Chromium Code Reviews

Unified Diff: src/a64/lithium-codegen-a64.cc

Issue 148293020: Merge experimental/a64 to bleeding_edge. (Closed) Base URL: https://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: Remove ARM from OWNERS Created 6 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments.
Jump to:
View side-by-side diff with in-line comments
« no previous file with comments | « src/a64/lithium-codegen-a64.h ('k') | src/a64/lithium-gap-resolver-a64.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/a64/lithium-codegen-a64.cc
diff --git a/src/a64/lithium-codegen-a64.cc b/src/a64/lithium-codegen-a64.cc
new file mode 100644
index 0000000000000000000000000000000000000000..da03ccc214700a949048b590d342a434f84521c2
--- /dev/null
+++ b/src/a64/lithium-codegen-a64.cc
@@ -0,0 +1,5703 @@
+// Copyright 2013 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "v8.h"
+
+#include "a64/lithium-codegen-a64.h"
+#include "a64/lithium-gap-resolver-a64.h"
+#include "code-stubs.h"
+#include "stub-cache.h"
+#include "hydrogen-osr.h"
+
+namespace v8 {
+namespace internal {
+
+
+class SafepointGenerator V8_FINAL : public CallWrapper {
+ public:
+ SafepointGenerator(LCodeGen* codegen,
+ LPointerMap* pointers,
+ Safepoint::DeoptMode mode)
+ : codegen_(codegen),
+ pointers_(pointers),
+ deopt_mode_(mode) { }
+ virtual ~SafepointGenerator() { }
+
+ virtual void BeforeCall(int call_size) const { }
+
+ virtual void AfterCall() const {
+ codegen_->RecordSafepoint(pointers_, deopt_mode_);
+ }
+
+ private:
+ LCodeGen* codegen_;
+ LPointerMap* pointers_;
+ Safepoint::DeoptMode deopt_mode_;
+};
+
+
+#define __ masm()->
+
+// Emit code to branch if the given condition holds.
+// The code generated here doesn't modify the flags and they must have
+// been set by some prior instructions.
+//
+// The EmitInverted function simply inverts the condition.
+class BranchOnCondition : public BranchGenerator {
+ public:
+ BranchOnCondition(LCodeGen* codegen, Condition cond)
+ : BranchGenerator(codegen),
+ cond_(cond) { }
+
+ virtual void Emit(Label* label) const {
+ __ B(cond_, label);
+ }
+
+ virtual void EmitInverted(Label* label) const {
+ if (cond_ != al) {
+ __ B(InvertCondition(cond_), label);
+ }
+ }
+
+ private:
+ Condition cond_;
+};
+
+
+// Emit code to compare lhs and rhs and branch if the condition holds.
+// This uses MacroAssembler's CompareAndBranch function so it will handle
+// converting the comparison to Cbz/Cbnz if the right-hand side is 0.
+//
+// EmitInverted still compares the two operands but inverts the condition.
+class CompareAndBranch : public BranchGenerator {
+ public:
+ CompareAndBranch(LCodeGen* codegen,
+ Condition cond,
+ const Register& lhs,
+ const Operand& rhs)
+ : BranchGenerator(codegen),
+ cond_(cond),
+ lhs_(lhs),
+ rhs_(rhs) { }
+
+ virtual void Emit(Label* label) const {
+ __ CompareAndBranch(lhs_, rhs_, cond_, label);
+ }
+
+ virtual void EmitInverted(Label* label) const {
+ __ CompareAndBranch(lhs_, rhs_, InvertCondition(cond_), label);
+ }
+
+ private:
+ Condition cond_;
+ const Register& lhs_;
+ const Operand& rhs_;
+};
+
+
+// Test the input with the given mask and branch if the condition holds.
+// If the condition is 'eq' or 'ne' this will use MacroAssembler's
+// TestAndBranchIfAllClear and TestAndBranchIfAnySet so it will handle the
+// conversion to Tbz/Tbnz when possible.
+class TestAndBranch : public BranchGenerator {
+ public:
+ TestAndBranch(LCodeGen* codegen,
+ Condition cond,
+ const Register& value,
+ uint64_t mask)
+ : BranchGenerator(codegen),
+ cond_(cond),
+ value_(value),
+ mask_(mask) { }
+
+ virtual void Emit(Label* label) const {
+ switch (cond_) {
+ case eq:
+ __ TestAndBranchIfAllClear(value_, mask_, label);
+ break;
+ case ne:
+ __ TestAndBranchIfAnySet(value_, mask_, label);
+ break;
+ default:
+ __ Tst(value_, mask_);
+ __ B(cond_, label);
+ }
+ }
+
+ virtual void EmitInverted(Label* label) const {
+ // The inverse of "all clear" is "any set" and vice versa.
+ switch (cond_) {
+ case eq:
+ __ TestAndBranchIfAnySet(value_, mask_, label);
+ break;
+ case ne:
+ __ TestAndBranchIfAllClear(value_, mask_, label);
+ break;
+ default:
+ __ Tst(value_, mask_);
+ __ B(InvertCondition(cond_), label);
+ }
+ }
+
+ private:
+ Condition cond_;
+ const Register& value_;
+ uint64_t mask_;
+};
+
+
+// Test the input and branch if it is non-zero and not a NaN.
+class BranchIfNonZeroNumber : public BranchGenerator {
+ public:
+ BranchIfNonZeroNumber(LCodeGen* codegen, const FPRegister& value,
+ const FPRegister& scratch)
+ : BranchGenerator(codegen), value_(value), scratch_(scratch) { }
+
+ virtual void Emit(Label* label) const {
+ __ Fabs(scratch_, value_);
+ // Compare with 0.0. Because scratch_ is positive, the result can be one of
+ // nZCv (equal), nzCv (greater) or nzCV (unordered).
+ __ Fcmp(scratch_, 0.0);
+ __ B(gt, label);
+ }
+
+ virtual void EmitInverted(Label* label) const {
+ __ Fabs(scratch_, value_);
+ __ Fcmp(scratch_, 0.0);
+ __ B(le, label);
+ }
+
+ private:
+ const FPRegister& value_;
+ const FPRegister& scratch_;
+};
+
+
+// Test the input and branch if it is a heap number.
+class BranchIfHeapNumber : public BranchGenerator {
+ public:
+ BranchIfHeapNumber(LCodeGen* codegen, const Register& value)
+ : BranchGenerator(codegen), value_(value) { }
+
+ virtual void Emit(Label* label) const {
+ __ JumpIfHeapNumber(value_, label);
+ }
+
+ virtual void EmitInverted(Label* label) const {
+ __ JumpIfNotHeapNumber(value_, label);
+ }
+
+ private:
+ const Register& value_;
+};
+
+
+// Test the input and branch if it is the specified root value.
+class BranchIfRoot : public BranchGenerator {
+ public:
+ BranchIfRoot(LCodeGen* codegen, const Register& value,
+ Heap::RootListIndex index)
+ : BranchGenerator(codegen), value_(value), index_(index) { }
+
+ virtual void Emit(Label* label) const {
+ __ JumpIfRoot(value_, index_, label);
+ }
+
+ virtual void EmitInverted(Label* label) const {
+ __ JumpIfNotRoot(value_, index_, label);
+ }
+
+ private:
+ const Register& value_;
+ const Heap::RootListIndex index_;
+};
+
+
+void LCodeGen::WriteTranslation(LEnvironment* environment,
+ Translation* translation) {
+ if (environment == NULL) return;
+
+ // The translation includes one command per value in the environment.
+ int translation_size = environment->translation_size();
+ // The output frame height does not include the parameters.
