| Index: src/a64/lithium-codegen-a64.cc
|
| diff --git a/src/a64/lithium-codegen-a64.cc b/src/a64/lithium-codegen-a64.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..da03ccc214700a949048b590d342a434f84521c2
|
| --- /dev/null
|
| +++ b/src/a64/lithium-codegen-a64.cc
|
| @@ -0,0 +1,5703 @@
|
| +// Copyright 2013 the V8 project authors. All rights reserved.
|
| +// Redistribution and use in source and binary forms, with or without
|
| +// modification, are permitted provided that the following conditions are
|
| +// met:
|
| +//
|
| +// * Redistributions of source code must retain the above copyright
|
| +// notice, this list of conditions and the following disclaimer.
|
| +// * Redistributions in binary form must reproduce the above
|
| +// copyright notice, this list of conditions and the following
|
| +// disclaimer in the documentation and/or other materials provided
|
| +// with the distribution.
|
| +// * Neither the name of Google Inc. nor the names of its
|
| +// contributors may be used to endorse or promote products derived
|
| +// from this software without specific prior written permission.
|
| +//
|
| +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
| +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
| +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
| +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
| +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| +
|
| +#include "v8.h"
|
| +
|
| +#include "a64/lithium-codegen-a64.h"
|
| +#include "a64/lithium-gap-resolver-a64.h"
|
| +#include "code-stubs.h"
|
| +#include "stub-cache.h"
|
| +#include "hydrogen-osr.h"
|
| +
|
| +namespace v8 {
|
| +namespace internal {
|
| +
|
| +
|
| +class SafepointGenerator V8_FINAL : public CallWrapper {
|
| + public:
|
| + SafepointGenerator(LCodeGen* codegen,
|
| + LPointerMap* pointers,
|
| + Safepoint::DeoptMode mode)
|
| + : codegen_(codegen),
|
| + pointers_(pointers),
|
| + deopt_mode_(mode) { }
|
| + virtual ~SafepointGenerator() { }
|
| +
|
| + virtual void BeforeCall(int call_size) const { }
|
| +
|
| + virtual void AfterCall() const {
|
| + codegen_->RecordSafepoint(pointers_, deopt_mode_);
|
| + }
|
| +
|
| + private:
|
| + LCodeGen* codegen_;
|
| + LPointerMap* pointers_;
|
| + Safepoint::DeoptMode deopt_mode_;
|
| +};
|
| +
|
| +
|
| +#define __ masm()->
|
| +
|
| +// Emit code to branch if the given condition holds.
|
| +// The code generated here doesn't modify the flags and they must have
|
| +// been set by some prior instructions.
|
| +//
|
| +// The EmitInverted function simply inverts the condition.
|
| +class BranchOnCondition : public BranchGenerator {
|
| + public:
|
| + BranchOnCondition(LCodeGen* codegen, Condition cond)
|
| + : BranchGenerator(codegen),
|
| + cond_(cond) { }
|
| +
|
| + virtual void Emit(Label* label) const {
|
| + __ B(cond_, label);
|
| + }
|
| +
|
| + virtual void EmitInverted(Label* label) const {
|
| + if (cond_ != al) {
|
| + __ B(InvertCondition(cond_), label);
|
| + }
|
| + }
|
| +
|
| + private:
|
| + Condition cond_;
|
| +};
|
| +
|
| +
|
| +// Emit code to compare lhs and rhs and branch if the condition holds.
|
| +// This uses MacroAssembler's CompareAndBranch function so it will handle
|
| +// converting the comparison to Cbz/Cbnz if the right-hand side is 0.
|
| +//
|
| +// EmitInverted still compares the two operands but inverts the condition.
|
| +class CompareAndBranch : public BranchGenerator {
|
| + public:
|
| + CompareAndBranch(LCodeGen* codegen,
|
| + Condition cond,
|
| + const Register& lhs,
|
| + const Operand& rhs)
|
| + : BranchGenerator(codegen),
|
| + cond_(cond),
|
| + lhs_(lhs),
|
| + rhs_(rhs) { }
|
| +
|
| + virtual void Emit(Label* label) const {
|
| + __ CompareAndBranch(lhs_, rhs_, cond_, label);
|
| + }
|
| +
|
| + virtual void EmitInverted(Label* label) const {
|
| + __ CompareAndBranch(lhs_, rhs_, InvertCondition(cond_), label);
|
| + }
|
| +
|
| + private:
|
| + Condition cond_;
|
| + const Register& lhs_;
|
| + const Operand& rhs_;
|
| +};
|
| +
|
| +
|
| +// Test the input with the given mask and branch if the condition holds.
|
| +// If the condition is 'eq' or 'ne' this will use MacroAssembler's
|
| +// TestAndBranchIfAllClear and TestAndBranchIfAnySet so it will handle the
|
| +// conversion to Tbz/Tbnz when possible.
|
| +class TestAndBranch : public BranchGenerator {
|
| + public:
|
| + TestAndBranch(LCodeGen* codegen,
|
| + Condition cond,
|
| + const Register& value,
|
| + uint64_t mask)
|
| + : BranchGenerator(codegen),
|
| + cond_(cond),
|
| + value_(value),
|
| + mask_(mask) { }
|
| +
|
| + virtual void Emit(Label* label) const {
|
| + switch (cond_) {
|
| + case eq:
|
| + __ TestAndBranchIfAllClear(value_, mask_, label);
|
| + break;
|
| + case ne:
|
| + __ TestAndBranchIfAnySet(value_, mask_, label);
|
| + break;
|
| + default:
|
| + __ Tst(value_, mask_);
|
| + __ B(cond_, label);
|
| + }
|
| + }
|
| +
|
| + virtual void EmitInverted(Label* label) const {
|
| + // The inverse of "all clear" is "any set" and vice versa.
|
| + switch (cond_) {
|
| + case eq:
|
| + __ TestAndBranchIfAnySet(value_, mask_, label);
|
| + break;
|
| + case ne:
|
| + __ TestAndBranchIfAllClear(value_, mask_, label);
|
| + break;
|
| + default:
|
| + __ Tst(value_, mask_);
|
| + __ B(InvertCondition(cond_), label);
|
| + }
|
| + }
|
| +
|
| + private:
|
| + Condition cond_;
|
| + const Register& value_;
|
| + uint64_t mask_;
|
| +};
|
| +
|
| +
|
| +// Test the input and branch if it is non-zero and not a NaN.
|
| +class BranchIfNonZeroNumber : public BranchGenerator {
|
| + public:
|
| + BranchIfNonZeroNumber(LCodeGen* codegen, const FPRegister& value,
|
| + const FPRegister& scratch)
|
| + : BranchGenerator(codegen), value_(value), scratch_(scratch) { }
|
| +
|
| + virtual void Emit(Label* label) const {
|
| + __ Fabs(scratch_, value_);
|
| + // Compare with 0.0. Because scratch_ is positive, the result can be one of
|
| + // nZCv (equal), nzCv (greater) or nzCV (unordered).
|
| + __ Fcmp(scratch_, 0.0);
|
| + __ B(gt, label);
|
| + }
|
| +
|
| + virtual void EmitInverted(Label* label) const {
|
| + __ Fabs(scratch_, value_);
|
| + __ Fcmp(scratch_, 0.0);
|
| + __ B(le, label);
|
| + }
|
| +
|
| + private:
|
| + const FPRegister& value_;
|
| + const FPRegister& scratch_;
|
| +};
|
| +
|
| +
|
| +// Test the input and branch if it is a heap number.
|
| +class BranchIfHeapNumber : public BranchGenerator {
|
| + public:
|
| + BranchIfHeapNumber(LCodeGen* codegen, const Register& value)
|
| + : BranchGenerator(codegen), value_(value) { }
|
| +
|
| + virtual void Emit(Label* label) const {
|
| + __ JumpIfHeapNumber(value_, label);
|
| + }
|
| +
|
| + virtual void EmitInverted(Label* label) const {
|
| + __ JumpIfNotHeapNumber(value_, label);
|
| + }
|
| +
|
| + private:
|
| + const Register& value_;
|
| +};
|
| +
|
| +
|
| +// Test the input and branch if it is the specified root value.
|
| +class BranchIfRoot : public BranchGenerator {
|
| + public:
|
| + BranchIfRoot(LCodeGen* codegen, const Register& value,
|
| + Heap::RootListIndex index)
|
| + : BranchGenerator(codegen), value_(value), index_(index) { }
|
| +
|
| + virtual void Emit(Label* label) const {
|
| + __ JumpIfRoot(value_, index_, label);
|
| + }
|
| +
|
| + virtual void EmitInverted(Label* label) const {
|
| + __ JumpIfNotRoot(value_, index_, label);
|
| + }
|
| +
|
| + private:
|
| + const Register& value_;
|
| + const Heap::RootListIndex index_;
|
| +};
|
| +
|
| +
|
| +void LCodeGen::WriteTranslation(LEnvironment* environment,
|
| + Translation* translation) {
|
| + if (environment == NULL) return;
|
| +
|
| + // The translation includes one command per value in the environment.
|
| + int translation_size = environment->translation_size();
|
| + // The output frame height does not include the parameters.
|
| + int height = translation_size - environment->parameter_count();
|
| +
|
| + WriteTranslation(environment->outer(), translation);
|
| + bool has_closure_id = !info()->closure().is_null() &&
|
| + !info()->closure().is_identical_to(environment->closure());
|
| + int closure_id = has_closure_id
|
| + ? DefineDeoptimizationLiteral(environment->closure())
|
| + : Translation::kSelfLiteralId;
|
| +
|
| + switch (environment->frame_type()) {
|
| + case JS_FUNCTION:
|
| + translation->BeginJSFrame(environment->ast_id(), closure_id, height);
|
| + break;
|
| + case JS_CONSTRUCT:
|
| + translation->BeginConstructStubFrame(closure_id, translation_size);
|
| + break;
|
| + case JS_GETTER:
|
| + ASSERT(translation_size == 1);
|
| + ASSERT(height == 0);
|
| + translation->BeginGetterStubFrame(closure_id);
|
| + break;
|
| + case JS_SETTER:
|
| + ASSERT(translation_size == 2);
|
| + ASSERT(height == 0);
|
| + translation->BeginSetterStubFrame(closure_id);
|
| + break;
|
| + case STUB:
|
| + translation->BeginCompiledStubFrame();
|
| + break;
|
| + case ARGUMENTS_ADAPTOR:
|
| + translation->BeginArgumentsAdaptorFrame(closure_id, translation_size);
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + }
|
| +
|
| + int object_index = 0;
|
| + int dematerialized_index = 0;
|
| + for (int i = 0; i < translation_size; ++i) {
|
| + LOperand* value = environment->values()->at(i);
|
| +
|
| + AddToTranslation(environment,
|
| + translation,
|
| + value,
|
| + environment->HasTaggedValueAt(i),
|
| + environment->HasUint32ValueAt(i),
|
| + &object_index,
|
| + &dematerialized_index);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::AddToTranslation(LEnvironment* environment,
|
| + Translation* translation,
|
| + LOperand* op,
|
| + bool is_tagged,
|
| + bool is_uint32,
|
| + int* object_index_pointer,
|
| + int* dematerialized_index_pointer) {
|
| + if (op == LEnvironment::materialization_marker()) {
|
| + int object_index = (*object_index_pointer)++;
|
| + if (environment->ObjectIsDuplicateAt(object_index)) {
|
| + int dupe_of = environment->ObjectDuplicateOfAt(object_index);
|
| + translation->DuplicateObject(dupe_of);
|
| + return;
|
| + }
|
| + int object_length = environment->ObjectLengthAt(object_index);
|
| + if (environment->ObjectIsArgumentsAt(object_index)) {
|
| + translation->BeginArgumentsObject(object_length);
|
| + } else {
|
| + translation->BeginCapturedObject(object_length);
|
| + }
|
| + int dematerialized_index = *dematerialized_index_pointer;
|
| + int env_offset = environment->translation_size() + dematerialized_index;
|
| + *dematerialized_index_pointer += object_length;
|
| + for (int i = 0; i < object_length; ++i) {
|
| + LOperand* value = environment->values()->at(env_offset + i);
|
| + AddToTranslation(environment,
|
| + translation,
|
| + value,
|
| + environment->HasTaggedValueAt(env_offset + i),
|
| + environment->HasUint32ValueAt(env_offset + i),
|
| + object_index_pointer,
|
| + dematerialized_index_pointer);
|
| + }
|
| + return;
|
| + }
|
| +
|
| + if (op->IsStackSlot()) {
|
| + if (is_tagged) {
|
| + translation->StoreStackSlot(op->index());
|
| + } else if (is_uint32) {
|
| + translation->StoreUint32StackSlot(op->index());
|
| + } else {
|
| + translation->StoreInt32StackSlot(op->index());
|
| + }
|
| + } else if (op->IsDoubleStackSlot()) {
|
| + translation->StoreDoubleStackSlot(op->index());
|
| + } else if (op->IsArgument()) {
|
| + ASSERT(is_tagged);
|
| + int src_index = GetStackSlotCount() + op->index();
|
| + translation->StoreStackSlot(src_index);
|
| + } else if (op->IsRegister()) {
|
| + Register reg = ToRegister(op);
|
| + if (is_tagged) {
|
| + translation->StoreRegister(reg);
|
| + } else if (is_uint32) {
|
| + translation->StoreUint32Register(reg);
|
| + } else {
|
| + translation->StoreInt32Register(reg);
|
| + }
|
| + } else if (op->IsDoubleRegister()) {
|
| + DoubleRegister reg = ToDoubleRegister(op);
|
| + translation->StoreDoubleRegister(reg);
|
| + } else if (op->IsConstantOperand()) {
|
| + HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
|
| + int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
|
| + translation->StoreLiteral(src_index);
|
| + } else {
|
| + UNREACHABLE();
|
| + }
|
| +}
|
| +
|
| +
|
| +int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
|
| + int result = deoptimization_literals_.length();
|
| + for (int i = 0; i < deoptimization_literals_.length(); ++i) {
|
| + if (deoptimization_literals_[i].is_identical_to(literal)) return i;
|
| + }
|
| + deoptimization_literals_.Add(literal, zone());
|
| + return result;
|
| +}
|
| +
|
| +
|
| +void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
|
| + Safepoint::DeoptMode mode) {
|
| + if (!environment->HasBeenRegistered()) {
|
| + int frame_count = 0;
|
| + int jsframe_count = 0;
|
| + for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
|
| + ++frame_count;
|
| + if (e->frame_type() == JS_FUNCTION) {
|
| + ++jsframe_count;
|
| + }
|
| + }
|
| + Translation translation(&translations_, frame_count, jsframe_count, zone());
|
| + WriteTranslation(environment, &translation);
|
| + int deoptimization_index = deoptimizations_.length();
|
| + int pc_offset = masm()->pc_offset();
|
| + environment->Register(deoptimization_index,
|
| + translation.index(),
|
| + (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
|
| + deoptimizations_.Add(environment, zone());
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::CallCode(Handle<Code> code,
|
| + RelocInfo::Mode mode,
|
| + LInstruction* instr) {
|
| + CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::CallCodeGeneric(Handle<Code> code,
|
| + RelocInfo::Mode mode,
|
| + LInstruction* instr,
|
| + SafepointMode safepoint_mode) {
|
| + ASSERT(instr != NULL);
|
| +
|
| + Assembler::BlockConstPoolScope scope(masm_);
|
| + __ Call(code, mode);
|
| + RecordSafepointWithLazyDeopt(instr, safepoint_mode);
|
| +
|
| + if ((code->kind() == Code::BINARY_OP_IC) ||
|
| + (code->kind() == Code::COMPARE_IC)) {
|
| + // Signal that we don't inline smi code before these stubs in the
|
| + // optimizing code generator.
|
| + InlineSmiCheckInfo::EmitNotInlined(masm());
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCallFunction(LCallFunction* instr) {
|
| + ASSERT(ToRegister(instr->context()).is(cp));
|
| + ASSERT(ToRegister(instr->function()).Is(x1));
|
| + ASSERT(ToRegister(instr->result()).Is(x0));
|
| +
|
| + int arity = instr->arity();
|
| + CallFunctionStub stub(arity, instr->hydrogen()->function_flags());
|
| + CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCallNew(LCallNew* instr) {
|
| + ASSERT(ToRegister(instr->context()).is(cp));
|
| + ASSERT(instr->IsMarkedAsCall());
|
| + ASSERT(ToRegister(instr->constructor()).is(x1));
|
| +
|
| + __ Mov(x0, instr->arity());
|
| + // No cell in x2 for construct type feedback in optimized code.
|
| + Handle<Object> undefined_value(isolate()->factory()->undefined_value());
|
| + __ Mov(x2, Operand(undefined_value));
|
| +
|
| + CallConstructStub stub(NO_CALL_FUNCTION_FLAGS);
|
| + CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr);
|
| +
|
| + ASSERT(ToRegister(instr->result()).is(x0));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
|
| + ASSERT(instr->IsMarkedAsCall());
|
| + ASSERT(ToRegister(instr->context()).is(cp));
|
| + ASSERT(ToRegister(instr->constructor()).is(x1));
|
| +
|
| + __ Mov(x0, Operand(instr->arity()));
|
| + __ Mov(x2, Operand(factory()->undefined_value()));
|
| +
|
| + ElementsKind kind = instr->hydrogen()->elements_kind();
|
| + AllocationSiteOverrideMode override_mode =
|
| + (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
|
| + ? DISABLE_ALLOCATION_SITES
|
| + : DONT_OVERRIDE;
|
| +
|
| + if (instr->arity() == 0) {
|
| + ArrayNoArgumentConstructorStub stub(kind, override_mode);
|
| + CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr);
|
| + } else if (instr->arity() == 1) {
|
| + Label done;
|
| + if (IsFastPackedElementsKind(kind)) {
|
| + Label packed_case;
|
| +
|
| + // We might need to create a holey array; look at the first argument.
|
| + __ Peek(x10, 0);
|
| + __ Cbz(x10, &packed_case);
|
| +
|
| + ElementsKind holey_kind = GetHoleyElementsKind(kind);
|
| + ArraySingleArgumentConstructorStub stub(holey_kind, override_mode);
|
| + CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr);
|
| + __ B(&done);
|
| + __ Bind(&packed_case);
|
| + }
|
| +
|
| + ArraySingleArgumentConstructorStub stub(kind, override_mode);
|
| + CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr);
|
| + __ Bind(&done);
|
| + } else {
|
| + ArrayNArgumentsConstructorStub stub(kind, override_mode);
|
| + CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr);
|
| + }
|
| +
|
| + ASSERT(ToRegister(instr->result()).is(x0));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::CallRuntime(const Runtime::Function* function,
|
| + int num_arguments,
|
| + LInstruction* instr,
|
| + SaveFPRegsMode save_doubles) {
|
| + ASSERT(instr != NULL);
|
| +
|
| + __ CallRuntime(function, num_arguments, save_doubles);
|
| +
|
| + RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::LoadContextFromDeferred(LOperand* context) {
|
| + if (context->IsRegister()) {
|
| + __ Mov(cp, ToRegister(context));
|
| + } else if (context->IsStackSlot()) {
|
| + __ Ldr(cp, ToMemOperand(context));
|
| + } else if (context->IsConstantOperand()) {
|
| + HConstant* constant =
|
| + chunk_->LookupConstant(LConstantOperand::cast(context));
|
| + __ LoadHeapObject(cp,
|
| + Handle<HeapObject>::cast(constant->handle(isolate())));
|
| + } else {
|
| + UNREACHABLE();
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
|
| + int argc,
|
| + LInstruction* instr,
|
| + LOperand* context) {
|
| + LoadContextFromDeferred(context);
|
| + __ CallRuntimeSaveDoubles(id);
|
| + RecordSafepointWithRegisters(
|
| + instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::RecordAndWritePosition(int position) {
|
| + if (position == RelocInfo::kNoPosition) return;
|
| + masm()->positions_recorder()->RecordPosition(position);
|
| + masm()->positions_recorder()->WriteRecordedPositions();
|
| +}
|
| +
|
| +
|
| +void LCodeGen::RecordSafepointWithLazyDeopt(LInstruction* instr,
|
| + SafepointMode safepoint_mode) {
|
| + if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
|
| + RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
|
| + } else {
|
| + ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
|
| + RecordSafepointWithRegisters(
|
| + instr->pointer_map(), 0, Safepoint::kLazyDeopt);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::RecordSafepoint(LPointerMap* pointers,
|
| + Safepoint::Kind kind,
|
| + int arguments,
|
| + Safepoint::DeoptMode deopt_mode) {
|
| + ASSERT(expected_safepoint_kind_ == kind);
|
| +
|
| + const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
|
| + Safepoint safepoint = safepoints_.DefineSafepoint(
|
| + masm(), kind, arguments, deopt_mode);
|
| +
|
| + for (int i = 0; i < operands->length(); i++) {
|
| + LOperand* pointer = operands->at(i);
|
| + if (pointer->IsStackSlot()) {
|
| + safepoint.DefinePointerSlot(pointer->index(), zone());
|
| + } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
|
| + safepoint.DefinePointerRegister(ToRegister(pointer), zone());
|
| + }
|
| + }
|
| +
|
| + if (kind & Safepoint::kWithRegisters) {
|
| + // Register cp always contains a pointer to the context.
|
| + safepoint.DefinePointerRegister(cp, zone());
|
| + }
|
| +}
|
| +
|
| +void LCodeGen::RecordSafepoint(LPointerMap* pointers,
|
| + Safepoint::DeoptMode deopt_mode) {
|
| + RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
|
| + LPointerMap empty_pointers(zone());
|
| + RecordSafepoint(&empty_pointers, deopt_mode);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
|
| + int arguments,
|
| + Safepoint::DeoptMode deopt_mode) {
|
| + RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::RecordSafepointWithRegistersAndDoubles(
|
| + LPointerMap* pointers, int arguments, Safepoint::DeoptMode deopt_mode) {
|
| + RecordSafepoint(
|
| + pointers, Safepoint::kWithRegistersAndDoubles, arguments, deopt_mode);
|
| +}
|
| +
|
| +
|
| +bool LCodeGen::GenerateCode() {
|
| + LPhase phase("Z_Code generation", chunk());
|
| + ASSERT(is_unused());
|
| + status_ = GENERATING;
|
| +
|
| + // Open a frame scope to indicate that there is a frame on the stack. The
|
| + // NONE indicates that the scope shouldn't actually generate code to set up
|
| + // the frame (that is done in GeneratePrologue).
|
| + FrameScope frame_scope(masm_, StackFrame::NONE);
|
| +
|
| + return GeneratePrologue() &&
|
| + GenerateBody() &&
|
| + GenerateDeferredCode() &&
|
| + GenerateDeoptJumpTable() &&
|
| + GenerateSafepointTable();
|
| +}
|
| +
|
| +
|
| +void LCodeGen::SaveCallerDoubles() {
|
| + ASSERT(info()->saves_caller_doubles());
|
| + ASSERT(NeedsEagerFrame());
|
| + Comment(";;; Save clobbered callee double registers");
|
| + BitVector* doubles = chunk()->allocated_double_registers();
|
| + BitVector::Iterator iterator(doubles);
|
| + int count = 0;
|
| + while (!iterator.Done()) {
|
| + // TODO(all): Is this supposed to save just the callee-saved doubles? It
|
| + // looks like it's saving all of them.
|
| + FPRegister value = FPRegister::FromAllocationIndex(iterator.Current());
|
| + __ Poke(value, count * kDoubleSize);
|
| + iterator.Advance();
|
| + count++;
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::RestoreCallerDoubles() {
|
| + ASSERT(info()->saves_caller_doubles());
|
| + ASSERT(NeedsEagerFrame());
|
| + Comment(";;; Restore clobbered callee double registers");
|
| + BitVector* doubles = chunk()->allocated_double_registers();
|
| + BitVector::Iterator iterator(doubles);
|
| + int count = 0;
|
| + while (!iterator.Done()) {
|
| + // TODO(all): Is this supposed to restore just the callee-saved doubles? It
|
| + // looks like it's restoring all of them.
|
| + FPRegister value = FPRegister::FromAllocationIndex(iterator.Current());
|
| + __ Peek(value, count * kDoubleSize);
|
| + iterator.Advance();
|
| + count++;
|
| + }
|
| +}
|
| +
|
| +
|
| +bool LCodeGen::GeneratePrologue() {
|
| + ASSERT(is_generating());
|
| +
|
| + if (info()->IsOptimizing()) {
|
| + ProfileEntryHookStub::MaybeCallEntryHook(masm_);
|
| +
|
| + // TODO(all): Add support for stop_t FLAG in DEBUG mode.
|
| +
|
| + // Classic mode functions and builtins need to replace the receiver with the
|
| + // global proxy when called as functions (without an explicit receiver
|
| + // object).
|
| + if (info_->this_has_uses() &&
|
| + info_->is_classic_mode() &&
|
| + !info_->is_native()) {
|
| + Label ok;
|
| + int receiver_offset = info_->scope()->num_parameters() * kXRegSizeInBytes;
|
| + __ Peek(x10, receiver_offset);
|
| + __ JumpIfNotRoot(x10, Heap::kUndefinedValueRootIndex, &ok);
|
| +
|
| + __ Ldr(x10, GlobalObjectMemOperand());
|
| + __ Ldr(x10, FieldMemOperand(x10, GlobalObject::kGlobalReceiverOffset));
|
| + __ Poke(x10, receiver_offset);
|
| +
|
| + __ Bind(&ok);
|
| + }
|
| + }
|
| +
|
| + ASSERT(__ StackPointer().Is(jssp));
|
| + info()->set_prologue_offset(masm_->pc_offset());
|
| + if (NeedsEagerFrame()) {
|
| + __ Prologue(info()->IsStub() ? BUILD_STUB_FRAME : BUILD_FUNCTION_FRAME);
|
| + frame_is_built_ = true;
|
| + info_->AddNoFrameRange(0, masm_->pc_offset());
|
| + }
|
| +
|
| + // Reserve space for the stack slots needed by the code.
|
| + int slots = GetStackSlotCount();
|
| + if (slots > 0) {
|
| + __ Claim(slots, kPointerSize);
|
| + }
|
| +
|
| + if (info()->saves_caller_doubles()) {
|
| + SaveCallerDoubles();
|
| + }
|
| +
|
| + // Allocate a local context if needed.
|
| + int heap_slots = info()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
|
| + if (heap_slots > 0) {
|
| + Comment(";;; Allocate local context");
|
| + // Argument to NewContext is the function, which is in x1.
|
| + if (heap_slots <= FastNewContextStub::kMaximumSlots) {
|
| + FastNewContextStub stub(heap_slots);
|
| + __ CallStub(&stub);
|
| + } else {
|
| + __ Push(x1);
|
| + __ CallRuntime(Runtime::kNewFunctionContext, 1);
|
| + }
|
| + RecordSafepoint(Safepoint::kNoLazyDeopt);
|
| + // Context is returned in x0. It replaces the context passed to us. It's
|
| + // saved in the stack and kept live in cp.
|
| + __ Mov(cp, x0);
|
| + __ Str(x0, MemOperand(fp, StandardFrameConstants::kContextOffset));
|
| + // Copy any necessary parameters into the context.
|
| + int num_parameters = scope()->num_parameters();
|
| + for (int i = 0; i < num_parameters; i++) {
|
| + Variable* var = scope()->parameter(i);
|
| + if (var->IsContextSlot()) {
|
| + Register value = x0;
|
| + Register scratch = x3;
|
| +
|
| + int parameter_offset = StandardFrameConstants::kCallerSPOffset +
|
| + (num_parameters - 1 - i) * kPointerSize;
|
| + // Load parameter from stack.
|
| + __ Ldr(value, MemOperand(fp, parameter_offset));
|
| + // Store it in the context.
