ASSERT(ToDoubleRegister(instr->left()).is(d0)); |
+ ASSERT(ToDoubleRegister(instr->result()).is(d0)); |
+ |
+ if (exponent_type.IsSmi()) { |
+ MathPowStub stub(MathPowStub::TAGGED); |
+ __ CallStub(&stub); |
+ } else if (exponent_type.IsTagged()) { |
+ Label no_deopt; |
+ __ JumpIfSmi(x11, &no_deopt); |
+ __ Ldr(x0, FieldMemOperand(x11, HeapObject::kMapOffset)); |
+ DeoptimizeIfNotRoot(x0, Heap::kHeapNumberMapRootIndex, |
+ instr->environment()); |
+ __ Bind(&no_deopt); |
+ MathPowStub stub(MathPowStub::TAGGED); |
+ __ CallStub(&stub); |
+ } else if (exponent_type.IsInteger32()) { |
+ MathPowStub stub(MathPowStub::INTEGER); |
+ __ CallStub(&stub); |
+ } else { |
+ ASSERT(exponent_type.IsDouble()); |
+ MathPowStub stub(MathPowStub::DOUBLE); |
+ __ CallStub(&stub); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoMathRound(LMathRound* instr) { |
+ // TODO(jbramley): We could provide a double result here using frint. |
+ DoubleRegister input = ToDoubleRegister(instr->value()); |
+ DoubleRegister temp1 = ToDoubleRegister(instr->temp1()); |
+ Register result = ToRegister(instr->result()); |
+ Label try_rounding; |
+ Label deopt; |
+ Label done; |
+ |
+ // Math.round() rounds to the nearest integer, with ties going towards |
+ // +infinity. This does not match any IEEE-754 rounding mode. |
+ // - Infinities and NaNs are propagated unchanged, but cause deopts because |
+ // they can't be represented as integers. |
+ // - The sign of the result is the same as the sign of the input. This means |
+ // that -0.0 rounds to itself, and values -0.5 <= input < 0 also produce a |
+ // result of -0.0. |
+ |
+ DoubleRegister dot_five = double_scratch(); |
+ __ Fmov(dot_five, 0.5); |
+ __ Fabs(temp1, input); |
+ __ Fcmp(temp1, dot_five); |
+ // If input is in [-0.5, -0], the result is -0. |
+ // If input is in [+0, +0.5[, the result is +0. |
+ // If the input is +0.5, the result is 1. |
+ __ B(hi, &try_rounding); // hi so NaN will also branch. |
+ |
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
+ __ Fmov(result, input); |
+ __ Cmp(result, 0); |
+ DeoptimizeIf(mi, instr->environment()); // [-0.5, -0.0]. |
+ } |
+ __ Fcmp(input, dot_five); |
+ __ Mov(result, 1); // +0.5. |
+ // Remaining cases: [+0, +0.5[ or [-0.5, +0.5[, depending on |
+ // flag kBailoutOnMinusZero, will return 0 (xzr). |
+ __ Csel(result, result, xzr, eq); |
+ __ B(&done); |
+ |
+ __ Bind(&deopt); |
+ Deoptimize(instr->environment()); |
+ |
+ __ Bind(&try_rounding); |
+ // Since we're providing a 32-bit result, we can implement ties-to-infinity by |
+ // adding 0.5 to the input, then taking the floor of the result. This does not |
+ // work for very large positive doubles because adding 0.5 would cause an |
+ // intermediate rounding stage, so a different approach will be necessary if a |
+ // double result is needed. |
+ __ Fadd(temp1, input, dot_five); |
+ __ Fcvtms(result, temp1); |
+ |
+ // Deopt if |
+ // * the input was NaN |
+ // * the result is not representable using a 32-bit integer. |
+ __ Fcmp(input, 0.0); |
+ __ Ccmp(result, Operand(result.W(), SXTW), NoFlag, vc); |
+ __ B(ne, &deopt); |
+ |
+ __ Bind(&done); |
+} |
+ |
+ |
+void LCodeGen::DoMathSqrt(LMathSqrt* instr) { |
+ DoubleRegister input = ToDoubleRegister(instr->value()); |
+ DoubleRegister result = ToDoubleRegister(instr->result()); |
+ __ Fsqrt(result, input); |
+} |
+ |
+ |
+void LCodeGen::DoMathMinMax(LMathMinMax* instr) { |
+ HMathMinMax::Operation op = instr->hydrogen()->operation(); |
+ if (instr->hydrogen()->representation().IsInteger32()) { |
+ Register result = ToRegister32(instr->result()); |
+ Register left = ToRegister32(instr->left()); |
+ Operand right = ToOperand32I(instr->right()); |
+ |
+ __ Cmp(left, right); |
+ __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le); |
+ } else if (instr->hydrogen()->representation().IsSmi()) { |
+ Register result = ToRegister(instr->result()); |
+ Register left = ToRegister(instr->left()); |
+ Operand right = ToOperand(instr->right()); |
+ |
+ __ Cmp(left, right); |
+ __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le); |
+ } else { |
+ ASSERT(instr->hydrogen()->representation().IsDouble()); |
+ DoubleRegister result = ToDoubleRegister(instr->result()); |
+ DoubleRegister left = ToDoubleRegister(instr->left()); |
+ DoubleRegister right = ToDoubleRegister(instr->right()); |
+ |
+ if (op == HMathMinMax::kMathMax) { |
+ __ Fmax(result, left, right); |
+ } else { |
+ ASSERT(op == HMathMinMax::kMathMin); |
+ __ Fmin(result, left, right); |
+ } |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoModI(LModI* instr) { |
+ HMod* hmod = instr->hydrogen(); |
+ HValue* hleft = hmod->left(); |
+ HValue* hright = hmod->right(); |
+ |
+ Label done; |
+ Register result = ToRegister32(instr->result()); |
+ Register dividend = ToRegister32(instr->left()); |
+ |
+ bool need_minus_zero_check = (hmod->CheckFlag(HValue::kBailoutOnMinusZero) && |
+ hleft->CanBeNegative() && hmod->CanBeZero()); |
+ |
+ if (hmod->RightIsPowerOf2()) { |
+ // Note: The code below even works when right contains kMinInt. |
+ int32_t divisor = Abs(hright->GetInteger32Constant()); |
+ |
+ if (hleft->CanBeNegative()) { |
+ __ Cmp(dividend, 0); |
+ __ Cneg(result, dividend, mi); |
+ __ And(result, result, divisor - 1); |
+ __ Cneg(result, result, mi); |
+ if (need_minus_zero_check) { |
+ __ Cbnz(result, &done); |
+ // The result is 0. Deoptimize if the dividend was negative. |
+ DeoptimizeIf(mi, instr->environment()); |
+ } |
+ } else { |
+ __ And(result, dividend, divisor - 1); |
+ } |
+ |
+ } else { |
+ Label deopt; |
+ Register divisor = ToRegister32(instr->right()); |
+ // Compute: |
+ // modulo = dividend - quotient * divisor |
+ __ Sdiv(result, dividend, divisor); |
+ if (hright->CanBeZero()) { |
+ // Combine the deoptimization sites. |
+ Label ok; |
+ __ Cbnz(divisor, &ok); |
+ __ Bind(&deopt); |
+ Deoptimize(instr->environment()); |
+ __ Bind(&ok); |
+ } |
+ __ Msub(result, result, divisor, dividend); |
+ if (need_minus_zero_check) { |
+ __ Cbnz(result, &done); |
+ if (deopt.is_bound()) { |
+ __ Tbnz(dividend, kWSignBit, &deopt); |
+ } else { |
+ DeoptimizeIfNegative(dividend, instr->environment()); |
+ } |
+ } |
+ } |
+ __ Bind(&done); |
+} |
+ |
+ |
+void LCodeGen::DoMulConstIS(LMulConstIS* instr) { |
+ ASSERT(instr->hydrogen()->representation().IsSmiOrInteger32()); |
+ bool is_smi = instr->hydrogen()->representation().IsSmi(); |
+ Register result = |
+ is_smi ? ToRegister(instr->result()) : ToRegister32(instr->result()); |
+ Register left = |
+ is_smi ? ToRegister(instr->left()) : ToRegister32(instr->left()) ; |
+ int32_t right = ToInteger32(instr->right()); |
+ |
+ bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); |
+ bool bailout_on_minus_zero = |
+ instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero); |
+ |
+ if (bailout_on_minus_zero) { |
+ if (right < 0) { |
+ // The result is -0 if right is negative and left is zero. |
+ DeoptimizeIfZero(left, instr->environment()); |
+ } else if (right == 0) { |
+ // The result is -0 if the right is zero and the left is negative. |
+ DeoptimizeIfNegative(left, instr->environment()); |
+ } |
+ } |
+ |
+ switch (right) { |
+ // Cases which can detect overflow. |
+ case -1: |
+ if (can_overflow) { |
+ // Only 0x80000000 can overflow here. |
+ __ Negs(result, left); |
+ DeoptimizeIf(vs, instr->environment()); |
+ } else { |
+ __ Neg(result, left); |
+ } |
+ break; |
+ case 0: |
+ // This case can never overflow. |
+ __ Mov(result, 0); |
+ break; |
+ case 1: |
+ // This case can never overflow. |
+ __ Mov(result, left, kDiscardForSameWReg); |
+ break; |
+ case 2: |
+ if (can_overflow) { |
+ __ Adds(result, left, left); |
+ DeoptimizeIf(vs, instr->environment()); |
+ } else { |
+ __ Add(result, left, left); |
+ } |
+ break; |
+ |