+ int height = translation_size - environment->parameter_count();
+
+ WriteTranslation(environment->outer(), translation);
+ bool has_closure_id = !info()->closure().is_null() &&
+ !info()->closure().is_identical_to(environment->closure());
+ int closure_id = has_closure_id
+ ? DefineDeoptimizationLiteral(environment->closure())
+ : Translation::kSelfLiteralId;
+
+ switch (environment->frame_type()) {
+ case JS_FUNCTION:
+ translation->BeginJSFrame(environment->ast_id(), closure_id, height);
+ break;
+ case JS_CONSTRUCT:
+ translation->BeginConstructStubFrame(closure_id, translation_size);
+ break;
+ case JS_GETTER:
+ ASSERT(translation_size == 1);
+ ASSERT(height == 0);
+ translation->BeginGetterStubFrame(closure_id);
+ break;
+ case JS_SETTER:
+ ASSERT(translation_size == 2);
+ ASSERT(height == 0);
+ translation->BeginSetterStubFrame(closure_id);
+ break;
+ case STUB:
+ translation->BeginCompiledStubFrame();
+ break;
+ case ARGUMENTS_ADAPTOR:
+ translation->BeginArgumentsAdaptorFrame(closure_id, translation_size);
+ break;
+ default:
+ UNREACHABLE();
+ }
+
+ int object_index = 0;
+ int dematerialized_index = 0;
+ for (int i = 0; i < translation_size; ++i) {
+ LOperand* value = environment->values()->at(i);
+
+ AddToTranslation(environment,
+ translation,
+ value,
+ environment->HasTaggedValueAt(i),
+ environment->HasUint32ValueAt(i),
+ &object_index,
+ &dematerialized_index);
+ }
+}
+
+
+void LCodeGen::AddToTranslation(LEnvironment* environment,
+ Translation* translation,
+ LOperand* op,
+ bool is_tagged,
+ bool is_uint32,
+ int* object_index_pointer,
+ int* dematerialized_index_pointer) {
+ if (op == LEnvironment::materialization_marker()) {
+ int object_index = (*object_index_pointer)++;
+ if (environment->ObjectIsDuplicateAt(object_index)) {
+ int dupe_of = environment->ObjectDuplicateOfAt(object_index);
+ translation->DuplicateObject(dupe_of);
+ return;
+ }
+ int object_length = environment->ObjectLengthAt(object_index);
+ if (environment->ObjectIsArgumentsAt(object_index)) {
+ translation->BeginArgumentsObject(object_length);
+ } else {
+ translation->BeginCapturedObject(object_length);
+ }
+ int dematerialized_index = *dematerialized_index_pointer;
+ int env_offset = environment->translation_size() + dematerialized_index;
+ *dematerialized_index_pointer += object_length;
+ for (int i = 0; i < object_length; ++i) {
+ LOperand* value = environment->values()->at(env_offset + i);
+ AddToTranslation(environment,
+ translation,
+ value,
+ environment->HasTaggedValueAt(env_offset + i),
+ environment->HasUint32ValueAt(env_offset + i),
+ object_index_pointer,
+ dematerialized_index_pointer);
+ }
+ return;
+ }
+
+ if (op->IsStackSlot()) {
+ if (is_tagged) {
+ translation->StoreStackSlot(op->index());
+ } else if (is_uint32) {
+ translation->StoreUint32StackSlot(op->index());
+ } else {
+ translation->StoreInt32StackSlot(op->index());
+ }
+ } else if (op->IsDoubleStackSlot()) {
+ translation->StoreDoubleStackSlot(op->index());
+ } else if (op->IsArgument()) {
+ ASSERT(is_tagged);
+ int src_index = GetStackSlotCount() + op->index();
+ translation->StoreStackSlot(src_index);
+ } else if (op->IsRegister()) {
+ Register reg = ToRegister(op);
+ if (is_tagged) {
+ translation->StoreRegister(reg);
+ } else if (is_uint32) {
+ translation->StoreUint32Register(reg);
+ } else {
+ translation->StoreInt32Register(reg);
+ }
+ } else if (op->IsDoubleRegister()) {
+ DoubleRegister reg = ToDoubleRegister(op);
+ translation->StoreDoubleRegister(reg);
+ } else if (op->IsConstantOperand()) {
+ HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
+ int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
+ translation->StoreLiteral(src_index);
+ } else {
+ UNREACHABLE();
+ }
+}
+
+
+int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
+ int result = deoptimization_literals_.length();
+ for (int i = 0; i < deoptimization_literals_.length(); ++i) {
+ if (deoptimization_literals_[i].is_identical_to(literal)) return i;
+ }
+ deoptimization_literals_.Add(literal, zone());
+ return result;
+}
+
+
+void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
+ Safepoint::DeoptMode mode) {
+ if (!environment->HasBeenRegistered()) {
+ int frame_count = 0;
+ int jsframe_count = 0;
+ for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
+ ++frame_count;
+ if (e->frame_type() == JS_FUNCTION) {
+ ++jsframe_count;
+ }
+ }
+ Translation translation(&translations_, frame_count, jsframe_count, zone());
+ WriteTranslation(environment, &translation);
+ int deoptimization_index = deoptimizations_.length();
+ int pc_offset = masm()->pc_offset();
+ environment->Register(deoptimization_index,
+ translation.index(),
+ (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
+ deoptimizations_.Add(environment, zone());
+ }
+}
+
+
+void LCodeGen::CallCode(Handle<Code> code,
+ RelocInfo::Mode mode,
+ LInstruction* instr) {
+ CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
+}
+
+
+void LCodeGen::CallCodeGeneric(Handle<Code> code,
+ RelocInfo::Mode mode,
+ LInstruction* instr,
+ SafepointMode safepoint_mode) {
+ ASSERT(instr != NULL);
+
+ Assembler::BlockConstPoolScope scope(masm_);
+ __ Call(code, mode);
+ RecordSafepointWithLazyDeopt(instr, safepoint_mode);
+
+ if ((code->kind() == Code::BINARY_OP_IC) ||
+ (code->kind() == Code::COMPARE_IC)) {
+ // Signal that we don't inline smi code before these stubs in the
+ // optimizing code generator.
+ InlineSmiCheckInfo::EmitNotInlined(masm());
+ }
+}
+
+
+void LCodeGen::DoCallFunction(LCallFunction* instr) {
+ ASSERT(ToRegister(instr->context()).is(cp));
+ ASSERT(ToRegister(instr->function()).Is(x1));
+ ASSERT(ToRegister(instr->result()).Is(x0));
+
+ int arity = instr->arity();
+ CallFunctionStub stub(arity, instr->hydrogen()->function_flags());
+ CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoCallNew(LCallNew* instr) {
+ ASSERT(ToRegister(instr->context()).is(cp));
+ ASSERT(instr->IsMarkedAsCall());
+ ASSERT(ToRegister(instr->constructor()).is(x1));
+
+ __ Mov(x0, instr->arity());
+ // No cell in x2 for construct type feedback in optimized code.
+ Handle<Object> undefined_value(isolate()->factory()->undefined_value());
+ __ Mov(x2, Operand(undefined_value));
+
+ CallConstructStub stub(NO_CALL_FUNCTION_FLAGS);
+ CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr);
+
+ ASSERT(ToRegister(instr->result()).is(x0));
+}
+
+
+void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
+ ASSERT(instr->IsMarkedAsCall());
+ ASSERT(ToRegister(instr->context()).is(cp));
+ ASSERT(ToRegister(instr->constructor()).is(x1));
+
+ __ Mov(x0, Operand(instr->arity()));
+ __ Mov(x2, Operand(factory()->undefined_value()));
+
+ ElementsKind kind = instr->hydrogen()->elements_kind();
+ AllocationSiteOverrideMode override_mode =
+ (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
+ ? DISABLE_ALLOCATION_SITES
+ : DONT_OVERRIDE;
+
+ if (instr->arity() == 0) {
+ ArrayNoArgumentConstructorStub stub(kind, override_mode);
+ CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr);
+ } else if (instr->arity() == 1) {
+ Label done;
+ if (IsFastPackedElementsKind(kind)) {
+ Label packed_case;
+
+ // We might need to create a holey array; look at the first argument.
+ __ Peek(x10, 0);
+ __ Cbz(x10, &packed_case);
+
+ ElementsKind holey_kind = GetHoleyElementsKind(kind);
+ ArraySingleArgumentConstructorStub stub(holey_kind, override_mode);
+ CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr);
+ __ B(&done);
+ __ Bind(&packed_case);
+ }
+
+ ArraySingleArgumentConstructorStub stub(kind, override_mode);
+ CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr);
+ __ Bind(&done);
+ } else {
+ ArrayNArgumentsConstructorStub stub(kind, override_mode);
+ CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr);
+ }
+
+ ASSERT(ToRegister(instr->result()).is(x0));
+}
+
+
+void LCodeGen::CallRuntime(const Runtime::Function* function,
+ int num_arguments,
+ LInstruction* instr,
+ SaveFPRegsMode save_doubles) {
+ ASSERT(instr != NULL);
+
+ __ CallRuntime(function, num_arguments, save_doubles);
+
+ RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
+}
+
+
+void LCodeGen::LoadContextFromDeferred(LOperand* context) {
+ if (context->IsRegister()) {
+ __ Mov(cp, ToRegister(context));
+ } else if (context->IsStackSlot()) {
+ __ Ldr(cp, ToMemOperand(context));
+ } else if (context->IsConstantOperand()) {
+ HConstant* constant =
+ chunk_->LookupConstant(LConstantOperand::cast(context));
+ __ LoadHeapObject(cp,
+ Handle<HeapObject>::cast(constant->handle(isolate())));
+ } else {
+ UNREACHABLE();
+ }
+}
+
+
+void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
+ int argc,
+ LInstruction* instr,
+ LOperand* context) {
+ LoadContextFromDeferred(context);
+ __ CallRuntimeSaveDoubles(id);
+ RecordSafepointWithRegisters(
+ instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
+}
+
+
+void LCodeGen::RecordAndWritePosition(int position) {
+ if (position == RelocInfo::kNoPosition) return;
+ masm()->positions_recorder()->RecordPosition(position);
+ masm()->positions_recorder()->WriteRecordedPositions();
+}
+
+
+void LCodeGen::RecordSafepointWithLazyDeopt(LInstruction* instr,
+ SafepointMode safepoint_mode) {
+ if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
+ RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
+ } else {
+ ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
+ RecordSafepointWithRegisters(
+ instr->pointer_map(), 0, Safepoint::kLazyDeopt);
+ }
+}
+
+
+void LCodeGen::RecordSafepoint(LPointerMap* pointers,
+ Safepoint::Kind kind,
+ int arguments,
+ Safepoint::DeoptMode deopt_mode) {
+ ASSERT(expected_safepoint_kind_ == kind);
+
+ const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
+ Safepoint safepoint = safepoints_.DefineSafepoint(
+ masm(), kind, arguments, deopt_mode);
+
+ for (int i = 0; i < operands->length(); i++) {
+ LOperand* pointer = operands->at(i);
+ if (pointer->IsStackSlot()) {
+ safepoint.DefinePointerSlot(pointer->index(), zone());
+ } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
+ safepoint.DefinePointerRegister(ToRegister(pointer), zone());
+ }
+ }
+
+ if (kind & Safepoint::kWithRegisters) {
+ // Register cp always contains a pointer to the context.
+ safepoint.DefinePointerRegister(cp, zone());
+ }
+}
+
+void LCodeGen::RecordSafepoint(LPointerMap* pointers,
+ Safepoint::DeoptMode deopt_mode) {
+ RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
+}
+
+
+void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
+ LPointerMap empty_pointers(zone());
+ RecordSafepoint(&empty_pointers, deopt_mode);
+}
+
+
+void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
+ int arguments,
+ Safepoint::DeoptMode deopt_mode) {
+ RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
+}
+
+
+void LCodeGen::RecordSafepointWithRegistersAndDoubles(
+ LPointerMap* pointers, int arguments, Safepoint::DeoptMode deopt_mode) {
+ RecordSafepoint(
+ pointers, Safepoint::kWithRegistersAndDoubles, arguments, deopt_mode);
+}
+
+
+bool LCodeGen::GenerateCode() {
+ LPhase phase("Z_Code generation", chunk());
+ ASSERT(is_unused());
+ status_ = GENERATING;
+
+ // Open a frame scope to indicate that there is a frame on the stack. The
+ // NONE indicates that the scope shouldn't actually generate code to set up
+ // the frame (that is done in GeneratePrologue).