|
| + MemOperand target = ContextMemOperand(cp, var->index());
|
| + __ Str(value, target);
|
| + // Update the write barrier. This clobbers value and scratch.
|
| + __ RecordWriteContextSlot(cp, target.offset(), value, scratch,
|
| + GetLinkRegisterState(), kSaveFPRegs);
|
| + }
|
| + }
|
| + Comment(";;; End allocate local context");
|
| + }
|
| +
|
| + // Trace the call.
|
| + if (FLAG_trace && info()->IsOptimizing()) {
|
| + // We have not executed any compiled code yet, so cp still holds the
|
| + // incoming context.
|
| + __ CallRuntime(Runtime::kTraceEnter, 0);
|
| + }
|
| +
|
| + return !is_aborted();
|
| +}
|
| +
|
| +
|
| +void LCodeGen::GenerateOsrPrologue() {
|
| + // Generate the OSR entry prologue at the first unknown OSR value, or if there
|
| + // are none, at the OSR entrypoint instruction.
|
| + if (osr_pc_offset_ >= 0) return;
|
| +
|
| + osr_pc_offset_ = masm()->pc_offset();
|
| +
|
| + // Adjust the frame size, subsuming the unoptimized frame into the
|
| + // optimized frame.
|
| + int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
|
| + ASSERT(slots >= 0);
|
| + __ Claim(slots);
|
| +}
|
| +
|
| +
|
| +bool LCodeGen::GenerateDeferredCode() {
|
| + ASSERT(is_generating());
|
| + if (deferred_.length() > 0) {
|
| + for (int i = 0; !is_aborted() && (i < deferred_.length()); i++) {
|
| + LDeferredCode* code = deferred_[i];
|
| +
|
| + HValue* value =
|
| + instructions_->at(code->instruction_index())->hydrogen_value();
|
| + RecordAndWritePosition(value->position());
|
| +
|
| + Comment(";;; <@%d,#%d> "
|
| + "-------------------- Deferred %s --------------------",
|
| + code->instruction_index(),
|
| + code->instr()->hydrogen_value()->id(),
|
| + code->instr()->Mnemonic());
|
| +
|
| + __ Bind(code->entry());
|
| +
|
| + if (NeedsDeferredFrame()) {
|
| + Comment(";;; Build frame");
|
| + ASSERT(!frame_is_built_);
|
| + ASSERT(info()->IsStub());
|
| + frame_is_built_ = true;
|
| + __ Push(lr, fp, cp);
|
| + __ Mov(fp, Operand(Smi::FromInt(StackFrame::STUB)));
|
| + __ Push(fp);
|
| + __ Add(fp, __ StackPointer(),
|
| + StandardFrameConstants::kFixedFrameSizeFromFp);
|
| + Comment(";;; Deferred code");
|
| + }
|
| +
|
| + code->Generate();
|
| +
|
| + if (NeedsDeferredFrame()) {
|
| + Comment(";;; Destroy frame");
|
| + ASSERT(frame_is_built_);
|
| + __ Pop(xzr, cp, fp, lr);
|
| + frame_is_built_ = false;
|
| + }
|
| +
|
| + __ B(code->exit());
|
| + }
|
| + }
|
| +
|
| + // Force constant pool emission at the end of the deferred code to make
|
| + // sure that no constant pools are emitted after deferred code because
|
| + // deferred code generation is the last step which generates code. The two
|
| + // following steps will only output data used by crakshaft.
|
| + masm()->CheckConstPool(true, false);
|
| +
|
| + return !is_aborted();
|
| +}
|
| +
|
| +
|
| +bool LCodeGen::GenerateDeoptJumpTable() {
|
| + if (deopt_jump_table_.length() > 0) {
|
| + Comment(";;; -------------------- Jump table --------------------");
|
| + }
|
| + Label table_start;
|
| + __ bind(&table_start);
|
| + Label needs_frame;
|
| + for (int i = 0; i < deopt_jump_table_.length(); i++) {
|
| + __ Bind(&deopt_jump_table_[i].label);
|
| + Address entry = deopt_jump_table_[i].address;
|
| + Deoptimizer::BailoutType type = deopt_jump_table_[i].bailout_type;
|
| + int id = Deoptimizer::GetDeoptimizationId(isolate(), entry, type);
|
| + if (id == Deoptimizer::kNotDeoptimizationEntry) {
|
| + Comment(";;; jump table entry %d.", i);
|
| + } else {
|
| + Comment(";;; jump table entry %d: deoptimization bailout %d.", i, id);
|
| + }
|
| + if (deopt_jump_table_[i].needs_frame) {
|
| + ASSERT(!info()->saves_caller_doubles());
|
| + __ Mov(__ Tmp0(), Operand(ExternalReference::ForDeoptEntry(entry)));
|
| + if (needs_frame.is_bound()) {
|
| + __ B(&needs_frame);
|
| + } else {
|
| + __ Bind(&needs_frame);
|
| + // This variant of deopt can only be used with stubs. Since we don't
|
| + // have a function pointer to install in the stack frame that we're
|
| + // building, install a special marker there instead.
|
| + // TODO(jochen): Revisit the use of TmpX().
|
| + ASSERT(info()->IsStub());
|
| + __ Mov(__ Tmp1(), Operand(Smi::FromInt(StackFrame::STUB)));
|
| + __ Push(lr, fp, cp, __ Tmp1());
|
| + __ Add(fp, __ StackPointer(), 2 * kPointerSize);
|
| + __ Call(__ Tmp0());
|
| + }
|
| + } else {
|
| + if (info()->saves_caller_doubles()) {
|
| + ASSERT(info()->IsStub());
|
| + RestoreCallerDoubles();
|
| + }
|
| + __ Call(entry, RelocInfo::RUNTIME_ENTRY);
|
| + }
|
| + masm()->CheckConstPool(false, false);
|
| + }
|
| +
|
| + // Force constant pool emission at the end of the deopt jump table to make
|
| + // sure that no constant pools are emitted after.
|
| + masm()->CheckConstPool(true, false);
|
| +
|
| + // The deoptimization jump table is the last part of the instruction
|
| + // sequence. Mark the generated code as done unless we bailed out.
|
| + if (!is_aborted()) status_ = DONE;
|
| + return !is_aborted();
|
| +}
|
| +
|
| +
|
| +bool LCodeGen::GenerateSafepointTable() {
|
| + ASSERT(is_done());
|
| + safepoints_.Emit(masm(), GetStackSlotCount());
|
| + return !is_aborted();
|
| +}
|
| +
|
| +
|
| +void LCodeGen::FinishCode(Handle<Code> code) {
|
| + ASSERT(is_done());
|
| + code->set_stack_slots(GetStackSlotCount());
|
| + code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
|
| + RegisterDependentCodeForEmbeddedMaps(code);
|
| + PopulateDeoptimizationData(code);
|
| + info()->CommitDependencies(code);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::Abort(BailoutReason reason) {
|
| + info()->set_bailout_reason(reason);
|
| + status_ = ABORTED;
|
| +}
|
| +
|
| +
|
| +void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
|
| + int length = deoptimizations_.length();
|
| + if (length == 0) return;
|
| +
|
| + Handle<DeoptimizationInputData> data =
|
| + factory()->NewDeoptimizationInputData(length, TENURED);
|
| +
|
| + Handle<ByteArray> translations =
|
| + translations_.CreateByteArray(isolate()->factory());
|
| + data->SetTranslationByteArray(*translations);
|
| + data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
|
| +
|
| + Handle<FixedArray> literals =
|
| + factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
|
| + { AllowDeferredHandleDereference copy_handles;
|
| + for (int i = 0; i < deoptimization_literals_.length(); i++) {
|
| + literals->set(i, *deoptimization_literals_[i]);
|
| + }
|
| + data->SetLiteralArray(*literals);
|
| + }
|
| +
|
| + data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt()));
|
| + data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
|
| +
|
| + // Populate the deoptimization entries.
|
| + for (int i = 0; i < length; i++) {
|
| + LEnvironment* env = deoptimizations_[i];
|
| + data->SetAstId(i, env->ast_id());
|
| + data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
|
| + data->SetArgumentsStackHeight(i,
|
| + Smi::FromInt(env->arguments_stack_height()));
|
| + data->SetPc(i, Smi::FromInt(env->pc_offset()));
|
| + }
|
| +
|
| + code->set_deoptimization_data(*data);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
|
| + ASSERT(deoptimization_literals_.length() == 0);
|
| +
|
| + const ZoneList<Handle<JSFunction> >* inlined_closures =
|
| + chunk()->inlined_closures();
|
| +
|
| + for (int i = 0, length = inlined_closures->length(); i < length; i++) {
|
| + DefineDeoptimizationLiteral(inlined_closures->at(i));
|
| + }
|
| +
|
| + inlined_function_count_ = deoptimization_literals_.length();
|
| +}
|
| +
|
| +
|
| +Deoptimizer::BailoutType LCodeGen::DeoptimizeHeader(
|
| + LEnvironment* environment,
|
| + Deoptimizer::BailoutType* override_bailout_type) {
|
| + RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
|
| + ASSERT(environment->HasBeenRegistered());
|
| + ASSERT(info()->IsOptimizing() || info()->IsStub());
|
| + int id = environment->deoptimization_index();
|
| + Deoptimizer::BailoutType bailout_type =
|
| + info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER;
|
| + if (override_bailout_type) bailout_type = *override_bailout_type;
|
| + Address entry =
|
| + Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
|
| +
|
| + if (entry == NULL) {
|
| + Abort(kBailoutWasNotPrepared);
|
| + return bailout_type;
|
| + }
|
| +
|
| + if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
|
| + Label not_zero;
|
| + ExternalReference count = ExternalReference::stress_deopt_count(isolate());
|
| +
|
| + __ Push(x0, x1, x2);
|
| + __ Mrs(x2, NZCV);
|
| + __ Mov(x0, Operand(count));
|
| + __ Ldr(w1, MemOperand(x0));
|
| + __ Subs(x1, x1, 1);
|
| + __ B(gt, ¬_zero);
|
| + __ Mov(w1, FLAG_deopt_every_n_times);
|
| + __ Str(w1, MemOperand(x0));
|
| + __ Pop(x0, x1, x2);
|
| + ASSERT(frame_is_built_);
|
| + __ Call(entry, RelocInfo::RUNTIME_ENTRY);
|
| + __ Unreachable();
|
| +
|
| + __ Bind(¬_zero);
|
| + __ Str(w1, MemOperand(x0));
|
| + __ Msr(NZCV, x2);
|
| + __ Pop(x0, x1, x2);
|
| + }
|
| +
|
| + return bailout_type;
|
| +}
|
| +
|
| +
|
| +void LCodeGen::Deoptimize(LEnvironment* environment,
|
| + Deoptimizer::BailoutType bailout_type) {
|
| + ASSERT(environment->HasBeenRegistered());
|
| + ASSERT(info()->IsOptimizing() || info()->IsStub());
|
| + int id = environment->deoptimization_index();
|
| + Address entry =
|
| + Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
|
| +
|
| + if (info()->ShouldTrapOnDeopt()) {
|
| + __ Debug("trap_on_deopt", __LINE__, BREAK);
|
| + }
|
| +
|
| + ASSERT(info()->IsStub() || frame_is_built_);
|
| + // Go through jump table if we need to build frame, or restore caller doubles.
|
| + if (frame_is_built_ && !info()->saves_caller_doubles()) {
|
| + __ Call(entry, RelocInfo::RUNTIME_ENTRY);
|
| + } else {
|
| + // We often have several deopts to the same entry, reuse the last
|
| + // jump entry if this is the case.
|
| + if (deopt_jump_table_.is_empty() ||
|
| + (deopt_jump_table_.last().address != entry) ||
|
| + (deopt_jump_table_.last().bailout_type != bailout_type) ||
|
| + (deopt_jump_table_.last().needs_frame != !frame_is_built_)) {
|
| + Deoptimizer::JumpTableEntry table_entry(entry,
|
| + bailout_type,
|
| + !frame_is_built_);
|
| + deopt_jump_table_.Add(table_entry, zone());
|
| + }
|
| + __ B(&deopt_jump_table_.last().label);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::Deoptimize(LEnvironment* environment) {
|
| + Deoptimizer::BailoutType bailout_type = DeoptimizeHeader(environment, NULL);
|
| + Deoptimize(environment, bailout_type);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DeoptimizeIf(Condition cond, LEnvironment* environment) {
|
| + Label dont_deopt;
|
| + Deoptimizer::BailoutType bailout_type = DeoptimizeHeader(environment, NULL);
|
| + __ B(InvertCondition(cond), &dont_deopt);
|
| + Deoptimize(environment, bailout_type);
|
| + __ Bind(&dont_deopt);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DeoptimizeIfZero(Register rt, LEnvironment* environment) {
|
| + Label dont_deopt;
|
| + Deoptimizer::BailoutType bailout_type = DeoptimizeHeader(environment, NULL);
|
| + __ Cbnz(rt, &dont_deopt);
|
| + Deoptimize(environment, bailout_type);
|
| + __ Bind(&dont_deopt);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DeoptimizeIfNegative(Register rt, LEnvironment* environment) {
|
| + Label dont_deopt;
|
| + Deoptimizer::BailoutType bailout_type = DeoptimizeHeader(environment, NULL);
|
| + __ Tbz(rt, rt.Is64Bits() ? kXSignBit : kWSignBit, &dont_deopt);
|
| + Deoptimize(environment, bailout_type);
|
| + __ Bind(&dont_deopt);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DeoptimizeIfSmi(Register rt,
|
| + LEnvironment* environment) {
|
| + Label dont_deopt;
|
| + Deoptimizer::BailoutType bailout_type = DeoptimizeHeader(environment, NULL);
|
| + __ JumpIfNotSmi(rt, &dont_deopt);
|
| + Deoptimize(environment, bailout_type);
|
| + __ Bind(&dont_deopt);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DeoptimizeIfNotSmi(Register rt, LEnvironment* environment) {
|
| + Label dont_deopt;
|
| + Deoptimizer::BailoutType bailout_type = DeoptimizeHeader(environment, NULL);
|
| + __ JumpIfSmi(rt, &dont_deopt);
|
| + Deoptimize(environment, bailout_type);
|
| + __ Bind(&dont_deopt);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DeoptimizeIfRoot(Register rt,
|
| + Heap::RootListIndex index,
|
| + LEnvironment* environment) {
|
| + Label dont_deopt;
|
| + Deoptimizer::BailoutType bailout_type = DeoptimizeHeader(environment, NULL);
|
| + __ JumpIfNotRoot(rt, index, &dont_deopt);
|
| + Deoptimize(environment, bailout_type);
|
| + __ Bind(&dont_deopt);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DeoptimizeIfNotRoot(Register rt,
|
| + Heap::RootListIndex index,
|
| + LEnvironment* environment) {
|
| + Label dont_deopt;
|
| + Deoptimizer::BailoutType bailout_type = DeoptimizeHeader(environment, NULL);
|
| + __ JumpIfRoot(rt, index, &dont_deopt);
|
| + Deoptimize(environment, bailout_type);
|
| + __ Bind(&dont_deopt);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
|
| + if (!info()->IsStub()) {
|
| + // Ensure that we have enough space after the previous lazy-bailout
|
| + // instruction for patching the code here.
|
| + intptr_t current_pc = masm()->pc_offset();
|
| +
|
| + if (current_pc < (last_lazy_deopt_pc_ + space_needed)) {
|
| + ptrdiff_t padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
|
| + ASSERT((padding_size % kInstructionSize) == 0);
|
| + InstructionAccurateScope instruction_accurate(
|
| + masm(), padding_size / kInstructionSize);
|
| +
|
| + while (padding_size > 0) {
|
| + __ nop();
|
| + padding_size -= kInstructionSize;
|
| + }
|
| + }
|
| + }
|
| + last_lazy_deopt_pc_ = masm()->pc_offset();
|
| +}
|
| +
|
| +
|
| +Register LCodeGen::ToRegister(LOperand* op) const {
|
| + // TODO(all): support zero register results, as ToRegister32.
|
| + ASSERT((op != NULL) && op->IsRegister());
|
| + return Register::FromAllocationIndex(op->index());
|
| +}
|
| +
|
| +
|
| +Register LCodeGen::ToRegister32(LOperand* op) const {
|
| + ASSERT(op != NULL);
|
| + if (op->IsConstantOperand()) {
|
| + // If this is a constant operand, the result must be the zero register.
|
| + ASSERT(ToInteger32(LConstantOperand::cast(op)) == 0);
|
| + return wzr;
|
| + } else {
|
| + return ToRegister(op).W();
|
| + }
|
| +}
|
| +
|
| +
|
| +Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
|
| + HConstant* constant = chunk_->LookupConstant(op);
|
| + return Smi::FromInt(constant->Integer32Value());
|
| +}
|
| +
|
| +
|
| +DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
|
| + ASSERT((op != NULL) && op->IsDoubleRegister());
|
| + return DoubleRegister::FromAllocationIndex(op->index());
|
| +}
|
| +
|
| +
|
| +Operand LCodeGen::ToOperand(LOperand* op) {
|
| + ASSERT(op != NULL);
|
| + if (op->IsConstantOperand()) {
|
| + LConstantOperand* const_op = LConstantOperand::cast(op);
|
| + HConstant* constant = chunk()->LookupConstant(const_op);
|
| + Representation r = chunk_->LookupLiteralRepresentation(const_op);
|
| + if (r.IsSmi()) {
|
| + ASSERT(constant->HasSmiValue());
|
| + return Operand(Smi::FromInt(constant->Integer32Value()));
|
| + } else if (r.IsInteger32()) {
|
| + ASSERT(constant->HasInteger32Value());
|
| + return Operand(constant->Integer32Value());
|
| + } else if (r.IsDouble()) {
|
| + Abort(kToOperandUnsupportedDoubleImmediate);
|
| + }
|
| + ASSERT(r.IsTagged());
|
| + return Operand(constant->handle(isolate()));
|
| + } else if (op->IsRegister()) {
|
| + return Operand(ToRegister(op));
|
| + } else if (op->IsDoubleRegister()) {
|
| + Abort(kToOperandIsDoubleRegisterUnimplemented);
|
| + return Operand(0);
|
| + }
|
| + // Stack slots not implemented, use ToMemOperand instead.
|
| + UNREACHABLE();
|
| + return Operand(0);
|
| +}
|
| +
|
| +
|
| +Operand LCodeGen::ToOperand32I(LOperand* op) {
|
| + return ToOperand32(op, SIGNED_INT32);
|
| +}
|
| +
|
| +
|
| +Operand LCodeGen::ToOperand32U(LOperand* op) {
|
| + return ToOperand32(op, UNSIGNED_INT32);
|
| +}
|
| +
|
| +
|
| +Operand LCodeGen::ToOperand32(LOperand* op, IntegerSignedness signedness) {
|
| + ASSERT(op != NULL);
|
| + if (op->IsRegister()) {
|
| + return Operand(ToRegister32(op));
|
| + } else if (op->IsConstantOperand()) {
|
| + LConstantOperand* const_op = LConstantOperand::cast(op);
|
| + HConstant* constant = chunk()->LookupConstant(const_op);
|
| + Representation r = chunk_->LookupLiteralRepresentation(const_op);
|
| + if (r.IsInteger32()) {
|
| + ASSERT(constant->HasInteger32Value());
|
| + return Operand(signedness == SIGNED_INT32
|
| + ? constant->Integer32Value()
|
| + : static_cast<uint32_t>(constant->Integer32Value()));
|
| + } else {
|
| + // Other constants not implemented.
|
| + Abort(kToOperand32UnsupportedImmediate);
|
| + }
|
| + }
|
| + // Other cases are not implemented.
|
| + UNREACHABLE();
|
| + return Operand(0);
|
| +}
|
| +
|
| +
|
| +static ptrdiff_t ArgumentsOffsetWithoutFrame(ptrdiff_t index) {
|
| + ASSERT(index < 0);
|
| + return -(index + 1) * kPointerSize;
|
| +}
|
| +
|
| +
|
| +MemOperand LCodeGen::ToMemOperand(LOperand* op) const {
|
| + ASSERT(op != NULL);
|
| + ASSERT(!op->IsRegister());
|
| + ASSERT(!op->IsDoubleRegister());
|
| + ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot());
|
| + if (NeedsEagerFrame()) {
|
| + return MemOperand(fp, StackSlotOffset(op->index()));
|
| + } else {
|
| + // Retrieve parameter without eager stack-frame relative to the
|
| + // stack-pointer.
|
| + return MemOperand(masm()->StackPointer(),
|
| + ArgumentsOffsetWithoutFrame(op->index()));
|
| + }
|
| +}
|
| +
|
| +
|
| +Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
|
| + HConstant* constant = chunk_->LookupConstant(op);
|
| + ASSERT(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
|
| + return constant->handle(isolate());
|
| +}
|
| +
|
| +
|
| +bool LCodeGen::IsSmi(LConstantOperand* op) const {
|
| + return chunk_->LookupLiteralRepresentation(op).IsSmi();
|
| +}
|
| +
|
| +
|
| +bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const {
|
| + return op->IsConstantOperand() &&
|
| + chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
|
| +}
|
| +
|
| +
|
| +int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
|
| + HConstant* constant = chunk_->LookupConstant(op);
|
| + return constant->Integer32Value();
|
| +}
|
| +
|
| +
|
| +double LCodeGen::ToDouble(LConstantOperand* op) const {
|
| + HConstant* constant = chunk_->LookupConstant(op);
|
| + ASSERT(constant->HasDoubleValue());
|
| + return constant->DoubleValue();
|
| +}
|
| +
|
| +
|
| +Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
|
| + Condition cond = nv;
|
| + switch (op) {
|
| + case Token::EQ:
|
| + case Token::EQ_STRICT:
|
| + cond = eq;
|
| + break;
|
| + case Token::NE:
|
| + case Token::NE_STRICT:
|
| + cond = ne;
|
| + break;
|
| + case Token::LT:
|
| + cond = is_unsigned ? lo : lt;
|
| + break;
|
| + case Token::GT:
|
| + cond = is_unsigned ? hi : gt;
|
| + break;
|
| + case Token::LTE:
|
| + cond = is_unsigned ? ls : le;
|
| + break;
|
| + case Token::GTE:
|
| + cond = is_unsigned ? hs : ge;
|
| + break;
|
| + case Token::IN:
|
| + case Token::INSTANCEOF:
|
| + default:
|
| + UNREACHABLE();
|
| + }
|
| + return cond;
|
| +}
|
| +
|
| +
|
| +template<class InstrType>
|
| +void LCodeGen::EmitBranchGeneric(InstrType instr,
|
| + const BranchGenerator& branch) {
|
| + int left_block = instr->TrueDestination(chunk_);
|
| + int right_block = instr->FalseDestination(chunk_);
|
| +
|
| + int next_block = GetNextEmittedBlock();
|
| +
|
| + if (right_block == left_block) {
|
| + EmitGoto(left_block);
|
| + } else if (left_block == next_block) {
|
| + branch.EmitInverted(chunk_->GetAssemblyLabel(right_block));
|
| + } else if (right_block == next_block) {
|
| + branch.Emit(chunk_->GetAssemblyLabel(left_block));
|
| + } else {
|
| + branch.Emit(chunk_->GetAssemblyLabel(left_block));
|
| + __ B(chunk_->GetAssemblyLabel(right_block));
|
| + }
|
| +}
|
| +
|
| +
|
| +template<class InstrType>
|
| +void LCodeGen::EmitBranch(InstrType instr, Condition condition) {
|
| + ASSERT((condition != al) && (condition != nv));
|
| + BranchOnCondition branch(this, condition);
|
| + EmitBranchGeneric(instr, branch);
|
| +}
|
| +
|
| +
|
| +template<class InstrType>
|
| +void LCodeGen::EmitCompareAndBranch(InstrType instr,
|
| + Condition condition,
|
| + const Register& lhs,
|
| + const Operand& rhs) {
|
| + ASSERT((condition != al) && (condition != nv));
|
| + CompareAndBranch branch(this, condition, lhs, rhs);
|
| + EmitBranchGeneric(instr, branch);
|
| +}
|
| +
|
| +
|
| +template<class InstrType>
|
| +void LCodeGen::EmitTestAndBranch(InstrType instr,
|
| + Condition condition,
|
| + const Register& value,
|
| + uint64_t mask) {
|
| + ASSERT((condition != al) && (condition != nv));
|
| + TestAndBranch branch(this, condition, value, mask);
|
| + EmitBranchGeneric(instr, branch);
|
| +}
|
| +
|
| +
|
| +template<class InstrType>
|
| +void LCodeGen::EmitBranchIfNonZeroNumber(InstrType instr,
|
| + const FPRegister& value,
|
| + const FPRegister& scratch) {
|
| + BranchIfNonZeroNumber branch(this, value, scratch);
|
| + EmitBranchGeneric(instr, branch);
|
| +}
|
| +
|
| +
|
| +template<class InstrType>
|
| +void LCodeGen::EmitBranchIfHeapNumber(InstrType instr,
|
| + const Register& value) {
|
| + BranchIfHeapNumber branch(this, value);
|
| + EmitBranchGeneric(instr, branch);
|
| +}
|
| +
|
| +
|
| +template<class InstrType>
|
| +void LCodeGen::EmitBranchIfRoot(InstrType instr,
|
| + const Register& value,
|
| + Heap::RootListIndex index) {
|
| + BranchIfRoot branch(this, value, index);
|
| + EmitBranchGeneric(instr, branch);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoGap(LGap* gap) {
|
| + for (int i = LGap::FIRST_INNER_POSITION;
|
| + i <= LGap::LAST_INNER_POSITION;
|
| + i++) {
|
| + LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
|
| + LParallelMove* move = gap->GetParallelMove(inner_pos);
|
| + if (move != NULL) {
|
| + resolver_.Resolve(move);
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
|
| + // TODO(all): Try to improve this, like ARM r17925.
|
| + Register arguments = ToRegister(instr->arguments());
|
| + Register result = ToRegister(instr->result());
|
| +
|
| + if (instr->length()->IsConstantOperand() &&
|
| + instr->index()->IsConstantOperand()) {
|
| + ASSERT(instr->temp() == NULL);
|
| + int index = ToInteger32(LConstantOperand::cast(instr->index()));
|
| + int length = ToInteger32(LConstantOperand::cast(instr->length()));
|
| + int offset = ((length - index) + 1) * kPointerSize;
|
| + __ Ldr(result, MemOperand(arguments, offset));
|
| + } else {
|
| + ASSERT(instr->temp() != NULL);
|
| + Register temp = ToRegister32(instr->temp());
|
| + Register length = ToRegister32(instr->length());
|
| + Operand index = ToOperand32I(instr->index());
|
| + // There are two words between the frame pointer and the last arguments.
|
| + // Subtracting from length accounts for only one, so we add one more.