+ // All other cases cannot detect overflow, because it would probably be no |
+ // faster than using the smull method in LMulI. |
+ // TODO(jbramley): Investigate this, and add overflow support if it would |
+ // be useful. |
+ default: |
+ ASSERT(!can_overflow); |
+ |
+ // Multiplication by constant powers of two (and some related values) |
+ // can be done efficiently with shifted operands. |
+ if (right >= 0) { |
+ if (IsPowerOf2(right)) { |
+ // result = left << log2(right) |
+ __ Lsl(result, left, WhichPowerOf2(right)); |
+ } else if (IsPowerOf2(right - 1)) { |
+ // result = left + left << log2(right - 1) |
+ __ Add(result, left, Operand(left, LSL, WhichPowerOf2(right - 1))); |
+ } else if (IsPowerOf2(right + 1)) { |
+ // result = -left + left << log2(right + 1) |
+ __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(right + 1))); |
+ __ Neg(result, result); |
+ } else { |
+ UNREACHABLE(); |
+ } |
+ } else { |
+ if (IsPowerOf2(-right)) { |
+ // result = -left << log2(-right) |
+ __ Neg(result, Operand(left, LSL, WhichPowerOf2(-right))); |
+ } else if (IsPowerOf2(-right + 1)) { |
+ // result = left - left << log2(-right + 1) |
+ __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(-right + 1))); |
+ } else if (IsPowerOf2(-right - 1)) { |
+ // result = -left - left << log2(-right - 1) |
+ __ Add(result, left, Operand(left, LSL, WhichPowerOf2(-right - 1))); |
+ __ Neg(result, result); |
+ } else { |
+ UNREACHABLE(); |
+ } |
+ } |
+ break; |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoMulI(LMulI* instr) { |
+ Register result = ToRegister32(instr->result()); |
+ Register left = ToRegister32(instr->left()); |
+ Register right = ToRegister32(instr->right()); |
+ |
+ bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); |
+ bool bailout_on_minus_zero = |
+ instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero); |
+ |
+ if (bailout_on_minus_zero) { |
+ // If one operand is zero and the other is negative, the result is -0. |
+ // - Set Z (eq) if either left or right, or both, are 0. |
+ __ Cmp(left, 0); |
+ __ Ccmp(right, 0, ZFlag, ne); |
+ // - If so (eq), set N (mi) if left + right is negative. |
+ // - Otherwise, clear N. |
+ __ Ccmn(left, right, NoFlag, eq); |
+ DeoptimizeIf(mi, instr->environment()); |
+ } |
+ |
+ if (can_overflow) { |
+ __ Smull(result.X(), left, right); |
+ __ Cmp(result.X(), Operand(result, SXTW)); |
+ DeoptimizeIf(ne, instr->environment()); |
+ } else { |
+ __ Mul(result, left, right); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoMulS(LMulS* instr) { |
+ Register result = ToRegister(instr->result()); |
+ Register left = ToRegister(instr->left()); |
+ Register right = ToRegister(instr->right()); |
+ |
+ bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); |
+ bool bailout_on_minus_zero = |
+ instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero); |
+ |
+ if (bailout_on_minus_zero) { |
+ // If one operand is zero and the other is negative, the result is -0. |
+ // - Set Z (eq) if either left or right, or both, are 0. |
+ __ Cmp(left, 0); |
+ __ Ccmp(right, 0, ZFlag, ne); |
+ // - If so (eq), set N (mi) if left + right is negative. |
+ // - Otherwise, clear N. |
+ __ Ccmn(left, right, NoFlag, eq); |
+ DeoptimizeIf(mi, instr->environment()); |
+ } |
+ |
+ STATIC_ASSERT((kSmiShift == 32) && (kSmiTag == 0)); |
+ if (can_overflow) { |
+ __ Smulh(result, left, right); |
+ __ Cmp(result, Operand(result.W(), SXTW)); |
+ __ SmiTag(result); |
+ DeoptimizeIf(ne, instr->environment()); |
+ } else { |
+ // TODO(jbramley): This could be rewritten to support UseRegisterAtStart. |
+ ASSERT(!AreAliased(result, right)); |
+ __ SmiUntag(result, left); |
+ __ Mul(result, result, right); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) { |
+ // TODO(3095996): Get rid of this. For now, we need to make the |
+ // result register contain a valid pointer because it is already |
+ // contained in the register pointer map. |
+ Register result = ToRegister(instr->result()); |
+ __ Mov(result, 0); |
+ |
+ PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); |
+ // NumberTagU and NumberTagD use the context from the frame, rather than |
+ // the environment's HContext or HInlinedContext value. |
+ // They only call Runtime::kAllocateHeapNumber. |
+ // The corresponding HChange instructions are added in a phase that does |
+ // not have easy access to the local context. |
+ __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
+ __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); |
+ RecordSafepointWithRegisters( |
+ instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); |
+ __ StoreToSafepointRegisterSlot(x0, result); |
+} |
+ |
+ |
+void LCodeGen::DoNumberTagD(LNumberTagD* instr) { |
+ class DeferredNumberTagD: public LDeferredCode { |
+ public: |
+ DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr) |
+ : LDeferredCode(codegen), instr_(instr) { } |
+ virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); } |
+ virtual LInstruction* instr() { return instr_; } |
+ private: |
+ LNumberTagD* instr_; |
+ }; |
+ |
+ DoubleRegister input = ToDoubleRegister(instr->value()); |
+ Register result = ToRegister(instr->result()); |
+ Register temp1 = ToRegister(instr->temp1()); |
+ Register temp2 = ToRegister(instr->temp2()); |
+ |
+ DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr); |
+ if (FLAG_inline_new) { |
+ __ AllocateHeapNumber(result, deferred->entry(), temp1, temp2); |
+ } else { |
+ __ B(deferred->entry()); |
+ } |
+ |
+ __ Bind(deferred->exit()); |
+ __ Str(input, FieldMemOperand(result, HeapNumber::kValueOffset)); |
+} |
+ |
+ |
+void LCodeGen::DoDeferredNumberTagU(LInstruction* instr, |
+ LOperand* value, |
+ LOperand* temp1, |
+ LOperand* temp2) { |
+ Label slow, convert_and_store; |
+ Register src = ToRegister32(value); |
+ Register dst = ToRegister(instr->result()); |
+ Register scratch1 = ToRegister(temp1); |
+ |
+ if (FLAG_inline_new) { |
+ Register scratch2 = ToRegister(temp2); |
+ __ AllocateHeapNumber(dst, &slow, scratch1, scratch2); |
+ __ B(&convert_and_store); |
+ } |
+ |
+ // Slow case: call the runtime system to do the number allocation. |
+ __ Bind(&slow); |
+ // TODO(3095996): Put a valid pointer value in the stack slot where the result |
+ // register is stored, as this register is in the pointer map, but contains an |
+ // integer value. |
+ __ Mov(dst, 0); |
+ { |
+ // Preserve the value of all registers. |
+ PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); |
+ |
+ // NumberTagU and NumberTagD use the context from the frame, rather than |
+ // the environment's HContext or HInlinedContext value. |
+ // They only call Runtime::kAllocateHeapNumber. |
+ // The corresponding HChange instructions are added in a phase that does |
+ // not have easy access to the local context. |
+ __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
+ __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); |
+ RecordSafepointWithRegisters( |
+ instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); |
+ __ StoreToSafepointRegisterSlot(x0, dst); |
+ } |
+ |
+ // Convert number to floating point and store in the newly allocated heap |
+ // number. |
+ __ Bind(&convert_and_store); |
+ DoubleRegister dbl_scratch = double_scratch(); |
+ __ Ucvtf(dbl_scratch, src); |
+ __ Str(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset)); |
+} |
+ |
+ |
+void LCodeGen::DoNumberTagU(LNumberTagU* instr) { |
+ class DeferredNumberTagU: public LDeferredCode { |
+ public: |
+ DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr) |
+ : LDeferredCode(codegen), instr_(instr) { } |
+ virtual void Generate() { |
+ codegen()->DoDeferredNumberTagU(instr_, |
+ instr_->value(), |
+ instr_->temp1(), |
+ instr_->temp2()); |
+ } |
+ virtual LInstruction* instr() { return instr_; } |