+ FrameScope frame_scope(masm_, StackFrame::NONE);
+
+ return GeneratePrologue() &&
+ GenerateBody() &&
+ GenerateDeferredCode() &&
+ GenerateDeoptJumpTable() &&
+ GenerateSafepointTable();
+}
+
+
+void LCodeGen::SaveCallerDoubles() {
+ ASSERT(info()->saves_caller_doubles());
+ ASSERT(NeedsEagerFrame());
+ Comment(";;; Save clobbered callee double registers");
+ BitVector* doubles = chunk()->allocated_double_registers();
+ BitVector::Iterator iterator(doubles);
+ int count = 0;
+ while (!iterator.Done()) {
+ // TODO(all): Is this supposed to save just the callee-saved doubles? It
+ // looks like it's saving all of them.
+ FPRegister value = FPRegister::FromAllocationIndex(iterator.Current());
+ __ Poke(value, count * kDoubleSize);
+ iterator.Advance();
+ count++;
+ }
+}
+
+
+void LCodeGen::RestoreCallerDoubles() {
+ ASSERT(info()->saves_caller_doubles());
+ ASSERT(NeedsEagerFrame());
+ Comment(";;; Restore clobbered callee double registers");
+ BitVector* doubles = chunk()->allocated_double_registers();
+ BitVector::Iterator iterator(doubles);
+ int count = 0;
+ while (!iterator.Done()) {
+ // TODO(all): Is this supposed to restore just the callee-saved doubles? It
+ // looks like it's restoring all of them.
+ FPRegister value = FPRegister::FromAllocationIndex(iterator.Current());
+ __ Peek(value, count * kDoubleSize);
+ iterator.Advance();
+ count++;
+ }
+}
+
+
+bool LCodeGen::GeneratePrologue() {
+ ASSERT(is_generating());
+
+ if (info()->IsOptimizing()) {
+ ProfileEntryHookStub::MaybeCallEntryHook(masm_);
+
+ // TODO(all): Add support for stop_t FLAG in DEBUG mode.
+
+ // Classic mode functions and builtins need to replace the receiver with the
+ // global proxy when called as functions (without an explicit receiver
+ // object).
+ if (info_->this_has_uses() &&
+ info_->is_classic_mode() &&
+ !info_->is_native()) {
+ Label ok;
+ int receiver_offset = info_->scope()->num_parameters() * kXRegSizeInBytes;
+ __ Peek(x10, receiver_offset);
+ __ JumpIfNotRoot(x10, Heap::kUndefinedValueRootIndex, &ok);
+
+ __ Ldr(x10, GlobalObjectMemOperand());
+ __ Ldr(x10, FieldMemOperand(x10, GlobalObject::kGlobalReceiverOffset));
+ __ Poke(x10, receiver_offset);
+
+ __ Bind(&ok);
+ }
+ }
+
+ ASSERT(__ StackPointer().Is(jssp));
+ info()->set_prologue_offset(masm_->pc_offset());
+ if (NeedsEagerFrame()) {
+ __ Prologue(info()->IsStub() ? BUILD_STUB_FRAME : BUILD_FUNCTION_FRAME);
+ frame_is_built_ = true;
+ info_->AddNoFrameRange(0, masm_->pc_offset());
+ }
+
+ // Reserve space for the stack slots needed by the code.
+ int slots = GetStackSlotCount();
+ if (slots > 0) {
+ __ Claim(slots, kPointerSize);
+ }
+
+ if (info()->saves_caller_doubles()) {
+ SaveCallerDoubles();
+ }
+
+ // Allocate a local context if needed.
+ int heap_slots = info()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
+ if (heap_slots > 0) {
+ Comment(";;; Allocate local context");
+ // Argument to NewContext is the function, which is in x1.
+ if (heap_slots <= FastNewContextStub::kMaximumSlots) {
+ FastNewContextStub stub(heap_slots);
+ __ CallStub(&stub);
+ } else {
+ __ Push(x1);
+ __ CallRuntime(Runtime::kNewFunctionContext, 1);
+ }
+ RecordSafepoint(Safepoint::kNoLazyDeopt);
+ // Context is returned in x0. It replaces the context passed to us. It's
+ // saved in the stack and kept live in cp.
+ __ Mov(cp, x0);
+ __ Str(x0, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ // Copy any necessary parameters into the context.
+ int num_parameters = scope()->num_parameters();
+ for (int i = 0; i < num_parameters; i++) {
+ Variable* var = scope()->parameter(i);
+ if (var->IsContextSlot()) {
+ Register value = x0;
+ Register scratch = x3;
+
+ int parameter_offset = StandardFrameConstants::kCallerSPOffset +
+ (num_parameters - 1 - i) * kPointerSize;
+ // Load parameter from stack.
+ __ Ldr(value, MemOperand(fp, parameter_offset));
+ // Store it in the context.
+ MemOperand target = ContextMemOperand(cp, var->index());
+ __ Str(value, target);
+ // Update the write barrier. This clobbers value and scratch.
+ __ RecordWriteContextSlot(cp, target.offset(), value, scratch,
+ GetLinkRegisterState(), kSaveFPRegs);
+ }
+ }
+ Comment(";;; End allocate local context");
+ }
+
+ // Trace the call.
+ if (FLAG_trace && info()->IsOptimizing()) {
+ // We have not executed any compiled code yet, so cp still holds the
+ // incoming context.
+ __ CallRuntime(Runtime::kTraceEnter, 0);
+ }
+
+ return !is_aborted();
+}
+
+
+void LCodeGen::GenerateOsrPrologue() {
+ // Generate the OSR entry prologue at the first unknown OSR value, or if there
+ // are none, at the OSR entrypoint instruction.
+ if (osr_pc_offset_ >= 0) return;
+
+ osr_pc_offset_ = masm()->pc_offset();
+
+ // Adjust the frame size, subsuming the unoptimized frame into the
+ // optimized frame.
+ int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
+ ASSERT(slots >= 0);
+ __ Claim(slots);
+}
+
+
+bool LCodeGen::GenerateDeferredCode() {
+ ASSERT(is_generating());
+ if (deferred_.length() > 0) {
+ for (int i = 0; !is_aborted() && (i < deferred_.length()); i++) {
+ LDeferredCode* code = deferred_[i];
+
+ HValue* value =
+ instructions_->at(code->instruction_index())->hydrogen_value();
+ RecordAndWritePosition(value->position());
+
+ Comment(";;; <@%d,#%d> "
+ "-------------------- Deferred %s --------------------",
+ code->instruction_index(),
+ code->instr()->hydrogen_value()->id(),
+ code->instr()->Mnemonic());
+
+ __ Bind(code->entry());
+
+ if (NeedsDeferredFrame()) {
+ Comment(";;; Build frame");
+ ASSERT(!frame_is_built_);
+ ASSERT(info()->IsStub());
+ frame_is_built_ = true;
+ __ Push(lr, fp, cp);
+ __ Mov(fp, Operand(Smi::FromInt(StackFrame::STUB)));
+ __ Push(fp);
+ __ Add(fp, __ StackPointer(),
+ StandardFrameConstants::kFixedFrameSizeFromFp);
+ Comment(";;; Deferred code");
+ }
+
+ code->Generate();
+
+ if (NeedsDeferredFrame()) {
+ Comment(";;; Destroy frame");
+ ASSERT(frame_is_built_);
+ __ Pop(xzr, cp, fp, lr);
+ frame_is_built_ = false;
+ }
+
+ __ B(code->exit());
+ }
+ }
+
+ // Force constant pool emission at the end of the deferred code to make
+ // sure that no constant pools are emitted after deferred code because
+ // deferred code generation is the last step which generates code. The two
+ // following steps will only output data used by crakshaft.
+ masm()->CheckConstPool(true, false);
+
+ return !is_aborted();
+}
+
+
+bool LCodeGen::GenerateDeoptJumpTable() {
+ if (deopt_jump_table_.length() > 0) {
+ Comment(";;; -------------------- Jump table --------------------");
+ }
+ Label table_start;
+ __ bind(&table_start);
+ Label needs_frame;
+ for (int i = 0; i < deopt_jump_table_.length(); i++) {
+ __ Bind(&deopt_jump_table_[i].label);
+ Address entry = deopt_jump_table_[i].address;
+ Deoptimizer::BailoutType type = deopt_jump_table_[i].bailout_type;
+ int id = Deoptimizer::GetDeoptimizationId(isolate(), entry, type);
+ if (id == Deoptimizer::kNotDeoptimizationEntry) {
+ Comment(";;; jump table entry %d.", i);
+ } else {
+ Comment(";;; jump table entry %d: deoptimization bailout %d.", i, id);
+ }
+ if (deopt_jump_table_[i].needs_frame) {
+ ASSERT(!info()->saves_caller_doubles());
+ __ Mov(__ Tmp0(), Operand(ExternalReference::ForDeoptEntry(entry)));
+ if (needs_frame.is_bound()) {
+ __ B(&needs_frame);
+ } else {
+ __ Bind(&needs_frame);
+ // This variant of deopt can only be used with stubs. Since we don't
+ // have a function pointer to install in the stack frame that we're
+ // building, install a special marker there instead.
+ // TODO(jochen): Revisit the use of TmpX().
+ ASSERT(info()->IsStub());
+ __ Mov(__ Tmp1(), Operand(Smi::FromInt(StackFrame::STUB)));
+ __ Push(lr, fp, cp, __ Tmp1());
+ __ Add(fp, __ StackPointer(), 2 * kPointerSize);
+ __ Call(__ Tmp0());
+ }
+ } else {
+ if (info()->saves_caller_doubles()) {
+ ASSERT(info()->IsStub());
+ RestoreCallerDoubles();
+ }
+ __ Call(entry, RelocInfo::RUNTIME_ENTRY);
+ }
+ masm()->CheckConstPool(false, false);
+ }
+
+ // Force constant pool emission at the end of the deopt jump table to make
+ // sure that no constant pools are emitted after.