|
| + __ Sub(temp, length, index);
|
| + __ Add(temp, temp, 1);
|
| + __ Ldr(result, MemOperand(arguments, temp, UXTW, kPointerSizeLog2));
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoAddE(LAddE* instr) {
|
| + Register result = ToRegister(instr->result());
|
| + Register left = ToRegister(instr->left());
|
| + Operand right = (instr->right()->IsConstantOperand())
|
| + ? ToInteger32(LConstantOperand::cast(instr->right()))
|
| + : Operand(ToRegister32(instr->right()), SXTW);
|
| +
|
| + ASSERT(!instr->hydrogen()->CheckFlag(HValue::kCanOverflow));
|
| + __ Add(result, left, right);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoAddI(LAddI* instr) {
|
| + bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
|
| + Register result = ToRegister32(instr->result());
|
| + Register left = ToRegister32(instr->left());
|
| + Operand right = ToOperand32I(instr->right());
|
| + if (can_overflow) {
|
| + __ Adds(result, left, right);
|
| + DeoptimizeIf(vs, instr->environment());
|
| + } else {
|
| + __ Add(result, left, right);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoAddS(LAddS* instr) {
|
| + bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
|
| + Register result = ToRegister(instr->result());
|
| + Register left = ToRegister(instr->left());
|
| + Operand right = ToOperand(instr->right());
|
| + if (can_overflow) {
|
| + __ Adds(result, left, right);
|
| + DeoptimizeIf(vs, instr->environment());
|
| + } else {
|
| + __ Add(result, left, right);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoAllocate(LAllocate* instr) {
|
| + class DeferredAllocate: public LDeferredCode {
|
| + public:
|
| + DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
|
| + : LDeferredCode(codegen), instr_(instr) { }
|
| + virtual void Generate() { codegen()->DoDeferredAllocate(instr_); }
|
| + virtual LInstruction* instr() { return instr_; }
|
| + private:
|
| + LAllocate* instr_;
|
| + };
|
| +
|
| + DeferredAllocate* deferred = new(zone()) DeferredAllocate(this, instr);
|
| +
|
| + Register result = ToRegister(instr->result());
|
| + Register temp1 = ToRegister(instr->temp1());
|
| + Register temp2 = ToRegister(instr->temp2());
|
| +
|
| + // Allocate memory for the object.
|
| + AllocationFlags flags = TAG_OBJECT;
|
| + if (instr->hydrogen()->MustAllocateDoubleAligned()) {
|
| + flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
|
| + }
|
| +
|
| + if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
|
| + ASSERT(!instr->hydrogen()->IsOldDataSpaceAllocation());
|
| + ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
|
| + flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_POINTER_SPACE);
|
| + } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
|
| + ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
|
| + flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_DATA_SPACE);
|
| + }
|
| +
|
| + if (instr->size()->IsConstantOperand()) {
|
| + int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
|
| + __ Allocate(size, result, temp1, temp2, deferred->entry(), flags);
|
| + } else {
|
| + Register size = ToRegister(instr->size());
|
| + __ Allocate(size, result, temp1, temp2, deferred->entry(), flags);
|
| + }
|
| +
|
| + __ Bind(deferred->exit());
|
| +
|
| + if (instr->hydrogen()->MustPrefillWithFiller()) {
|
| + if (instr->size()->IsConstantOperand()) {
|
| + int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
|
| + __ Mov(temp1, size - kPointerSize);
|
| + } else {
|
| + __ Sub(temp1, ToRegister(instr->size()), kPointerSize);
|
| + }
|
| + __ Sub(result, result, kHeapObjectTag);
|
| +
|
| + // TODO(jbramley): Optimize this loop using stp.
|
| + Label loop;
|
| + __ Bind(&loop);
|
| + __ Mov(temp2, Operand(isolate()->factory()->one_pointer_filler_map()));
|
| + __ Str(temp2, MemOperand(result, temp1));
|
| + __ Subs(temp1, temp1, kPointerSize);
|
| + __ B(ge, &loop);
|
| +
|
| + __ Add(result, result, kHeapObjectTag);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
|
| + // TODO(3095996): Get rid of this. For now, we need to make the
|
| + // result register contain a valid pointer because it is already
|
| + // contained in the register pointer map.
|
| + __ Mov(ToRegister(instr->result()), Operand(Smi::FromInt(0)));
|
| +
|
| + PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
|
| + // We're in a SafepointRegistersScope so we can use any scratch registers.
|
| + Register size = x0;
|
| + if (instr->size()->IsConstantOperand()) {
|
| + __ Mov(size, Operand(ToSmi(LConstantOperand::cast(instr->size()))));
|
| + } else {
|
| + __ SmiTag(size, ToRegister(instr->size()));
|
| + }
|
| + int flags = AllocateDoubleAlignFlag::encode(
|
| + instr->hydrogen()->MustAllocateDoubleAligned());
|
| + if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
|
| + ASSERT(!instr->hydrogen()->IsOldDataSpaceAllocation());
|
| + ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
|
| + flags = AllocateTargetSpace::update(flags, OLD_POINTER_SPACE);
|
| + } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
|
| + ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
|
| + flags = AllocateTargetSpace::update(flags, OLD_DATA_SPACE);
|
| + } else {
|
| + flags = AllocateTargetSpace::update(flags, NEW_SPACE);
|
| + }
|
| + __ Mov(x10, Operand(Smi::FromInt(flags)));
|
| + __ Push(size, x10);
|
| +
|
| + CallRuntimeFromDeferred(
|
| + Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
|
| + __ StoreToSafepointRegisterSlot(x0, ToRegister(instr->result()));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
|
| + Register receiver = ToRegister(instr->receiver());
|
| + Register function = ToRegister(instr->function());
|
| + Register length = ToRegister(instr->length());
|
| + Register elements = ToRegister(instr->elements());
|
| + Register scratch = x5;
|
| + ASSERT(receiver.Is(x0)); // Used for parameter count.
|
| + ASSERT(function.Is(x1)); // Required by InvokeFunction.
|
| + ASSERT(ToRegister(instr->result()).Is(x0));
|
| + ASSERT(instr->IsMarkedAsCall());
|
| +
|
| + // Copy the arguments to this function possibly from the
|
| + // adaptor frame below it.
|
| + const uint32_t kArgumentsLimit = 1 * KB;
|
| + __ Cmp(length, kArgumentsLimit);
|
| + DeoptimizeIf(hi, instr->environment());
|
| +
|
| + // Push the receiver and use the register to keep the original
|
| + // number of arguments.
|
| + __ Push(receiver);
|
| + Register argc = receiver;
|
| + receiver = NoReg;
|
| + __ Mov(argc, length);
|
| + // The arguments are at a one pointer size offset from elements.
|
| + __ Add(elements, elements, 1 * kPointerSize);
|
| +
|
| + // Loop through the arguments pushing them onto the execution
|
| + // stack.
|
| + Label invoke, loop;
|
| + // length is a small non-negative integer, due to the test above.
|
| + __ Cbz(length, &invoke);
|
| + __ Bind(&loop);
|
| + __ Ldr(scratch, MemOperand(elements, length, LSL, kPointerSizeLog2));
|
| + __ Push(scratch);
|
| + __ Subs(length, length, 1);
|
| + __ B(ne, &loop);
|
| +
|
| + __ Bind(&invoke);
|
| + ASSERT(instr->HasPointerMap());
|
| + LPointerMap* pointers = instr->pointer_map();
|
| + SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
|
| + // The number of arguments is stored in argc (receiver) which is x0, as
|
| + // expected by InvokeFunction.
|
| + ParameterCount actual(argc);
|
| + __ InvokeFunction(function, actual, CALL_FUNCTION, safepoint_generator);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
|
| + Register result = ToRegister(instr->result());
|
| +
|
| + if (instr->hydrogen()->from_inlined()) {
|
| + // When we are inside an inlined function, the arguments are the last things
|
| + // that have been pushed on the stack. Therefore the arguments array can be
|
| + // accessed directly from jssp.
|
| + // However in the normal case, it is accessed via fp but there are two words
|
| + // on the stack between fp and the arguments (the saved lr and fp) and the
|
| + // LAccessArgumentsAt implementation take that into account.
|
| + // In the inlined case we need to subtract the size of 2 words to jssp to
|
| + // get a pointer which will work well with LAccessArgumentsAt.
|
| + ASSERT(masm()->StackPointer().Is(jssp));
|
| + __ Sub(result, jssp, 2 * kPointerSize);
|
| + } else {
|
| + ASSERT(instr->temp() != NULL);
|
| + Register previous_fp = ToRegister(instr->temp());
|
| +
|
| + __ Ldr(previous_fp,
|
| + MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
| + __ Ldr(result,
|
| + MemOperand(previous_fp, StandardFrameConstants::kContextOffset));
|
| + __ Cmp(result, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
|
| + __ Csel(result, fp, previous_fp, ne);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
|
| + Register elements = ToRegister(instr->elements());
|
| + Register result = ToRegister(instr->result());
|
| + Label done;
|
| +
|
| + // If no arguments adaptor frame the number of arguments is fixed.
|
| + __ Cmp(fp, elements);
|
| + __ Mov(result, scope()->num_parameters());
|
| + __ B(eq, &done);
|
| +
|
| + // Arguments adaptor frame present. Get argument length from there.
|
| + __ Ldr(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
| + __ Ldrsw(result,
|
| + UntagSmiMemOperand(result,
|
| + ArgumentsAdaptorFrameConstants::kLengthOffset));
|
| +
|
| + // Argument length is in result register.
|
| + __ Bind(&done);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
|
| + DoubleRegister left = ToDoubleRegister(instr->left());
|
| + DoubleRegister right = ToDoubleRegister(instr->right());
|
| + DoubleRegister result = ToDoubleRegister(instr->result());
|
| +
|
| + switch (instr->op()) {
|
| + case Token::ADD: __ Fadd(result, left, right); break;
|
| + case Token::SUB: __ Fsub(result, left, right); break;
|
| + case Token::MUL: __ Fmul(result, left, right); break;
|
| + case Token::DIV: __ Fdiv(result, left, right); break;
|
| + case Token::MOD: {
|
| + // The ECMA-262 remainder operator is the remainder from a truncating
|
| + // (round-towards-zero) division. Note that this differs from IEEE-754.
|
| + //
|
| + // TODO(jbramley): See if it's possible to do this inline, rather than by
|
| + // calling a helper function. With frintz (to produce the intermediate
|
| + // quotient) and fmsub (to calculate the remainder without loss of
|
| + // precision), it should be possible. However, we would need support for
|
| + // fdiv in round-towards-zero mode, and the A64 simulator doesn't support
|
| + // that yet.
|
| + ASSERT(left.Is(d0));
|
| + ASSERT(right.Is(d1));
|
| + __ CallCFunction(
|
| + ExternalReference::mod_two_doubles_operation(isolate()),
|
| + 0, 2);
|
| + ASSERT(result.Is(d0));
|
| + break;
|
| + }
|
| + default:
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
|
| + ASSERT(ToRegister(instr->context()).is(cp));
|
| + ASSERT(ToRegister(instr->left()).is(x1));
|
| + ASSERT(ToRegister(instr->right()).is(x0));
|
| + ASSERT(ToRegister(instr->result()).is(x0));
|
| +
|
| + BinaryOpICStub stub(instr->op(), NO_OVERWRITE);
|
| + CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoBitI(LBitI* instr) {
|
| + Register result = ToRegister32(instr->result());
|
| + Register left = ToRegister32(instr->left());
|
| + Operand right = ToOperand32U(instr->right());
|
| +
|
| + switch (instr->op()) {
|
| + case Token::BIT_AND: __ And(result, left, right); break;
|
| + case Token::BIT_OR: __ Orr(result, left, right); break;
|
| + case Token::BIT_XOR: __ Eor(result, left, right); break;
|
| + default:
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoBitS(LBitS* instr) {
|
| + Register result = ToRegister(instr->result());
|
| + Register left = ToRegister(instr->left());
|
| + Operand right = ToOperand(instr->right());
|
| +
|
| + switch (instr->op()) {
|
| + case Token::BIT_AND: __ And(result, left, right); break;
|
| + case Token::BIT_OR: __ Orr(result, left, right); break;
|
| + case Token::BIT_XOR: __ Eor(result, left, right); break;
|
| + default:
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::ApplyCheckIf(Condition cc, LBoundsCheck* check) {
|
| + if (FLAG_debug_code && check->hydrogen()->skip_check()) {
|
| + __ Assert(InvertCondition(cc), kEliminatedBoundsCheckFailed);
|
| + } else {
|
| + DeoptimizeIf(cc, check->environment());
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoBoundsCheck(LBoundsCheck *instr) {
|
| + if (instr->hydrogen()->skip_check()) return;
|
| +
|
| + Register length = ToRegister(instr->length());
|
| +
|
| + if (instr->index()->IsConstantOperand()) {
|
| + int constant_index =
|
| + ToInteger32(LConstantOperand::cast(instr->index()));
|
| +
|
| + if (instr->hydrogen()->length()->representation().IsSmi()) {
|
| + __ Cmp(length, Operand(Smi::FromInt(constant_index)));
|
| + } else {
|
| + __ Cmp(length, Operand(constant_index));
|
| + }
|
| + } else {
|
| + __ Cmp(length, ToRegister(instr->index()));
|
| + }
|
| + Condition condition = instr->hydrogen()->allow_equality() ? lo : ls;
|
| + ApplyCheckIf(condition, instr);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoBranch(LBranch* instr) {
|
| + Representation r = instr->hydrogen()->value()->representation();
|
| + Label* true_label = instr->TrueLabel(chunk_);
|
| + Label* false_label = instr->FalseLabel(chunk_);
|
| +
|
| + if (r.IsInteger32()) {
|
| + ASSERT(!info()->IsStub());
|
| + EmitCompareAndBranch(instr, ne, ToRegister32(instr->value()), 0);
|
| + } else if (r.IsSmi()) {
|
| + ASSERT(!info()->IsStub());
|
| + STATIC_ASSERT(kSmiTag == 0);
|
| + EmitCompareAndBranch(instr, ne, ToRegister(instr->value()), 0);
|
| + } else if (r.IsDouble()) {
|
| + DoubleRegister value = ToDoubleRegister(instr->value());
|
| + // Test the double value. Zero and NaN are false.
|
| + EmitBranchIfNonZeroNumber(instr, value, double_scratch());
|
| + } else {
|
| + ASSERT(r.IsTagged());
|
| + Register value = ToRegister(instr->value());
|
| + HType type = instr->hydrogen()->value()->type();
|
| +
|
| + if (type.IsBoolean()) {
|
| + ASSERT(!info()->IsStub());
|
| + __ CompareRoot(value, Heap::kTrueValueRootIndex);
|
| + EmitBranch(instr, eq);
|
| + } else if (type.IsSmi()) {
|
| + ASSERT(!info()->IsStub());
|
| + EmitCompareAndBranch(instr, ne, value, Operand(Smi::FromInt(0)));
|
| + } else if (type.IsJSArray()) {
|
| + ASSERT(!info()->IsStub());
|
| + EmitGoto(instr->TrueDestination(chunk()));
|
| + } else if (type.IsHeapNumber()) {
|
| + ASSERT(!info()->IsStub());
|
| + __ Ldr(double_scratch(), FieldMemOperand(value,
|
| + HeapNumber::kValueOffset));
|
| + // Test the double value. Zero and NaN are false.
|
| + EmitBranchIfNonZeroNumber(instr, double_scratch(), double_scratch());
|
| + } else if (type.IsString()) {
|
| + ASSERT(!info()->IsStub());
|
| + Register temp = ToRegister(instr->temp1());
|
| + __ Ldr(temp, FieldMemOperand(value, String::kLengthOffset));
|
| + EmitCompareAndBranch(instr, ne, temp, 0);
|
| + } else {
|
| + ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
|
| + // Avoid deopts in the case where we've never executed this path before.
|
| + if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
|
| +
|
| + if (expected.Contains(ToBooleanStub::UNDEFINED)) {
|
| + // undefined -> false.
|
| + __ JumpIfRoot(
|
| + value, Heap::kUndefinedValueRootIndex, false_label);
|
| + }
|
| +
|
| + if (expected.Contains(ToBooleanStub::BOOLEAN)) {
|
| + // Boolean -> its value.
|
| + __ JumpIfRoot(
|
| + value, Heap::kTrueValueRootIndex, true_label);
|
| + __ JumpIfRoot(
|
| + value, Heap::kFalseValueRootIndex, false_label);
|
| + }
|
| +
|
| + if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
|
| + // 'null' -> false.
|
| + __ JumpIfRoot(
|
| + value, Heap::kNullValueRootIndex, false_label);
|
| + }
|
| +
|
| + if (expected.Contains(ToBooleanStub::SMI)) {
|
| + // Smis: 0 -> false, all other -> true.
|
| + ASSERT(Smi::FromInt(0) == 0);
|
| + __ Cbz(value, false_label);
|
| + __ JumpIfSmi(value, true_label);
|
| + } else if (expected.NeedsMap()) {
|
| + // If we need a map later and have a smi, deopt.
|
| + DeoptimizeIfSmi(value, instr->environment());
|
| + }
|
| +
|
| + Register map = NoReg;
|
| + Register scratch = NoReg;
|
| +
|
| + if (expected.NeedsMap()) {
|
| + ASSERT((instr->temp1() != NULL) && (instr->temp2() != NULL));
|
| + map = ToRegister(instr->temp1());
|
| + scratch = ToRegister(instr->temp2());
|
| +
|
| + __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
|
| +
|
| + if (expected.CanBeUndetectable()) {
|
| + // Undetectable -> false.
|
| + __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
|
| + __ TestAndBranchIfAnySet(
|
| + scratch, 1 << Map::kIsUndetectable, false_label);
|
| + }
|
| + }
|
| +
|
| + if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
|
| + // spec object -> true.
|
| + __ CompareInstanceType(map, scratch, FIRST_SPEC_OBJECT_TYPE);
|
| + __ B(ge, true_label);
|
| + }
|
| +
|
| + if (expected.Contains(ToBooleanStub::STRING)) {
|
| + // String value -> false iff empty.
|
| + Label not_string;
|
| + __ CompareInstanceType(map, scratch, FIRST_NONSTRING_TYPE);
|
| + __ B(ge, ¬_string);
|
| + __ Ldr(scratch, FieldMemOperand(value, String::kLengthOffset));
|
| + __ Cbz(scratch, false_label);
|
| + __ B(true_label);
|
| + __ Bind(¬_string);
|
| + }
|
| +
|
| + if (expected.Contains(ToBooleanStub::SYMBOL)) {
|
| + // Symbol value -> true.
|
| + __ CompareInstanceType(map, scratch, SYMBOL_TYPE);
|
| + __ B(eq, true_label);
|
| + }
|
| +
|
| + if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
|
| + Label not_heap_number;
|
| + __ JumpIfNotRoot(map, Heap::kHeapNumberMapRootIndex, ¬_heap_number);
|
| +
|
| + __ Ldr(double_scratch(),
|
| + FieldMemOperand(value, HeapNumber::kValueOffset));
|
| + __ Fcmp(double_scratch(), 0.0);
|
| + // If we got a NaN (overflow bit is set), jump to the false branch.
|
| + __ B(vs, false_label);
|
| + __ B(eq, false_label);
|
| + __ B(true_label);
|
| + __ Bind(¬_heap_number);
|
| + }
|
| +
|
| + if (!expected.IsGeneric()) {
|
| + // We've seen something for the first time -> deopt.
|
| + // This can only happen if we are not generic already.
|
| + Deoptimize(instr->environment());
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
|
| + int formal_parameter_count,
|
| + int arity,
|
| + LInstruction* instr,
|
| + Register function_reg) {
|
| + bool dont_adapt_arguments =
|
| + formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
|
| + bool can_invoke_directly =
|
| + dont_adapt_arguments || formal_parameter_count == arity;
|
| +
|
| + // The function interface relies on the following register assignments.
|
| + ASSERT(function_reg.Is(x1) || function_reg.IsNone());
|
| + Register arity_reg = x0;
|
| +
|
| + LPointerMap* pointers = instr->pointer_map();
|
| +
|
| + // If necessary, load the function object.
|
| + if (function_reg.IsNone()) {
|
| + function_reg = x1;
|
| + __ LoadObject(function_reg, function);
|
| + }
|
| +
|
| + if (FLAG_debug_code) {
|
| + Label is_not_smi;
|
| + // Try to confirm that function_reg (x1) is a tagged pointer.
|
| + __ JumpIfNotSmi(function_reg, &is_not_smi);
|
| + __ Abort(kExpectedFunctionObject);
|
| + __ Bind(&is_not_smi);
|
| + }
|
| +
|
| + if (can_invoke_directly) {
|
| + // Change context.
|
| + __ Ldr(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset));
|
| +
|
| + // Set the arguments count if adaption is not needed. Assumes that x0 is
|
| + // available to write to at this point.
|
| + if (dont_adapt_arguments) {
|
| + __ Mov(arity_reg, arity);
|
| + }
|
| +
|
| + // Invoke function.
|
| + __ Ldr(x10, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset));
|
| + __ Call(x10);
|
| +
|
| + // Set up deoptimization.
|
| + RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
|
| + } else {
|
| + SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
|
| + ParameterCount count(arity);
|
| + ParameterCount expected(formal_parameter_count);
|
| + __ InvokeFunction(function_reg, expected, count, CALL_FUNCTION, generator);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
|
| + ASSERT(instr->IsMarkedAsCall());
|
| + ASSERT(ToRegister(instr->result()).Is(x0));
|
| +
|
| + LPointerMap* pointers = instr->pointer_map();
|
| + SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
|
| +
|
| + if (instr->target()->IsConstantOperand()) {
|
| + LConstantOperand* target = LConstantOperand::cast(instr->target());
|
| + Handle<Code> code = Handle<Code>::cast(ToHandle(target));
|
| + generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
|
| + // TODO(all): on ARM we use a call descriptor to specify a storage mode
|
| + // but on A64 we only have one storage mode so it isn't necessary. Check
|
| + // this understanding is correct.
|
| + __ Call(code, RelocInfo::CODE_TARGET, TypeFeedbackId::None());
|
| + } else {
|
| + ASSERT(instr->target()->IsRegister());
|
| + Register target = ToRegister(instr->target());
|
| + generator.BeforeCall(__ CallSize(target));
|
| + __ Add(target, target, Code::kHeaderSize - kHeapObjectTag);
|
| + __ Call(target);
|
| + }
|
| + generator.AfterCall();
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) {
|
| + ASSERT(instr->IsMarkedAsCall());
|
| + ASSERT(ToRegister(instr->function()).is(x1));
|
| +
|
| + if (instr->hydrogen()->pass_argument_count()) {
|
| + __ Mov(x0, Operand(instr->arity()));
|
| + }
|
| +
|
| + // Change context.
|
| + __ Ldr(cp, FieldMemOperand(x1, JSFunction::kContextOffset));
|
| +
|
| + // Load the code entry address
|
| + __ Ldr(x10, FieldMemOperand(x1, JSFunction::kCodeEntryOffset));
|
| + __ Call(x10);
|
| +
|
| + RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
|
| + CallRuntime(instr->function(), instr->arity(), instr);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCallStub(LCallStub* instr) {
|
| + ASSERT(ToRegister(instr->context()).is(cp));
|
| + ASSERT(ToRegister(instr->result()).is(x0));
|
| + switch (instr->hydrogen()->major_key()) {
|
| + case CodeStub::RegExpExec: {
|
| + RegExpExecStub stub;
|
| + CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
|
| + break;
|
| + }
|
| + case CodeStub::SubString: {
|
| + SubStringStub stub;
|
| + CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
|
| + break;
|
| + }
|
| + case CodeStub::StringCompare: {
|
| + StringCompareStub stub;
|
| + CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
|
| + break;
|
| + }
|
| + default:
|
| + UNREACHABLE();
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
|
| + GenerateOsrPrologue();
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
|
| + Register temp = ToRegister(instr->temp());
|
| + {
|
| + PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
|
| + __ Push(object);
|
| + __ Mov(cp, 0);
|
| + __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
|
| + RecordSafepointWithRegisters(
|
| + instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
|
| + __ StoreToSafepointRegisterSlot(x0, temp);
|
| + }
|
| + DeoptimizeIfSmi(temp, instr->environment());
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
|
| + class DeferredCheckMaps: public LDeferredCode {
|
| + public:
|
| + DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
|
| + : LDeferredCode(codegen), instr_(instr), object_(object) {
|
| + SetExit(check_maps());
|
| + }
|
| + virtual void Generate() {
|
| + codegen()->DoDeferredInstanceMigration(instr_, object_);
|
| + }
|
| + Label* check_maps() { return &check_maps_; }
|
| + virtual LInstruction* instr() { return instr_; }
|
| + private:
|
| + LCheckMaps* instr_;
|
| + Label check_maps_;
|
| + Register object_;
|
| + };
|
| +
|
| + if (instr->hydrogen()->CanOmitMapChecks()) {
|
| + ASSERT(instr->value() == NULL);
|
| + ASSERT(instr->temp() == NULL);
|
| + return;
|
| + }
|
| +
|
| + Register object = ToRegister(instr->value());
|
| + Register map_reg = ToRegister(instr->temp());
|
| +
|
| + __ Ldr(map_reg, FieldMemOperand(object, HeapObject::kMapOffset));
|
| +
|
| + DeferredCheckMaps* deferred = NULL;
|
| + if (instr->hydrogen()->has_migration_target()) {
|
| + deferred = new(zone()) DeferredCheckMaps(this, instr, object);
|
| + __ Bind(deferred->check_maps());
|
| + }
|
| +
|
| + UniqueSet<Map> map_set = instr->hydrogen()->map_set();
|
| + Label success;
|
| + for (int i = 0; i < map_set.size(); i++) {
|
| + Handle<Map> map = map_set.at(i).handle();
|
| + __ CompareMap(map_reg, map, &success);
|
| + __ B(eq, &success);
|
| + }
|
| +
|
| + // We didn't match a map.
|
| + if (instr->hydrogen()->has_migration_target()) {
|
| + __ B(deferred->entry());
|
| + } else {
|
| + Deoptimize(instr->environment());
|
| + }
|
| +
|
| + __ Bind(&success);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
|
| + if (!instr->hydrogen()->value()->IsHeapObject()) {
|
| + // TODO(all): Depending of how we chose to implement the deopt, if we could
|
| + // guarantee that we have a deopt handler reachable by a tbz instruction,
|
| + // we could use tbz here and produce less code to support this instruction.
|
| + DeoptimizeIfSmi(ToRegister(instr->value()), instr->environment());
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
|
| + Register value = ToRegister(instr->value());
|
| + ASSERT(!instr->result() || ToRegister(instr->result()).Is(value));
|
| + // TODO(all): See DoCheckNonSmi for comments on use of tbz.
|
| + DeoptimizeIfNotSmi(value, instr->environment());
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
|
| + Register input = ToRegister(instr->value());
|
| + Register scratch = ToRegister(instr->temp());
|
| +
|
| + __ Ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
|
| + __ Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
|
| +
|
| + if (instr->hydrogen()->is_interval_check()) {
|
| + InstanceType first, last;
|
| + instr->hydrogen()->GetCheckInterval(&first, &last);
|
| +
|
| + __ Cmp(scratch, first);
|
| + if (first == last) {
|
| + // If there is only one type in the interval check for equality.
|
| + DeoptimizeIf(ne, instr->environment());
|
| + } else if (last == LAST_TYPE) {
|
| + // We don't need to compare with the higher bound of the interval.
|
| + DeoptimizeIf(lo, instr->environment());
|
| + } else {
|
| + // If we are below the lower bound, set the C flag and clear the Z flag
|
| + // to force a deopt.
|
| + __ Ccmp(scratch, last, CFlag, hs);
|
| + DeoptimizeIf(hi, instr->environment());
|
| + }
|
| + } else {
|
| + uint8_t mask;
|
| + uint8_t tag;
|
| + instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
|
| +
|
| + if (IsPowerOf2(mask)) {
|
| + ASSERT((tag == 0) || (tag == mask));
|
| + // TODO(all): We might be able to use tbz/tbnz if we can guarantee that
|
| + // the deopt handler is reachable by a tbz instruction.