+ private: |
+ LNumberTagU* instr_; |
+ }; |
+ |
+ Register value = ToRegister(instr->value()); |
+ Register result = ToRegister(instr->result()); |
+ |
+ DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr); |
+ __ Cmp(value, Smi::kMaxValue); |
+ __ B(hi, deferred->entry()); |
+ __ SmiTag(result, value); |
+ __ Bind(deferred->exit()); |
+} |
+ |
+ |
+void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) { |
+ Register input = ToRegister(instr->value()); |
+ Register scratch = ToRegister(instr->temp()); |
+ DoubleRegister result = ToDoubleRegister(instr->result()); |
+ bool can_convert_undefined_to_nan = |
+ instr->hydrogen()->can_convert_undefined_to_nan(); |
+ |
+ Label done, load_smi; |
+ |
+ // Work out what untag mode we're working with. |
+ HValue* value = instr->hydrogen()->value(); |
+ NumberUntagDMode mode = value->representation().IsSmi() |
+ ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED; |
+ |
+ if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) { |
+ __ JumpIfSmi(input, &load_smi); |
+ |
+ Label convert_undefined, deopt; |
+ |
+ // Heap number map check. |
+ Label* not_heap_number = can_convert_undefined_to_nan ? &convert_undefined |
+ : &deopt; |
+ __ Ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); |
+ __ JumpIfNotRoot(scratch, Heap::kHeapNumberMapRootIndex, not_heap_number); |
+ |
+ // Load heap number. |
+ __ Ldr(result, FieldMemOperand(input, HeapNumber::kValueOffset)); |
+ if (instr->hydrogen()->deoptimize_on_minus_zero()) { |
+ __ JumpIfMinusZero(result, &deopt); |
+ } |
+ __ B(&done); |
+ |
+ if (can_convert_undefined_to_nan) { |
+ __ Bind(&convert_undefined); |
+ __ JumpIfNotRoot(input, Heap::kUndefinedValueRootIndex, &deopt); |
+ |
+ __ LoadRoot(scratch, Heap::kNanValueRootIndex); |
+ __ Ldr(result, FieldMemOperand(scratch, HeapNumber::kValueOffset)); |
+ __ B(&done); |
+ } |
+ |
+ __ Bind(&deopt); |
+ Deoptimize(instr->environment()); |
+ } else { |
+ ASSERT(mode == NUMBER_CANDIDATE_IS_SMI); |
+ // Fall through to load_smi. |
+ } |
+ |
+ // Smi to double register conversion. |
+ __ Bind(&load_smi); |
+ __ SmiUntagToDouble(result, input); |
+ |
+ __ Bind(&done); |
+} |
+ |
+ |
+void LCodeGen::DoOsrEntry(LOsrEntry* instr) { |
+ // This is a pseudo-instruction that ensures that the environment here is |
+ // properly registered for deoptimization and records the assembler's PC |
+ // offset. |
+ LEnvironment* environment = instr->environment(); |
+ |
+ // If the environment were already registered, we would have no way of |
+ // backpatching it with the spill slot operands. |
+ ASSERT(!environment->HasBeenRegistered()); |
+ RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); |
+ |
+ GenerateOsrPrologue(); |
+} |
+ |
+ |
+void LCodeGen::DoParameter(LParameter* instr) { |
+ // Nothing to do. |
+} |
+ |
+ |
+void LCodeGen::DoPushArgument(LPushArgument* instr) { |
+ LOperand* argument = instr->value(); |
+ if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) { |
+ Abort(kDoPushArgumentNotImplementedForDoubleType); |
+ } else { |
+ __ Push(ToRegister(argument)); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoReturn(LReturn* instr) { |
+ if (FLAG_trace && info()->IsOptimizing()) { |
+ // Push the return value on the stack as the parameter. |
+ // Runtime::TraceExit returns its parameter in x0. We're leaving the code |
+ // managed by the register allocator and tearing down the frame, it's |
+ // safe to write to the context register. |
+ __ Push(x0); |
+ __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
+ __ CallRuntime(Runtime::kTraceExit, 1); |
+ } |
+ |
+ if (info()->saves_caller_doubles()) { |
+ RestoreCallerDoubles(); |
+ } |
+ |
+ int no_frame_start = -1; |
+ if (NeedsEagerFrame()) { |
+ Register stack_pointer = masm()->StackPointer(); |
+ __ Mov(stack_pointer, fp); |
+ no_frame_start = masm_->pc_offset(); |
+ __ Pop(fp, lr); |
+ } |
+ |
+ if (instr->has_constant_parameter_count()) { |
+ int parameter_count = ToInteger32(instr->constant_parameter_count()); |
+ __ Drop(parameter_count + 1); |
+ } else { |
+ Register parameter_count = ToRegister(instr->parameter_count()); |
+ __ DropBySMI(parameter_count); |
+ } |
+ __ Ret(); |
+ |
+ if (no_frame_start != -1) { |
+ info_->AddNoFrameRange(no_frame_start, masm_->pc_offset()); |
+ } |
+} |
+ |
+ |
+MemOperand LCodeGen::BuildSeqStringOperand(Register string, |
+ Register temp, |
+ LOperand* index, |
+ String::Encoding encoding) { |
+ if (index->IsConstantOperand()) { |
+ int offset = ToInteger32(LConstantOperand::cast(index)); |
+ if (encoding == String::TWO_BYTE_ENCODING) { |
+ offset *= kUC16Size; |
+ } |
+ STATIC_ASSERT(kCharSize == 1); |
+ return FieldMemOperand(string, SeqString::kHeaderSize + offset); |
+ } |
+ ASSERT(!temp.is(string)); |
+ ASSERT(!temp.is(ToRegister(index))); |
+ if (encoding == String::ONE_BYTE_ENCODING) { |
+ __ Add(temp, string, Operand(ToRegister(index))); |
+ } else { |
+ STATIC_ASSERT(kUC16Size == 2); |
+ __ Add(temp, string, Operand(ToRegister(index), LSL, 1)); |
+ } |
+ return FieldMemOperand(temp, SeqString::kHeaderSize); |
+} |
+ |
+ |
+void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) { |
+ String::Encoding encoding = instr->hydrogen()->encoding(); |
+ Register string = ToRegister(instr->string()); |
+ Register result = ToRegister(instr->result()); |
+ Register temp = ToRegister(instr->temp()); |
+ |
+ if (FLAG_debug_code) { |
+ __ Ldr(temp, FieldMemOperand(string, HeapObject::kMapOffset)); |
+ __ Ldrb(temp, FieldMemOperand(temp, Map::kInstanceTypeOffset)); |
+ |
+ __ And(temp, temp, |
+ Operand(kStringRepresentationMask | kStringEncodingMask)); |
+ static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; |
+ static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; |
+ __ Cmp(temp, Operand(encoding == String::ONE_BYTE_ENCODING |
+ ? one_byte_seq_type : two_byte_seq_type)); |
+ __ Check(eq, kUnexpectedStringType); |
+ } |
+ |
+ MemOperand operand = |
+ BuildSeqStringOperand(string, temp, instr->index(), encoding); |
+ if (encoding == String::ONE_BYTE_ENCODING) { |
+ __ Ldrb(result, operand); |
+ } else { |
+ __ Ldrh(result, operand); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) { |
+ String::Encoding encoding = instr->hydrogen()->encoding(); |
+ Register string = ToRegister(instr->string()); |
+ Register value = ToRegister(instr->value()); |
+ Register temp = ToRegister(instr->temp()); |
+ |
+ if (FLAG_debug_code) { |
+ ASSERT(ToRegister(instr->context()).is(cp)); |
+ Register index = ToRegister(instr->index()); |
+ static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; |
+ static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; |
+ int encoding_mask = |
+ instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING |
+ ? one_byte_seq_type : two_byte_seq_type; |
+ __ EmitSeqStringSetCharCheck(string, index, kIndexIsInteger32, temp, |
+ encoding_mask); |
+ } |
+ MemOperand operand = |
+ BuildSeqStringOperand(string, temp, instr->index(), encoding); |
+ if (encoding == String::ONE_BYTE_ENCODING) { |
+ __ Strb(value, operand); |
+ } else { |
+ __ Strh(value, operand); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoSmiTag(LSmiTag* instr) { |
+ ASSERT(!instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow)); |
+ __ SmiTag(ToRegister(instr->result()), ToRegister(instr->value())); |
+} |
+ |
+ |
+void LCodeGen::DoSmiUntag(LSmiUntag* instr) { |
+ Register input = ToRegister(instr->value()); |
+ Register result = ToRegister(instr->result()); |
+ Label done, untag; |
+ |
+ if (instr->needs_check()) { |
+ DeoptimizeIfNotSmi(input, instr->environment()); |
+ } |
+ |
+ __ Bind(&untag); |
+ __ SmiUntag(result, input); |
+ __ Bind(&done); |
+} |
+ |
+ |
+void LCodeGen::DoShiftI(LShiftI* instr) { |
+ LOperand* right_op = instr->right(); |