+ masm()->CheckConstPool(true, false);
+
+ // The deoptimization jump table is the last part of the instruction
+ // sequence. Mark the generated code as done unless we bailed out.
+ if (!is_aborted()) status_ = DONE;
+ return !is_aborted();
+}
+
+
+bool LCodeGen::GenerateSafepointTable() {
+ ASSERT(is_done());
+ safepoints_.Emit(masm(), GetStackSlotCount());
+ return !is_aborted();
+}
+
+
+void LCodeGen::FinishCode(Handle<Code> code) {
+ ASSERT(is_done());
+ code->set_stack_slots(GetStackSlotCount());
+ code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
+ RegisterDependentCodeForEmbeddedMaps(code);
+ PopulateDeoptimizationData(code);
+ info()->CommitDependencies(code);
+}
+
+
+void LCodeGen::Abort(BailoutReason reason) {
+ info()->set_bailout_reason(reason);
+ status_ = ABORTED;
+}
+
+
+void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
+ int length = deoptimizations_.length();
+ if (length == 0) return;
+
+ Handle<DeoptimizationInputData> data =
+ factory()->NewDeoptimizationInputData(length, TENURED);
+
+ Handle<ByteArray> translations =
+ translations_.CreateByteArray(isolate()->factory());
+ data->SetTranslationByteArray(*translations);
+ data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
+
+ Handle<FixedArray> literals =
+ factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
+ { AllowDeferredHandleDereference copy_handles;
+ for (int i = 0; i < deoptimization_literals_.length(); i++) {
+ literals->set(i, *deoptimization_literals_[i]);
+ }
+ data->SetLiteralArray(*literals);
+ }
+
+ data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt()));
+ data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
+
+ // Populate the deoptimization entries.
+ for (int i = 0; i < length; i++) {
+ LEnvironment* env = deoptimizations_[i];
+ data->SetAstId(i, env->ast_id());
+ data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
+ data->SetArgumentsStackHeight(i,
+ Smi::FromInt(env->arguments_stack_height()));
+ data->SetPc(i, Smi::FromInt(env->pc_offset()));
+ }
+
+ code->set_deoptimization_data(*data);
+}
+
+
+void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
+ ASSERT(deoptimization_literals_.length() == 0);
+
+ const ZoneList<Handle<JSFunction> >* inlined_closures =
+ chunk()->inlined_closures();
+
+ for (int i = 0, length = inlined_closures->length(); i < length; i++) {
+ DefineDeoptimizationLiteral(inlined_closures->at(i));
+ }
+
+ inlined_function_count_ = deoptimization_literals_.length();
+}
+
+
+Deoptimizer::BailoutType LCodeGen::DeoptimizeHeader(
+ LEnvironment* environment,
+ Deoptimizer::BailoutType* override_bailout_type) {
+ RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
+ ASSERT(environment->HasBeenRegistered());
+ ASSERT(info()->IsOptimizing() || info()->IsStub());
+ int id = environment->deoptimization_index();
+ Deoptimizer::BailoutType bailout_type =
+ info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER;
+ if (override_bailout_type) bailout_type = *override_bailout_type;
+ Address entry =
+ Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
+
+ if (entry == NULL) {
+ Abort(kBailoutWasNotPrepared);
+ return bailout_type;
+ }
+
+ if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
+ Label not_zero;
+ ExternalReference count = ExternalReference::stress_deopt_count(isolate());
+
+ __ Push(x0, x1, x2);
+ __ Mrs(x2, NZCV);
+ __ Mov(x0, Operand(count));
+ __ Ldr(w1, MemOperand(x0));
+ __ Subs(x1, x1, 1);
+ __ B(gt, &not_zero);
+ __ Mov(w1, FLAG_deopt_every_n_times);
+ __ Str(w1, MemOperand(x0));
+ __ Pop(x0, x1, x2);
+ ASSERT(frame_is_built_);
+ __ Call(entry, RelocInfo::RUNTIME_ENTRY);
+ __ Unreachable();
+
+ __ Bind(&not_zero);
+ __ Str(w1, MemOperand(x0));
+ __ Msr(NZCV, x2);
+ __ Pop(x0, x1, x2);
+ }
+
+ return bailout_type;
+}
+
+
+void LCodeGen::Deoptimize(LEnvironment* environment,
+ Deoptimizer::BailoutType bailout_type) {
+ ASSERT(environment->HasBeenRegistered());
+ ASSERT(info()->IsOptimizing() || info()->IsStub());
+ int id = environment->deoptimization_index();
+ Address entry =
+ Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
+
+ if (info()->ShouldTrapOnDeopt()) {
+ __ Debug("trap_on_deopt", __LINE__, BREAK);
+ }
+
+ ASSERT(info()->IsStub() || frame_is_built_);
+ // Go through jump table if we need to build frame, or restore caller doubles.
+ if (frame_is_built_ && !info()->saves_caller_doubles()) {
+ __ Call(entry, RelocInfo::RUNTIME_ENTRY);
+ } else {
+ // We often have several deopts to the same entry, reuse the last
+ // jump entry if this is the case.
+ if (deopt_jump_table_.is_empty() ||
+ (deopt_jump_table_.last().address != entry) ||
+ (deopt_jump_table_.last().bailout_type != bailout_type) ||
+ (deopt_jump_table_.last().needs_frame != !frame_is_built_)) {
+ Deoptimizer::JumpTableEntry table_entry(entry,
+ bailout_type,
+ !frame_is_built_);
+ deopt_jump_table_.Add(table_entry, zone());
+ }
+ __ B(&deopt_jump_table_.last().label);
+ }
+}
+
+
+void LCodeGen::Deoptimize(LEnvironment* environment) {
+ Deoptimizer::BailoutType bailout_type = DeoptimizeHeader(environment, NULL);
+ Deoptimize(environment, bailout_type);
+}
+
+
+void LCodeGen::DeoptimizeIf(Condition cond, LEnvironment* environment) {
+ Label dont_deopt;
+ Deoptimizer::BailoutType bailout_type = DeoptimizeHeader(environment, NULL);
+ __ B(InvertCondition(cond), &dont_deopt);
+ Deoptimize(environment, bailout_type);
+ __ Bind(&dont_deopt);
+}
+
+
+void LCodeGen::DeoptimizeIfZero(Register rt, LEnvironment* environment) {
+ Label dont_deopt;
+ Deoptimizer::BailoutType bailout_type = DeoptimizeHeader(environment, NULL);
+ __ Cbnz(rt, &dont_deopt);
+ Deoptimize(environment, bailout_type);
+ __ Bind(&dont_deopt);
+}
+
+
+void LCodeGen::DeoptimizeIfNegative(Register rt, LEnvironment* environment) {
+ Label dont_deopt;
+ Deoptimizer::BailoutType bailout_type = DeoptimizeHeader(environment, NULL);
+ __ Tbz(rt, rt.Is64Bits() ? kXSignBit : kWSignBit, &dont_deopt);
+ Deoptimize(environment, bailout_type);
+ __ Bind(&dont_deopt);
+}
+
+
+void LCodeGen::DeoptimizeIfSmi(Register rt,
+ LEnvironment* environment) {
+ Label dont_deopt;
+ Deoptimizer::BailoutType bailout_type = DeoptimizeHeader(environment, NULL);
+ __ JumpIfNotSmi(rt, &dont_deopt);
+ Deoptimize(environment, bailout_type);
+ __ Bind(&dont_deopt);
+}
+
+
+void LCodeGen::DeoptimizeIfNotSmi(Register rt, LEnvironment* environment) {
+ Label dont_deopt;
+ Deoptimizer::BailoutType bailout_type = DeoptimizeHeader(environment, NULL);
+ __ JumpIfSmi(rt, &dont_deopt);
+ Deoptimize(environment, bailout_type);
+ __ Bind(&dont_deopt);
+}
+
+
+void LCodeGen::DeoptimizeIfRoot(Register rt,
+ Heap::RootListIndex index,
+ LEnvironment* environment) {
+ Label dont_deopt;
+ Deoptimizer::BailoutType bailout_type = DeoptimizeHeader(environment, NULL);
+ __ JumpIfNotRoot(rt, index, &dont_deopt);
+ Deoptimize(environment, bailout_type);
+ __ Bind(&dont_deopt);
+}
+
+
+void LCodeGen::DeoptimizeIfNotRoot(Register rt,
+ Heap::RootListIndex index,
+ LEnvironment* environment) {
+ Label dont_deopt;
+ Deoptimizer::BailoutType bailout_type = DeoptimizeHeader(environment, NULL);
+ __ JumpIfRoot(rt, index, &dont_deopt);
+ Deoptimize(environment, bailout_type);
+ __ Bind(&dont_deopt);
+}
+
+
+void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
+ if (!info()->IsStub()) {
+ // Ensure that we have enough space after the previous lazy-bailout
+ // instruction for patching the code here.
+ intptr_t current_pc = masm()->pc_offset();
+
+ if (current_pc < (last_lazy_deopt_pc_ + space_needed)) {
+ ptrdiff_t padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
+ ASSERT((padding_size % kInstructionSize) == 0);
+ InstructionAccurateScope instruction_accurate(
+ masm(), padding_size / kInstructionSize);
+
+ while (padding_size > 0) {
+ __ nop();
+ padding_size -= kInstructionSize;
+ }
+ }
+ }
+ last_lazy_deopt_pc_ = masm()->pc_offset();
+}
+
+
+Register LCodeGen::ToRegister(LOperand* op) const {
+ // TODO(all): support zero register results, as ToRegister32.
+ ASSERT((op != NULL) && op->IsRegister());
+ return Register::FromAllocationIndex(op->index());
+}
+
+
+Register LCodeGen::ToRegister32(LOperand* op) const {
+ ASSERT(op != NULL);
+ if (op->IsConstantOperand()) {
+ // If this is a constant operand, the result must be the zero register.