|
| + __ Tst(scratch, mask);
|
| + DeoptimizeIf(tag == 0 ? ne : eq, instr->environment());
|
| + } else {
|
| + if (tag == 0) {
|
| + __ Tst(scratch, mask);
|
| + } else {
|
| + __ And(scratch, scratch, mask);
|
| + __ Cmp(scratch, tag);
|
| + }
|
| + DeoptimizeIf(ne, instr->environment());
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
|
| + DoubleRegister input = ToDoubleRegister(instr->unclamped());
|
| + Register result = ToRegister(instr->result());
|
| + __ ClampDoubleToUint8(result, input, double_scratch());
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
|
| + Register input = ToRegister32(instr->unclamped());
|
| + Register result = ToRegister32(instr->result());
|
| + __ ClampInt32ToUint8(result, input);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
|
| + Register input = ToRegister(instr->unclamped());
|
| + Register result = ToRegister(instr->result());
|
| + Register scratch = ToRegister(instr->temp1());
|
| + Label done;
|
| +
|
| + // Both smi and heap number cases are handled.
|
| + Label is_not_smi;
|
| + __ JumpIfNotSmi(input, &is_not_smi);
|
| + __ SmiUntag(result, input);
|
| + __ ClampInt32ToUint8(result);
|
| + __ B(&done);
|
| +
|
| + __ Bind(&is_not_smi);
|
| +
|
| + // Check for heap number.
|
| + Label is_heap_number;
|
| + __ Ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
|
| + __ JumpIfRoot(scratch, Heap::kHeapNumberMapRootIndex, &is_heap_number);
|
| +
|
| + // Check for undefined. Undefined is coverted to zero for clamping conversion.
|
| + DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex,
|
| + instr->environment());
|
| + __ Mov(result, 0);
|
| + __ B(&done);
|
| +
|
| + // Heap number case.
|
| + __ Bind(&is_heap_number);
|
| + DoubleRegister dbl_scratch = double_scratch();
|
| + DoubleRegister dbl_scratch2 = ToDoubleRegister(instr->temp2());
|
| + __ Ldr(dbl_scratch, FieldMemOperand(input, HeapNumber::kValueOffset));
|
| + __ ClampDoubleToUint8(result, dbl_scratch, dbl_scratch2);
|
| +
|
| + __ Bind(&done);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
|
| + Handle<String> class_name = instr->hydrogen()->class_name();
|
| + Label* true_label = instr->TrueLabel(chunk_);
|
| + Label* false_label = instr->FalseLabel(chunk_);
|
| + Register input = ToRegister(instr->value());
|
| + Register scratch1 = ToRegister(instr->temp1());
|
| + Register scratch2 = ToRegister(instr->temp2());
|
| +
|
| + __ JumpIfSmi(input, false_label);
|
| +
|
| + Register map = scratch2;
|
| + if (class_name->IsUtf8EqualTo(CStrVector("Function"))) {
|
| + // Assuming the following assertions, we can use the same compares to test
|
| + // for both being a function type and being in the object type range.
|
| + STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
|
| + STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
|
| + FIRST_SPEC_OBJECT_TYPE + 1);
|
| + STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
|
| + LAST_SPEC_OBJECT_TYPE - 1);
|
| + STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
|
| +
|
| + // We expect CompareObjectType to load the object instance type in scratch1.
|
| + __ CompareObjectType(input, map, scratch1, FIRST_SPEC_OBJECT_TYPE);
|
| + __ B(lt, false_label);
|
| + __ B(eq, true_label);
|
| + __ Cmp(scratch1, LAST_SPEC_OBJECT_TYPE);
|
| + __ B(eq, true_label);
|
| + } else {
|
| + __ IsObjectJSObjectType(input, map, scratch1, false_label);
|
| + }
|
| +
|
| + // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
|
| + // Check if the constructor in the map is a function.
|
| + __ Ldr(scratch1, FieldMemOperand(map, Map::kConstructorOffset));
|
| +
|
| + // Objects with a non-function constructor have class 'Object'.
|
| + if (class_name->IsUtf8EqualTo(CStrVector("Object"))) {
|
| + __ JumpIfNotObjectType(
|
| + scratch1, scratch2, scratch2, JS_FUNCTION_TYPE, true_label);
|
| + } else {
|
| + __ JumpIfNotObjectType(
|
| + scratch1, scratch2, scratch2, JS_FUNCTION_TYPE, false_label);
|
| + }
|
| +
|
| + // The constructor function is in scratch1. Get its instance class name.
|
| + __ Ldr(scratch1,
|
| + FieldMemOperand(scratch1, JSFunction::kSharedFunctionInfoOffset));
|
| + __ Ldr(scratch1,
|
| + FieldMemOperand(scratch1,
|
| + SharedFunctionInfo::kInstanceClassNameOffset));
|
| +
|
| + // The class name we are testing against is internalized since it's a literal.
|
| + // The name in the constructor is internalized because of the way the context
|
| + // is booted. This routine isn't expected to work for random API-created
|
| + // classes and it doesn't have to because you can't access it with natives
|
| + // syntax. Since both sides are internalized it is sufficient to use an
|
| + // identity comparison.
|
| + EmitCompareAndBranch(instr, eq, scratch1, Operand(class_name));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCmpHoleAndBranchD(LCmpHoleAndBranchD* instr) {
|
| + ASSERT(instr->hydrogen()->representation().IsDouble());
|
| + FPRegister object = ToDoubleRegister(instr->object());
|
| + Register temp = ToRegister(instr->temp());
|
| +
|
| + // If we don't have a NaN, we don't have the hole, so branch now to avoid the
|
| + // (relatively expensive) hole-NaN check.
|
| + __ Fcmp(object, object);
|
| + __ B(vc, instr->FalseLabel(chunk_));
|
| +
|
| + // We have a NaN, but is it the hole?
|
| + __ Fmov(temp, object);
|
| + EmitCompareAndBranch(instr, eq, temp, kHoleNanInt64);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCmpHoleAndBranchT(LCmpHoleAndBranchT* instr) {
|
| + ASSERT(instr->hydrogen()->representation().IsTagged());
|
| + Register object = ToRegister(instr->object());
|
| +
|
| + EmitBranchIfRoot(instr, object, Heap::kTheHoleValueRootIndex);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
|
| + Register value = ToRegister(instr->value());
|
| + Register map = ToRegister(instr->temp());
|
| +
|
| + __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
|
| + EmitCompareAndBranch(instr, eq, map, Operand(instr->map()));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) {
|
| + Representation rep = instr->hydrogen()->value()->representation();
|
| + ASSERT(!rep.IsInteger32());
|
| + Register scratch = ToRegister(instr->temp());
|
| +
|
| + if (rep.IsDouble()) {
|
| + __ JumpIfMinusZero(ToDoubleRegister(instr->value()),
|
| + instr->TrueLabel(chunk()));
|
| + } else {
|
| + Register value = ToRegister(instr->value());
|
| + __ CheckMap(value, scratch, Heap::kHeapNumberMapRootIndex,
|
| + instr->FalseLabel(chunk()), DO_SMI_CHECK);
|
| + __ Ldr(double_scratch(), FieldMemOperand(value, HeapNumber::kValueOffset));
|
| + __ JumpIfMinusZero(double_scratch(), instr->TrueLabel(chunk()));
|
| + }
|
| + EmitGoto(instr->FalseDestination(chunk()));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
|
| + LOperand* left = instr->left();
|
| + LOperand* right = instr->right();
|
| + Condition cond = TokenToCondition(instr->op(), false);
|
| +
|
| + if (left->IsConstantOperand() && right->IsConstantOperand()) {
|
| + // We can statically evaluate the comparison.
|
| + double left_val = ToDouble(LConstantOperand::cast(left));
|
| + double right_val = ToDouble(LConstantOperand::cast(right));
|
| + int next_block = EvalComparison(instr->op(), left_val, right_val) ?
|
| + instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_);
|
| + EmitGoto(next_block);
|
| + } else {
|
| + if (instr->is_double()) {
|
| + if (right->IsConstantOperand()) {
|
| + __ Fcmp(ToDoubleRegister(left),
|
| + ToDouble(LConstantOperand::cast(right)));
|
| + } else if (left->IsConstantOperand()) {
|
| + // Transpose the operands and reverse the condition.
|
| + __ Fcmp(ToDoubleRegister(right),
|
| + ToDouble(LConstantOperand::cast(left)));
|
| + cond = ReverseConditionForCmp(cond);
|
| + } else {
|
| + __ Fcmp(ToDoubleRegister(left), ToDoubleRegister(right));
|
| + }
|
| +
|
| + // If a NaN is involved, i.e. the result is unordered (V set),
|
| + // jump to false block label.
|
| + __ B(vs, instr->FalseLabel(chunk_));
|
| + EmitBranch(instr, cond);
|
| + } else {
|
| + if (instr->hydrogen_value()->representation().IsInteger32()) {
|
| + if (right->IsConstantOperand()) {
|
| + EmitCompareAndBranch(instr,
|
| + cond,
|
| + ToRegister32(left),
|
| + ToOperand32I(right));
|
| + } else {
|
| + // Transpose the operands and reverse the condition.
|
| + EmitCompareAndBranch(instr,
|
| + ReverseConditionForCmp(cond),
|
| + ToRegister32(right),
|
| + ToOperand32I(left));
|
| + }
|
| + } else {
|
| + ASSERT(instr->hydrogen_value()->representation().IsSmi());
|
| + if (right->IsConstantOperand()) {
|
| + int32_t value = ToInteger32(LConstantOperand::cast(right));
|
| + EmitCompareAndBranch(instr,
|
| + cond,
|
| + ToRegister(left),
|
| + Operand(Smi::FromInt(value)));
|
| + } else if (left->IsConstantOperand()) {
|
| + // Transpose the operands and reverse the condition.
|
| + int32_t value = ToInteger32(LConstantOperand::cast(left));
|
| + EmitCompareAndBranch(instr,
|
| + ReverseConditionForCmp(cond),
|
| + ToRegister(right),
|
| + Operand(Smi::FromInt(value)));
|
| + } else {
|
| + EmitCompareAndBranch(instr,
|
| + cond,
|
| + ToRegister(left),
|
| + ToRegister(right));
|
| + }
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
|
| + Register left = ToRegister(instr->left());
|
| + Register right = ToRegister(instr->right());
|
| + EmitCompareAndBranch(instr, eq, left, right);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCmpT(LCmpT* instr) {
|
| + ASSERT(ToRegister(instr->context()).is(cp));
|
| + Token::Value op = instr->op();
|
| + Condition cond = TokenToCondition(op, false);
|
| +
|
| + ASSERT(ToRegister(instr->left()).Is(x1));
|
| + ASSERT(ToRegister(instr->right()).Is(x0));
|
| + Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op);
|
| + CallCode(ic, RelocInfo::CODE_TARGET, instr);
|
| + // Signal that we don't inline smi code before this stub.
|
| + InlineSmiCheckInfo::EmitNotInlined(masm());
|
| +
|
| + // Return true or false depending on CompareIC result.
|
| + // This instruction is marked as call. We can clobber any register.
|
| + ASSERT(instr->IsMarkedAsCall());
|
| + __ LoadTrueFalseRoots(x1, x2);
|
| + __ Cmp(x0, 0);
|
| + __ Csel(ToRegister(instr->result()), x1, x2, cond);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoConstantD(LConstantD* instr) {
|
| + ASSERT(instr->result()->IsDoubleRegister());
|
| + DoubleRegister result = ToDoubleRegister(instr->result());
|
| + __ Fmov(result, instr->value());
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoConstantE(LConstantE* instr) {
|
| + __ Mov(ToRegister(instr->result()), Operand(instr->value()));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoConstantI(LConstantI* instr) {
|
| + __ Mov(ToRegister(instr->result()), instr->value());
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoConstantS(LConstantS* instr) {
|
| + __ Mov(ToRegister(instr->result()), Operand(instr->value()));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoConstantT(LConstantT* instr) {
|
| + Handle<Object> value = instr->value(isolate());
|
| + AllowDeferredHandleDereference smi_check;
|
| + __ LoadObject(ToRegister(instr->result()), value);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoContext(LContext* instr) {
|
| + // If there is a non-return use, the context must be moved to a register.
|
| + Register result = ToRegister(instr->result());
|
| + if (info()->IsOptimizing()) {
|
| + __ Ldr(result, MemOperand(fp, StandardFrameConstants::kContextOffset));
|
| + } else {
|
| + // If there is no frame, the context must be in cp.
|
| + ASSERT(result.is(cp));
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCheckValue(LCheckValue* instr) {
|
| + Register reg = ToRegister(instr->value());
|
| + Handle<HeapObject> object = instr->hydrogen()->object().handle();
|
| + AllowDeferredHandleDereference smi_check;
|
| + if (isolate()->heap()->InNewSpace(*object)) {
|
| + Register temp = ToRegister(instr->temp());
|
| + Handle<Cell> cell = isolate()->factory()->NewCell(object);
|
| + __ Mov(temp, Operand(Handle<Object>(cell)));
|
| + __ Ldr(temp, FieldMemOperand(temp, Cell::kValueOffset));
|
| + __ Cmp(reg, temp);
|
| + } else {
|
| + __ Cmp(reg, Operand(object));
|
| + }
|
| + DeoptimizeIf(ne, instr->environment());
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
|
| + EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
|
| + ASSERT(instr->HasEnvironment());
|
| + LEnvironment* env = instr->environment();
|
| + RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
|
| + safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoDateField(LDateField* instr) {
|
| + Register object = ToRegister(instr->date());
|
| + Register result = ToRegister(instr->result());
|
| + Register temp1 = x10;
|
| + Register temp2 = x11;
|
| + Smi* index = instr->index();
|
| + Label runtime, done, deopt, obj_ok;
|
| +
|
| + ASSERT(object.is(result) && object.Is(x0));
|
| + ASSERT(instr->IsMarkedAsCall());
|
| +
|
| + __ JumpIfSmi(object, &deopt);
|
| + __ CompareObjectType(object, temp1, temp1, JS_DATE_TYPE);
|
| + __ B(eq, &obj_ok);
|
| +
|
| + __ Bind(&deopt);
|
| + Deoptimize(instr->environment());
|
| +
|
| + __ Bind(&obj_ok);
|
| + if (index->value() == 0) {
|
| + __ Ldr(result, FieldMemOperand(object, JSDate::kValueOffset));
|
| + } else {
|
| + if (index->value() < JSDate::kFirstUncachedField) {
|
| + ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
|
| + __ Mov(temp1, Operand(stamp));
|
| + __ Ldr(temp1, MemOperand(temp1));
|
| + __ Ldr(temp2, FieldMemOperand(object, JSDate::kCacheStampOffset));
|
| + __ Cmp(temp1, temp2);
|
| + __ B(ne, &runtime);
|
| + __ Ldr(result, FieldMemOperand(object, JSDate::kValueOffset +
|
| + kPointerSize * index->value()));
|
| + __ B(&done);
|
| + }
|
| +
|
| + __ Bind(&runtime);
|
| + __ Mov(x1, Operand(index));
|
| + __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
|
| + }
|
| +
|
| + __ Bind(&done);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
|
| + Deoptimizer::BailoutType type = instr->hydrogen()->type();
|
| + // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
|
| + // needed return address), even though the implementation of LAZY and EAGER is
|
| + // now identical. When LAZY is eventually completely folded into EAGER, remove
|
| + // the special case below.
|
| + if (info()->IsStub() && (type == Deoptimizer::EAGER)) {
|
| + type = Deoptimizer::LAZY;
|
| + }
|
| +
|
| + Comment(";;; deoptimize: %s", instr->hydrogen()->reason());
|
| + DeoptimizeHeader(instr->environment(), &type);
|
| + Deoptimize(instr->environment(), type);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoDivI(LDivI* instr) {
|
| + Register dividend = ToRegister32(instr->left());
|
| + Register result = ToRegister32(instr->result());
|
| +
|
| + bool has_power_of_2_divisor = instr->hydrogen()->RightIsPowerOf2();
|
| + bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
|
| + bool bailout_on_minus_zero =
|
| + instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
|
| + bool can_be_div_by_zero =
|
| + instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero);
|
| + bool all_uses_truncating_to_int32 =
|
| + instr->hydrogen()->CheckFlag(HInstruction::kAllUsesTruncatingToInt32);
|
| +
|
| + if (has_power_of_2_divisor) {
|
| + ASSERT(instr->temp() == NULL);
|
| + int32_t divisor = ToInteger32(LConstantOperand::cast(instr->right()));
|
| + int32_t power;
|
| + int32_t power_mask;
|
| + Label deopt, done;
|
| +
|
| + ASSERT(divisor != 0);
|
| + if (divisor > 0) {
|
| + power = WhichPowerOf2(divisor);
|
| + power_mask = divisor - 1;
|
| + } else {
|
| + // Check for (0 / -x) as that will produce negative zero.
|
| + if (bailout_on_minus_zero) {
|
| + if (all_uses_truncating_to_int32) {
|
| + // If all uses truncate, and the dividend is zero, the truncated
|
| + // result is zero.
|
| + __ Mov(result, 0);
|
| + __ Cbz(dividend, &done);
|
| + } else {
|
| + __ Cbz(dividend, &deopt);
|
| + }
|
| + }
|
| + // Check for (kMinInt / -1).
|
| + if ((divisor == -1) && can_overflow && !all_uses_truncating_to_int32) {
|
| + // Check for kMinInt by subtracting one and checking for overflow.
|
| + __ Cmp(dividend, 1);
|
| + __ B(vs, &deopt);
|
| + }
|
| + power = WhichPowerOf2(-divisor);
|
| + power_mask = -divisor - 1;
|
| + }
|
| +
|
| + if (power_mask != 0) {
|
| + if (all_uses_truncating_to_int32) {
|
| + __ Cmp(dividend, 0);
|
| + __ Cneg(result, dividend, lt);
|
| + __ Asr(result, result, power);
|
| + if (divisor > 0) __ Cneg(result, result, lt);
|
| + if (divisor < 0) __ Cneg(result, result, gt);
|
| + return; // Don't fall through to negation below.
|
| + } else {
|
| + // Deoptimize if remainder is not 0. If the least-significant
|
| + // power bits aren't 0, it's not a multiple of 2^power, and
|
| + // therefore, there will be a remainder.
|
| + __ TestAndBranchIfAnySet(dividend, power_mask, &deopt);
|
| + __ Asr(result, dividend, power);
|
| + if (divisor < 0) __ Neg(result, result);
|
| + }
|
| + } else {
|
| + ASSERT((divisor == 1) || (divisor == -1));
|
| + if (divisor < 0) {
|
| + __ Neg(result, dividend);
|
| + } else {
|
| + __ Mov(result, dividend);
|
| + }
|
| + }
|
| + __ B(&done);
|
| + __ Bind(&deopt);
|
| + Deoptimize(instr->environment());
|
| + __ Bind(&done);
|
| + } else {
|
| + Register divisor = ToRegister32(instr->right());
|
| +
|
| + // Issue the division first, and then check for any deopt cases whilst the
|
| + // result is computed.
|
| + __ Sdiv(result, dividend, divisor);
|
| +
|
| + if (!all_uses_truncating_to_int32) {
|
| + Label deopt;
|
| + // Check for x / 0.
|
| + if (can_be_div_by_zero) {
|
| + __ Cbz(divisor, &deopt);
|
| + }
|
| +
|
| + // Check for (0 / -x) as that will produce negative zero.
|
| + if (bailout_on_minus_zero) {
|
| + __ Cmp(divisor, 0);
|
| +
|
| + // If the divisor < 0 (mi), compare the dividend, and deopt if it is
|
| + // zero, ie. zero dividend with negative divisor deopts.
|
| + // If the divisor >= 0 (pl, the opposite of mi) set the flags to
|
| + // condition ne, so we don't deopt, ie. positive divisor doesn't deopt.
|
| + __ Ccmp(dividend, 0, NoFlag, mi);
|
| + __ B(eq, &deopt);
|
| + }
|
| +
|
| + // Check for (kMinInt / -1).
|
| + if (can_overflow) {
|
| + // Test dividend for kMinInt by subtracting one (cmp) and checking for
|
| + // overflow.
|
| + __ Cmp(dividend, 1);
|
| + // If overflow is set, ie. dividend = kMinInt, compare the divisor with
|
| + // -1. If overflow is clear, set the flags for condition ne, as the
|
| + // dividend isn't -1, and thus we shouldn't deopt.
|
| + __ Ccmp(divisor, -1, NoFlag, vs);
|
| + __ B(eq, &deopt);
|
| + }
|
| +
|
| + // Compute remainder and deopt if it's not zero.
|
| + Register remainder = ToRegister32(instr->temp());
|
| + __ Msub(remainder, result, divisor, dividend);
|
| + __ Cbnz(remainder, &deopt);
|
| +
|
| + Label div_ok;
|
| + __ B(&div_ok);
|
| + __ Bind(&deopt);
|
| + Deoptimize(instr->environment());
|
| + __ Bind(&div_ok);
|
| + } else {
|
| + ASSERT(instr->temp() == NULL);
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoDoubleToIntOrSmi(LDoubleToIntOrSmi* instr) {
|
| + DoubleRegister input = ToDoubleRegister(instr->value());
|
| + Register result = ToRegister32(instr->result());
|
| + Label done, deopt;
|
| +
|
| + if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| + __ JumpIfMinusZero(input, &deopt);
|
| + }
|
| +
|
| + __ TryConvertDoubleToInt32(result, input, double_scratch(), &done);
|
| + __ Bind(&deopt);
|
| + Deoptimize(instr->environment());
|
| + __ Bind(&done);
|
| +
|
| + if (instr->tag_result()) {
|
| + __ SmiTag(result.X());
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoDrop(LDrop* instr) {
|
| + __ Drop(instr->count());
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoDummy(LDummy* instr) {
|
| + // Nothing to see here, move on!
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoDummyUse(LDummyUse* instr) {
|
| + // Nothing to see here, move on!
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
|
| + ASSERT(ToRegister(instr->context()).is(cp));
|
| + // FunctionLiteral instruction is marked as call, we can trash any register.
|
| + ASSERT(instr->IsMarkedAsCall());
|
| +
|
| + // Use the fast case closure allocation code that allocates in new
|
| + // space for nested functions that don't need literals cloning.
|
| + bool pretenure = instr->hydrogen()->pretenure();
|
| + if (!pretenure && instr->hydrogen()->has_no_literals()) {
|
| + FastNewClosureStub stub(instr->hydrogen()->language_mode(),
|
| + instr->hydrogen()->is_generator());
|
| + __ Mov(x2, Operand(instr->hydrogen()->shared_info()));
|
| + CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
|
| + } else {
|
| + __ Mov(x2, Operand(instr->hydrogen()->shared_info()));
|
| + __ Mov(x1, Operand(pretenure ? factory()->true_value()
|
| + : factory()->false_value()));
|
| + __ Push(cp, x2, x1);
|
| + CallRuntime(Runtime::kNewClosure, 3, instr);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
|
| + Register map = ToRegister(instr->map());
|
| + Register result = ToRegister(instr->result());
|
| + Label load_cache, done;
|
| +
|
| + __ EnumLengthUntagged(result, map);
|
| + __ Cbnz(result, &load_cache);
|
| +
|
| + __ Mov(result, Operand(isolate()->factory()->empty_fixed_array()));
|
| + __ B(&done);
|
| +
|
| + __ Bind(&load_cache);
|
| + __ LoadInstanceDescriptors(map, result);
|
| + __ Ldr(result, FieldMemOperand(result, DescriptorArray::kEnumCacheOffset));
|
| + __ Ldr(result, FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
|
| + DeoptimizeIfZero(result, instr->environment());
|
| +
|
| + __ Bind(&done);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
|
| + Register object = ToRegister(instr->object());
|
| + Register null_value = x5;
|
| +
|
| + ASSERT(instr->IsMarkedAsCall());
|
| + ASSERT(object.Is(x0));
|
| +
|
| + Label deopt;
|
| +
|
| + __ JumpIfRoot(object, Heap::kUndefinedValueRootIndex, &deopt);
|
| +
|
| + __ LoadRoot(null_value, Heap::kNullValueRootIndex);
|
| + __ Cmp(object, null_value);
|
| + __ B(eq, &deopt);
|
| +
|
| + __ JumpIfSmi(object, &deopt);
|
| +
|
| + STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
|
| + __ CompareObjectType(object, x1, x1, LAST_JS_PROXY_TYPE);
|
| + __ B(le, &deopt);
|
| +
|
| + Label use_cache, call_runtime;
|
| + __ CheckEnumCache(object, null_value, x1, x2, x3, x4, &call_runtime);
|
| +
|
| + __ Ldr(object, FieldMemOperand(object, HeapObject::kMapOffset));
|
| + __ B(&use_cache);
|
| +
|
| + __ Bind(&deopt);
|
| + Deoptimize(instr->environment());
|
| +
|
| + // Get the set of properties to enumerate.
|
| + __ Bind(&call_runtime);
|
| + __ Push(object);
|
| + CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr);
|
| +
|
| + __ Ldr(x1, FieldMemOperand(object, HeapObject::kMapOffset));
|
| + __ JumpIfNotRoot(x1, Heap::kMetaMapRootIndex, &deopt);
|
| +
|
| + __ Bind(&use_cache);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
|
| + Register input = ToRegister(instr->value());
|
| + Register result = ToRegister(instr->result());
|
| +
|
| + __ AssertString(input);
|
| +
|
| + // Assert that we can use a W register load to get the hash.
|
| + ASSERT((String::kHashShift + String::kArrayIndexValueBits) < kWRegSize);
|
| + __ Ldr(result.W(), FieldMemOperand(input, String::kHashFieldOffset));
|
| + __ IndexFromHash(result, result);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::EmitGoto(int block) {
|
| + // Do not emit jump if we are emitting a goto to the next block.
|
| + if (!IsNextEmittedBlock(block)) {
|
| + __ B(chunk_->GetAssemblyLabel(LookupDestination(block)));
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoGoto(LGoto* instr) {
|
| + EmitGoto(instr->block_id());
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoHasCachedArrayIndexAndBranch(
|
| + LHasCachedArrayIndexAndBranch* instr) {
|
| + Register input = ToRegister(instr->value());
|
| + Register temp = ToRegister32(instr->temp());
|
| +
|
| + // Assert that the cache status bits fit in a W register.
|
| + ASSERT(is_uint32(String::kContainsCachedArrayIndexMask));
|
| + __ Ldr(temp, FieldMemOperand(input, String::kHashFieldOffset));
|
| + __ Tst(temp, String::kContainsCachedArrayIndexMask);
|
| + EmitBranch(instr, eq);
|
| +}
|
| +
|
| +
|
| +// HHasInstanceTypeAndBranch instruction is built with an interval of type
|
| +// to test but is only used in very restricted ways. The only possible kinds
|
| +// of intervals are:
|
| +// - [ FIRST_TYPE, instr->to() ]
|
| +// - [ instr->form(), LAST_TYPE ]
|
| +// - instr->from() == instr->to()
|
| +//
|
| +// These kinds of intervals can be check with only one compare instruction
|
| +// providing the correct value and test condition are used.
|
| +//
|
| +// TestType() will return the value to use in the compare instruction and
|
| +// BranchCondition() will return the condition to use depending on the kind
|
| +// of interval actually specified in the instruction.
|
| +static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
|
| + InstanceType from = instr->from();
|
| + InstanceType to = instr->to();
|
| + if (from == FIRST_TYPE) return to;
|
| + ASSERT((from == to) || (to == LAST_TYPE));
|
| + return from;
|
| +}
|
| +
|
| +
|
| +// See comment above TestType function for what this function does.