+ Register left = ToRegister32(instr->left()); |
+ Register result = ToRegister32(instr->result()); |
+ |
+ if (right_op->IsRegister()) { |
+ Register right = ToRegister32(instr->right()); |
+ switch (instr->op()) { |
+ case Token::ROR: __ Ror(result, left, right); break; |
+ case Token::SAR: __ Asr(result, left, right); break; |
+ case Token::SHL: __ Lsl(result, left, right); break; |
+ case Token::SHR: |
+ if (instr->can_deopt()) { |
+ Label right_not_zero; |
+ __ Cbnz(right, &right_not_zero); |
+ DeoptimizeIfNegative(left, instr->environment()); |
+ __ Bind(&right_not_zero); |
+ } |
+ __ Lsr(result, left, right); |
+ break; |
+ default: UNREACHABLE(); |
+ } |
+ } else { |
+ ASSERT(right_op->IsConstantOperand()); |
+ int shift_count = ToInteger32(LConstantOperand::cast(right_op)) & 0x1f; |
+ if (shift_count == 0) { |
+ if ((instr->op() == Token::SHR) && instr->can_deopt()) { |
+ DeoptimizeIfNegative(left, instr->environment()); |
+ } |
+ __ Mov(result, left, kDiscardForSameWReg); |
+ } else { |
+ switch (instr->op()) { |
+ case Token::ROR: __ Ror(result, left, shift_count); break; |
+ case Token::SAR: __ Asr(result, left, shift_count); break; |
+ case Token::SHL: __ Lsl(result, left, shift_count); break; |
+ case Token::SHR: __ Lsr(result, left, shift_count); break; |
+ default: UNREACHABLE(); |
+ } |
+ } |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoShiftS(LShiftS* instr) { |
+ LOperand* right_op = instr->right(); |
+ Register left = ToRegister(instr->left()); |
+ Register result = ToRegister(instr->result()); |
+ |
+ // Only ROR by register needs a temp. |
+ ASSERT(((instr->op() == Token::ROR) && right_op->IsRegister()) || |
+ (instr->temp() == NULL)); |
+ |
+ if (right_op->IsRegister()) { |
+ Register right = ToRegister(instr->right()); |
+ switch (instr->op()) { |
+ case Token::ROR: { |
+ Register temp = ToRegister(instr->temp()); |
+ __ Ubfx(temp, right, kSmiShift, 5); |
+ __ SmiUntag(result, left); |
+ __ Ror(result.W(), result.W(), temp.W()); |
+ __ SmiTag(result); |
+ break; |
+ } |
+ case Token::SAR: |
+ __ Ubfx(result, right, kSmiShift, 5); |
+ __ Asr(result, left, result); |
+ __ Bic(result, result, kSmiShiftMask); |
+ break; |
+ case Token::SHL: |
+ __ Ubfx(result, right, kSmiShift, 5); |
+ __ Lsl(result, left, result); |
+ break; |
+ case Token::SHR: |
+ if (instr->can_deopt()) { |
+ Label right_not_zero; |
+ __ Cbnz(right, &right_not_zero); |
+ DeoptimizeIfNegative(left, instr->environment()); |
+ __ Bind(&right_not_zero); |
+ } |
+ __ Ubfx(result, right, kSmiShift, 5); |
+ __ Lsr(result, left, result); |
+ __ Bic(result, result, kSmiShiftMask); |
+ break; |
+ default: UNREACHABLE(); |
+ } |
+ } else { |
+ ASSERT(right_op->IsConstantOperand()); |
+ int shift_count = ToInteger32(LConstantOperand::cast(right_op)) & 0x1f; |
+ if (shift_count == 0) { |
+ if ((instr->op() == Token::SHR) && instr->can_deopt()) { |
+ DeoptimizeIfNegative(left, instr->environment()); |
+ } |
+ __ Mov(result, left); |
+ } else { |
+ switch (instr->op()) { |
+ case Token::ROR: |
+ __ SmiUntag(result, left); |
+ __ Ror(result.W(), result.W(), shift_count); |
+ __ SmiTag(result); |
+ break; |
+ case Token::SAR: |
+ __ Asr(result, left, shift_count); |
+ __ Bic(result, result, kSmiShiftMask); |
+ break; |
+ case Token::SHL: |
+ __ Lsl(result, left, shift_count); |
+ break; |
+ case Token::SHR: |
+ __ Lsr(result, left, shift_count); |
+ __ Bic(result, result, kSmiShiftMask); |
+ break; |
+ default: UNREACHABLE(); |
+ } |
+ } |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoDebugBreak(LDebugBreak* instr) { |
+ __ Debug("LDebugBreak", 0, BREAK); |
+} |
+ |
+ |
+void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) { |
+ ASSERT(ToRegister(instr->context()).is(cp)); |
+ Register scratch1 = x5; |
+ Register scratch2 = x6; |
+ ASSERT(instr->IsMarkedAsCall()); |
+ |
+ ASM_UNIMPLEMENTED_BREAK("DoDeclareGlobals"); |
+ // TODO(all): if Mov could handle object in new space then it could be used |
+ // here. |
+ __ LoadHeapObject(scratch1, instr->hydrogen()->pairs()); |
+ __ Mov(scratch2, Operand(Smi::FromInt(instr->hydrogen()->flags()))); |
+ __ Push(cp, scratch1, scratch2); // The context is the first argument. |
+ CallRuntime(Runtime::kDeclareGlobals, 3, instr); |
+} |
+ |
+ |
+void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) { |
+ PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); |
+ LoadContextFromDeferred(instr->context()); |
+ __ CallRuntimeSaveDoubles(Runtime::kStackGuard); |
+ RecordSafepointWithLazyDeopt( |
+ instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); |
+ ASSERT(instr->HasEnvironment()); |
+ LEnvironment* env = instr->environment(); |
+ safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); |
+} |
+ |
+ |
+void LCodeGen::DoStackCheck(LStackCheck* instr) { |
+ class DeferredStackCheck: public LDeferredCode { |
+ public: |
+ DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr) |
+ : LDeferredCode(codegen), instr_(instr) { } |
+ virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); } |
+ virtual LInstruction* instr() { return instr_; } |
+ private: |
+ LStackCheck* instr_; |
+ }; |
+ |
+ ASSERT(instr->HasEnvironment()); |
+ LEnvironment* env = instr->environment(); |
+ // There is no LLazyBailout instruction for stack-checks. We have to |
+ // prepare for lazy deoptimization explicitly here. |
+ if (instr->hydrogen()->is_function_entry()) { |
+ // Perform stack overflow check. |
+ Label done; |
+ __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex); |
+ __ B(hs, &done); |
+ |
+ PredictableCodeSizeScope predictable(masm_, |
+ Assembler::kCallSizeWithRelocation); |
+ ASSERT(instr->context()->IsRegister()); |
+ ASSERT(ToRegister(instr->context()).is(cp)); |
+ CallCode(isolate()->builtins()->StackCheck(), |
+ RelocInfo::CODE_TARGET, |
+ instr); |
+ EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); |
+ |
+ __ Bind(&done); |
+ RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); |
+ safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); |
+ } else { |
+ ASSERT(instr->hydrogen()->is_backwards_branch()); |
+ // Perform stack overflow check if this goto needs it before jumping. |
+ DeferredStackCheck* deferred_stack_check = |
+ new(zone()) DeferredStackCheck(this, instr); |
+ __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex); |
+ __ B(lo, deferred_stack_check->entry()); |
+ |
+ EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); |
+ __ Bind(instr->done_label()); |
+ deferred_stack_check->SetExit(instr->done_label()); |
+ RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); |
+ // Don't record a deoptimization index for the safepoint here. |
+ // This will be done explicitly when emitting call and the safepoint in |
+ // the deferred code. |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) { |
+ Register function = ToRegister(instr->function()); |
+ Register code_object = ToRegister(instr->code_object()); |
+ Register temp = ToRegister(instr->temp()); |
+ __ Add(temp, code_object, Code::kHeaderSize - kHeapObjectTag); |
+ __ Str(temp, FieldMemOperand(function, JSFunction::kCodeEntryOffset)); |
+} |
+ |
+ |
+void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) { |
+ Register context = ToRegister(instr->context()); |
+ Register value = ToRegister(instr->value()); |
+ Register scratch = ToRegister(instr->temp()); |
+ MemOperand target = ContextMemOperand(context, instr->slot_index()); |
+ |
+ Label skip_assignment; |
+ |
+ if (instr->hydrogen()->RequiresHoleCheck()) { |
+ __ Ldr(scratch, target); |
+ if (instr->hydrogen()->DeoptimizesOnHole()) { |
+ DeoptimizeIfRoot(scratch, Heap::kTheHoleValueRootIndex, |
+ instr->environment()); |
+ } else { |
+ __ JumpIfNotRoot(scratch, Heap::kTheHoleValueRootIndex, &skip_assignment); |
+ } |
+ } |
+ |
+ __ Str(value, target); |