+ ASSERT(ToInteger32(LConstantOperand::cast(op)) == 0);
+ return wzr;
+ } else {
+ return ToRegister(op).W();
+ }
+}
+
+
+Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
+ HConstant* constant = chunk_->LookupConstant(op);
+ return Smi::FromInt(constant->Integer32Value());
+}
+
+
+DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
+ ASSERT((op != NULL) && op->IsDoubleRegister());
+ return DoubleRegister::FromAllocationIndex(op->index());
+}
+
+
+Operand LCodeGen::ToOperand(LOperand* op) {
+ ASSERT(op != NULL);
+ if (op->IsConstantOperand()) {
+ LConstantOperand* const_op = LConstantOperand::cast(op);
+ HConstant* constant = chunk()->LookupConstant(const_op);
+ Representation r = chunk_->LookupLiteralRepresentation(const_op);
+ if (r.IsSmi()) {
+ ASSERT(constant->HasSmiValue());
+ return Operand(Smi::FromInt(constant->Integer32Value()));
+ } else if (r.IsInteger32()) {
+ ASSERT(constant->HasInteger32Value());
+ return Operand(constant->Integer32Value());
+ } else if (r.IsDouble()) {
+ Abort(kToOperandUnsupportedDoubleImmediate);
+ }
+ ASSERT(r.IsTagged());
+ return Operand(constant->handle(isolate()));
+ } else if (op->IsRegister()) {
+ return Operand(ToRegister(op));
+ } else if (op->IsDoubleRegister()) {
+ Abort(kToOperandIsDoubleRegisterUnimplemented);
+ return Operand(0);
+ }
+ // Stack slots not implemented, use ToMemOperand instead.
+ UNREACHABLE();
+ return Operand(0);
+}
+
+
+Operand LCodeGen::ToOperand32I(LOperand* op) {
+ return ToOperand32(op, SIGNED_INT32);
+}
+
+
+Operand LCodeGen::ToOperand32U(LOperand* op) {
+ return ToOperand32(op, UNSIGNED_INT32);
+}
+
+
+Operand LCodeGen::ToOperand32(LOperand* op, IntegerSignedness signedness) {
+ ASSERT(op != NULL);
+ if (op->IsRegister()) {
+ return Operand(ToRegister32(op));
+ } else if (op->IsConstantOperand()) {
+ LConstantOperand* const_op = LConstantOperand::cast(op);
+ HConstant* constant = chunk()->LookupConstant(const_op);
+ Representation r = chunk_->LookupLiteralRepresentation(const_op);
+ if (r.IsInteger32()) {
+ ASSERT(constant->HasInteger32Value());
+ return Operand(signedness == SIGNED_INT32
+ ? constant->Integer32Value()
+ : static_cast<uint32_t>(constant->Integer32Value()));
+ } else {
+ // Other constants not implemented.
+ Abort(kToOperand32UnsupportedImmediate);
+ }
+ }
+ // Other cases are not implemented.
+ UNREACHABLE();
+ return Operand(0);
+}
+
+
+static ptrdiff_t ArgumentsOffsetWithoutFrame(ptrdiff_t index) {
+ ASSERT(index < 0);
+ return -(index + 1) * kPointerSize;
+}
+
+
+MemOperand LCodeGen::ToMemOperand(LOperand* op) const {
+ ASSERT(op != NULL);
+ ASSERT(!op->IsRegister());
+ ASSERT(!op->IsDoubleRegister());
+ ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot());
+ if (NeedsEagerFrame()) {
+ return MemOperand(fp, StackSlotOffset(op->index()));
+ } else {
+ // Retrieve parameter without eager stack-frame relative to the
+ // stack-pointer.
+ return MemOperand(masm()->StackPointer(),
+ ArgumentsOffsetWithoutFrame(op->index()));
+ }
+}
+
+
+Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
+ HConstant* constant = chunk_->LookupConstant(op);
+ ASSERT(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
+ return constant->handle(isolate());
+}
+
+
+bool LCodeGen::IsSmi(LConstantOperand* op) const {
+ return chunk_->LookupLiteralRepresentation(op).IsSmi();
+}
+
+
+bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const {
+ return op->IsConstantOperand() &&
+ chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
+}
+
+
+int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
+ HConstant* constant = chunk_->LookupConstant(op);
+ return constant->Integer32Value();
+}
+
+
+double LCodeGen::ToDouble(LConstantOperand* op) const {
+ HConstant* constant = chunk_->LookupConstant(op);
+ ASSERT(constant->HasDoubleValue());
+ return constant->DoubleValue();
+}
+
+
+Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
+ Condition cond = nv;
+ switch (op) {
+ case Token::EQ:
+ case Token::EQ_STRICT:
+ cond = eq;
+ break;
+ case Token::NE:
+ case Token::NE_STRICT:
+ cond = ne;
+ break;
+ case Token::LT:
+ cond = is_unsigned ? lo : lt;
+ break;
+ case Token::GT:
+ cond = is_unsigned ? hi : gt;
+ break;
+ case Token::LTE:
+ cond = is_unsigned ? ls : le;
+ break;
+ case Token::GTE:
+ cond = is_unsigned ? hs : ge;
+ break;
+ case Token::IN:
+ case Token::INSTANCEOF:
+ default:
+ UNREACHABLE();
+ }
+ return cond;
+}
+
+
+template<class InstrType>
+void LCodeGen::EmitBranchGeneric(InstrType instr,
+ const BranchGenerator& branch) {
+ int left_block = instr->TrueDestination(chunk_);
+ int right_block = instr->FalseDestination(chunk_);
+
+ int next_block = GetNextEmittedBlock();
+
+ if (right_block == left_block) {
+ EmitGoto(left_block);
+ } else if (left_block == next_block) {
+ branch.EmitInverted(chunk_->GetAssemblyLabel(right_block));
+ } else if (right_block == next_block) {
+ branch.Emit(chunk_->GetAssemblyLabel(left_block));
+ } else {
+ branch.Emit(chunk_->GetAssemblyLabel(left_block));
+ __ B(chunk_->GetAssemblyLabel(right_block));
+ }
+}
+
+
+template<class InstrType>
+void LCodeGen::EmitBranch(InstrType instr, Condition condition) {
+ ASSERT((condition != al) && (condition != nv));
+ BranchOnCondition branch(this, condition);
+ EmitBranchGeneric(instr, branch);
+}
+
+
+template<class InstrType>
+void LCodeGen::EmitCompareAndBranch(InstrType instr,
+ Condition condition,
+ const Register& lhs,
+ const Operand& rhs) {
+ ASSERT((condition != al) && (condition != nv));
+ CompareAndBranch branch(this, condition, lhs, rhs);
+ EmitBranchGeneric(instr, branch);
+}
+
+
+template<class InstrType>
+void LCodeGen::EmitTestAndBranch(InstrType instr,
+ Condition condition,
+ const Register& value,
+ uint64_t mask) {
+ ASSERT((condition != al) && (condition != nv));
+ TestAndBranch branch(this, condition, value, mask);
+ EmitBranchGeneric(instr, branch);
+}
+
+
+template<class InstrType>
+void LCodeGen::EmitBranchIfNonZeroNumber(InstrType instr,
+ const FPRegister& value,
+ const FPRegister& scratch) {
+ BranchIfNonZeroNumber branch(this, value, scratch);
+ EmitBranchGeneric(instr, branch);
+}
+
+
+template<class InstrType>
+void LCodeGen::EmitBranchIfHeapNumber(InstrType instr,
+ const Register& value) {
+ BranchIfHeapNumber branch(this, value);
+ EmitBranchGeneric(instr, branch);
+}
+
+
+template<class InstrType>
+void LCodeGen::EmitBranchIfRoot(InstrType instr,
+ const Register& value,
+ Heap::RootListIndex index) {
+ BranchIfRoot branch(this, value, index);
+ EmitBranchGeneric(instr, branch);
+}
+
+
+void LCodeGen::DoGap(LGap* gap) {
+ for (int i = LGap::FIRST_INNER_POSITION;
+ i <= LGap::LAST_INNER_POSITION;
+ i++) {
+ LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
+ LParallelMove* move = gap->GetParallelMove(inner_pos);
+ if (move != NULL) {
+ resolver_.Resolve(move);
+ }
+ }
+}
+
+
+void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
+ // TODO(all): Try to improve this, like ARM r17925.
+ Register arguments = ToRegister(instr->arguments());
+ Register result = ToRegister(instr->result());
+
+ if (instr->length()->IsConstantOperand() &&
+ instr->index()->IsConstantOperand()) {
+ ASSERT(instr->temp() == NULL);
+ int index = ToInteger32(LConstantOperand::cast(instr->index()));
+ int length = ToInteger32(LConstantOperand::cast(instr->length()));
+ int offset = ((length - index) + 1) * kPointerSize;
+ __ Ldr(result, MemOperand(arguments, offset));
+ } else {
+ ASSERT(instr->temp() != NULL);
+ Register temp = ToRegister32(instr->temp());
+ Register length = ToRegister32(instr->length());
+ Operand index = ToOperand32I(instr->index());
+ // There are two words between the frame pointer and the last arguments.
+ // Subtracting from length accounts for only one, so we add one more.