|
| +static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
|
| + InstanceType from = instr->from();
|
| + InstanceType to = instr->to();
|
| + if (from == to) return eq;
|
| + if (to == LAST_TYPE) return hs;
|
| + if (from == FIRST_TYPE) return ls;
|
| + UNREACHABLE();
|
| + return eq;
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
|
| + Register input = ToRegister(instr->value());
|
| + Register scratch = ToRegister(instr->temp());
|
| +
|
| + if (!instr->hydrogen()->value()->IsHeapObject()) {
|
| + __ JumpIfSmi(input, instr->FalseLabel(chunk_));
|
| + }
|
| + __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen()));
|
| + EmitBranch(instr, BranchCondition(instr->hydrogen()));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
|
| + Register result = ToRegister(instr->result());
|
| + Register base = ToRegister(instr->base_object());
|
| + __ Add(result, base, ToOperand(instr->offset()));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
|
| + ASSERT(ToRegister(instr->context()).is(cp));
|
| + // Assert that the arguments are in the registers expected by InstanceofStub.
|
| + ASSERT(ToRegister(instr->left()).Is(InstanceofStub::left()));
|
| + ASSERT(ToRegister(instr->right()).Is(InstanceofStub::right()));
|
| +
|
| + InstanceofStub stub(InstanceofStub::kArgsInRegisters);
|
| + CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
|
| +
|
| + // InstanceofStub returns a result in x0:
|
| + // 0 => not an instance
|
| + // smi 1 => instance.
|
| + __ Cmp(x0, 0);
|
| + __ LoadTrueFalseRoots(x0, x1);
|
| + __ Csel(x0, x0, x1, eq);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
|
| + class DeferredInstanceOfKnownGlobal: public LDeferredCode {
|
| + public:
|
| + DeferredInstanceOfKnownGlobal(LCodeGen* codegen,
|
| + LInstanceOfKnownGlobal* instr)
|
| + : LDeferredCode(codegen), instr_(instr) { }
|
| + virtual void Generate() {
|
| + codegen()->DoDeferredInstanceOfKnownGlobal(instr_);
|
| + }
|
| + virtual LInstruction* instr() { return instr_; }
|
| + private:
|
| + LInstanceOfKnownGlobal* instr_;
|
| + };
|
| +
|
| + DeferredInstanceOfKnownGlobal* deferred =
|
| + new(zone()) DeferredInstanceOfKnownGlobal(this, instr);
|
| +
|
| + Label map_check, return_false, cache_miss, done;
|
| + Register object = ToRegister(instr->value());
|
| + Register result = ToRegister(instr->result());
|
| + // x4 is expected in the associated deferred code and stub.
|
| + Register map_check_site = x4;
|
| + Register map = x5;
|
| +
|
| + // This instruction is marked as call. We can clobber any register.
|
| + ASSERT(instr->IsMarkedAsCall());
|
| +
|
| + // We must take into account that object is in x11.
|
| + ASSERT(object.Is(x11));
|
| + Register scratch = x10;
|
| +
|
| + // A Smi is not instance of anything.
|
| + __ JumpIfSmi(object, &return_false);
|
| +
|
| + // This is the inlined call site instanceof cache. The two occurences of the
|
| + // hole value will be patched to the last map/result pair generated by the
|
| + // instanceof stub.
|
| + __ Ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
|
| + {
|
| + // Below we use Factory::the_hole_value() on purpose instead of loading from
|
| + // the root array to force relocation and later be able to patch with a
|
| + // custom value.
|
| + InstructionAccurateScope scope(masm(), 5);
|
| + __ bind(&map_check);
|
| + // Will be patched with the cached map.
|
| + Handle<Cell> cell = factory()->NewCell(factory()->the_hole_value());
|
| + __ LoadRelocated(scratch, Operand(Handle<Object>(cell)));
|
| + __ ldr(scratch, FieldMemOperand(scratch, PropertyCell::kValueOffset));
|
| + __ cmp(map, Operand(scratch));
|
| + __ b(&cache_miss, ne);
|
| + // The address of this instruction is computed relative to the map check
|
| + // above, so check the size of the code generated.
|
| + ASSERT(masm()->InstructionsGeneratedSince(&map_check) == 4);
|
| + // Will be patched with the cached result.
|
| + __ LoadRelocated(result, Operand(factory()->the_hole_value()));
|
| + }
|
| + __ B(&done);
|
| +
|
| + // The inlined call site cache did not match.
|
| + // Check null and string before calling the deferred code.
|
| + __ Bind(&cache_miss);
|
| + // Compute the address of the map check. It must not be clobbered until the
|
| + // InstanceOfStub has used it.
|
| + __ Adr(map_check_site, &map_check);
|
| + // Null is not instance of anything.
|
| + __ JumpIfRoot(object, Heap::kNullValueRootIndex, &return_false);
|
| +
|
| + // String values are not instances of anything.
|
| + // Return false if the object is a string. Otherwise, jump to the deferred
|
| + // code.
|
| + // Note that we can't jump directly to deferred code from
|
| + // IsObjectJSStringType, because it uses tbz for the jump and the deferred
|
| + // code can be out of range.
|
| + __ IsObjectJSStringType(object, scratch, NULL, &return_false);
|
| + __ B(deferred->entry());
|
| +
|
| + __ Bind(&return_false);
|
| + __ LoadRoot(result, Heap::kFalseValueRootIndex);
|
| +
|
| + // Here result is either true or false.
|
| + __ Bind(deferred->exit());
|
| + __ Bind(&done);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
|
| + Register result = ToRegister(instr->result());
|
| + ASSERT(result.Is(x0)); // InstanceofStub returns its result in x0.
|
| + InstanceofStub::Flags flags = InstanceofStub::kNoFlags;
|
| + flags = static_cast<InstanceofStub::Flags>(
|
| + flags | InstanceofStub::kArgsInRegisters);
|
| + flags = static_cast<InstanceofStub::Flags>(
|
| + flags | InstanceofStub::kReturnTrueFalseObject);
|
| + flags = static_cast<InstanceofStub::Flags>(
|
| + flags | InstanceofStub::kCallSiteInlineCheck);
|
| +
|
| + PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
|
| + LoadContextFromDeferred(instr->context());
|
| +
|
| + // Prepare InstanceofStub arguments.
|
| + ASSERT(ToRegister(instr->value()).Is(InstanceofStub::left()));
|
| + __ LoadObject(InstanceofStub::right(), instr->function());
|
| +
|
| + InstanceofStub stub(flags);
|
| + CallCodeGeneric(stub.GetCode(isolate()),
|
| + RelocInfo::CODE_TARGET,
|
| + instr,
|
| + RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
|
| + LEnvironment* env = instr->GetDeferredLazyDeoptimizationEnvironment();
|
| + safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
|
| +
|
| + // Put the result value into the result register slot.
|
| + __ StoreToSafepointRegisterSlot(result, result);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
|
| + DoGap(instr);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
|
| + Register value = ToRegister32(instr->value());
|
| + DoubleRegister result = ToDoubleRegister(instr->result());
|
| + __ Scvtf(result, value);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoInteger32ToSmi(LInteger32ToSmi* instr) {
|
| + // A64 smis can represent all Integer32 values, so this cannot deoptimize.
|
| + ASSERT(!instr->hydrogen()->value()->HasRange() ||
|
| + instr->hydrogen()->value()->range()->IsInSmiRange());
|
| +
|
| + Register value = ToRegister(instr->value());
|
| + Register result = ToRegister(instr->result());
|
| + __ SmiTag(result, value);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
|
| + ASSERT(ToRegister(instr->context()).is(cp));
|
| + // The function is required to be in x1.
|
| + ASSERT(ToRegister(instr->function()).is(x1));
|
| + ASSERT(instr->HasPointerMap());
|
| +
|
| + Handle<JSFunction> known_function = instr->hydrogen()->known_function();
|
| + if (known_function.is_null()) {
|
| + LPointerMap* pointers = instr->pointer_map();
|
| + SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
|
| + ParameterCount count(instr->arity());
|
| + __ InvokeFunction(x1, count, CALL_FUNCTION, generator);
|
| + } else {
|
| + CallKnownFunction(known_function,
|
| + instr->hydrogen()->formal_parameter_count(),
|
| + instr->arity(),
|
| + instr,
|
| + x1);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
|
| + Register temp1 = ToRegister(instr->temp1());
|
| + Register temp2 = ToRegister(instr->temp2());
|
| +
|
| + // Get the frame pointer for the calling frame.
|
| + __ Ldr(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
| +
|
| + // Skip the arguments adaptor frame if it exists.
|
| + Label check_frame_marker;
|
| + __ Ldr(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset));
|
| + __ Cmp(temp2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
|
| + __ B(ne, &check_frame_marker);
|
| + __ Ldr(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset));
|
| +
|
| + // Check the marker in the calling frame.
|
| + __ Bind(&check_frame_marker);
|
| + __ Ldr(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset));
|
| +
|
| + EmitCompareAndBranch(
|
| + instr, eq, temp1, Operand(Smi::FromInt(StackFrame::CONSTRUCT)));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
|
| + Label* is_object = instr->TrueLabel(chunk_);
|
| + Label* is_not_object = instr->FalseLabel(chunk_);
|
| + Register value = ToRegister(instr->value());
|
| + Register map = ToRegister(instr->temp1());
|
| + Register scratch = ToRegister(instr->temp2());
|
| +
|
| + __ JumpIfSmi(value, is_not_object);
|
| + __ JumpIfRoot(value, Heap::kNullValueRootIndex, is_object);
|
| +
|
| + __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
|
| +
|
| + // Check for undetectable objects.
|
| + __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
|
| + __ TestAndBranchIfAnySet(scratch, 1 << Map::kIsUndetectable, is_not_object);
|
| +
|
| + // Check that instance type is in object type range.
|
| + __ IsInstanceJSObjectType(map, scratch, NULL);
|
| + // Flags have been updated by IsInstanceJSObjectType. We can now test the
|
| + // flags for "le" condition to check if the object's type is a valid
|
| + // JS object type.
|
| + EmitBranch(instr, le);
|
| +}
|
| +
|
| +
|
| +Condition LCodeGen::EmitIsString(Register input,
|
| + Register temp1,
|
| + Label* is_not_string,
|
| + SmiCheck check_needed = INLINE_SMI_CHECK) {
|
| + if (check_needed == INLINE_SMI_CHECK) {
|
| + __ JumpIfSmi(input, is_not_string);
|
| + }
|
| + __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE);
|
| +
|
| + return lt;
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
|
| + Register val = ToRegister(instr->value());
|
| + Register scratch = ToRegister(instr->temp());
|
| +
|
| + SmiCheck check_needed =
|
| + instr->hydrogen()->value()->IsHeapObject()
|
| + ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
|
| + Condition true_cond =
|
| + EmitIsString(val, scratch, instr->FalseLabel(chunk_), check_needed);
|
| +
|
| + EmitBranch(instr, true_cond);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
|
| + Register value = ToRegister(instr->value());
|
| + STATIC_ASSERT(kSmiTag == 0);
|
| + EmitTestAndBranch(instr, eq, value, kSmiTagMask);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
|
| + Register input = ToRegister(instr->value());
|
| + Register temp = ToRegister(instr->temp());
|
| +
|
| + if (!instr->hydrogen()->value()->IsHeapObject()) {
|
| + __ JumpIfSmi(input, instr->FalseLabel(chunk_));
|
| + }
|
| + __ Ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset));
|
| + __ Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
|
| +
|
| + EmitTestAndBranch(instr, ne, temp, 1 << Map::kIsUndetectable);
|
| +}
|
| +
|
| +
|
| +static const char* LabelType(LLabel* label) {
|
| + if (label->is_loop_header()) return " (loop header)";
|
| + if (label->is_osr_entry()) return " (OSR entry)";
|
| + return "";
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoLabel(LLabel* label) {
|
| + Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
|
| + current_instruction_,
|
| + label->hydrogen_value()->id(),
|
| + label->block_id(),
|
| + LabelType(label));
|
| +
|
| + __ Bind(label->label());
|
| + current_block_ = label->block_id();
|
| + DoGap(label);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
|
| + Register context = ToRegister(instr->context());
|
| + Register result = ToRegister(instr->result());
|
| + __ Ldr(result, ContextMemOperand(context, instr->slot_index()));
|
| + if (instr->hydrogen()->RequiresHoleCheck()) {
|
| + if (instr->hydrogen()->DeoptimizesOnHole()) {
|
| + DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex,
|
| + instr->environment());
|
| + } else {
|
| + Label not_the_hole;
|
| + __ JumpIfNotRoot(result, Heap::kTheHoleValueRootIndex, ¬_the_hole);
|
| + __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
|
| + __ Bind(¬_the_hole);
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
|
| + Register function = ToRegister(instr->function());
|
| + Register result = ToRegister(instr->result());
|
| + Register temp = ToRegister(instr->temp());
|
| + Label deopt;
|
| +
|
| + // Check that the function really is a function. Leaves map in the result
|
| + // register.
|
| + __ JumpIfNotObjectType(function, result, temp, JS_FUNCTION_TYPE, &deopt);
|
| +
|
| + // Make sure that the function has an instance prototype.
|
| + Label non_instance;
|
| + __ Ldrb(temp, FieldMemOperand(result, Map::kBitFieldOffset));
|
| + __ Tbnz(temp, Map::kHasNonInstancePrototype, &non_instance);
|
| +
|
| + // Get the prototype or initial map from the function.
|
| + __ Ldr(result, FieldMemOperand(function,
|
| + JSFunction::kPrototypeOrInitialMapOffset));
|
| +
|
| + // Check that the function has a prototype or an initial map.
|
| + __ JumpIfRoot(result, Heap::kTheHoleValueRootIndex, &deopt);
|
| +
|
| + // If the function does not have an initial map, we're done.
|
| + Label done;
|
| + __ CompareObjectType(result, temp, temp, MAP_TYPE);
|
| + __ B(ne, &done);
|
| +
|
| + // Get the prototype from the initial map.
|
| + __ Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
|
| + __ B(&done);
|
| +
|
| + // Non-instance prototype: fetch prototype from constructor field in initial
|
| + // map.
|
| + __ Bind(&non_instance);
|
| + __ Ldr(result, FieldMemOperand(result, Map::kConstructorOffset));
|
| + __ B(&done);
|
| +
|
| + // Deoptimize case.
|
| + __ Bind(&deopt);
|
| + Deoptimize(instr->environment());
|
| +
|
| + // All done.
|
| + __ Bind(&done);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) {
|
| + Register result = ToRegister(instr->result());
|
| + __ Mov(result, Operand(Handle<Object>(instr->hydrogen()->cell().handle())));
|
| + __ Ldr(result, FieldMemOperand(result, Cell::kValueOffset));
|
| + if (instr->hydrogen()->RequiresHoleCheck()) {
|
| + DeoptimizeIfRoot(
|
| + result, Heap::kTheHoleValueRootIndex, instr->environment());
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
|
| + ASSERT(ToRegister(instr->context()).is(cp));
|
| + ASSERT(ToRegister(instr->global_object()).Is(x0));
|
| + ASSERT(ToRegister(instr->result()).Is(x0));
|
| + __ Mov(x2, Operand(instr->name()));
|
| + ContextualMode mode = instr->for_typeof() ? NOT_CONTEXTUAL : CONTEXTUAL;
|
| + Handle<Code> ic = LoadIC::initialize_stub(isolate(), mode);
|
| + CallCode(ic, RelocInfo::CODE_TARGET, instr);
|
| +}
|
| +
|
| +
|
| +MemOperand LCodeGen::PrepareKeyedExternalArrayOperand(
|
| + Register key,
|
| + Register base,
|
| + Register scratch,
|
| + bool key_is_smi,
|
| + bool key_is_constant,
|
| + int constant_key,
|
| + ElementsKind elements_kind,
|
| + int additional_index) {
|
| + int element_size_shift = ElementsKindToShiftSize(elements_kind);
|
| + int additional_offset = IsFixedTypedArrayElementsKind(elements_kind)
|
| + ? FixedTypedArrayBase::kDataOffset - kHeapObjectTag
|
| + : 0;
|
| +
|
| + if (key_is_constant) {
|
| + int base_offset = ((constant_key + additional_index) << element_size_shift);
|
| + return MemOperand(base, base_offset + additional_offset);
|
| + }
|
| +
|
| + if (additional_index == 0) {
|
| + if (key_is_smi) {
|
| + // Key is smi: untag, and scale by element size.
|
| + __ Add(scratch, base, Operand::UntagSmiAndScale(key, element_size_shift));
|
| + return MemOperand(scratch, additional_offset);
|
| + } else {
|
| + // Key is not smi, and element size is not byte: scale by element size.
|
| + if (additional_offset == 0) {
|
| + return MemOperand(base, key, LSL, element_size_shift);
|
| + } else {
|
| + __ Add(scratch, base, Operand(key, LSL, element_size_shift));
|
| + return MemOperand(scratch, additional_offset);
|
| + }
|
| + }
|
| + } else {
|
| + // TODO(all): Try to combine these cases a bit more intelligently.
|
| + if (additional_offset == 0) {
|
| + if (key_is_smi) {
|
| + __ SmiUntag(scratch, key);
|
| + __ Add(scratch, scratch, additional_index);
|
| + } else {
|
| + __ Add(scratch, key, additional_index);
|
| + }
|
| + return MemOperand(base, scratch, LSL, element_size_shift);
|
| + } else {
|
| + if (key_is_smi) {
|
| + __ Add(scratch, base,
|
| + Operand::UntagSmiAndScale(key, element_size_shift));
|
| + } else {
|
| + __ Add(scratch, base, Operand(key, LSL, element_size_shift));
|
| + }
|
| + return MemOperand(
|
| + scratch,
|
| + (additional_index << element_size_shift) + additional_offset);
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoLoadKeyedExternal(LLoadKeyedExternal* instr) {
|
| + Register ext_ptr = ToRegister(instr->elements());
|
| + Register scratch;
|
| + ElementsKind elements_kind = instr->elements_kind();
|
| +
|
| + bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
|
| + bool key_is_constant = instr->key()->IsConstantOperand();
|
| + Register key = no_reg;
|
| + int constant_key = 0;
|
| + if (key_is_constant) {
|
| + ASSERT(instr->temp() == NULL);
|
| + constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
|
| + if (constant_key & 0xf0000000) {
|
| + Abort(kArrayIndexConstantValueTooBig);
|
| + }
|
| + } else {
|
| + scratch = ToRegister(instr->temp());
|
| + key = ToRegister(instr->key());
|
| + }
|
| +
|
| + MemOperand mem_op =
|
| + PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi,
|
| + key_is_constant, constant_key,
|
| + elements_kind,
|
| + instr->additional_index());
|
| +
|
| + if ((elements_kind == EXTERNAL_FLOAT32_ELEMENTS) ||
|
| + (elements_kind == FLOAT32_ELEMENTS)) {
|
| + DoubleRegister result = ToDoubleRegister(instr->result());
|
| + __ Ldr(result.S(), mem_op);
|
| + __ Fcvt(result, result.S());
|
| + } else if ((elements_kind == EXTERNAL_FLOAT64_ELEMENTS) ||
|
| + (elements_kind == FLOAT64_ELEMENTS)) {
|
| + DoubleRegister result = ToDoubleRegister(instr->result());
|
| + __ Ldr(result, mem_op);
|
| + } else {
|
| + Register result = ToRegister(instr->result());
|
| +
|
| + switch (elements_kind) {
|
| + case EXTERNAL_INT8_ELEMENTS:
|
| + case INT8_ELEMENTS:
|
| + __ Ldrsb(result, mem_op);
|
| + break;
|
| + case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
|
| + case EXTERNAL_UINT8_ELEMENTS:
|
| + case UINT8_ELEMENTS:
|
| + case UINT8_CLAMPED_ELEMENTS:
|
| + __ Ldrb(result, mem_op);
|
| + break;
|
| + case EXTERNAL_INT16_ELEMENTS:
|
| + case INT16_ELEMENTS:
|
| + __ Ldrsh(result, mem_op);
|
| + break;
|
| + case EXTERNAL_UINT16_ELEMENTS:
|
| + case UINT16_ELEMENTS:
|
| + __ Ldrh(result, mem_op);
|
| + break;
|
| + case EXTERNAL_INT32_ELEMENTS:
|
| + case INT32_ELEMENTS:
|
| + __ Ldrsw(result, mem_op);
|
| + break;
|
| + case EXTERNAL_UINT32_ELEMENTS:
|
| + case UINT32_ELEMENTS:
|
| + __ Ldr(result.W(), mem_op);
|
| + if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
|
| + // Deopt if value > 0x80000000.
|
| + __ Tst(result, 0xFFFFFFFF80000000);
|
| + DeoptimizeIf(ne, instr->environment());
|
| + }
|
| + break;
|
| + case FLOAT32_ELEMENTS:
|
| + case FLOAT64_ELEMENTS:
|
| + case EXTERNAL_FLOAT32_ELEMENTS:
|
| + case EXTERNAL_FLOAT64_ELEMENTS:
|
| + case FAST_HOLEY_DOUBLE_ELEMENTS:
|
| + case FAST_HOLEY_ELEMENTS:
|
| + case FAST_HOLEY_SMI_ELEMENTS:
|
| + case FAST_DOUBLE_ELEMENTS:
|
| + case FAST_ELEMENTS:
|
| + case FAST_SMI_ELEMENTS:
|
| + case DICTIONARY_ELEMENTS:
|
| + case NON_STRICT_ARGUMENTS_ELEMENTS:
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::CalcKeyedArrayBaseRegister(Register base,
|
| + Register elements,
|
| + Register key,
|
| + bool key_is_tagged,
|
| + ElementsKind elements_kind) {
|
| + int element_size_shift = ElementsKindToShiftSize(elements_kind);
|
| +
|
| + // Even though the HLoad/StoreKeyed instructions force the input
|
| + // representation for the key to be an integer, the input gets replaced during
|
| + // bounds check elimination with the index argument to the bounds check, which
|
| + // can be tagged, so that case must be handled here, too.
|
| + if (key_is_tagged) {
|
| + __ Add(base, elements, Operand::UntagSmiAndScale(key, element_size_shift));
|
| + } else {
|
| + // Sign extend key because it could be a 32-bit negative value and the
|
| + // address computation happens in 64-bit.
|
| + ASSERT((element_size_shift >= 0) && (element_size_shift <= 4));
|
| + __ Add(base, elements, Operand(key, SXTW, element_size_shift));
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoLoadKeyedFixedDouble(LLoadKeyedFixedDouble* instr) {
|
| + Register elements = ToRegister(instr->elements());
|
| + DoubleRegister result = ToDoubleRegister(instr->result());
|
| + Register load_base;
|
| + int offset = 0;
|
| +
|
| + if (instr->key()->IsConstantOperand()) {
|
| + ASSERT(instr->hydrogen()->RequiresHoleCheck() ||
|
| + (instr->temp() == NULL));
|
| +
|
| + int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
|
| + if (constant_key & 0xf0000000) {
|
| + Abort(kArrayIndexConstantValueTooBig);
|
| + }
|
| + offset = FixedDoubleArray::OffsetOfElementAt(constant_key +
|
| + instr->additional_index());
|
| + load_base = elements;
|
| + } else {
|
| + load_base = ToRegister(instr->temp());
|
| + Register key = ToRegister(instr->key());
|
| + bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
|
| + CalcKeyedArrayBaseRegister(load_base, elements, key, key_is_tagged,
|
| + instr->hydrogen()->elements_kind());
|
| + offset = FixedDoubleArray::OffsetOfElementAt(instr->additional_index());
|
| + }
|
| + __ Ldr(result, FieldMemOperand(load_base, offset));
|
| +
|
| + if (instr->hydrogen()->RequiresHoleCheck()) {
|
| + Register scratch = ToRegister(instr->temp());
|
| +
|
| + // TODO(all): Is it faster to reload this value to an integer register, or
|
| + // move from fp to integer?
|
| + __ Fmov(scratch, result);
|
| + __ Cmp(scratch, kHoleNanInt64);
|
| + DeoptimizeIf(eq, instr->environment());
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoLoadKeyedFixed(LLoadKeyedFixed* instr) {
|
| + Register elements = ToRegister(instr->elements());
|
| + Register result = ToRegister(instr->result());
|
| + Register load_base;
|
| + int offset = 0;
|
| +
|
| + if (instr->key()->IsConstantOperand()) {
|
| + ASSERT(instr->temp() == NULL);
|
| + LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
|
| + offset = FixedArray::OffsetOfElementAt(ToInteger32(const_operand) +
|
| + instr->additional_index());
|
| + load_base = elements;
|
| + } else {
|
| + load_base = ToRegister(instr->temp());
|
| + Register key = ToRegister(instr->key());
|
| + bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
|
| + CalcKeyedArrayBaseRegister(load_base, elements, key, key_is_tagged,
|
| + instr->hydrogen()->elements_kind());
|
| + offset = FixedArray::OffsetOfElementAt(instr->additional_index());
|
| + }
|
| + Representation representation = instr->hydrogen()->representation();
|
| +
|
| + if (representation.IsInteger32() &&
|
| + instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS) {
|
| + STATIC_ASSERT(kSmiValueSize == 32 && kSmiShift == 32 && kSmiTag == 0);
|
| + __ Load(result, UntagSmiFieldMemOperand(load_base, offset),
|
| + Representation::Integer32());
|
| + } else {
|
| + __ Load(result, FieldMemOperand(load_base, offset),
|
| + representation);
|
| + }
|
| +
|
| + if (instr->hydrogen()->RequiresHoleCheck()) {
|
| + if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
|
| + DeoptimizeIfNotSmi(result, instr->environment());
|
| + } else {
|
| + DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex,
|
| + instr->environment());
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
|
| + ASSERT(ToRegister(instr->context()).is(cp));
|
| + ASSERT(ToRegister(instr->object()).Is(x1));
|
| + ASSERT(ToRegister(instr->key()).Is(x0));
|
| +
|
| + Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
|
| + CallCode(ic, RelocInfo::CODE_TARGET, instr);
|
| +
|
| + ASSERT(ToRegister(instr->result()).Is(x0));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
|
| + HObjectAccess access = instr->hydrogen()->access();
|
| + int offset = access.offset();
|
| + Register object = ToRegister(instr->object());
|
| +
|
| + if (access.IsExternalMemory()) {
|
| + Register result = ToRegister(instr->result());
|
| + __ Load(result, MemOperand(object, offset), access.representation());
|
| + return;
|
| + }
|
| +
|
| + if (instr->hydrogen()->representation().IsDouble()) {
|
| + FPRegister result = ToDoubleRegister(instr->result());
|
| + __ Ldr(result, FieldMemOperand(object, offset));
|
| + return;
|
| + }
|
| +
|
| + Register result = ToRegister(instr->result());
|
| + Register source;
|
| + if (access.IsInobject()) {
|
| + source = object;
|
| + } else {
|
| + // Load the properties array, using result as a scratch register.
|
| + __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
|
| + source = result;
|
| + }
|
| +
|
| + if (access.representation().IsSmi() &&
|
| + instr->hydrogen()->representation().IsInteger32()) {
|
| + // Read int value directly from upper half of the smi.
|
| + STATIC_ASSERT(kSmiValueSize == 32 && kSmiShift == 32 && kSmiTag == 0);
|
| + __ Load(result, UntagSmiFieldMemOperand(source, offset),
|
| + Representation::Integer32());
|
| + } else {
|
| + __ Load(result, FieldMemOperand(source, offset), access.representation());
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
|
| + ASSERT(ToRegister(instr->context()).is(cp));
|
| + // LoadIC expects x2 to hold the name, and x0 to hold the receiver.