+ if (instr->hydrogen()->NeedsWriteBarrier()) { |
+ SmiCheck check_needed = |
+ instr->hydrogen()->value()->IsHeapObject() |
+ ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; |
+ __ RecordWriteContextSlot(context, |
+ target.offset(), |
+ value, |
+ scratch, |
+ GetLinkRegisterState(), |
+ kSaveFPRegs, |
+ EMIT_REMEMBERED_SET, |
+ check_needed); |
+ } |
+ __ Bind(&skip_assignment); |
+} |
+ |
+ |
+void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) { |
+ Register value = ToRegister(instr->value()); |
+ Register cell = ToRegister(instr->temp1()); |
+ |
+ // Load the cell. |
+ __ Mov(cell, Operand(instr->hydrogen()->cell().handle())); |
+ |
+ // If the cell we are storing to contains the hole it could have |
+ // been deleted from the property dictionary. In that case, we need |
+ // to update the property details in the property dictionary to mark |
+ // it as no longer deleted. We deoptimize in that case. |
+ if (instr->hydrogen()->RequiresHoleCheck()) { |
+ Register payload = ToRegister(instr->temp2()); |
+ __ Ldr(payload, FieldMemOperand(cell, Cell::kValueOffset)); |
+ DeoptimizeIfRoot( |
+ payload, Heap::kTheHoleValueRootIndex, instr->environment()); |
+ } |
+ |
+ // Store the value. |
+ __ Str(value, FieldMemOperand(cell, Cell::kValueOffset)); |
+ // Cells are always rescanned, so no write barrier here. |
+} |
+ |
+ |
+void LCodeGen::DoStoreKeyedExternal(LStoreKeyedExternal* instr) { |
+ Register ext_ptr = ToRegister(instr->elements()); |
+ Register key = no_reg; |
+ Register scratch; |
+ ElementsKind elements_kind = instr->elements_kind(); |
+ |
+ bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi(); |
+ bool key_is_constant = instr->key()->IsConstantOperand(); |
+ int constant_key = 0; |
+ if (key_is_constant) { |
+ ASSERT(instr->temp() == NULL); |
+ constant_key = ToInteger32(LConstantOperand::cast(instr->key())); |
+ if (constant_key & 0xf0000000) { |
+ Abort(kArrayIndexConstantValueTooBig); |
+ } |
+ } else { |
+ key = ToRegister(instr->key()); |
+ scratch = ToRegister(instr->temp()); |
+ } |
+ |
+ MemOperand dst = |
+ PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi, |
+ key_is_constant, constant_key, |
+ elements_kind, |
+ instr->additional_index()); |
+ |
+ if ((elements_kind == EXTERNAL_FLOAT32_ELEMENTS) || |
+ (elements_kind == FLOAT32_ELEMENTS)) { |
+ DoubleRegister value = ToDoubleRegister(instr->value()); |
+ DoubleRegister dbl_scratch = double_scratch(); |
+ __ Fcvt(dbl_scratch.S(), value); |
+ __ Str(dbl_scratch.S(), dst); |
+ } else if ((elements_kind == EXTERNAL_FLOAT64_ELEMENTS) || |
+ (elements_kind == FLOAT64_ELEMENTS)) { |
+ DoubleRegister value = ToDoubleRegister(instr->value()); |
+ __ Str(value, dst); |
+ } else { |
+ Register value = ToRegister(instr->value()); |
+ |
+ switch (elements_kind) { |
+ case EXTERNAL_UINT8_CLAMPED_ELEMENTS: |
+ case EXTERNAL_INT8_ELEMENTS: |
+ case EXTERNAL_UINT8_ELEMENTS: |
+ case UINT8_ELEMENTS: |
+ case UINT8_CLAMPED_ELEMENTS: |
+ case INT8_ELEMENTS: |
+ __ Strb(value, dst); |
+ break; |
+ case EXTERNAL_INT16_ELEMENTS: |
+ case EXTERNAL_UINT16_ELEMENTS: |
+ case INT16_ELEMENTS: |
+ case UINT16_ELEMENTS: |
+ __ Strh(value, dst); |
+ break; |
+ case EXTERNAL_INT32_ELEMENTS: |
+ case EXTERNAL_UINT32_ELEMENTS: |
+ case INT32_ELEMENTS: |
+ case UINT32_ELEMENTS: |
+ __ Str(value.W(), dst); |
+ break; |
+ case FLOAT32_ELEMENTS: |
+ case FLOAT64_ELEMENTS: |
+ case EXTERNAL_FLOAT32_ELEMENTS: |
+ case EXTERNAL_FLOAT64_ELEMENTS: |
+ case FAST_DOUBLE_ELEMENTS: |
+ case FAST_ELEMENTS: |
+ case FAST_SMI_ELEMENTS: |
+ case FAST_HOLEY_DOUBLE_ELEMENTS: |
+ case FAST_HOLEY_ELEMENTS: |
+ case FAST_HOLEY_SMI_ELEMENTS: |
+ case DICTIONARY_ELEMENTS: |
+ case NON_STRICT_ARGUMENTS_ELEMENTS: |
+ UNREACHABLE(); |
+ break; |
+ } |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoStoreKeyedFixedDouble(LStoreKeyedFixedDouble* instr) { |
+ Register elements = ToRegister(instr->elements()); |
+ DoubleRegister value = ToDoubleRegister(instr->value()); |
+ Register store_base = ToRegister(instr->temp()); |
+ int offset = 0; |
+ |
+ if (instr->key()->IsConstantOperand()) { |
+ int constant_key = ToInteger32(LConstantOperand::cast(instr->key())); |
+ if (constant_key & 0xf0000000) { |
+ Abort(kArrayIndexConstantValueTooBig); |
+ } |
+ offset = FixedDoubleArray::OffsetOfElementAt(constant_key + |
+ instr->additional_index()); |
+ store_base = elements; |
+ } else { |
+ Register key = ToRegister(instr->key()); |
+ bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi(); |
+ CalcKeyedArrayBaseRegister(store_base, elements, key, key_is_tagged, |
+ instr->hydrogen()->elements_kind()); |
+ offset = FixedDoubleArray::OffsetOfElementAt(instr->additional_index()); |
+ } |
+ |
+ if (instr->NeedsCanonicalization()) { |
+ DoubleRegister dbl_scratch = double_scratch(); |
+ __ Fmov(dbl_scratch, |
+ FixedDoubleArray::canonical_not_the_hole_nan_as_double()); |
+ __ Fmaxnm(dbl_scratch, dbl_scratch, value); |
+ __ Str(dbl_scratch, FieldMemOperand(store_base, offset)); |
+ } else { |
+ __ Str(value, FieldMemOperand(store_base, offset)); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoStoreKeyedFixed(LStoreKeyedFixed* instr) { |
+ Register value = ToRegister(instr->value()); |
+ Register elements = ToRegister(instr->elements()); |
+ Register store_base = ToRegister(instr->temp()); |
+ Register key = no_reg; |
+ int offset = 0; |
+ |
+ if (instr->key()->IsConstantOperand()) { |
+ ASSERT(!instr->hydrogen()->NeedsWriteBarrier()); |
+ LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); |
+ offset = FixedArray::OffsetOfElementAt(ToInteger32(const_operand) + |
+ instr->additional_index()); |
+ store_base = elements; |
+ } else { |
+ key = ToRegister(instr->key()); |
+ bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi(); |
+ CalcKeyedArrayBaseRegister(store_base, elements, key, key_is_tagged, |
+ instr->hydrogen()->elements_kind()); |
+ offset = FixedArray::OffsetOfElementAt(instr->additional_index()); |
+ } |
+ Representation representation = instr->hydrogen()->value()->representation(); |
+ if (representation.IsInteger32()) { |
+ ASSERT(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY); |
+ ASSERT(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS); |
+ STATIC_ASSERT(kSmiValueSize == 32 && kSmiShift == 32 && kSmiTag == 0); |
+ __ Store(value, UntagSmiFieldMemOperand(store_base, offset), |
+ Representation::Integer32()); |
+ } else { |
+ __ Store(value, FieldMemOperand(store_base, offset), representation); |
+ } |
+ |
+ if (instr->hydrogen()->NeedsWriteBarrier()) { |
+ SmiCheck check_needed = |
+ instr->hydrogen()->value()->IsHeapObject() |
+ ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; |
+ // Compute address of modified element and store it into key register. |
+ __ Add(key, store_base, offset - kHeapObjectTag); |
+ __ RecordWrite(elements, key, value, GetLinkRegisterState(), kSaveFPRegs, |
+ EMIT_REMEMBERED_SET, check_needed); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) { |
+ ASSERT(ToRegister(instr->context()).is(cp)); |
+ ASSERT(ToRegister(instr->object()).Is(x2)); |
+ ASSERT(ToRegister(instr->key()).Is(x1)); |
+ ASSERT(ToRegister(instr->value()).Is(x0)); |
+ |
+ Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode) |
+ ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict() |
+ : isolate()->builtins()->KeyedStoreIC_Initialize(); |
+ CallCode(ic, RelocInfo::CODE_TARGET, instr); |
+} |
+ |
+ |
+// TODO(jbramley): Once the merge is done and we're tracking bleeding_edge, try |
+// to tidy up this function. |
+void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) { |
+ Representation representation = instr->representation(); |
+ |
+ Register object = ToRegister(instr->object()); |
+ Register temp0 = ToRegister(instr->temp0()); |