+ __ Sub(temp, length, index);
+ __ Add(temp, temp, 1);
+ __ Ldr(result, MemOperand(arguments, temp, UXTW, kPointerSizeLog2));
+ }
+}
+
+
+void LCodeGen::DoAddE(LAddE* instr) {
+ Register result = ToRegister(instr->result());
+ Register left = ToRegister(instr->left());
+ Operand right = (instr->right()->IsConstantOperand())
+ ? ToInteger32(LConstantOperand::cast(instr->right()))
+ : Operand(ToRegister32(instr->right()), SXTW);
+
+ ASSERT(!instr->hydrogen()->CheckFlag(HValue::kCanOverflow));
+ __ Add(result, left, right);
+}
+
+
+void LCodeGen::DoAddI(LAddI* instr) {
+ bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+ Register result = ToRegister32(instr->result());
+ Register left = ToRegister32(instr->left());
+ Operand right = ToOperand32I(instr->right());
+ if (can_overflow) {
+ __ Adds(result, left, right);
+ DeoptimizeIf(vs, instr->environment());
+ } else {
+ __ Add(result, left, right);
+ }
+}
+
+
+void LCodeGen::DoAddS(LAddS* instr) {
+ bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+ Register result = ToRegister(instr->result());
+ Register left = ToRegister(instr->left());
+ Operand right = ToOperand(instr->right());
+ if (can_overflow) {
+ __ Adds(result, left, right);
+ DeoptimizeIf(vs, instr->environment());
+ } else {
+ __ Add(result, left, right);
+ }
+}
+
+
+void LCodeGen::DoAllocate(LAllocate* instr) {
+ class DeferredAllocate: public LDeferredCode {
+ public:
+ DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
+ : LDeferredCode(codegen), instr_(instr) { }
+ virtual void Generate() { codegen()->DoDeferredAllocate(instr_); }
+ virtual LInstruction* instr() { return instr_; }
+ private:
+ LAllocate* instr_;
+ };
+
+ DeferredAllocate* deferred = new(zone()) DeferredAllocate(this, instr);
+
+ Register result = ToRegister(instr->result());
+ Register temp1 = ToRegister(instr->temp1());
+ Register temp2 = ToRegister(instr->temp2());
+
+ // Allocate memory for the object.
+ AllocationFlags flags = TAG_OBJECT;
+ if (instr->hydrogen()->MustAllocateDoubleAligned()) {
+ flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
+ }
+
+ if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
+ ASSERT(!instr->hydrogen()->IsOldDataSpaceAllocation());
+ ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
+ flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_POINTER_SPACE);
+ } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
+ ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
+ flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_DATA_SPACE);
+ }
+
+ if (instr->size()->IsConstantOperand()) {
+ int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
+ __ Allocate(size, result, temp1, temp2, deferred->entry(), flags);
+ } else {
+ Register size = ToRegister(instr->size());
+ __ Allocate(size, result, temp1, temp2, deferred->entry(), flags);
+ }
+
+ __ Bind(deferred->exit());
+
+ if (instr->hydrogen()->MustPrefillWithFiller()) {
+ if (instr->size()->IsConstantOperand()) {
+ int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
+ __ Mov(temp1, size - kPointerSize);
+ } else {
+ __ Sub(temp1, ToRegister(instr->size()), kPointerSize);
+ }
+ __ Sub(result, result, kHeapObjectTag);
+
+ // TODO(jbramley): Optimize this loop using stp.
+ Label loop;
+ __ Bind(&loop);
+ __ Mov(temp2, Operand(isolate()->factory()->one_pointer_filler_map()));
+ __ Str(temp2, MemOperand(result, temp1));
+ __ Subs(temp1, temp1, kPointerSize);
+ __ B(ge, &loop);
+
+ __ Add(result, result, kHeapObjectTag);
+ }
+}
+
+
+void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
+ // TODO(3095996): Get rid of this. For now, we need to make the
+ // result register contain a valid pointer because it is already
+ // contained in the register pointer map.
+ __ Mov(ToRegister(instr->result()), Operand(Smi::FromInt(0)));
+
+ PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
+ // We're in a SafepointRegistersScope so we can use any scratch registers.
+ Register size = x0;
+ if (instr->size()->IsConstantOperand()) {
+ __ Mov(size, Operand(ToSmi(LConstantOperand::cast(instr->size()))));
+ } else {
+ __ SmiTag(size, ToRegister(instr->size()));
+ }
+ int flags = AllocateDoubleAlignFlag::encode(
+ instr->hydrogen()->MustAllocateDoubleAligned());
+ if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
+ ASSERT(!instr->hydrogen()->IsOldDataSpaceAllocation());
+ ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
+ flags = AllocateTargetSpace::update(flags, OLD_POINTER_SPACE);
+ } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
+ ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
+ flags = AllocateTargetSpace::update(flags, OLD_DATA_SPACE);
+ } else {
+ flags = AllocateTargetSpace::update(flags, NEW_SPACE);
+ }
+ __ Mov(x10, Operand(Smi::FromInt(flags)));
+ __ Push(size, x10);
+
+ CallRuntimeFromDeferred(
+ Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
+ __ StoreToSafepointRegisterSlot(x0, ToRegister(instr->result()));
+}
+
+
+void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
+ Register receiver = ToRegister(instr->receiver());
+ Register function = ToRegister(instr->function());
+ Register length = ToRegister(instr->length());
+ Register elements = ToRegister(instr->elements());
+ Register scratch = x5;
+ ASSERT(receiver.Is(x0)); // Used for parameter count.
+ ASSERT(function.Is(x1)); // Required by InvokeFunction.
+ ASSERT(ToRegister(instr->result()).Is(x0));
+ ASSERT(instr->IsMarkedAsCall());
+
+ // Copy the arguments to this function possibly from the
+ // adaptor frame below it.
+ const uint32_t kArgumentsLimit = 1 * KB;
+ __ Cmp(length, kArgumentsLimit);
+ DeoptimizeIf(hi, instr->environment());
+
+ // Push the receiver and use the register to keep the original
+ // number of arguments.
+ __ Push(receiver);
+ Register argc = receiver;
+ receiver = NoReg;
+ __ Mov(argc, length);
+ // The arguments are at a one pointer size offset from elements.
+ __ Add(elements, elements, 1 * kPointerSize);
+
+ // Loop through the arguments pushing them onto the execution
+ // stack.
+ Label invoke, loop;
+ // length is a small non-negative integer, due to the test above.
+ __ Cbz(length, &invoke);
+ __ Bind(&loop);
+ __ Ldr(scratch, MemOperand(elements, length, LSL, kPointerSizeLog2));
+ __ Push(scratch);
+ __ Subs(length, length, 1);
+ __ B(ne, &loop);
+
+ __ Bind(&invoke);
+ ASSERT(instr->HasPointerMap());
+ LPointerMap* pointers = instr->pointer_map();
+ SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
+ // The number of arguments is stored in argc (receiver) which is x0, as
+ // expected by InvokeFunction.
+ ParameterCount actual(argc);
+ __ InvokeFunction(function, actual, CALL_FUNCTION, safepoint_generator);
+}
+
+
+void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
+ Register result = ToRegister(instr->result());
+
+ if (instr->hydrogen()->from_inlined()) {
+ // When we are inside an inlined function, the arguments are the last things
+ // that have been pushed on the stack. Therefore the arguments array can be
+ // accessed directly from jssp.
+ // However in the normal case, it is accessed via fp but there are two words
+ // on the stack between fp and the arguments (the saved lr and fp) and the
+ // LAccessArgumentsAt implementation take that into account.
+ // In the inlined case we need to subtract the size of 2 words to jssp to
+ // get a pointer which will work well with LAccessArgumentsAt.
+ ASSERT(masm()->StackPointer().Is(jssp));
+ __ Sub(result, jssp, 2 * kPointerSize);
+ } else {
+ ASSERT(instr->temp() != NULL);
+ Register previous_fp = ToRegister(instr->temp());
+
+ __ Ldr(previous_fp,
+ MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+ __ Ldr(result,
+ MemOperand(previous_fp, StandardFrameConstants::kContextOffset));
+ __ Cmp(result, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+ __ Csel(result, fp, previous_fp, ne);
+ }
+}
+
+
+void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
+ Register elements = ToRegister(instr->elements());
+ Register result = ToRegister(instr->result());
+ Label done;
+
+ // If no arguments adaptor frame the number of arguments is fixed.
+ __ Cmp(fp, elements);
+ __ Mov(result, scope()->num_parameters());
+ __ B(eq, &done);
+
+ // Arguments adaptor frame present. Get argument length from there.
+ __ Ldr(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+ __ Ldrsw(result,
+ UntagSmiMemOperand(result,
+ ArgumentsAdaptorFrameConstants::kLengthOffset));
+
+ // Argument length is in result register.
+ __ Bind(&done);
+}
+
+
+void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
+ DoubleRegister left = ToDoubleRegister(instr->left());
+ DoubleRegister right = ToDoubleRegister(instr->right());
+ DoubleRegister result = ToDoubleRegister(instr->result());
+
+ switch (instr->op()) {
+ case Token::ADD: __ Fadd(result, left, right); break;
+ case Token::SUB: __ Fsub(result, left, right); break;
+ case Token::MUL: __ Fmul(result, left, right); break;
+ case Token::DIV: __ Fdiv(result, left, right); break;
+ case Token::MOD: {
+ // The ECMA-262 remainder operator is the remainder from a truncating
+ // (round-towards-zero) division. Note that this differs from IEEE-754.
+ //
+ // TODO(jbramley): See if it's possible to do this inline, rather than by
+ // calling a helper function. With frintz (to produce the intermediate
+ // quotient) and fmsub (to calculate the remainder without loss of
+ // precision), it should be possible. However, we would need support for
+ // fdiv in round-towards-zero mode, and the A64 simulator doesn't support
+ // that yet.