|
| + ASSERT(ToRegister(instr->object()).is(x0));
|
| + __ Mov(x2, Operand(instr->name()));
|
| +
|
| + Handle<Code> ic = LoadIC::initialize_stub(isolate(), NOT_CONTEXTUAL);
|
| + CallCode(ic, RelocInfo::CODE_TARGET, instr);
|
| +
|
| + ASSERT(ToRegister(instr->result()).is(x0));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
|
| + Register result = ToRegister(instr->result());
|
| + __ LoadRoot(result, instr->index());
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) {
|
| + Register result = ToRegister(instr->result());
|
| + Register map = ToRegister(instr->value());
|
| + __ EnumLengthSmi(result, map);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoMathAbs(LMathAbs* instr) {
|
| + Representation r = instr->hydrogen()->value()->representation();
|
| + if (r.IsDouble()) {
|
| + DoubleRegister input = ToDoubleRegister(instr->value());
|
| + DoubleRegister result = ToDoubleRegister(instr->result());
|
| + __ Fabs(result, input);
|
| + } else if (r.IsSmi() || r.IsInteger32()) {
|
| + Register input = r.IsSmi() ? ToRegister(instr->value())
|
| + : ToRegister32(instr->value());
|
| + Register result = r.IsSmi() ? ToRegister(instr->result())
|
| + : ToRegister32(instr->result());
|
| + Label done;
|
| + __ Abs(result, input, NULL, &done);
|
| + Deoptimize(instr->environment());
|
| + __ Bind(&done);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoDeferredMathAbsTagged(LMathAbsTagged* instr,
|
| + Label* exit,
|
| + Label* allocation_entry) {
|
| + // Handle the tricky cases of MathAbsTagged:
|
| + // - HeapNumber inputs.
|
| + // - Negative inputs produce a positive result, so a new HeapNumber is
|
| + // allocated to hold it.
|
| + // - Positive inputs are returned as-is, since there is no need to allocate
|
| + // a new HeapNumber for the result.
|
| + // - The (smi) input -0x80000000, produces +0x80000000, which does not fit
|
| + // a smi. In this case, the inline code sets the result and jumps directly
|
| + // to the allocation_entry label.
|
| + ASSERT(instr->context() != NULL);
|
| + ASSERT(ToRegister(instr->context()).is(cp));
|
| + Register input = ToRegister(instr->value());
|
| + Register temp1 = ToRegister(instr->temp1());
|
| + Register temp2 = ToRegister(instr->temp2());
|
| + Register result_bits = ToRegister(instr->temp3());
|
| + Register result = ToRegister(instr->result());
|
| +
|
| + Label runtime_allocation;
|
| +
|
| + // Deoptimize if the input is not a HeapNumber.
|
| + __ Ldr(temp1, FieldMemOperand(input, HeapObject::kMapOffset));
|
| + DeoptimizeIfNotRoot(temp1, Heap::kHeapNumberMapRootIndex,
|
| + instr->environment());
|
| +
|
| + // If the argument is positive, we can return it as-is, without any need to
|
| + // allocate a new HeapNumber for the result. We have to do this in integer
|
| + // registers (rather than with fabs) because we need to be able to distinguish
|
| + // the two zeroes.
|
| + __ Ldr(result_bits, FieldMemOperand(input, HeapNumber::kValueOffset));
|
| + __ Mov(result, input);
|
| + __ Tbz(result_bits, kXSignBit, exit);
|
| +
|
| + // Calculate abs(input) by clearing the sign bit.
|
| + __ Bic(result_bits, result_bits, kXSignMask);
|
| +
|
| + // Allocate a new HeapNumber to hold the result.
|
| + // result_bits The bit representation of the (double) result.
|
| + __ Bind(allocation_entry);
|
| + __ AllocateHeapNumber(result, &runtime_allocation, temp1, temp2);
|
| + // The inline (non-deferred) code will store result_bits into result.
|
| + __ B(exit);
|
| +
|
| + __ Bind(&runtime_allocation);
|
| + if (FLAG_debug_code) {
|
| + // Because result is in the pointer map, we need to make sure it has a valid
|
| + // tagged value before we call the runtime. We speculatively set it to the
|
| + // input (for abs(+x)) or to a smi (for abs(-SMI_MIN)), so it should already
|
| + // be valid.
|
| + Label result_ok;
|
| + Register input = ToRegister(instr->value());
|
| + __ JumpIfSmi(result, &result_ok);
|
| + __ Cmp(input, result);
|
| + // TODO(all): Shouldn't we assert here?
|
| + DeoptimizeIf(ne, instr->environment());
|
| + __ Bind(&result_ok);
|
| + }
|
| +
|
| + { PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
|
| + CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr,
|
| + instr->context());
|
| + __ StoreToSafepointRegisterSlot(x0, result);
|
| + }
|
| + // The inline (non-deferred) code will store result_bits into result.
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoMathAbsTagged(LMathAbsTagged* instr) {
|
| + // Class for deferred case.
|
| + class DeferredMathAbsTagged: public LDeferredCode {
|
| + public:
|
| + DeferredMathAbsTagged(LCodeGen* codegen, LMathAbsTagged* instr)
|
| + : LDeferredCode(codegen), instr_(instr) { }
|
| + virtual void Generate() {
|
| + codegen()->DoDeferredMathAbsTagged(instr_, exit(),
|
| + allocation_entry());
|
| + }
|
| + virtual LInstruction* instr() { return instr_; }
|
| + Label* allocation_entry() { return &allocation; }
|
| + private:
|
| + LMathAbsTagged* instr_;
|
| + Label allocation;
|
| + };
|
| +
|
| + // TODO(jbramley): The early-exit mechanism would skip the new frame handling
|
| + // in GenerateDeferredCode. Tidy this up.
|
| + ASSERT(!NeedsDeferredFrame());
|
| +
|
| + DeferredMathAbsTagged* deferred =
|
| + new(zone()) DeferredMathAbsTagged(this, instr);
|
| +
|
| + ASSERT(instr->hydrogen()->value()->representation().IsTagged() ||
|
| + instr->hydrogen()->value()->representation().IsSmi());
|
| + Register input = ToRegister(instr->value());
|
| + Register result_bits = ToRegister(instr->temp3());
|
| + Register result = ToRegister(instr->result());
|
| + Label done;
|
| +
|
| + // Handle smis inline.
|
| + // We can treat smis as 64-bit integers, since the (low-order) tag bits will
|
| + // never get set by the negation. This is therefore the same as the Integer32
|
| + // case in DoMathAbs, except that it operates on 64-bit values.
|
| + STATIC_ASSERT((kSmiValueSize == 32) && (kSmiShift == 32) && (kSmiTag == 0));
|
| +
|
| + // TODO(jbramley): We can't use JumpIfNotSmi here because the tbz it uses
|
| + // doesn't always have enough range. Consider making a variant of it, or a
|
| + // TestIsSmi helper.
|
| + STATIC_ASSERT(kSmiTag == 0);
|
| + __ Tst(input, kSmiTagMask);
|
| + __ B(ne, deferred->entry());
|
| +
|
| + __ Abs(result, input, NULL, &done);
|
| +
|
| + // The result is the magnitude (abs) of the smallest value a smi can
|
| + // represent, encoded as a double.
|
| + __ Mov(result_bits, double_to_rawbits(0x80000000));
|
| + __ B(deferred->allocation_entry());
|
| +
|
| + __ Bind(deferred->exit());
|
| + __ Str(result_bits, FieldMemOperand(result, HeapNumber::kValueOffset));
|
| +
|
| + __ Bind(&done);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoMathExp(LMathExp* instr) {
|
| + DoubleRegister input = ToDoubleRegister(instr->value());
|
| + DoubleRegister result = ToDoubleRegister(instr->result());
|
| + DoubleRegister double_temp1 = ToDoubleRegister(instr->double_temp1());
|
| + DoubleRegister double_temp2 = double_scratch();
|
| + Register temp1 = ToRegister(instr->temp1());
|
| + Register temp2 = ToRegister(instr->temp2());
|
| + Register temp3 = ToRegister(instr->temp3());
|
| +
|
| + MathExpGenerator::EmitMathExp(masm(), input, result,
|
| + double_temp1, double_temp2,
|
| + temp1, temp2, temp3);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoMathFloor(LMathFloor* instr) {
|
| + // TODO(jbramley): If we could provide a double result, we could use frintm
|
| + // and produce a valid double result in a single instruction.
|
| + DoubleRegister input = ToDoubleRegister(instr->value());
|
| + Register result = ToRegister(instr->result());
|
| + Label deopt;
|
| + Label done;
|
| +
|
| + if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| + __ JumpIfMinusZero(input, &deopt);
|
| + }
|
| +
|
| + __ Fcvtms(result, input);
|
| +
|
| + // Check that the result fits into a 32-bit integer.
|
| + // - The result did not overflow.
|
| + __ Cmp(result, Operand(result, SXTW));
|
| + // - The input was not NaN.
|
| + __ Fccmp(input, input, NoFlag, eq);
|
| + __ B(&done, eq);
|
| +
|
| + __ Bind(&deopt);
|
| + Deoptimize(instr->environment());
|
| +
|
| + __ Bind(&done);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoMathFloorOfDiv(LMathFloorOfDiv* instr) {
|
| + Register result = ToRegister32(instr->result());
|
| + Register left = ToRegister32(instr->left());
|
| + Register right = ToRegister32(instr->right());
|
| + Register remainder = ToRegister32(instr->temp());
|
| +
|
| + // This can't cause an exception on ARM, so we can speculatively
|
| + // execute it already now.
|
| + __ Sdiv(result, left, right);
|
| +
|
| + // Check for x / 0.
|
| + DeoptimizeIfZero(right, instr->environment());
|
| +
|
| + // Check for (kMinInt / -1).
|
| + if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
|
| + // The V flag will be set iff left == kMinInt.
|
| + __ Cmp(left, 1);
|
| + __ Ccmp(right, -1, NoFlag, vs);
|
| + DeoptimizeIf(eq, instr->environment());
|
| + }
|
| +
|
| + // Check for (0 / -x) that will produce negative zero.
|
| + if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| + __ Cmp(right, 0);
|
| + __ Ccmp(left, 0, ZFlag, mi);
|
| + // "right" can't be null because the code would have already been
|
| + // deoptimized. The Z flag is set only if (right < 0) and (left == 0).
|
| + // In this case we need to deoptimize to produce a -0.
|
| + DeoptimizeIf(eq, instr->environment());
|
| + }
|
| +
|
| + Label done;
|
| + // If both operands have the same sign then we are done.
|
| + __ Eor(remainder, left, right);
|
| + __ Tbz(remainder, kWSignBit, &done);
|
| +
|
| + // Check if the result needs to be corrected.
|
| + __ Msub(remainder, result, right, left);
|
| + __ Cbz(remainder, &done);
|
| + __ Sub(result, result, 1);
|
| +
|
| + __ Bind(&done);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoMathLog(LMathLog* instr) {
|
| + ASSERT(instr->IsMarkedAsCall());
|
| + ASSERT(ToDoubleRegister(instr->value()).is(d0));
|
| + __ CallCFunction(ExternalReference::math_log_double_function(isolate()),
|
| + 0, 1);
|
| + ASSERT(ToDoubleRegister(instr->result()).Is(d0));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
|
| + DoubleRegister input = ToDoubleRegister(instr->value());
|
| + DoubleRegister result = ToDoubleRegister(instr->result());
|
| + Label done;
|
| +
|
| + // Math.pow(x, 0.5) differs from fsqrt(x) in the following cases:
|
| + // Math.pow(-Infinity, 0.5) == +Infinity
|
| + // Math.pow(-0.0, 0.5) == +0.0
|
| +
|
| + // Catch -infinity inputs first.
|
| + // TODO(jbramley): A constant infinity register would be helpful here.
|
| + __ Fmov(double_scratch(), kFP64NegativeInfinity);
|
| + __ Fcmp(double_scratch(), input);
|
| + __ Fabs(result, input);
|
| + __ B(&done, eq);
|
| +
|
| + // Add +0.0 to convert -0.0 to +0.0.
|
| + // TODO(jbramley): A constant zero register would be helpful here.
|
| + __ Fmov(double_scratch(), 0.0);
|
| + __ Fadd(double_scratch(), input, double_scratch());
|
| + __ Fsqrt(result, double_scratch());
|
| +
|
| + __ Bind(&done);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoPower(LPower* instr) {
|
| + Representation exponent_type = instr->hydrogen()->right()->representation();
|
| + // Having marked this as a call, we can use any registers.
|
| + // Just make sure that the input/output registers are the expected ones.
|
| + ASSERT(!instr->right()->IsDoubleRegister() ||
|
| + ToDoubleRegister(instr->right()).is(d1));
|
| + ASSERT(exponent_type.IsInteger32() || !instr->right()->IsRegister() ||
|
| + ToRegister(instr->right()).is(x11));
|
| + ASSERT(!exponent_type.IsInteger32() || ToRegister(instr->right()).is(x12));
|
| + ASSERT(ToDoubleRegister(instr->left()).is(d0));
|
| + ASSERT(ToDoubleRegister(instr->result()).is(d0));
|
| +
|
| + if (exponent_type.IsSmi()) {
|
| + MathPowStub stub(MathPowStub::TAGGED);
|
| + __ CallStub(&stub);
|
| + } else if (exponent_type.IsTagged()) {
|
| + Label no_deopt;
|
| + __ JumpIfSmi(x11, &no_deopt);
|
| + __ Ldr(x0, FieldMemOperand(x11, HeapObject::kMapOffset));
|
| + DeoptimizeIfNotRoot(x0, Heap::kHeapNumberMapRootIndex,
|
| + instr->environment());
|
| + __ Bind(&no_deopt);
|
| + MathPowStub stub(MathPowStub::TAGGED);
|
| + __ CallStub(&stub);
|
| + } else if (exponent_type.IsInteger32()) {
|
| + MathPowStub stub(MathPowStub::INTEGER);
|
| + __ CallStub(&stub);
|
| + } else {
|
| + ASSERT(exponent_type.IsDouble());
|
| + MathPowStub stub(MathPowStub::DOUBLE);
|
| + __ CallStub(&stub);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoMathRound(LMathRound* instr) {
|
| + // TODO(jbramley): We could provide a double result here using frint.
|
| + DoubleRegister input = ToDoubleRegister(instr->value());
|
| + DoubleRegister temp1 = ToDoubleRegister(instr->temp1());
|
| + Register result = ToRegister(instr->result());
|
| + Label try_rounding;
|
| + Label deopt;
|
| + Label done;
|
| +
|
| + // Math.round() rounds to the nearest integer, with ties going towards
|
| + // +infinity. This does not match any IEEE-754 rounding mode.
|
| + // - Infinities and NaNs are propagated unchanged, but cause deopts because
|
| + // they can't be represented as integers.
|
| + // - The sign of the result is the same as the sign of the input. This means
|
| + // that -0.0 rounds to itself, and values -0.5 <= input < 0 also produce a
|
| + // result of -0.0.
|
| +
|
| + DoubleRegister dot_five = double_scratch();
|
| + __ Fmov(dot_five, 0.5);
|
| + __ Fabs(temp1, input);
|
| + __ Fcmp(temp1, dot_five);
|
| + // If input is in [-0.5, -0], the result is -0.
|
| + // If input is in [+0, +0.5[, the result is +0.
|
| + // If the input is +0.5, the result is 1.
|
| + __ B(hi, &try_rounding); // hi so NaN will also branch.
|
| +
|
| + if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| + __ Fmov(result, input);
|
| + __ Cmp(result, 0);
|
| + DeoptimizeIf(mi, instr->environment()); // [-0.5, -0.0].
|
| + }
|
| + __ Fcmp(input, dot_five);
|
| + __ Mov(result, 1); // +0.5.
|
| + // Remaining cases: [+0, +0.5[ or [-0.5, +0.5[, depending on
|
| + // flag kBailoutOnMinusZero, will return 0 (xzr).
|
| + __ Csel(result, result, xzr, eq);
|
| + __ B(&done);
|
| +
|
| + __ Bind(&deopt);
|
| + Deoptimize(instr->environment());
|
| +
|
| + __ Bind(&try_rounding);
|
| + // Since we're providing a 32-bit result, we can implement ties-to-infinity by
|
| + // adding 0.5 to the input, then taking the floor of the result. This does not
|
| + // work for very large positive doubles because adding 0.5 would cause an
|
| + // intermediate rounding stage, so a different approach will be necessary if a
|
| + // double result is needed.
|
| + __ Fadd(temp1, input, dot_five);
|
| + __ Fcvtms(result, temp1);
|
| +
|
| + // Deopt if
|
| + // * the input was NaN
|
| + // * the result is not representable using a 32-bit integer.
|
| + __ Fcmp(input, 0.0);
|
| + __ Ccmp(result, Operand(result.W(), SXTW), NoFlag, vc);
|
| + __ B(ne, &deopt);
|
| +
|
| + __ Bind(&done);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
|
| + DoubleRegister input = ToDoubleRegister(instr->value());
|
| + DoubleRegister result = ToDoubleRegister(instr->result());
|
| + __ Fsqrt(result, input);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
|
| + HMathMinMax::Operation op = instr->hydrogen()->operation();
|
| + if (instr->hydrogen()->representation().IsInteger32()) {
|
| + Register result = ToRegister32(instr->result());
|
| + Register left = ToRegister32(instr->left());
|
| + Operand right = ToOperand32I(instr->right());
|
| +
|
| + __ Cmp(left, right);
|
| + __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le);
|
| + } else if (instr->hydrogen()->representation().IsSmi()) {
|
| + Register result = ToRegister(instr->result());
|
| + Register left = ToRegister(instr->left());
|
| + Operand right = ToOperand(instr->right());
|
| +
|
| + __ Cmp(left, right);
|
| + __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le);
|
| + } else {
|
| + ASSERT(instr->hydrogen()->representation().IsDouble());
|
| + DoubleRegister result = ToDoubleRegister(instr->result());
|
| + DoubleRegister left = ToDoubleRegister(instr->left());
|
| + DoubleRegister right = ToDoubleRegister(instr->right());
|
| +
|
| + if (op == HMathMinMax::kMathMax) {
|
| + __ Fmax(result, left, right);
|
| + } else {
|
| + ASSERT(op == HMathMinMax::kMathMin);
|
| + __ Fmin(result, left, right);
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoModI(LModI* instr) {
|
| + HMod* hmod = instr->hydrogen();
|
| + HValue* hleft = hmod->left();
|
| + HValue* hright = hmod->right();
|
| +
|
| + Label done;
|
| + Register result = ToRegister32(instr->result());
|
| + Register dividend = ToRegister32(instr->left());
|
| +
|
| + bool need_minus_zero_check = (hmod->CheckFlag(HValue::kBailoutOnMinusZero) &&
|
| + hleft->CanBeNegative() && hmod->CanBeZero());
|
| +
|
| + if (hmod->RightIsPowerOf2()) {
|
| + // Note: The code below even works when right contains kMinInt.
|
| + int32_t divisor = Abs(hright->GetInteger32Constant());
|
| +
|
| + if (hleft->CanBeNegative()) {
|
| + __ Cmp(dividend, 0);
|
| + __ Cneg(result, dividend, mi);
|
| + __ And(result, result, divisor - 1);
|
| + __ Cneg(result, result, mi);
|
| + if (need_minus_zero_check) {
|
| + __ Cbnz(result, &done);
|
| + // The result is 0. Deoptimize if the dividend was negative.
|
| + DeoptimizeIf(mi, instr->environment());
|
| + }
|
| + } else {
|
| + __ And(result, dividend, divisor - 1);
|
| + }
|
| +
|
| + } else {
|
| + Label deopt;
|
| + Register divisor = ToRegister32(instr->right());
|
| + // Compute:
|
| + // modulo = dividend - quotient * divisor
|
| + __ Sdiv(result, dividend, divisor);
|
| + if (hright->CanBeZero()) {
|
| + // Combine the deoptimization sites.
|
| + Label ok;
|
| + __ Cbnz(divisor, &ok);
|
| + __ Bind(&deopt);
|
| + Deoptimize(instr->environment());
|
| + __ Bind(&ok);
|
| + }
|
| + __ Msub(result, result, divisor, dividend);
|
| + if (need_minus_zero_check) {
|
| + __ Cbnz(result, &done);
|
| + if (deopt.is_bound()) {
|
| + __ Tbnz(dividend, kWSignBit, &deopt);
|
| + } else {
|
| + DeoptimizeIfNegative(dividend, instr->environment());
|
| + }
|
| + }
|
| + }
|
| + __ Bind(&done);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoMulConstIS(LMulConstIS* instr) {
|
| + ASSERT(instr->hydrogen()->representation().IsSmiOrInteger32());
|
| + bool is_smi = instr->hydrogen()->representation().IsSmi();
|
| + Register result =
|
| + is_smi ? ToRegister(instr->result()) : ToRegister32(instr->result());
|
| + Register left =
|
| + is_smi ? ToRegister(instr->left()) : ToRegister32(instr->left()) ;
|
| + int32_t right = ToInteger32(instr->right());
|
| +
|
| + bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
|
| + bool bailout_on_minus_zero =
|
| + instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
|
| +
|
| + if (bailout_on_minus_zero) {
|
| + if (right < 0) {
|
| + // The result is -0 if right is negative and left is zero.
|
| + DeoptimizeIfZero(left, instr->environment());
|
| + } else if (right == 0) {
|
| + // The result is -0 if the right is zero and the left is negative.
|
| + DeoptimizeIfNegative(left, instr->environment());
|
| + }
|
| + }
|
| +
|
| + switch (right) {
|
| + // Cases which can detect overflow.
|
| + case -1:
|
| + if (can_overflow) {
|
| + // Only 0x80000000 can overflow here.
|
| + __ Negs(result, left);
|
| + DeoptimizeIf(vs, instr->environment());
|
| + } else {
|
| + __ Neg(result, left);
|
| + }
|
| + break;
|
| + case 0:
|
| + // This case can never overflow.
|
| + __ Mov(result, 0);
|
| + break;
|
| + case 1:
|
| + // This case can never overflow.
|
| + __ Mov(result, left, kDiscardForSameWReg);
|
| + break;
|
| + case 2:
|
| + if (can_overflow) {
|
| + __ Adds(result, left, left);
|
| + DeoptimizeIf(vs, instr->environment());
|
| + } else {
|
| + __ Add(result, left, left);
|
| + }
|
| + break;
|
| +
|
| + // All other cases cannot detect overflow, because it would probably be no
|
| + // faster than using the smull method in LMulI.
|
| + // TODO(jbramley): Investigate this, and add overflow support if it would
|
| + // be useful.
|
| + default:
|
| + ASSERT(!can_overflow);
|
| +
|
| + // Multiplication by constant powers of two (and some related values)
|
| + // can be done efficiently with shifted operands.
|
| + if (right >= 0) {
|
| + if (IsPowerOf2(right)) {
|
| + // result = left << log2(right)
|
| + __ Lsl(result, left, WhichPowerOf2(right));
|
| + } else if (IsPowerOf2(right - 1)) {
|
| + // result = left + left << log2(right - 1)
|
| + __ Add(result, left, Operand(left, LSL, WhichPowerOf2(right - 1)));
|
| + } else if (IsPowerOf2(right + 1)) {
|
| + // result = -left + left << log2(right + 1)
|
| + __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(right + 1)));
|
| + __ Neg(result, result);
|
| + } else {
|
| + UNREACHABLE();
|
| + }
|
| + } else {
|
| + if (IsPowerOf2(-right)) {
|
| + // result = -left << log2(-right)
|
| + __ Neg(result, Operand(left, LSL, WhichPowerOf2(-right)));
|
| + } else if (IsPowerOf2(-right + 1)) {
|
| + // result = left - left << log2(-right + 1)
|
| + __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(-right + 1)));
|
| + } else if (IsPowerOf2(-right - 1)) {
|
| + // result = -left - left << log2(-right - 1)
|
| + __ Add(result, left, Operand(left, LSL, WhichPowerOf2(-right - 1)));
|
| + __ Neg(result, result);
|
| + } else {
|
| + UNREACHABLE();
|
| + }
|
| + }
|
| + break;
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoMulI(LMulI* instr) {
|
| + Register result = ToRegister32(instr->result());
|
| + Register left = ToRegister32(instr->left());
|
| + Register right = ToRegister32(instr->right());
|
| +
|
| + bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
|
| + bool bailout_on_minus_zero =
|
| + instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
|
| +
|
| + if (bailout_on_minus_zero) {
|
| + // If one operand is zero and the other is negative, the result is -0.
|
| + // - Set Z (eq) if either left or right, or both, are 0.
|
| + __ Cmp(left, 0);
|
| + __ Ccmp(right, 0, ZFlag, ne);
|
| + // - If so (eq), set N (mi) if left + right is negative.
|
| + // - Otherwise, clear N.
|
| + __ Ccmn(left, right, NoFlag, eq);
|
| + DeoptimizeIf(mi, instr->environment());
|
| + }
|
| +
|
| + if (can_overflow) {
|
| + __ Smull(result.X(), left, right);
|
| + __ Cmp(result.X(), Operand(result, SXTW));
|
| + DeoptimizeIf(ne, instr->environment());
|
| + } else {
|
| + __ Mul(result, left, right);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoMulS(LMulS* instr) {
|
| + Register result = ToRegister(instr->result());
|
| + Register left = ToRegister(instr->left());
|
| + Register right = ToRegister(instr->right());
|
| +
|
| + bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
|
| + bool bailout_on_minus_zero =
|
| + instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
|
| +
|
| + if (bailout_on_minus_zero) {
|
| + // If one operand is zero and the other is negative, the result is -0.
|
| + // - Set Z (eq) if either left or right, or both, are 0.
|
| + __ Cmp(left, 0);
|
| + __ Ccmp(right, 0, ZFlag, ne);
|
| + // - If so (eq), set N (mi) if left + right is negative.
|
| + // - Otherwise, clear N.
|
| + __ Ccmn(left, right, NoFlag, eq);
|
| + DeoptimizeIf(mi, instr->environment());
|
| + }
|
| +
|
| + STATIC_ASSERT((kSmiShift == 32) && (kSmiTag == 0));
|
| + if (can_overflow) {
|
| + __ Smulh(result, left, right);
|
| + __ Cmp(result, Operand(result.W(), SXTW));
|
| + __ SmiTag(result);
|
| + DeoptimizeIf(ne, instr->environment());
|
| + } else {
|
| + // TODO(jbramley): This could be rewritten to support UseRegisterAtStart.
|
| + ASSERT(!AreAliased(result, right));
|
| + __ SmiUntag(result, left);
|
| + __ Mul(result, result, right);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
|
| + // TODO(3095996): Get rid of this. For now, we need to make the
|
| + // result register contain a valid pointer because it is already
|
| + // contained in the register pointer map.
|
| + Register result = ToRegister(instr->result());
|
| + __ Mov(result, 0);
|
| +
|
| + PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
|
| + // NumberTagU and NumberTagD use the context from the frame, rather than
|
| + // the environment's HContext or HInlinedContext value.
|
| + // They only call Runtime::kAllocateHeapNumber.
|
| + // The corresponding HChange instructions are added in a phase that does
|
| + // not have easy access to the local context.
|
| + __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
|
| + __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
|
| + RecordSafepointWithRegisters(
|
| + instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
|
| + __ StoreToSafepointRegisterSlot(x0, result);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
|
| + class DeferredNumberTagD: public LDeferredCode {
|
| + public:
|
| + DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
|
| + : LDeferredCode(codegen), instr_(instr) { }
|
| + virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); }
|
| + virtual LInstruction* instr() { return instr_; }
|
| + private:
|
| + LNumberTagD* instr_;
|
| + };
|
| +
|
| + DoubleRegister input = ToDoubleRegister(instr->value());
|
| + Register result = ToRegister(instr->result());
|
| + Register temp1 = ToRegister(instr->temp1());
|
| + Register temp2 = ToRegister(instr->temp2());
|
| +
|
| + DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
|
| + if (FLAG_inline_new) {
|
| + __ AllocateHeapNumber(result, deferred->entry(), temp1, temp2);
|
| + } else {
|
| + __ B(deferred->entry());
|
| + }
|
| +
|
| + __ Bind(deferred->exit());
|
| + __ Str(input, FieldMemOperand(result, HeapNumber::kValueOffset));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoDeferredNumberTagU(LInstruction* instr,
|
| + LOperand* value,
|
| + LOperand* temp1,
|
| + LOperand* temp2) {
|
| + Label slow, convert_and_store;
|
| + Register src = ToRegister32(value);
|
| + Register dst = ToRegister(instr->result());
|
| + Register scratch1 = ToRegister(temp1);
|
| +
|
| + if (FLAG_inline_new) {
|
| + Register scratch2 = ToRegister(temp2);
|
| + __ AllocateHeapNumber(dst, &slow, scratch1, scratch2);
|
| + __ B(&convert_and_store);
|
| + }
|
| +
|
| + // Slow case: call the runtime system to do the number allocation.