+ Register temp1 = ToRegister(instr->temp1()); |
+ HObjectAccess access = instr->hydrogen()->access(); |
+ int offset = access.offset(); |
+ |
+ if (access.IsExternalMemory()) { |
+ Register value = ToRegister(instr->value()); |
+ __ Store(value, MemOperand(object, offset), representation); |
+ return; |
+ } |
+ |
+ Handle<Map> transition = instr->transition(); |
+ |
+ if (FLAG_track_heap_object_fields && representation.IsHeapObject()) { |
+ Register value = ToRegister(instr->value()); |
+ if (!instr->hydrogen()->value()->type().IsHeapObject()) { |
+ DeoptimizeIfSmi(value, instr->environment()); |
+ } |
+ } else if (representation.IsDouble()) { |
+ ASSERT(transition.is_null()); |
+ ASSERT(access.IsInobject()); |
+ ASSERT(!instr->hydrogen()->NeedsWriteBarrier()); |
+ FPRegister value = ToDoubleRegister(instr->value()); |
+ __ Str(value, FieldMemOperand(object, offset)); |
+ return; |
+ } |
+ |
+ if (!transition.is_null()) { |
+ // Store the new map value. |
+ Register new_map_value = temp0; |
+ __ Mov(new_map_value, Operand(transition)); |
+ __ Str(new_map_value, FieldMemOperand(object, HeapObject::kMapOffset)); |
+ if (instr->hydrogen()->NeedsWriteBarrierForMap()) { |
+ // Update the write barrier for the map field. |
+ __ RecordWriteField(object, |
+ HeapObject::kMapOffset, |
+ new_map_value, |
+ temp1, |
+ GetLinkRegisterState(), |
+ kSaveFPRegs, |
+ OMIT_REMEMBERED_SET, |
+ OMIT_SMI_CHECK); |
+ } |
+ } |
+ |
+ // Do the store. |
+ Register value = ToRegister(instr->value()); |
+ Register destination; |
+ SmiCheck check_needed = |
+ instr->hydrogen()->value()->IsHeapObject() |
+ ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; |
+ if (access.IsInobject()) { |
+ destination = object; |
+ } else { |
+ __ Ldr(temp0, FieldMemOperand(object, JSObject::kPropertiesOffset)); |
+ destination = temp0; |
+ } |
+ |
+ if (representation.IsSmi() && |
+ instr->hydrogen()->value()->representation().IsInteger32()) { |
+ ASSERT(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY); |
+ STATIC_ASSERT(kSmiValueSize == 32 && kSmiShift == 32 && kSmiTag == 0); |
+ __ Store(value, UntagSmiFieldMemOperand(destination, offset), |
+ Representation::Integer32()); |
+ } else { |
+ __ Store(value, FieldMemOperand(destination, offset), representation); |
+ } |
+ if (instr->hydrogen()->NeedsWriteBarrier()) { |
+ __ RecordWriteField(destination, |
+ offset, |
+ value, // Clobbered. |
+ temp1, // Clobbered. |
+ GetLinkRegisterState(), |
+ kSaveFPRegs, |
+ EMIT_REMEMBERED_SET, |
+ check_needed); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) { |
+ ASSERT(ToRegister(instr->context()).is(cp)); |
+ ASSERT(ToRegister(instr->value()).is(x0)); |
+ ASSERT(ToRegister(instr->object()).is(x1)); |
+ |
+ // Name must be in x2. |
+ __ Mov(x2, Operand(instr->name())); |
+ Handle<Code> ic = StoreIC::initialize_stub(isolate(), |
+ instr->strict_mode_flag()); |
+ CallCode(ic, RelocInfo::CODE_TARGET, instr); |
+} |
+ |
+ |
+void LCodeGen::DoStringAdd(LStringAdd* instr) { |
+ ASSERT(ToRegister(instr->context()).is(cp)); |
+ ASSERT(ToRegister(instr->left()).Is(x1)); |
+ ASSERT(ToRegister(instr->right()).Is(x0)); |
+ StringAddStub stub(instr->hydrogen()->flags(), |
+ instr->hydrogen()->pretenure_flag()); |
+ CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); |
+} |
+ |
+ |
+void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) { |
+ class DeferredStringCharCodeAt: public LDeferredCode { |
+ public: |
+ DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr) |
+ : LDeferredCode(codegen), instr_(instr) { } |
+ virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); } |
+ virtual LInstruction* instr() { return instr_; } |
+ private: |
+ LStringCharCodeAt* instr_; |
+ }; |
+ |
+ DeferredStringCharCodeAt* deferred = |
+ new(zone()) DeferredStringCharCodeAt(this, instr); |
+ |
+ StringCharLoadGenerator::Generate(masm(), |
+ ToRegister(instr->string()), |
+ ToRegister(instr->index()), |
+ ToRegister(instr->result()), |
+ deferred->entry()); |
+ __ Bind(deferred->exit()); |
+} |
+ |
+ |
+void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) { |
+ Register string = ToRegister(instr->string()); |
+ Register result = ToRegister(instr->result()); |
+ |
+ // TODO(3095996): Get rid of this. For now, we need to make the |
+ // result register contain a valid pointer because it is already |
+ // contained in the register pointer map. |
+ __ Mov(result, 0); |
+ |
+ PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); |
+ __ Push(string); |
+ // Push the index as a smi. This is safe because of the checks in |
+ // DoStringCharCodeAt above. |
+ Register index = ToRegister(instr->index()); |
+ __ SmiTag(index); |
+ __ Push(index); |
+ |
+ CallRuntimeFromDeferred(Runtime::kStringCharCodeAt, 2, instr, |
+ instr->context()); |
+ __ AssertSmi(x0); |
+ __ SmiUntag(x0); |
+ __ StoreToSafepointRegisterSlot(x0, result); |
+} |
+ |
+ |
+void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) { |
+ class DeferredStringCharFromCode: public LDeferredCode { |
+ public: |
+ DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr) |
+ : LDeferredCode(codegen), instr_(instr) { } |
+ virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); } |
+ virtual LInstruction* instr() { return instr_; } |
+ private: |
+ LStringCharFromCode* instr_; |
+ }; |
+ |
+ DeferredStringCharFromCode* deferred = |
+ new(zone()) DeferredStringCharFromCode(this, instr); |
+ |
+ ASSERT(instr->hydrogen()->value()->representation().IsInteger32()); |
+ Register char_code = ToRegister(instr->char_code()); |
+ Register result = ToRegister(instr->result()); |
+ |
+ __ Cmp(char_code, Operand(String::kMaxOneByteCharCode)); |
+ __ B(hi, deferred->entry()); |
+ __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex); |
+ __ Add(result, result, Operand(char_code, LSL, kPointerSizeLog2)); |
+ __ Ldr(result, FieldMemOperand(result, FixedArray::kHeaderSize)); |
+ __ CompareRoot(result, Heap::kUndefinedValueRootIndex); |
+ __ B(eq, deferred->entry()); |
+ __ Bind(deferred->exit()); |
+} |
+ |
+ |
+void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) { |
+ Register char_code = ToRegister(instr->char_code()); |
+ Register result = ToRegister(instr->result()); |
+ |
+ // TODO(3095996): Get rid of this. For now, we need to make the |
+ // result register contain a valid pointer because it is already |
+ // contained in the register pointer map. |
+ __ Mov(result, 0); |
+ |
+ PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); |
+ __ SmiTag(char_code); |
+ __ Push(char_code); |
+ CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr, instr->context()); |
+ __ StoreToSafepointRegisterSlot(x0, result); |
+} |
+ |
+ |
+void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) { |
+ ASSERT(ToRegister(instr->context()).is(cp)); |
+ Token::Value op = instr->op(); |
+ |
+ Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op); |
+ CallCode(ic, RelocInfo::CODE_TARGET, instr); |
+ InlineSmiCheckInfo::EmitNotInlined(masm()); |
+ |
+ Condition condition = TokenToCondition(op, false); |
+ |
+ EmitCompareAndBranch(instr, condition, x0, 0); |
+} |
+ |
+ |
+void LCodeGen::DoSubI(LSubI* instr) { |
+ bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); |
+ Register result = ToRegister32(instr->result()); |
+ Register left = ToRegister32(instr->left()); |
+ Operand right = ToOperand32I(instr->right()); |
+ if (can_overflow) { |
+ __ Subs(result, left, right); |
+ DeoptimizeIf(vs, instr->environment()); |
+ } else { |
+ __ Sub(result, left, right); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoSubS(LSubS* instr) { |
+ bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); |
+ Register result = ToRegister(instr->result()); |
+ Register left = ToRegister(instr->left()); |
+ Operand right = ToOperand(instr->right()); |
+ if (can_overflow) { |