+ ASSERT(left.Is(d0));
+ ASSERT(right.Is(d1));
+ __ CallCFunction(
+ ExternalReference::mod_two_doubles_operation(isolate()),
+ 0, 2);
+ ASSERT(result.Is(d0));
+ break;
+ }
+ default:
+ UNREACHABLE();
+ break;
+ }
+}
+
+
+void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
+ ASSERT(ToRegister(instr->context()).is(cp));
+ ASSERT(ToRegister(instr->left()).is(x1));
+ ASSERT(ToRegister(instr->right()).is(x0));
+ ASSERT(ToRegister(instr->result()).is(x0));
+
+ BinaryOpICStub stub(instr->op(), NO_OVERWRITE);
+ CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoBitI(LBitI* instr) {
+ Register result = ToRegister32(instr->result());
+ Register left = ToRegister32(instr->left());
+ Operand right = ToOperand32U(instr->right());
+
+ switch (instr->op()) {
+ case Token::BIT_AND: __ And(result, left, right); break;
+ case Token::BIT_OR: __ Orr(result, left, right); break;
+ case Token::BIT_XOR: __ Eor(result, left, right); break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+}
+
+
+void LCodeGen::DoBitS(LBitS* instr) {
+ Register result = ToRegister(instr->result());
+ Register left = ToRegister(instr->left());
+ Operand right = ToOperand(instr->right());
+
+ switch (instr->op()) {
+ case Token::BIT_AND: __ And(result, left, right); break;
+ case Token::BIT_OR: __ Orr(result, left, right); break;
+ case Token::BIT_XOR: __ Eor(result, left, right); break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+}
+
+
+void LCodeGen::ApplyCheckIf(Condition cc, LBoundsCheck* check) {
+ if (FLAG_debug_code && check->hydrogen()->skip_check()) {
+ __ Assert(InvertCondition(cc), kEliminatedBoundsCheckFailed);
+ } else {
+ DeoptimizeIf(cc, check->environment());
+ }
+}
+
+
+void LCodeGen::DoBoundsCheck(LBoundsCheck *instr) {
+ if (instr->hydrogen()->skip_check()) return;
+
+ Register length = ToRegister(instr->length());
+
+ if (instr->index()->IsConstantOperand()) {
+ int constant_index =
+ ToInteger32(LConstantOperand::cast(instr->index()));
+
+ if (instr->hydrogen()->length()->representation().IsSmi()) {
+ __ Cmp(length, Operand(Smi::FromInt(constant_index)));
+ } else {
+ __ Cmp(length, Operand(constant_index));
+ }
+ } else {
+ __ Cmp(length, ToRegister(instr->index()));
+ }
+ Condition condition = instr->hydrogen()->allow_equality() ? lo : ls;
+ ApplyCheckIf(condition, instr);
+}
+
+
+void LCodeGen::DoBranch(LBranch* instr) {
+ Representation r = instr->hydrogen()->value()->representation();
+ Label* true_label = instr->TrueLabel(chunk_);
+ Label* false_label = instr->FalseLabel(chunk_);
+
+ if (r.IsInteger32()) {
+ ASSERT(!info()->IsStub());
+ EmitCompareAndBranch(instr, ne, ToRegister32(instr->value()), 0);
+ } else if (r.IsSmi()) {
+ ASSERT(!info()->IsStub());
+ STATIC_ASSERT(kSmiTag == 0);
+ EmitCompareAndBranch(instr, ne, ToRegister(instr->value()), 0);
+ } else if (r.IsDouble()) {
+ DoubleRegister value = ToDoubleRegister(instr->value());
+ // Test the double value. Zero and NaN are false.
+ EmitBranchIfNonZeroNumber(instr, value, double_scratch());
+ } else {
+ ASSERT(r.IsTagged());
+ Register value = ToRegister(instr->value());
+ HType type = instr->hydrogen()->value()->type();
+
+ if (type.IsBoolean()) {
+ ASSERT(!info()->IsStub());
+ __ CompareRoot(value, Heap::kTrueValueRootIndex);
+ EmitBranch(instr, eq);
+ } else if (type.IsSmi()) {
+ ASSERT(!info()->IsStub());
+ EmitCompareAndBranch(instr, ne, value, Operand(Smi::FromInt(0)));
+ } else if (type.IsJSArray()) {
+ ASSERT(!info()->IsStub());
+ EmitGoto(instr->TrueDestination(chunk()));
+ } else if (type.IsHeapNumber()) {
+ ASSERT(!info()->IsStub());
+ __ Ldr(double_scratch(), FieldMemOperand(value,
+ HeapNumber::kValueOffset));
+ // Test the double value. Zero and NaN are false.
+ EmitBranchIfNonZeroNumber(instr, double_scratch(), double_scratch());
+ } else if (type.IsString()) {
+ ASSERT(!info()->IsStub());
+ Register temp = ToRegister(instr->temp1());
+ __ Ldr(temp, FieldMemOperand(value, String::kLengthOffset));
+ EmitCompareAndBranch(instr, ne, temp, 0);
+ } else {
+ ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
+ // Avoid deopts in the case where we've never executed this path before.
+ if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
+
+ if (expected.Contains(ToBooleanStub::UNDEFINED)) {
+ // undefined -> false.
+ __ JumpIfRoot(
+ value, Heap::kUndefinedValueRootIndex, false_label);
+ }
+
+ if (expected.Contains(ToBooleanStub::BOOLEAN)) {
+ // Boolean -> its value.
+ __ JumpIfRoot(
+ value, Heap::kTrueValueRootIndex, true_label);
+ __ JumpIfRoot(
+ value, Heap::kFalseValueRootIndex, false_label);
+ }
+
+ if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
+ // 'null' -> false.
+ __ JumpIfRoot(
+ value, Heap::kNullValueRootIndex, false_label);
+ }
+
+ if (expected.Contains(ToBooleanStub::SMI)) {
+ // Smis: 0 -> false, all other -> true.
+ ASSERT(Smi::FromInt(0) == 0);
+ __ Cbz(value, false_label);
+ __ JumpIfSmi(value, true_label);
+ } else if (expected.NeedsMap()) {
+ // If we need a map later and have a smi, deopt.
+ DeoptimizeIfSmi(value, instr->environment());
+ }
+
+ Register map = NoReg;
+ Register scratch = NoReg;
+
+ if (expected.NeedsMap()) {
+ ASSERT((instr->temp1() != NULL) && (instr->temp2() != NULL));
+ map = ToRegister(instr->temp1());
+ scratch = ToRegister(instr->temp2());
+
+ __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
+
+ if (expected.CanBeUndetectable()) {
+ // Undetectable -> false.
+ __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
+ __ TestAndBranchIfAnySet(
+ scratch, 1 << Map::kIsUndetectable, false_label);
+ }
+ }
+
+ if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
+ // spec object -> true.
+ __ CompareInstanceType(map, scratch, FIRST_SPEC_OBJECT_TYPE);
+ __ B(ge, true_label);
+ }
+
+ if (expected.Contains(ToBooleanStub::STRING)) {
+ // String value -> false iff empty.
+ Label not_string;
+ __ CompareInstanceType(map, scratch, FIRST_NONSTRING_TYPE);
+ __ B(ge, &not_string);
+ __ Ldr(scratch, FieldMemOperand(value, String::kLengthOffset));
+ __ Cbz(scratch, false_label);
+ __ B(true_label);
+ __ Bind(&not_string);
+ }
+
+ if (expected.Contains(ToBooleanStub::SYMBOL)) {
+ // Symbol value -> true.
+ __ CompareInstanceType(map, scratch, SYMBOL_TYPE);
+ __ B(eq, true_label);
+ }
+
+ if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
+ Label not_heap_number;
+ __ JumpIfNotRoot(map, Heap::kHeapNumberMapRootIndex, &not_heap_number);
+
+ __ Ldr(double_scratch(),
+ FieldMemOperand(value, HeapNumber::kValueOffset));
+ __ Fcmp(double_scratch(), 0.0);
+ // If we got a NaN (overflow bit is set), jump to the false branch.
+ __ B(vs, false_label);
+ __ B(eq, false_label);
+ __ B(true_label);
+ __ Bind(&not_heap_number);
+ }
+
+ if (!expected.IsGeneric()) {
+ // We've seen something for the first time -> deopt.
+ // This can only happen if we are not generic already.
+ Deoptimize(instr->environment());
+ }
+ }
+ }
+}
+
+
+void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
+ int formal_parameter_count,
+ int arity,
+ LInstruction* instr,
+ Register function_reg) {
+ bool dont_adapt_arguments =
+ formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
+ bool can_invoke_directly =
+ dont_adapt_arguments || formal_parameter_count == arity;
+
+ // The function interface relies on the following register assignments.
+ ASSERT(function_reg.Is(x1) || function_reg.IsNone());
+ Register arity_reg = x0;
+
+ LPointerMap* pointers = instr->pointer_map();
+
+ // If necessary, load the function object.
+ if (function_reg.IsNone()) {
+ function_reg = x1;
+ __ LoadObject(function_reg, function);
+ }
+
+ if (FLAG_debug_code) {
+ Label is_not_smi;
+ // Try to confirm that function_reg (x1) is a tagged pointer.
+ __ JumpIfNotSmi(function_reg, &is_not_smi);
+ __ Abort(kExpectedFunctionObject);
+ __ Bind(&is_not_smi);
+ }
+
+ if (can_invoke_directly) {
+ // Change context.
+ __ Ldr(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset));
+
+ // Set the arguments count if adaption is not needed. Assumes that x0 is
+ // available to write to at this point.
+ if (dont_adapt_arguments) {
+ __ Mov(arity_reg, arity);
+ }
+
+ // Invoke function.
+ __ Ldr(x10, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset));
+ __ Call(x10);
+
+ // Set up deoptimization.
+ RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
+ } else {
+ SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
+ ParameterCount count(arity);
+ ParameterCount expected(formal_parameter_count);
+ __ InvokeFunction(function_reg, expected, count, CALL_FUNCTION, generator);
+ }
+}
+
+
+void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
+ ASSERT(instr->IsMarkedAsCall());
+ ASSERT(ToRegister(instr->result()).Is(x0));
+
+ LPointerMap* pointers = instr->pointer_map();
+ SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
+
+ if (instr->target()->IsConstantOperand()) {
+ LConstantOperand* target = LConstantOperand::cast(instr->target());
+ Handle<Code> code = Handle<Code>::cast(ToHandle(target));
+ generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
+ // TODO(all): on ARM we use a call descriptor to specify a storage mode
+ // but on A64 we only have one storage mode so it isn't necessary. Check
+ // this understanding is correct.