|
| + __ Bind(&slow);
|
| + // TODO(3095996): Put a valid pointer value in the stack slot where the result
|
| + // register is stored, as this register is in the pointer map, but contains an
|
| + // integer value.
|
| + __ Mov(dst, 0);
|
| + {
|
| + // Preserve the value of all registers.
|
| + PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
|
| +
|
| + // NumberTagU and NumberTagD use the context from the frame, rather than
|
| + // the environment's HContext or HInlinedContext value.
|
| + // They only call Runtime::kAllocateHeapNumber.
|
| + // The corresponding HChange instructions are added in a phase that does
|
| + // not have easy access to the local context.
|
| + __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
|
| + __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
|
| + RecordSafepointWithRegisters(
|
| + instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
|
| + __ StoreToSafepointRegisterSlot(x0, dst);
|
| + }
|
| +
|
| + // Convert number to floating point and store in the newly allocated heap
|
| + // number.
|
| + __ Bind(&convert_and_store);
|
| + DoubleRegister dbl_scratch = double_scratch();
|
| + __ Ucvtf(dbl_scratch, src);
|
| + __ Str(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
|
| + class DeferredNumberTagU: public LDeferredCode {
|
| + public:
|
| + DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
|
| + : LDeferredCode(codegen), instr_(instr) { }
|
| + virtual void Generate() {
|
| + codegen()->DoDeferredNumberTagU(instr_,
|
| + instr_->value(),
|
| + instr_->temp1(),
|
| + instr_->temp2());
|
| + }
|
| + virtual LInstruction* instr() { return instr_; }
|
| + private:
|
| + LNumberTagU* instr_;
|
| + };
|
| +
|
| + Register value = ToRegister(instr->value());
|
| + Register result = ToRegister(instr->result());
|
| +
|
| + DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
|
| + __ Cmp(value, Smi::kMaxValue);
|
| + __ B(hi, deferred->entry());
|
| + __ SmiTag(result, value);
|
| + __ Bind(deferred->exit());
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
|
| + Register input = ToRegister(instr->value());
|
| + Register scratch = ToRegister(instr->temp());
|
| + DoubleRegister result = ToDoubleRegister(instr->result());
|
| + bool can_convert_undefined_to_nan =
|
| + instr->hydrogen()->can_convert_undefined_to_nan();
|
| +
|
| + Label done, load_smi;
|
| +
|
| + // Work out what untag mode we're working with.
|
| + HValue* value = instr->hydrogen()->value();
|
| + NumberUntagDMode mode = value->representation().IsSmi()
|
| + ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
|
| +
|
| + if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
|
| + __ JumpIfSmi(input, &load_smi);
|
| +
|
| + Label convert_undefined, deopt;
|
| +
|
| + // Heap number map check.
|
| + Label* not_heap_number = can_convert_undefined_to_nan ? &convert_undefined
|
| + : &deopt;
|
| + __ Ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
|
| + __ JumpIfNotRoot(scratch, Heap::kHeapNumberMapRootIndex, not_heap_number);
|
| +
|
| + // Load heap number.
|
| + __ Ldr(result, FieldMemOperand(input, HeapNumber::kValueOffset));
|
| + if (instr->hydrogen()->deoptimize_on_minus_zero()) {
|
| + __ JumpIfMinusZero(result, &deopt);
|
| + }
|
| + __ B(&done);
|
| +
|
| + if (can_convert_undefined_to_nan) {
|
| + __ Bind(&convert_undefined);
|
| + __ JumpIfNotRoot(input, Heap::kUndefinedValueRootIndex, &deopt);
|
| +
|
| + __ LoadRoot(scratch, Heap::kNanValueRootIndex);
|
| + __ Ldr(result, FieldMemOperand(scratch, HeapNumber::kValueOffset));
|
| + __ B(&done);
|
| + }
|
| +
|
| + __ Bind(&deopt);
|
| + Deoptimize(instr->environment());
|
| + } else {
|
| + ASSERT(mode == NUMBER_CANDIDATE_IS_SMI);
|
| + // Fall through to load_smi.
|
| + }
|
| +
|
| + // Smi to double register conversion.
|
| + __ Bind(&load_smi);
|
| + __ SmiUntagToDouble(result, input);
|
| +
|
| + __ Bind(&done);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
|
| + // This is a pseudo-instruction that ensures that the environment here is
|
| + // properly registered for deoptimization and records the assembler's PC
|
| + // offset.
|
| + LEnvironment* environment = instr->environment();
|
| +
|
| + // If the environment were already registered, we would have no way of
|
| + // backpatching it with the spill slot operands.
|
| + ASSERT(!environment->HasBeenRegistered());
|
| + RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
|
| +
|
| + GenerateOsrPrologue();
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoParameter(LParameter* instr) {
|
| + // Nothing to do.
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoPushArgument(LPushArgument* instr) {
|
| + LOperand* argument = instr->value();
|
| + if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) {
|
| + Abort(kDoPushArgumentNotImplementedForDoubleType);
|
| + } else {
|
| + __ Push(ToRegister(argument));
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoReturn(LReturn* instr) {
|
| + if (FLAG_trace && info()->IsOptimizing()) {
|
| + // Push the return value on the stack as the parameter.
|
| + // Runtime::TraceExit returns its parameter in x0. We're leaving the code
|
| + // managed by the register allocator and tearing down the frame, it's
|
| + // safe to write to the context register.
|
| + __ Push(x0);
|
| + __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
|
| + __ CallRuntime(Runtime::kTraceExit, 1);
|
| + }
|
| +
|
| + if (info()->saves_caller_doubles()) {
|
| + RestoreCallerDoubles();
|
| + }
|
| +
|
| + int no_frame_start = -1;
|
| + if (NeedsEagerFrame()) {
|
| + Register stack_pointer = masm()->StackPointer();
|
| + __ Mov(stack_pointer, fp);
|
| + no_frame_start = masm_->pc_offset();
|
| + __ Pop(fp, lr);
|
| + }
|
| +
|
| + if (instr->has_constant_parameter_count()) {
|
| + int parameter_count = ToInteger32(instr->constant_parameter_count());
|
| + __ Drop(parameter_count + 1);
|
| + } else {
|
| + Register parameter_count = ToRegister(instr->parameter_count());
|
| + __ DropBySMI(parameter_count);
|
| + }
|
| + __ Ret();
|
| +
|
| + if (no_frame_start != -1) {
|
| + info_->AddNoFrameRange(no_frame_start, masm_->pc_offset());
|
| + }
|
| +}
|
| +
|
| +
|
| +MemOperand LCodeGen::BuildSeqStringOperand(Register string,
|
| + Register temp,
|
| + LOperand* index,
|
| + String::Encoding encoding) {
|
| + if (index->IsConstantOperand()) {
|
| + int offset = ToInteger32(LConstantOperand::cast(index));
|
| + if (encoding == String::TWO_BYTE_ENCODING) {
|
| + offset *= kUC16Size;
|
| + }
|
| + STATIC_ASSERT(kCharSize == 1);
|
| + return FieldMemOperand(string, SeqString::kHeaderSize + offset);
|
| + }
|
| + ASSERT(!temp.is(string));
|
| + ASSERT(!temp.is(ToRegister(index)));
|
| + if (encoding == String::ONE_BYTE_ENCODING) {
|
| + __ Add(temp, string, Operand(ToRegister(index)));
|
| + } else {
|
| + STATIC_ASSERT(kUC16Size == 2);
|
| + __ Add(temp, string, Operand(ToRegister(index), LSL, 1));
|
| + }
|
| + return FieldMemOperand(temp, SeqString::kHeaderSize);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
|
| + String::Encoding encoding = instr->hydrogen()->encoding();
|
| + Register string = ToRegister(instr->string());
|
| + Register result = ToRegister(instr->result());
|
| + Register temp = ToRegister(instr->temp());
|
| +
|
| + if (FLAG_debug_code) {
|
| + __ Ldr(temp, FieldMemOperand(string, HeapObject::kMapOffset));
|
| + __ Ldrb(temp, FieldMemOperand(temp, Map::kInstanceTypeOffset));
|
| +
|
| + __ And(temp, temp,
|
| + Operand(kStringRepresentationMask | kStringEncodingMask));
|
| + static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
|
| + static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
|
| + __ Cmp(temp, Operand(encoding == String::ONE_BYTE_ENCODING
|
| + ? one_byte_seq_type : two_byte_seq_type));
|
| + __ Check(eq, kUnexpectedStringType);
|
| + }
|
| +
|
| + MemOperand operand =
|
| + BuildSeqStringOperand(string, temp, instr->index(), encoding);
|
| + if (encoding == String::ONE_BYTE_ENCODING) {
|
| + __ Ldrb(result, operand);
|
| + } else {
|
| + __ Ldrh(result, operand);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
|
| + String::Encoding encoding = instr->hydrogen()->encoding();
|
| + Register string = ToRegister(instr->string());
|
| + Register value = ToRegister(instr->value());
|
| + Register temp = ToRegister(instr->temp());
|
| +
|
| + if (FLAG_debug_code) {
|
| + ASSERT(ToRegister(instr->context()).is(cp));
|
| + Register index = ToRegister(instr->index());
|
| + static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
|
| + static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
|
| + int encoding_mask =
|
| + instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
|
| + ? one_byte_seq_type : two_byte_seq_type;
|
| + __ EmitSeqStringSetCharCheck(string, index, kIndexIsInteger32, temp,
|
| + encoding_mask);
|
| + }
|
| + MemOperand operand =
|
| + BuildSeqStringOperand(string, temp, instr->index(), encoding);
|
| + if (encoding == String::ONE_BYTE_ENCODING) {
|
| + __ Strb(value, operand);
|
| + } else {
|
| + __ Strh(value, operand);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoSmiTag(LSmiTag* instr) {
|
| + ASSERT(!instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow));
|
| + __ SmiTag(ToRegister(instr->result()), ToRegister(instr->value()));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
|
| + Register input = ToRegister(instr->value());
|
| + Register result = ToRegister(instr->result());
|
| + Label done, untag;
|
| +
|
| + if (instr->needs_check()) {
|
| + DeoptimizeIfNotSmi(input, instr->environment());
|
| + }
|
| +
|
| + __ Bind(&untag);
|
| + __ SmiUntag(result, input);
|
| + __ Bind(&done);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoShiftI(LShiftI* instr) {
|
| + LOperand* right_op = instr->right();
|
| + Register left = ToRegister32(instr->left());
|
| + Register result = ToRegister32(instr->result());
|
| +
|
| + if (right_op->IsRegister()) {
|
| + Register right = ToRegister32(instr->right());
|
| + switch (instr->op()) {
|
| + case Token::ROR: __ Ror(result, left, right); break;
|
| + case Token::SAR: __ Asr(result, left, right); break;
|
| + case Token::SHL: __ Lsl(result, left, right); break;
|
| + case Token::SHR:
|
| + if (instr->can_deopt()) {
|
| + Label right_not_zero;
|
| + __ Cbnz(right, &right_not_zero);
|
| + DeoptimizeIfNegative(left, instr->environment());
|
| + __ Bind(&right_not_zero);
|
| + }
|
| + __ Lsr(result, left, right);
|
| + break;
|
| + default: UNREACHABLE();
|
| + }
|
| + } else {
|
| + ASSERT(right_op->IsConstantOperand());
|
| + int shift_count = ToInteger32(LConstantOperand::cast(right_op)) & 0x1f;
|
| + if (shift_count == 0) {
|
| + if ((instr->op() == Token::SHR) && instr->can_deopt()) {
|
| + DeoptimizeIfNegative(left, instr->environment());
|
| + }
|
| + __ Mov(result, left, kDiscardForSameWReg);
|
| + } else {
|
| + switch (instr->op()) {
|
| + case Token::ROR: __ Ror(result, left, shift_count); break;
|
| + case Token::SAR: __ Asr(result, left, shift_count); break;
|
| + case Token::SHL: __ Lsl(result, left, shift_count); break;
|
| + case Token::SHR: __ Lsr(result, left, shift_count); break;
|
| + default: UNREACHABLE();
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoShiftS(LShiftS* instr) {
|
| + LOperand* right_op = instr->right();
|
| + Register left = ToRegister(instr->left());
|
| + Register result = ToRegister(instr->result());
|
| +
|
| + // Only ROR by register needs a temp.
|
| + ASSERT(((instr->op() == Token::ROR) && right_op->IsRegister()) ||
|
| + (instr->temp() == NULL));
|
| +
|
| + if (right_op->IsRegister()) {
|
| + Register right = ToRegister(instr->right());
|
| + switch (instr->op()) {
|
| + case Token::ROR: {
|
| + Register temp = ToRegister(instr->temp());
|
| + __ Ubfx(temp, right, kSmiShift, 5);
|
| + __ SmiUntag(result, left);
|
| + __ Ror(result.W(), result.W(), temp.W());
|
| + __ SmiTag(result);
|
| + break;
|
| + }
|
| + case Token::SAR:
|
| + __ Ubfx(result, right, kSmiShift, 5);
|
| + __ Asr(result, left, result);
|
| + __ Bic(result, result, kSmiShiftMask);
|
| + break;
|
| + case Token::SHL:
|
| + __ Ubfx(result, right, kSmiShift, 5);
|
| + __ Lsl(result, left, result);
|
| + break;
|
| + case Token::SHR:
|
| + if (instr->can_deopt()) {
|
| + Label right_not_zero;
|
| + __ Cbnz(right, &right_not_zero);
|
| + DeoptimizeIfNegative(left, instr->environment());
|
| + __ Bind(&right_not_zero);
|
| + }
|
| + __ Ubfx(result, right, kSmiShift, 5);
|
| + __ Lsr(result, left, result);
|
| + __ Bic(result, result, kSmiShiftMask);
|
| + break;
|
| + default: UNREACHABLE();
|
| + }
|
| + } else {
|
| + ASSERT(right_op->IsConstantOperand());
|
| + int shift_count = ToInteger32(LConstantOperand::cast(right_op)) & 0x1f;
|
| + if (shift_count == 0) {
|
| + if ((instr->op() == Token::SHR) && instr->can_deopt()) {
|
| + DeoptimizeIfNegative(left, instr->environment());
|
| + }
|
| + __ Mov(result, left);
|
| + } else {
|
| + switch (instr->op()) {
|
| + case Token::ROR:
|
| + __ SmiUntag(result, left);
|
| + __ Ror(result.W(), result.W(), shift_count);
|
| + __ SmiTag(result);
|
| + break;
|
| + case Token::SAR:
|
| + __ Asr(result, left, shift_count);
|
| + __ Bic(result, result, kSmiShiftMask);
|
| + break;
|
| + case Token::SHL:
|
| + __ Lsl(result, left, shift_count);
|
| + break;
|
| + case Token::SHR:
|
| + __ Lsr(result, left, shift_count);
|
| + __ Bic(result, result, kSmiShiftMask);
|
| + break;
|
| + default: UNREACHABLE();
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
|
| + __ Debug("LDebugBreak", 0, BREAK);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
|
| + ASSERT(ToRegister(instr->context()).is(cp));
|
| + Register scratch1 = x5;
|
| + Register scratch2 = x6;
|
| + ASSERT(instr->IsMarkedAsCall());
|
| +
|
| + ASM_UNIMPLEMENTED_BREAK("DoDeclareGlobals");
|
| + // TODO(all): if Mov could handle object in new space then it could be used
|
| + // here.
|
| + __ LoadHeapObject(scratch1, instr->hydrogen()->pairs());
|
| + __ Mov(scratch2, Operand(Smi::FromInt(instr->hydrogen()->flags())));
|
| + __ Push(cp, scratch1, scratch2); // The context is the first argument.
|
| + CallRuntime(Runtime::kDeclareGlobals, 3, instr);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
|
| + PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
|
| + LoadContextFromDeferred(instr->context());
|
| + __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
|
| + RecordSafepointWithLazyDeopt(
|
| + instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
|
| + ASSERT(instr->HasEnvironment());
|
| + LEnvironment* env = instr->environment();
|
| + safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoStackCheck(LStackCheck* instr) {
|
| + class DeferredStackCheck: public LDeferredCode {
|
| + public:
|
| + DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
|
| + : LDeferredCode(codegen), instr_(instr) { }
|
| + virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); }
|
| + virtual LInstruction* instr() { return instr_; }
|
| + private:
|
| + LStackCheck* instr_;
|
| + };
|
| +
|
| + ASSERT(instr->HasEnvironment());
|
| + LEnvironment* env = instr->environment();
|
| + // There is no LLazyBailout instruction for stack-checks. We have to
|
| + // prepare for lazy deoptimization explicitly here.
|
| + if (instr->hydrogen()->is_function_entry()) {
|
| + // Perform stack overflow check.
|
| + Label done;
|
| + __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex);
|
| + __ B(hs, &done);
|
| +
|
| + PredictableCodeSizeScope predictable(masm_,
|
| + Assembler::kCallSizeWithRelocation);
|
| + ASSERT(instr->context()->IsRegister());
|
| + ASSERT(ToRegister(instr->context()).is(cp));
|
| + CallCode(isolate()->builtins()->StackCheck(),
|
| + RelocInfo::CODE_TARGET,
|
| + instr);
|
| + EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
|
| +
|
| + __ Bind(&done);
|
| + RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
|
| + safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
|
| + } else {
|
| + ASSERT(instr->hydrogen()->is_backwards_branch());
|
| + // Perform stack overflow check if this goto needs it before jumping.
|
| + DeferredStackCheck* deferred_stack_check =
|
| + new(zone()) DeferredStackCheck(this, instr);
|
| + __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex);
|
| + __ B(lo, deferred_stack_check->entry());
|
| +
|
| + EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
|
| + __ Bind(instr->done_label());
|
| + deferred_stack_check->SetExit(instr->done_label());
|
| + RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
|
| + // Don't record a deoptimization index for the safepoint here.
|
| + // This will be done explicitly when emitting call and the safepoint in
|
| + // the deferred code.
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
|
| + Register function = ToRegister(instr->function());
|
| + Register code_object = ToRegister(instr->code_object());
|
| + Register temp = ToRegister(instr->temp());
|
| + __ Add(temp, code_object, Code::kHeaderSize - kHeapObjectTag);
|
| + __ Str(temp, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
|
| + Register context = ToRegister(instr->context());
|
| + Register value = ToRegister(instr->value());
|
| + Register scratch = ToRegister(instr->temp());
|
| + MemOperand target = ContextMemOperand(context, instr->slot_index());
|
| +
|
| + Label skip_assignment;
|
| +
|
| + if (instr->hydrogen()->RequiresHoleCheck()) {
|
| + __ Ldr(scratch, target);
|
| + if (instr->hydrogen()->DeoptimizesOnHole()) {
|
| + DeoptimizeIfRoot(scratch, Heap::kTheHoleValueRootIndex,
|
| + instr->environment());
|
| + } else {
|
| + __ JumpIfNotRoot(scratch, Heap::kTheHoleValueRootIndex, &skip_assignment);
|
| + }
|
| + }
|
| +
|
| + __ Str(value, target);
|
| + if (instr->hydrogen()->NeedsWriteBarrier()) {
|
| + SmiCheck check_needed =
|
| + instr->hydrogen()->value()->IsHeapObject()
|
| + ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
|
| + __ RecordWriteContextSlot(context,
|
| + target.offset(),
|
| + value,
|
| + scratch,
|
| + GetLinkRegisterState(),
|
| + kSaveFPRegs,
|
| + EMIT_REMEMBERED_SET,
|
| + check_needed);
|
| + }
|
| + __ Bind(&skip_assignment);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) {
|
| + Register value = ToRegister(instr->value());
|
| + Register cell = ToRegister(instr->temp1());
|
| +
|
| + // Load the cell.
|
| + __ Mov(cell, Operand(instr->hydrogen()->cell().handle()));
|
| +
|
| + // If the cell we are storing to contains the hole it could have
|
| + // been deleted from the property dictionary. In that case, we need
|
| + // to update the property details in the property dictionary to mark
|
| + // it as no longer deleted. We deoptimize in that case.
|
| + if (instr->hydrogen()->RequiresHoleCheck()) {
|
| + Register payload = ToRegister(instr->temp2());
|
| + __ Ldr(payload, FieldMemOperand(cell, Cell::kValueOffset));
|
| + DeoptimizeIfRoot(
|
| + payload, Heap::kTheHoleValueRootIndex, instr->environment());
|
| + }
|
| +
|
| + // Store the value.
|
| + __ Str(value, FieldMemOperand(cell, Cell::kValueOffset));
|
| + // Cells are always rescanned, so no write barrier here.
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoStoreKeyedExternal(LStoreKeyedExternal* instr) {
|
| + Register ext_ptr = ToRegister(instr->elements());
|
| + Register key = no_reg;
|
| + Register scratch;
|
| + ElementsKind elements_kind = instr->elements_kind();
|
| +
|
| + bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
|
| + bool key_is_constant = instr->key()->IsConstantOperand();
|
| + int constant_key = 0;
|
| + if (key_is_constant) {
|
| + ASSERT(instr->temp() == NULL);
|
| + constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
|
| + if (constant_key & 0xf0000000) {
|
| + Abort(kArrayIndexConstantValueTooBig);
|
| + }
|
| + } else {
|
| + key = ToRegister(instr->key());
|
| + scratch = ToRegister(instr->temp());
|
| + }
|
| +
|
| + MemOperand dst =
|
| + PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi,
|
| + key_is_constant, constant_key,
|
| + elements_kind,
|
| + instr->additional_index());
|
| +
|
| + if ((elements_kind == EXTERNAL_FLOAT32_ELEMENTS) ||
|
| + (elements_kind == FLOAT32_ELEMENTS)) {
|
| + DoubleRegister value = ToDoubleRegister(instr->value());
|
| + DoubleRegister dbl_scratch = double_scratch();
|
| + __ Fcvt(dbl_scratch.S(), value);
|
| + __ Str(dbl_scratch.S(), dst);
|
| + } else if ((elements_kind == EXTERNAL_FLOAT64_ELEMENTS) ||
|
| + (elements_kind == FLOAT64_ELEMENTS)) {
|
| + DoubleRegister value = ToDoubleRegister(instr->value());
|
| + __ Str(value, dst);
|
| + } else {
|
| + Register value = ToRegister(instr->value());
|
| +
|
| + switch (elements_kind) {
|
| + case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
|
| + case EXTERNAL_INT8_ELEMENTS:
|
| + case EXTERNAL_UINT8_ELEMENTS:
|
| + case UINT8_ELEMENTS:
|
| + case UINT8_CLAMPED_ELEMENTS:
|
| + case INT8_ELEMENTS:
|
| + __ Strb(value, dst);
|
| + break;
|
| + case EXTERNAL_INT16_ELEMENTS:
|
| + case EXTERNAL_UINT16_ELEMENTS:
|
| + case INT16_ELEMENTS:
|
| + case UINT16_ELEMENTS:
|
| + __ Strh(value, dst);
|
| + break;
|
| + case EXTERNAL_INT32_ELEMENTS:
|
| + case EXTERNAL_UINT32_ELEMENTS:
|
| + case INT32_ELEMENTS:
|
| + case UINT32_ELEMENTS:
|
| + __ Str(value.W(), dst);
|
| + break;
|
| + case FLOAT32_ELEMENTS:
|
| + case FLOAT64_ELEMENTS:
|
| + case EXTERNAL_FLOAT32_ELEMENTS:
|
| + case EXTERNAL_FLOAT64_ELEMENTS:
|
| + case FAST_DOUBLE_ELEMENTS:
|
| + case FAST_ELEMENTS:
|
| + case FAST_SMI_ELEMENTS:
|
| + case FAST_HOLEY_DOUBLE_ELEMENTS:
|
| + case FAST_HOLEY_ELEMENTS:
|
| + case FAST_HOLEY_SMI_ELEMENTS:
|
| + case DICTIONARY_ELEMENTS:
|
| + case NON_STRICT_ARGUMENTS_ELEMENTS:
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoStoreKeyedFixedDouble(LStoreKeyedFixedDouble* instr) {
|
| + Register elements = ToRegister(instr->elements());
|
| + DoubleRegister value = ToDoubleRegister(instr->value());
|
| + Register store_base = ToRegister(instr->temp());
|
| + int offset = 0;
|
| +
|
| + if (instr->key()->IsConstantOperand()) {
|
| + int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
|
| + if (constant_key & 0xf0000000) {
|
| + Abort(kArrayIndexConstantValueTooBig);
|
| + }
|
| + offset = FixedDoubleArray::OffsetOfElementAt(constant_key +
|
| + instr->additional_index());
|
| + store_base = elements;
|
| + } else {
|
| + Register key = ToRegister(instr->key());
|
| + bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
|
| + CalcKeyedArrayBaseRegister(store_base, elements, key, key_is_tagged,
|
| + instr->hydrogen()->elements_kind());
|
| + offset = FixedDoubleArray::OffsetOfElementAt(instr->additional_index());
|
| + }
|
| +
|
| + if (instr->NeedsCanonicalization()) {
|
| + DoubleRegister dbl_scratch = double_scratch();
|
| + __ Fmov(dbl_scratch,
|
| + FixedDoubleArray::canonical_not_the_hole_nan_as_double());
|
| + __ Fmaxnm(dbl_scratch, dbl_scratch, value);
|
| + __ Str(dbl_scratch, FieldMemOperand(store_base, offset));
|
| + } else {
|
| + __ Str(value, FieldMemOperand(store_base, offset));
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoStoreKeyedFixed(LStoreKeyedFixed* instr) {
|
| + Register value = ToRegister(instr->value());
|
| + Register elements = ToRegister(instr->elements());
|
| + Register store_base = ToRegister(instr->temp());
|
| + Register key = no_reg;
|
| + int offset = 0;
|
| +
|
| + if (instr->key()->IsConstantOperand()) {
|
| + ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
|
| + LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
|
| + offset = FixedArray::OffsetOfElementAt(ToInteger32(const_operand) +
|
| + instr->additional_index());
|
| + store_base = elements;
|
| + } else {
|
| + key = ToRegister(instr->key());
|
| + bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
|
| + CalcKeyedArrayBaseRegister(store_base, elements, key, key_is_tagged,
|
| + instr->hydrogen()->elements_kind());
|
| + offset = FixedArray::OffsetOfElementAt(instr->additional_index());
|
| + }
|
| + Representation representation = instr->hydrogen()->value()->representation();
|
| + if (representation.IsInteger32()) {
|
| + ASSERT(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
|
| + ASSERT(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS);
|
| + STATIC_ASSERT(kSmiValueSize == 32 && kSmiShift == 32 && kSmiTag == 0);
|
| + __ Store(value, UntagSmiFieldMemOperand(store_base, offset),
|
| + Representation::Integer32());
|
| + } else {
|
| + __ Store(value, FieldMemOperand(store_base, offset), representation);
|
| + }
|
| +
|
| + if (instr->hydrogen()->NeedsWriteBarrier()) {
|
| + SmiCheck check_needed =
|
| + instr->hydrogen()->value()->IsHeapObject()
|
| + ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
|
| + // Compute address of modified element and store it into key register.