+ __ Subs(result, left, right); |
+ DeoptimizeIf(vs, instr->environment()); |
+ } else { |
+ __ Sub(result, left, right); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr, |
+ LOperand* value, |
+ LOperand* temp1, |
+ LOperand* temp2) { |
+ Register input = ToRegister(value); |
+ Register scratch1 = ToRegister(temp1); |
+ DoubleRegister dbl_scratch1 = double_scratch(); |
+ |
+ Label done; |
+ |
+ // Load heap object map. |
+ __ Ldr(scratch1, FieldMemOperand(input, HeapObject::kMapOffset)); |
+ |
+ if (instr->truncating()) { |
+ Register output = ToRegister(instr->result()); |
+ Register scratch2 = ToRegister(temp2); |
+ Label check_bools; |
+ |
+ // If it's not a heap number, jump to undefined check. |
+ __ JumpIfNotRoot(scratch1, Heap::kHeapNumberMapRootIndex, &check_bools); |
+ |
+ // A heap number: load value and convert to int32 using truncating function. |
+ __ Ldr(dbl_scratch1, FieldMemOperand(input, HeapNumber::kValueOffset)); |
+ __ ECMA262ToInt32(output, dbl_scratch1, scratch1, scratch2); |
+ __ B(&done); |
+ |
+ __ Bind(&check_bools); |
+ |
+ Register true_root = output; |
+ Register false_root = scratch2; |
+ __ LoadTrueFalseRoots(true_root, false_root); |
+ __ Cmp(scratch1, true_root); |
+ __ Cset(output, eq); |
+ __ Ccmp(scratch1, false_root, ZFlag, ne); |
+ __ B(eq, &done); |
+ |
+ // Output contains zero, undefined is converted to zero for truncating |
+ // conversions. |
+ DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, |
+ instr->environment()); |
+ } else { |
+ Register output = ToRegister32(instr->result()); |
+ |
+ DoubleRegister dbl_scratch2 = ToDoubleRegister(temp2); |
+ Label converted; |
+ |
+ // Deoptimized if it's not a heap number. |
+ DeoptimizeIfNotRoot(scratch1, Heap::kHeapNumberMapRootIndex, |
+ instr->environment()); |
+ |
+ // A heap number: load value and convert to int32 using non-truncating |
+ // function. If the result is out of range, branch to deoptimize. |
+ __ Ldr(dbl_scratch1, FieldMemOperand(input, HeapNumber::kValueOffset)); |
+ __ TryConvertDoubleToInt32(output, dbl_scratch1, dbl_scratch2, &converted); |
+ Deoptimize(instr->environment()); |
+ |
+ __ Bind(&converted); |
+ |
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
+ __ Cmp(output, 0); |
+ __ B(ne, &done); |
+ __ Fmov(scratch1, dbl_scratch1); |
+ DeoptimizeIfNegative(scratch1, instr->environment()); |
+ } |
+ } |
+ __ Bind(&done); |
+} |
+ |
+ |
+void LCodeGen::DoTaggedToI(LTaggedToI* instr) { |
+ class DeferredTaggedToI: public LDeferredCode { |
+ public: |
+ DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr) |
+ : LDeferredCode(codegen), instr_(instr) { } |
+ virtual void Generate() { |
+ codegen()->DoDeferredTaggedToI(instr_, instr_->value(), instr_->temp1(), |
+ instr_->temp2()); |
+ } |
+ |
+ virtual LInstruction* instr() { return instr_; } |
+ private: |
+ LTaggedToI* instr_; |
+ }; |
+ |
+ Register input = ToRegister(instr->value()); |
+ Register output = ToRegister(instr->result()); |
+ |
+ if (instr->hydrogen()->value()->representation().IsSmi()) { |
+ __ SmiUntag(input); |
+ } else { |
+ DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr); |
+ |
+ // TODO(jbramley): We can't use JumpIfNotSmi here because the tbz it uses |
+ // doesn't always have enough range. Consider making a variant of it, or a |
+ // TestIsSmi helper. |
+ STATIC_ASSERT(kSmiTag == 0); |
+ __ Tst(input, kSmiTagMask); |
+ __ B(ne, deferred->entry()); |
+ |
+ __ SmiUntag(output, input); |
+ __ Bind(deferred->exit()); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoThisFunction(LThisFunction* instr) { |
+ Register result = ToRegister(instr->result()); |
+ __ Ldr(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); |
+} |
+ |
+ |
+void LCodeGen::DoToFastProperties(LToFastProperties* instr) { |
+ ASSERT(ToRegister(instr->value()).Is(x0)); |
+ ASSERT(ToRegister(instr->result()).Is(x0)); |
+ __ Push(x0); |
+ CallRuntime(Runtime::kToFastProperties, 1, instr); |
+} |
+ |
+ |
+void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) { |
+ ASSERT(ToRegister(instr->context()).is(cp)); |
+ Label materialized; |
+ // Registers will be used as follows: |
+ // x7 = literals array. |
+ // x1 = regexp literal. |
+ // x0 = regexp literal clone. |
+ // x10-x12 are used as temporaries. |
+ int literal_offset = |
+ FixedArray::OffsetOfElementAt(instr->hydrogen()->literal_index()); |
+ __ LoadObject(x7, instr->hydrogen()->literals()); |
+ __ Ldr(x1, FieldMemOperand(x7, literal_offset)); |
+ __ JumpIfNotRoot(x1, Heap::kUndefinedValueRootIndex, &materialized); |
+ |
+ // Create regexp literal using runtime function |
+ // Result will be in x0. |
+ __ Mov(x12, Operand(Smi::FromInt(instr->hydrogen()->literal_index()))); |
+ __ Mov(x11, Operand(instr->hydrogen()->pattern())); |
+ __ Mov(x10, Operand(instr->hydrogen()->flags())); |
+ __ Push(x7, x12, x11, x10); |
+ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr); |
+ __ Mov(x1, x0); |
+ |
+ __ Bind(&materialized); |
+ int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; |
+ Label allocated, runtime_allocate; |
+ |
+ __ Allocate(size, x0, x10, x11, &runtime_allocate, TAG_OBJECT); |
+ __ B(&allocated); |
+ |
+ __ Bind(&runtime_allocate); |
+ __ Mov(x0, Operand(Smi::FromInt(size))); |
+ __ Push(x1, x0); |
+ CallRuntime(Runtime::kAllocateInNewSpace, 1, instr); |
+ __ Pop(x1); |
+ |
+ __ Bind(&allocated); |
+ // Copy the content into the newly allocated memory. |
+ __ CopyFields(x0, x1, CPURegList(x10, x11, x12), size / kPointerSize); |
+} |
+ |
+ |
+void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) { |
+ Register object = ToRegister(instr->object()); |
+ Register temp1 = ToRegister(instr->temp1()); |
+ |
+ Handle<Map> from_map = instr->original_map(); |
+ Handle<Map> to_map = instr->transitioned_map(); |
+ ElementsKind from_kind = instr->from_kind(); |
+ ElementsKind to_kind = instr->to_kind(); |
+ |
+ Label not_applicable; |
+ __ CheckMap(object, temp1, from_map, ¬_applicable, DONT_DO_SMI_CHECK); |
+ |
+ if (IsSimpleMapChangeTransition(from_kind, to_kind)) { |
+ Register new_map = ToRegister(instr->temp2()); |
+ __ Mov(new_map, Operand(to_map)); |
+ __ Str(new_map, FieldMemOperand(object, HeapObject::kMapOffset)); |
+ // Write barrier. |
+ __ RecordWriteField(object, HeapObject::kMapOffset, new_map, temp1, |
+ GetLinkRegisterState(), kDontSaveFPRegs); |
+ } else { |
+ ASSERT(ToRegister(instr->context()).is(cp)); |
+ PushSafepointRegistersScope scope( |
+ this, Safepoint::kWithRegistersAndDoubles); |
+ __ Mov(x0, object); |
+ __ Mov(x1, Operand(to_map)); |
+ TransitionElementsKindStub stub(from_kind, to_kind); |
+ __ CallStub(&stub); |
+ RecordSafepointWithRegistersAndDoubles( |
+ instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); |
+ } |
+ __ Bind(¬_applicable); |
+} |
+ |
+ |
+void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) { |
+ Register object = ToRegister(instr->object()); |
+ Register temp1 = ToRegister(instr->temp1()); |
+ Register temp2 = ToRegister(instr->temp2()); |
+ |
+ Label no_memento_found; |
+ __ JumpIfJSArrayHasAllocationMemento(object, temp1, temp2, &no_memento_found); |
+ Deoptimize(instr->environment()); |
+ __ Bind(&no_memento_found); |
+} |
+ |
+ |
+void LCodeGen::DoTruncateDoubleToIntOrSmi(LTruncateDoubleToIntOrSmi* instr) { |
+ DoubleRegister input = ToDoubleRegister(instr->value()); |
+ Register result = ToRegister(instr->result()); |
+ __ ECMA262ToInt32(result, input, |
+ ToRegister(instr->temp1()), |
+ ToRegister(instr->temp2()), |
+ instr->tag_result() |
+ ? MacroAssembler::SMI |
+ : MacroAssembler::INT32_IN_W); |
+} |
+ |
+ |
+void LCodeGen::DoTypeof(LTypeof* instr) { |
+ Register input = ToRegister(instr->value()); |
+ __ Push(input); |
+ CallRuntime(Runtime::kTypeof, 1, instr); |
+} |
+ |
+ |
+void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) { |