|
| + __ Add(key, store_base, offset - kHeapObjectTag);
|
| + __ RecordWrite(elements, key, value, GetLinkRegisterState(), kSaveFPRegs,
|
| + EMIT_REMEMBERED_SET, check_needed);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
|
| + ASSERT(ToRegister(instr->context()).is(cp));
|
| + ASSERT(ToRegister(instr->object()).Is(x2));
|
| + ASSERT(ToRegister(instr->key()).Is(x1));
|
| + ASSERT(ToRegister(instr->value()).Is(x0));
|
| +
|
| + Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode)
|
| + ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
|
| + : isolate()->builtins()->KeyedStoreIC_Initialize();
|
| + CallCode(ic, RelocInfo::CODE_TARGET, instr);
|
| +}
|
| +
|
| +
|
| +// TODO(jbramley): Once the merge is done and we're tracking bleeding_edge, try
|
| +// to tidy up this function.
|
| +void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
|
| + Representation representation = instr->representation();
|
| +
|
| + Register object = ToRegister(instr->object());
|
| + Register temp0 = ToRegister(instr->temp0());
|
| + Register temp1 = ToRegister(instr->temp1());
|
| + HObjectAccess access = instr->hydrogen()->access();
|
| + int offset = access.offset();
|
| +
|
| + if (access.IsExternalMemory()) {
|
| + Register value = ToRegister(instr->value());
|
| + __ Store(value, MemOperand(object, offset), representation);
|
| + return;
|
| + }
|
| +
|
| + Handle<Map> transition = instr->transition();
|
| +
|
| + if (FLAG_track_heap_object_fields && representation.IsHeapObject()) {
|
| + Register value = ToRegister(instr->value());
|
| + if (!instr->hydrogen()->value()->type().IsHeapObject()) {
|
| + DeoptimizeIfSmi(value, instr->environment());
|
| + }
|
| + } else if (representation.IsDouble()) {
|
| + ASSERT(transition.is_null());
|
| + ASSERT(access.IsInobject());
|
| + ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
|
| + FPRegister value = ToDoubleRegister(instr->value());
|
| + __ Str(value, FieldMemOperand(object, offset));
|
| + return;
|
| + }
|
| +
|
| + if (!transition.is_null()) {
|
| + // Store the new map value.
|
| + Register new_map_value = temp0;
|
| + __ Mov(new_map_value, Operand(transition));
|
| + __ Str(new_map_value, FieldMemOperand(object, HeapObject::kMapOffset));
|
| + if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
|
| + // Update the write barrier for the map field.
|
| + __ RecordWriteField(object,
|
| + HeapObject::kMapOffset,
|
| + new_map_value,
|
| + temp1,
|
| + GetLinkRegisterState(),
|
| + kSaveFPRegs,
|
| + OMIT_REMEMBERED_SET,
|
| + OMIT_SMI_CHECK);
|
| + }
|
| + }
|
| +
|
| + // Do the store.
|
| + Register value = ToRegister(instr->value());
|
| + Register destination;
|
| + SmiCheck check_needed =
|
| + instr->hydrogen()->value()->IsHeapObject()
|
| + ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
|
| + if (access.IsInobject()) {
|
| + destination = object;
|
| + } else {
|
| + __ Ldr(temp0, FieldMemOperand(object, JSObject::kPropertiesOffset));
|
| + destination = temp0;
|
| + }
|
| +
|
| + if (representation.IsSmi() &&
|
| + instr->hydrogen()->value()->representation().IsInteger32()) {
|
| + ASSERT(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
|
| + STATIC_ASSERT(kSmiValueSize == 32 && kSmiShift == 32 && kSmiTag == 0);
|
| + __ Store(value, UntagSmiFieldMemOperand(destination, offset),
|
| + Representation::Integer32());
|
| + } else {
|
| + __ Store(value, FieldMemOperand(destination, offset), representation);
|
| + }
|
| + if (instr->hydrogen()->NeedsWriteBarrier()) {
|
| + __ RecordWriteField(destination,
|
| + offset,
|
| + value, // Clobbered.
|
| + temp1, // Clobbered.
|
| + GetLinkRegisterState(),
|
| + kSaveFPRegs,
|
| + EMIT_REMEMBERED_SET,
|
| + check_needed);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
|
| + ASSERT(ToRegister(instr->context()).is(cp));
|
| + ASSERT(ToRegister(instr->value()).is(x0));
|
| + ASSERT(ToRegister(instr->object()).is(x1));
|
| +
|
| + // Name must be in x2.
|
| + __ Mov(x2, Operand(instr->name()));
|
| + Handle<Code> ic = StoreIC::initialize_stub(isolate(),
|
| + instr->strict_mode_flag());
|
| + CallCode(ic, RelocInfo::CODE_TARGET, instr);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoStringAdd(LStringAdd* instr) {
|
| + ASSERT(ToRegister(instr->context()).is(cp));
|
| + ASSERT(ToRegister(instr->left()).Is(x1));
|
| + ASSERT(ToRegister(instr->right()).Is(x0));
|
| + StringAddStub stub(instr->hydrogen()->flags(),
|
| + instr->hydrogen()->pretenure_flag());
|
| + CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
|
| + class DeferredStringCharCodeAt: public LDeferredCode {
|
| + public:
|
| + DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
|
| + : LDeferredCode(codegen), instr_(instr) { }
|
| + virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); }
|
| + virtual LInstruction* instr() { return instr_; }
|
| + private:
|
| + LStringCharCodeAt* instr_;
|
| + };
|
| +
|
| + DeferredStringCharCodeAt* deferred =
|
| + new(zone()) DeferredStringCharCodeAt(this, instr);
|
| +
|
| + StringCharLoadGenerator::Generate(masm(),
|
| + ToRegister(instr->string()),
|
| + ToRegister(instr->index()),
|
| + ToRegister(instr->result()),
|
| + deferred->entry());
|
| + __ Bind(deferred->exit());
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
|
| + Register string = ToRegister(instr->string());
|
| + Register result = ToRegister(instr->result());
|
| +
|
| + // TODO(3095996): Get rid of this. For now, we need to make the
|
| + // result register contain a valid pointer because it is already
|
| + // contained in the register pointer map.
|
| + __ Mov(result, 0);
|
| +
|
| + PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
|
| + __ Push(string);
|
| + // Push the index as a smi. This is safe because of the checks in
|
| + // DoStringCharCodeAt above.
|
| + Register index = ToRegister(instr->index());
|
| + __ SmiTag(index);
|
| + __ Push(index);
|
| +
|
| + CallRuntimeFromDeferred(Runtime::kStringCharCodeAt, 2, instr,
|
| + instr->context());
|
| + __ AssertSmi(x0);
|
| + __ SmiUntag(x0);
|
| + __ StoreToSafepointRegisterSlot(x0, result);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
|
| + class DeferredStringCharFromCode: public LDeferredCode {
|
| + public:
|
| + DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
|
| + : LDeferredCode(codegen), instr_(instr) { }
|
| + virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); }
|
| + virtual LInstruction* instr() { return instr_; }
|
| + private:
|
| + LStringCharFromCode* instr_;
|
| + };
|
| +
|
| + DeferredStringCharFromCode* deferred =
|
| + new(zone()) DeferredStringCharFromCode(this, instr);
|
| +
|
| + ASSERT(instr->hydrogen()->value()->representation().IsInteger32());
|
| + Register char_code = ToRegister(instr->char_code());
|
| + Register result = ToRegister(instr->result());
|
| +
|
| + __ Cmp(char_code, Operand(String::kMaxOneByteCharCode));
|
| + __ B(hi, deferred->entry());
|
| + __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
|
| + __ Add(result, result, Operand(char_code, LSL, kPointerSizeLog2));
|
| + __ Ldr(result, FieldMemOperand(result, FixedArray::kHeaderSize));
|
| + __ CompareRoot(result, Heap::kUndefinedValueRootIndex);
|
| + __ B(eq, deferred->entry());
|
| + __ Bind(deferred->exit());
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
|
| + Register char_code = ToRegister(instr->char_code());
|
| + Register result = ToRegister(instr->result());
|
| +
|
| + // TODO(3095996): Get rid of this. For now, we need to make the
|
| + // result register contain a valid pointer because it is already
|
| + // contained in the register pointer map.
|
| + __ Mov(result, 0);
|
| +
|
| + PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
|
| + __ SmiTag(char_code);
|
| + __ Push(char_code);
|
| + CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr, instr->context());
|
| + __ StoreToSafepointRegisterSlot(x0, result);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
|
| + ASSERT(ToRegister(instr->context()).is(cp));
|
| + Token::Value op = instr->op();
|
| +
|
| + Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op);
|
| + CallCode(ic, RelocInfo::CODE_TARGET, instr);
|
| + InlineSmiCheckInfo::EmitNotInlined(masm());
|
| +
|
| + Condition condition = TokenToCondition(op, false);
|
| +
|
| + EmitCompareAndBranch(instr, condition, x0, 0);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoSubI(LSubI* instr) {
|
| + bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
|
| + Register result = ToRegister32(instr->result());
|
| + Register left = ToRegister32(instr->left());
|
| + Operand right = ToOperand32I(instr->right());
|
| + if (can_overflow) {
|
| + __ Subs(result, left, right);
|
| + DeoptimizeIf(vs, instr->environment());
|
| + } else {
|
| + __ Sub(result, left, right);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoSubS(LSubS* instr) {
|
| + bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
|
| + Register result = ToRegister(instr->result());
|
| + Register left = ToRegister(instr->left());
|
| + Operand right = ToOperand(instr->right());
|
| + if (can_overflow) {
|
| + __ Subs(result, left, right);
|
| + DeoptimizeIf(vs, instr->environment());
|
| + } else {
|
| + __ Sub(result, left, right);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr,
|
| + LOperand* value,
|
| + LOperand* temp1,
|
| + LOperand* temp2) {
|
| + Register input = ToRegister(value);
|
| + Register scratch1 = ToRegister(temp1);
|
| + DoubleRegister dbl_scratch1 = double_scratch();
|
| +
|
| + Label done;
|
| +
|
| + // Load heap object map.
|
| + __ Ldr(scratch1, FieldMemOperand(input, HeapObject::kMapOffset));
|
| +
|
| + if (instr->truncating()) {
|
| + Register output = ToRegister(instr->result());
|
| + Register scratch2 = ToRegister(temp2);
|
| + Label check_bools;
|
| +
|
| + // If it's not a heap number, jump to undefined check.
|
| + __ JumpIfNotRoot(scratch1, Heap::kHeapNumberMapRootIndex, &check_bools);
|
| +
|
| + // A heap number: load value and convert to int32 using truncating function.
|
| + __ Ldr(dbl_scratch1, FieldMemOperand(input, HeapNumber::kValueOffset));
|
| + __ ECMA262ToInt32(output, dbl_scratch1, scratch1, scratch2);
|
| + __ B(&done);
|
| +
|
| + __ Bind(&check_bools);
|
| +
|
| + Register true_root = output;
|
| + Register false_root = scratch2;
|
| + __ LoadTrueFalseRoots(true_root, false_root);
|
| + __ Cmp(scratch1, true_root);
|
| + __ Cset(output, eq);
|
| + __ Ccmp(scratch1, false_root, ZFlag, ne);
|
| + __ B(eq, &done);
|
| +
|
| + // Output contains zero, undefined is converted to zero for truncating
|
| + // conversions.
|
| + DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex,
|
| + instr->environment());
|
| + } else {
|
| + Register output = ToRegister32(instr->result());
|
| +
|
| + DoubleRegister dbl_scratch2 = ToDoubleRegister(temp2);
|
| + Label converted;
|
| +
|
| + // Deoptimized if it's not a heap number.
|
| + DeoptimizeIfNotRoot(scratch1, Heap::kHeapNumberMapRootIndex,
|
| + instr->environment());
|
| +
|
| + // A heap number: load value and convert to int32 using non-truncating
|
| + // function. If the result is out of range, branch to deoptimize.
|
| + __ Ldr(dbl_scratch1, FieldMemOperand(input, HeapNumber::kValueOffset));
|
| + __ TryConvertDoubleToInt32(output, dbl_scratch1, dbl_scratch2, &converted);
|
| + Deoptimize(instr->environment());
|
| +
|
| + __ Bind(&converted);
|
| +
|
| + if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| + __ Cmp(output, 0);
|
| + __ B(ne, &done);
|
| + __ Fmov(scratch1, dbl_scratch1);
|
| + DeoptimizeIfNegative(scratch1, instr->environment());
|
| + }
|
| + }
|
| + __ Bind(&done);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
|
| + class DeferredTaggedToI: public LDeferredCode {
|
| + public:
|
| + DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
|
| + : LDeferredCode(codegen), instr_(instr) { }
|
| + virtual void Generate() {
|
| + codegen()->DoDeferredTaggedToI(instr_, instr_->value(), instr_->temp1(),
|
| + instr_->temp2());
|
| + }
|
| +
|
| + virtual LInstruction* instr() { return instr_; }
|
| + private:
|
| + LTaggedToI* instr_;
|
| + };
|
| +
|
| + Register input = ToRegister(instr->value());
|
| + Register output = ToRegister(instr->result());
|
| +
|
| + if (instr->hydrogen()->value()->representation().IsSmi()) {
|
| + __ SmiUntag(input);
|
| + } else {
|
| + DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
|
| +
|
| + // TODO(jbramley): We can't use JumpIfNotSmi here because the tbz it uses
|
| + // doesn't always have enough range. Consider making a variant of it, or a
|
| + // TestIsSmi helper.
|
| + STATIC_ASSERT(kSmiTag == 0);
|
| + __ Tst(input, kSmiTagMask);
|
| + __ B(ne, deferred->entry());
|
| +
|
| + __ SmiUntag(output, input);
|
| + __ Bind(deferred->exit());
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoThisFunction(LThisFunction* instr) {
|
| + Register result = ToRegister(instr->result());
|
| + __ Ldr(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
|
| + ASSERT(ToRegister(instr->value()).Is(x0));
|
| + ASSERT(ToRegister(instr->result()).Is(x0));
|
| + __ Push(x0);
|
| + CallRuntime(Runtime::kToFastProperties, 1, instr);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
|
| + ASSERT(ToRegister(instr->context()).is(cp));
|
| + Label materialized;
|
| + // Registers will be used as follows:
|
| + // x7 = literals array.
|
| + // x1 = regexp literal.
|
| + // x0 = regexp literal clone.
|
| + // x10-x12 are used as temporaries.
|
| + int literal_offset =
|
| + FixedArray::OffsetOfElementAt(instr->hydrogen()->literal_index());
|
| + __ LoadObject(x7, instr->hydrogen()->literals());
|
| + __ Ldr(x1, FieldMemOperand(x7, literal_offset));
|
| + __ JumpIfNotRoot(x1, Heap::kUndefinedValueRootIndex, &materialized);
|
| +
|
| + // Create regexp literal using runtime function
|
| + // Result will be in x0.
|
| + __ Mov(x12, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
|
| + __ Mov(x11, Operand(instr->hydrogen()->pattern()));
|
| + __ Mov(x10, Operand(instr->hydrogen()->flags()));
|
| + __ Push(x7, x12, x11, x10);
|
| + CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr);
|
| + __ Mov(x1, x0);
|
| +
|
| + __ Bind(&materialized);
|
| + int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
|
| + Label allocated, runtime_allocate;
|
| +
|
| + __ Allocate(size, x0, x10, x11, &runtime_allocate, TAG_OBJECT);
|
| + __ B(&allocated);
|
| +
|
| + __ Bind(&runtime_allocate);
|
| + __ Mov(x0, Operand(Smi::FromInt(size)));
|
| + __ Push(x1, x0);
|
| + CallRuntime(Runtime::kAllocateInNewSpace, 1, instr);
|
| + __ Pop(x1);
|
| +
|
| + __ Bind(&allocated);
|
| + // Copy the content into the newly allocated memory.
|
| + __ CopyFields(x0, x1, CPURegList(x10, x11, x12), size / kPointerSize);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
|
| + Register object = ToRegister(instr->object());
|
| + Register temp1 = ToRegister(instr->temp1());
|
| +
|
| + Handle<Map> from_map = instr->original_map();
|
| + Handle<Map> to_map = instr->transitioned_map();
|
| + ElementsKind from_kind = instr->from_kind();
|
| + ElementsKind to_kind = instr->to_kind();
|
| +
|
| + Label not_applicable;
|
| + __ CheckMap(object, temp1, from_map, ¬_applicable, DONT_DO_SMI_CHECK);
|
| +
|
| + if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
|
| + Register new_map = ToRegister(instr->temp2());
|
| + __ Mov(new_map, Operand(to_map));
|
| + __ Str(new_map, FieldMemOperand(object, HeapObject::kMapOffset));
|
| + // Write barrier.
|
| + __ RecordWriteField(object, HeapObject::kMapOffset, new_map, temp1,
|
| + GetLinkRegisterState(), kDontSaveFPRegs);
|
| + } else {
|
| + ASSERT(ToRegister(instr->context()).is(cp));
|
| + PushSafepointRegistersScope scope(
|
| + this, Safepoint::kWithRegistersAndDoubles);
|
| + __ Mov(x0, object);
|
| + __ Mov(x1, Operand(to_map));
|
| + TransitionElementsKindStub stub(from_kind, to_kind);
|
| + __ CallStub(&stub);
|
| + RecordSafepointWithRegistersAndDoubles(
|
| + instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
|
| + }
|
| + __ Bind(¬_applicable);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
|
| + Register object = ToRegister(instr->object());
|
| + Register temp1 = ToRegister(instr->temp1());
|
| + Register temp2 = ToRegister(instr->temp2());
|
| +
|
| + Label no_memento_found;
|
| + __ JumpIfJSArrayHasAllocationMemento(object, temp1, temp2, &no_memento_found);
|
| + Deoptimize(instr->environment());
|
| + __ Bind(&no_memento_found);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoTruncateDoubleToIntOrSmi(LTruncateDoubleToIntOrSmi* instr) {
|
| + DoubleRegister input = ToDoubleRegister(instr->value());
|
| + Register result = ToRegister(instr->result());
|
| + __ ECMA262ToInt32(result, input,
|
| + ToRegister(instr->temp1()),
|
| + ToRegister(instr->temp2()),
|
| + instr->tag_result()
|
| + ? MacroAssembler::SMI
|
| + : MacroAssembler::INT32_IN_W);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoTypeof(LTypeof* instr) {
|
| + Register input = ToRegister(instr->value());
|
| + __ Push(input);
|
| + CallRuntime(Runtime::kTypeof, 1, instr);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
|
| + Handle<String> type_name = instr->type_literal();
|
| + Label* true_label = instr->TrueLabel(chunk_);
|
| + Label* false_label = instr->FalseLabel(chunk_);
|
| + Register value = ToRegister(instr->value());
|
| +
|
| + if (type_name->Equals(heap()->number_string())) {
|
| + ASSERT(instr->temp1() != NULL);
|
| + Register map = ToRegister(instr->temp1());
|
| +
|
| + __ JumpIfSmi(value, true_label);
|
| + __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
|
| + __ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
|
| + EmitBranch(instr, eq);
|
| +
|
| + } else if (type_name->Equals(heap()->string_string())) {
|
| + ASSERT((instr->temp1() != NULL) && (instr->temp2() != NULL));
|
| + Register map = ToRegister(instr->temp1());
|
| + Register scratch = ToRegister(instr->temp2());
|
| +
|
| + __ JumpIfSmi(value, false_label);
|
| + __ JumpIfObjectType(
|
| + value, map, scratch, FIRST_NONSTRING_TYPE, false_label, ge);
|
| + __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
|
| + EmitTestAndBranch(instr, eq, scratch, 1 << Map::kIsUndetectable);
|
| +
|
| + } else if (type_name->Equals(heap()->symbol_string())) {
|
| + ASSERT((instr->temp1() != NULL) && (instr->temp2() != NULL));
|
| + Register map = ToRegister(instr->temp1());
|
| + Register scratch = ToRegister(instr->temp2());
|
| +
|
| + __ JumpIfSmi(value, false_label);
|
| + __ CompareObjectType(value, map, scratch, SYMBOL_TYPE);
|
| + EmitBranch(instr, eq);
|
| +
|
| + } else if (type_name->Equals(heap()->boolean_string())) {
|
| + __ JumpIfRoot(value, Heap::kTrueValueRootIndex, true_label);
|
| + __ CompareRoot(value, Heap::kFalseValueRootIndex);
|
| + EmitBranch(instr, eq);
|
| +
|
| + } else if (FLAG_harmony_typeof && type_name->Equals(heap()->null_string())) {
|
| + __ CompareRoot(value, Heap::kNullValueRootIndex);
|
| + EmitBranch(instr, eq);
|
| +
|
| + } else if (type_name->Equals(heap()->undefined_string())) {
|
| + ASSERT(instr->temp1() != NULL);
|
| + Register scratch = ToRegister(instr->temp1());
|
| +
|
| + __ JumpIfRoot(value, Heap::kUndefinedValueRootIndex, true_label);
|
| + __ JumpIfSmi(value, false_label);
|
| + // Check for undetectable objects and jump to the true branch in this case.
|
| + __ Ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
|
| + __ Ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
|
| + EmitTestAndBranch(instr, ne, scratch, 1 << Map::kIsUndetectable);
|
| +
|
| + } else if (type_name->Equals(heap()->function_string())) {
|
| + STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
|
| + ASSERT(instr->temp1() != NULL);
|
| + Register type = ToRegister(instr->temp1());
|
| +
|
| + __ JumpIfSmi(value, false_label);
|
| + __ JumpIfObjectType(value, type, type, JS_FUNCTION_TYPE, true_label);
|
| + // HeapObject's type has been loaded into type register by JumpIfObjectType.
|
| + EmitCompareAndBranch(instr, eq, type, JS_FUNCTION_PROXY_TYPE);
|
| +
|
| + } else if (type_name->Equals(heap()->object_string())) {
|
| + ASSERT((instr->temp1() != NULL) && (instr->temp2() != NULL));
|
| + Register map = ToRegister(instr->temp1());
|
| + Register scratch = ToRegister(instr->temp2());
|
| +
|
| + __ JumpIfSmi(value, false_label);
|
| + if (!FLAG_harmony_typeof) {
|
| + __ JumpIfRoot(value, Heap::kNullValueRootIndex, true_label);
|
| + }
|
| + __ JumpIfObjectType(value, map, scratch,
|
| + FIRST_NONCALLABLE_SPEC_OBJECT_TYPE, false_label, lt);
|
| + __ CompareInstanceType(map, scratch, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
|
| + __ B(gt, false_label);
|
| + // Check for undetectable objects => false.
|
| + __ Ldrb(scratch, FieldMemOperand(value, Map::kBitFieldOffset));
|
| + EmitTestAndBranch(instr, eq, scratch, 1 << Map::kIsUndetectable);
|
| +
|
| + } else {
|
| + __ B(false_label);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
|
| + __ Ucvtf(ToDoubleRegister(instr->result()), ToRegister32(instr->value()));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoUint32ToSmi(LUint32ToSmi* instr) {
|
| + Register value = ToRegister(instr->value());
|
| + Register result = ToRegister(instr->result());
|
| +
|
| + if (!instr->hydrogen()->value()->HasRange() ||
|
| + !instr->hydrogen()->value()->range()->IsInSmiRange() ||
|
| + instr->hydrogen()->value()->range()->upper() == kMaxInt) {
|
| + // The Range class can't express upper bounds in the (kMaxInt, kMaxUint32]
|
| + // interval, so we treat kMaxInt as a sentinel for this entire interval.
|
| + DeoptimizeIfNegative(value.W(), instr->environment());
|
| + }
|
| + __ SmiTag(result, value);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
|
| + Register object = ToRegister(instr->value());
|
| + Register map = ToRegister(instr->map());
|
| + Register temp = ToRegister(instr->temp());
|
| + __ Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
|
| + __ Cmp(map, temp);
|
| + DeoptimizeIf(ne, instr->environment());
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
|
| + Register receiver = ToRegister(instr->receiver());
|
| + Register function = ToRegister(instr->function());
|
| + Register result = ToRegister(instr->result());
|
| +
|
| + // If the receiver is null or undefined, we have to pass the global object as
|
| + // a receiver to normal functions. Values have to be passed unchanged to
|
| + // builtins and strict-mode functions.
|
| + Label global_object, done, deopt;
|
| +
|
| + if (!instr->hydrogen()->known_function()) {
|
| + __ Ldr(result, FieldMemOperand(function,
|
| + JSFunction::kSharedFunctionInfoOffset));
|
| +
|
| + // CompilerHints is an int32 field. See objects.h.
|
| + __ Ldr(result.W(),
|
| + FieldMemOperand(result, SharedFunctionInfo::kCompilerHintsOffset));
|
| +
|
| + // Do not transform the receiver to object for strict mode functions.
|
| + __ Tbnz(result, SharedFunctionInfo::kStrictModeFunction, &done);
|
| +
|
| + // Do not transform the receiver to object for builtins.
|
| + __ Tbnz(result, SharedFunctionInfo::kNative, &done);
|
| + }
|
| +
|
| + // Normal function. Replace undefined or null with global receiver.
|
| + __ JumpIfRoot(receiver, Heap::kNullValueRootIndex, &global_object);
|
| + __ JumpIfRoot(receiver, Heap::kUndefinedValueRootIndex, &global_object);
|
| +
|
| + // Deoptimize if the receiver is not a JS object.
|
| + __ JumpIfSmi(receiver, &deopt);
|
| + __ CompareObjectType(receiver, result, result, FIRST_SPEC_OBJECT_TYPE);
|
| + __ B(ge, &done);
|
| + // Otherwise, fall through to deopt.
|
| +
|
| + __ Bind(&deopt);
|
| + Deoptimize(instr->environment());
|
| +
|
| + __ Bind(&global_object);
|
| + // We could load directly into the result register here, but the additional
|
| + // branches required are likely to be more time consuming than one additional
|
| + // move.
|
| + __ Ldr(receiver, FieldMemOperand(function, JSFunction::kContextOffset));
|
| + __ Ldr(receiver, ContextMemOperand(receiver, Context::GLOBAL_OBJECT_INDEX));
|
| + __ Ldr(receiver,
|
| + FieldMemOperand(receiver, GlobalObject::kGlobalReceiverOffset));
|
| +
|
| + __ Bind(&done);
|
| + __ Mov(result, receiver);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
|
| + Register object = ToRegister(instr->object());
|
| + Register index = ToRegister(instr->index());
|
| + Register result = ToRegister(instr->result());
|
| +
|
| + __ AssertSmi(index);
|
| +
|
| + Label out_of_object, done;
|
| + __ Cmp(index, Operand(Smi::FromInt(0)));
|
| + __ B(lt, &out_of_object);
|
| +
|
| + STATIC_ASSERT(kPointerSizeLog2 > kSmiTagSize);
|
| + __ Add(result, object, Operand::UntagSmiAndScale(index, kPointerSizeLog2));
|
| + __ Ldr(result, FieldMemOperand(result, JSObject::kHeaderSize));
|
| +
|
| + __ B(&done);
|
| +
|
| + __ Bind(&out_of_object);
|
| + __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
|
| + // Index is equal to negated out of object property index plus 1.
|
| + __ Sub(result, result, Operand::UntagSmiAndScale(index, kPointerSizeLog2));
|
| + __ Ldr(result, FieldMemOperand(result,
|
| + FixedArray::kHeaderSize - kPointerSize));
|
| + __ Bind(&done);
|
| +}
|
| +
|
| +} } // namespace v8::internal
|
|
|