+ Handle<String> type_name = instr->type_literal(); |
+ Label* true_label = instr->TrueLabel(chunk_); |
+ Label* false_label = instr->FalseLabel(chunk_); |
+ Register value = ToRegister(instr->value()); |
+ |
+ if (type_name->Equals(heap()->number_string())) { |
+ ASSERT(instr->temp1() != NULL); |
+ Register map = ToRegister(instr->temp1()); |
+ |
+ __ JumpIfSmi(value, true_label); |
+ __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset)); |
+ __ CompareRoot(map, Heap::kHeapNumberMapRootIndex); |
+ EmitBranch(instr, eq); |
+ |
+ } else if (type_name->Equals(heap()->string_string())) { |
+ ASSERT((instr->temp1() != NULL) && (instr->temp2() != NULL)); |
+ Register map = ToRegister(instr->temp1()); |
+ Register scratch = ToRegister(instr->temp2()); |
+ |
+ __ JumpIfSmi(value, false_label); |
+ __ JumpIfObjectType( |
+ value, map, scratch, FIRST_NONSTRING_TYPE, false_label, ge); |
+ __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset)); |
+ EmitTestAndBranch(instr, eq, scratch, 1 << Map::kIsUndetectable); |
+ |
+ } else if (type_name->Equals(heap()->symbol_string())) { |
+ ASSERT((instr->temp1() != NULL) && (instr->temp2() != NULL)); |
+ Register map = ToRegister(instr->temp1()); |
+ Register scratch = ToRegister(instr->temp2()); |
+ |
+ __ JumpIfSmi(value, false_label); |
+ __ CompareObjectType(value, map, scratch, SYMBOL_TYPE); |
+ EmitBranch(instr, eq); |
+ |
+ } else if (type_name->Equals(heap()->boolean_string())) { |
+ __ JumpIfRoot(value, Heap::kTrueValueRootIndex, true_label); |
+ __ CompareRoot(value, Heap::kFalseValueRootIndex); |
+ EmitBranch(instr, eq); |
+ |
+ } else if (FLAG_harmony_typeof && type_name->Equals(heap()->null_string())) { |
+ __ CompareRoot(value, Heap::kNullValueRootIndex); |
+ EmitBranch(instr, eq); |
+ |
+ } else if (type_name->Equals(heap()->undefined_string())) { |
+ ASSERT(instr->temp1() != NULL); |
+ Register scratch = ToRegister(instr->temp1()); |
+ |
+ __ JumpIfRoot(value, Heap::kUndefinedValueRootIndex, true_label); |
+ __ JumpIfSmi(value, false_label); |
+ // Check for undetectable objects and jump to the true branch in this case. |
+ __ Ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset)); |
+ __ Ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); |
+ EmitTestAndBranch(instr, ne, scratch, 1 << Map::kIsUndetectable); |
+ |
+ } else if (type_name->Equals(heap()->function_string())) { |
+ STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); |
+ ASSERT(instr->temp1() != NULL); |
+ Register type = ToRegister(instr->temp1()); |
+ |
+ __ JumpIfSmi(value, false_label); |
+ __ JumpIfObjectType(value, type, type, JS_FUNCTION_TYPE, true_label); |
+ // HeapObject's type has been loaded into type register by JumpIfObjectType. |
+ EmitCompareAndBranch(instr, eq, type, JS_FUNCTION_PROXY_TYPE); |
+ |
+ } else if (type_name->Equals(heap()->object_string())) { |
+ ASSERT((instr->temp1() != NULL) && (instr->temp2() != NULL)); |
+ Register map = ToRegister(instr->temp1()); |
+ Register scratch = ToRegister(instr->temp2()); |
+ |
+ __ JumpIfSmi(value, false_label); |
+ if (!FLAG_harmony_typeof) { |
+ __ JumpIfRoot(value, Heap::kNullValueRootIndex, true_label); |
+ } |
+ __ JumpIfObjectType(value, map, scratch, |
+ FIRST_NONCALLABLE_SPEC_OBJECT_TYPE, false_label, lt); |
+ __ CompareInstanceType(map, scratch, LAST_NONCALLABLE_SPEC_OBJECT_TYPE); |
+ __ B(gt, false_label); |
+ // Check for undetectable objects => false. |
+ __ Ldrb(scratch, FieldMemOperand(value, Map::kBitFieldOffset)); |
+ EmitTestAndBranch(instr, eq, scratch, 1 << Map::kIsUndetectable); |
+ |
+ } else { |
+ __ B(false_label); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) { |
+ __ Ucvtf(ToDoubleRegister(instr->result()), ToRegister32(instr->value())); |
+} |
+ |
+ |
+void LCodeGen::DoUint32ToSmi(LUint32ToSmi* instr) { |
+ Register value = ToRegister(instr->value()); |
+ Register result = ToRegister(instr->result()); |
+ |
+ if (!instr->hydrogen()->value()->HasRange() || |
+ !instr->hydrogen()->value()->range()->IsInSmiRange() || |
+ instr->hydrogen()->value()->range()->upper() == kMaxInt) { |
+ // The Range class can't express upper bounds in the (kMaxInt, kMaxUint32] |
+ // interval, so we treat kMaxInt as a sentinel for this entire interval. |
+ DeoptimizeIfNegative(value.W(), instr->environment()); |
+ } |
+ __ SmiTag(result, value); |
+} |
+ |
+ |
+void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) { |
+ Register object = ToRegister(instr->value()); |
+ Register map = ToRegister(instr->map()); |
+ Register temp = ToRegister(instr->temp()); |
+ __ Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset)); |
+ __ Cmp(map, temp); |
+ DeoptimizeIf(ne, instr->environment()); |
+} |
+ |
+ |
+void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) { |
+ Register receiver = ToRegister(instr->receiver()); |
+ Register function = ToRegister(instr->function()); |
+ Register result = ToRegister(instr->result()); |
+ |
+ // If the receiver is null or undefined, we have to pass the global object as |
+ // a receiver to normal functions. Values have to be passed unchanged to |
+ // builtins and strict-mode functions. |
+ Label global_object, done, deopt; |
+ |
+ if (!instr->hydrogen()->known_function()) { |
+ __ Ldr(result, FieldMemOperand(function, |
+ JSFunction::kSharedFunctionInfoOffset)); |
+ |
+ // CompilerHints is an int32 field. See objects.h. |
+ __ Ldr(result.W(), |
+ FieldMemOperand(result, SharedFunctionInfo::kCompilerHintsOffset)); |
+ |
+ // Do not transform the receiver to object for strict mode functions. |
+ __ Tbnz(result, SharedFunctionInfo::kStrictModeFunction, &done); |
+ |
+ // Do not transform the receiver to object for builtins. |
+ __ Tbnz(result, SharedFunctionInfo::kNative, &done); |
+ } |
+ |
+ // Normal function. Replace undefined or null with global receiver. |
+ __ JumpIfRoot(receiver, Heap::kNullValueRootIndex, &global_object); |
+ __ JumpIfRoot(receiver, Heap::kUndefinedValueRootIndex, &global_object); |
+ |
+ // Deoptimize if the receiver is not a JS object. |
+ __ JumpIfSmi(receiver, &deopt); |
+ __ CompareObjectType(receiver, result, result, FIRST_SPEC_OBJECT_TYPE); |
+ __ B(ge, &done); |
+ // Otherwise, fall through to deopt. |
+ |
+ __ Bind(&deopt); |
+ Deoptimize(instr->environment()); |
+ |
+ __ Bind(&global_object); |
+ // We could load directly into the result register here, but the additional |
+ // branches required are likely to be more time consuming than one additional |
+ // move. |
+ __ Ldr(receiver, FieldMemOperand(function, JSFunction::kContextOffset)); |
+ __ Ldr(receiver, ContextMemOperand(receiver, Context::GLOBAL_OBJECT_INDEX)); |
+ __ Ldr(receiver, |
+ FieldMemOperand(receiver, GlobalObject::kGlobalReceiverOffset)); |
+ |
+ __ Bind(&done); |
+ __ Mov(result, receiver); |
+} |
+ |
+ |
+void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) { |
+ Register object = ToRegister(instr->object()); |
+ Register index = ToRegister(instr->index()); |
+ Register result = ToRegister(instr->result()); |
+ |
+ __ AssertSmi(index); |
+ |
+ Label out_of_object, done; |
+ __ Cmp(index, Operand(Smi::FromInt(0))); |
+ __ B(lt, &out_of_object); |
+ |
+ STATIC_ASSERT(kPointerSizeLog2 > kSmiTagSize); |
+ __ Add(result, object, Operand::UntagSmiAndScale(index, kPointerSizeLog2)); |
+ __ Ldr(result, FieldMemOperand(result, JSObject::kHeaderSize)); |
+ |
+ __ B(&done); |
+ |
+ __ Bind(&out_of_object); |
+ __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); |
+ // Index is equal to negated out of object property index plus 1. |
+ __ Sub(result, result, Operand::UntagSmiAndScale(index, kPointerSizeLog2)); |
+ __ Ldr(result, FieldMemOperand(result, |
+ FixedArray::kHeaderSize - kPointerSize)); |
+ __ Bind(&done); |
+} |
+ |
+} } // namespace v8::internal |