+ __ Call(code, RelocInfo::CODE_TARGET, TypeFeedbackId::None());
+ } else {
+ ASSERT(instr->target()->IsRegister());
+ Register target = ToRegister(instr->target());
+ generator.BeforeCall(__ CallSize(target));
+ __ Add(target, target, Code::kHeaderSize - kHeapObjectTag);
+ __ Call(target);
+ }
+ generator.AfterCall();
+}
+
+
+void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) {
+ ASSERT(instr->IsMarkedAsCall());
+ ASSERT(ToRegister(instr->function()).is(x1));
+
+ if (instr->hydrogen()->pass_argument_count()) {
+ __ Mov(x0, Operand(instr->arity()));
+ }
+
+ // Change context.
+ __ Ldr(cp, FieldMemOperand(x1, JSFunction::kContextOffset));
+
+ // Load the code entry address
+ __ Ldr(x10, FieldMemOperand(x1, JSFunction::kCodeEntryOffset));
+ __ Call(x10);
+
+ RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
+}
+
+
+void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
+ CallRuntime(instr->function(), instr->arity(), instr);
+}
+
+
+void LCodeGen::DoCallStub(LCallStub* instr) {
+ ASSERT(ToRegister(instr->context()).is(cp));
+ ASSERT(ToRegister(instr->result()).is(x0));
+ switch (instr->hydrogen()->major_key()) {
+ case CodeStub::RegExpExec: {
+ RegExpExecStub stub;
+ CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
+ break;
+ }
+ case CodeStub::SubString: {
+ SubStringStub stub;
+ CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
+ break;
+ }
+ case CodeStub::StringCompare: {
+ StringCompareStub stub;
+ CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
+ break;
+ }
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
+ GenerateOsrPrologue();
+}
+
+
+void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
+ Register temp = ToRegister(instr->temp());
+ {
+ PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
+ __ Push(object);
+ __ Mov(cp, 0);
+ __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
+ RecordSafepointWithRegisters(
+ instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
+ __ StoreToSafepointRegisterSlot(x0, temp);
+ }
+ DeoptimizeIfSmi(temp, instr->environment());
+}
+
+
+void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
+ class DeferredCheckMaps: public LDeferredCode {
+ public:
+ DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
+ : LDeferredCode(codegen), instr_(instr), object_(object) {
+ SetExit(check_maps());
+ }
+ virtual void Generate() {
+ codegen()->DoDeferredInstanceMigration(instr_, object_);
+ }
+ Label* check_maps() { return &check_maps_; }
+ virtual LInstruction* instr() { return instr_; }
+ private:
+ LCheckMaps* instr_;
+ Label check_maps_;
+ Register object_;
+ };
+
+ if (instr->hydrogen()->CanOmitMapChecks()) {
+ ASSERT(instr->value() == NULL);
+ ASSERT(instr->temp() == NULL);
+ return;
+ }
+
+ Register object = ToRegister(instr->value());
+ Register map_reg = ToRegister(instr->temp());
+
+ __ Ldr(map_reg, FieldMemOperand(object, HeapObject::kMapOffset));
+
+ DeferredCheckMaps* deferred = NULL;
+ if (instr->hydrogen()->has_migration_target()) {
+ deferred = new(zone()) DeferredCheckMaps(this, instr, object);
+ __ Bind(deferred->check_maps());
+ }
+
+ UniqueSet<Map> map_set = instr->hydrogen()->map_set();
+ Label success;
+ for (int i = 0; i < map_set.size(); i++) {
+ Handle<Map> map = map_set.at(i).handle();
+ __ CompareMap(map_reg, map, &success);
+ __ B(eq, &success);
+ }
+
+ // We didn't match a map.
+ if (instr->hydrogen()->has_migration_target()) {
+ __ B(deferred->entry());
+ } else {
+ Deoptimize(instr->environment());
+ }
+
+ __ Bind(&success);
+}
+
+
+void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
+ if (!instr->hydrogen()->value()->IsHeapObject()) {
+ // TODO(all): Depending of how we chose to implement the deopt, if we could
+ // guarantee that we have a deopt handler reachable by a tbz instruction,
+ // we could use tbz here and produce less code to support this instruction.
+ DeoptimizeIfSmi(ToRegister(instr->value()), instr->environment());
+ }
+}
+
+
+void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
+ Register value = ToRegister(instr->value());
+ ASSERT(!instr->result() || ToRegister(instr->result()).Is(value));
+ // TODO(all): See DoCheckNonSmi for comments on use of tbz.
+ DeoptimizeIfNotSmi(value, instr->environment());
+}
+
+
+void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
+ Register input = ToRegister(instr->value());
+ Register scratch = ToRegister(instr->temp());
+
+ __ Ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
+ __ Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
+
+ if (instr->hydrogen()->is_interval_check()) {
+ InstanceType first, last;
+ instr->hydrogen()->GetCheckInterval(&first, &last);
+
+ __ Cmp(scratch, first);
+ if (first == last) {
+ // If there is only one type in the interval check for equality.
+ DeoptimizeIf(ne, instr->environment());
+ } else if (last == LAST_TYPE) {
+ // We don't need to compare with the higher bound of the interval.
+ DeoptimizeIf(lo, instr->environment());
+ } else {
+ // If we are below the lower bound, set the C flag and clear the Z flag
+ // to force a deopt.
+ __ Ccmp(scratch, last, CFlag, hs);
+ DeoptimizeIf(hi, instr->environment());
+ }
+ } else {
+ uint8_t mask;
+ uint8_t tag;
+ instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
+
+ if (IsPowerOf2(mask)) {
+ ASSERT((tag == 0) || (tag == mask));
+ // TODO(all): We might be able to use tbz/tbnz if we can guarantee that
+ // the deopt handler is reachable by a tbz instruction.
+ __ Tst(scratch, mask);
+ DeoptimizeIf(tag == 0 ? ne : eq, instr->environment());
+ } else {
+ if (tag == 0) {
+ __ Tst(scratch, mask);
+ } else {
+ __ And(scratch, scratch, mask);
+ __ Cmp(scratch, tag);
+ }
+ DeoptimizeIf(ne, instr->environment());
+ }
+ }
+}
+
+
+void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
+ DoubleRegister input = ToDoubleRegister(instr->unclamped());
+ Register result = ToRegister(instr->result());
+ __ ClampDoubleToUint8(result, input, double_scratch());
+}
+
+
+void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
+ Register input = ToRegister32(instr->unclamped());
+ Register result = ToRegister32(instr->result());
+ __ ClampInt32ToUint8(result, input);
+}
+
+
+void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
+ Register input = ToRegister(instr->unclamped());
+ Register result = ToRegister(instr->result());
+ Register scratch = ToRegister(instr->temp1());
+ Label done;
+
+ // Both smi and heap number cases are handled.
+ Label is_not_smi;
+ __ JumpIfNotSmi(input, &is_not_smi);
+ __ SmiUntag(result, input);
+ __ ClampInt32ToUint8(result);
+ __ B(&done);
+
+ __ Bind(&is_not_smi);
+
+ // Check for heap number.
+ Label is_heap_number;
+ __ Ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
+ __ JumpIfRoot(scratch, Heap::kHeapNumberMapRootIndex, &is_heap_number);
+
+ // Check for undefined. Undefined is coverted to zero for clamping conversion.
+ DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex,
+ instr->environment());
+ __ Mov(result, 0);
+ __ B(&done);
+
+ // Heap number case.
+ __ Bind(&is_heap_number);
+ DoubleRegister dbl_scratch = double_scratch();
+ DoubleRegister dbl_scratch2 = ToDoubleRegister(instr->temp2());
+ __ Ldr(dbl_scratch, FieldMemOperand(input, HeapNumber::kValueOffset));
+ __ ClampDoubleToUint8(result, dbl_scratch, dbl_scratch2);
+
+ __ Bind(&done);
+}
+
+
+void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
+ Handle<String> class_name = instr->hydrogen()->class_name();
+ Label* true_label = instr->TrueLabel(chunk_);
+ Label* false_label = instr->FalseLabel(chunk_);
+ Register input = ToRegister(instr->value());
+ Register scratch1 = ToRegister(instr->temp1());
+ Register scratch2 = ToRegister(instr->temp2());
+
+ __ JumpIfSmi(input, false_label);
+
+ Register map = scratch2;
+ if (class_name->IsUtf8EqualTo(CStrVector("Function"))) {
+ // Assuming the following assertions, we can use the same compares to test
+ // for both being a function type and being in the object type range.
+ STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
+ STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
+ FIRST_SPEC_OBJECT_TYPE + 1);
+ STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
+ LAST_SPEC_OBJECT_TYPE - 1);
+ STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
+
+ // We expect CompareObjectType to load the object instance type in scratch1.
+ __ CompareObjectType(input, map, scratch1, FIRST_SPEC_OBJECT_TYPE);
+ __ B(lt, false_label);
+ __ B(eq, true_label);
+ __ Cmp(scratch1, LAST_SPEC_OBJECT_TYPE);
+ __ B(eq, true_label);
+ } else {
+ __ IsObjectJSObjectType(input, map, scratch1, false_label);
+ }
+
+ // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
+ // Check if the constructor in the map is a function.
+ __ Ldr(scratch1, FieldMemOperand(map, Map::kConstructorOffset));
+
+ // Objects with a non-function constructor have class 'Object'.
+ if (class_name->IsUtf8EqualTo(CStrVector("Object"))) {
+ __ JumpIfNotObjectType(
+ scratch1, scratch2, scratch2, JS_FUNCTION_TYPE, true_label);
+ } else {
+ __ JumpIfNotObjectType(
+ scratch1, scratch2, scratch2, JS_FUNCTION_TYPE, false_label);
+ }
+
+ // The constructor function is in scratch1. Get its instance class name.
+ __ Ldr(scratch1,
+ FieldMemOperand(scratch1, JSFunction::kSharedFunctionInfoOffset));
+ __ Ldr(scratch1,
+ FieldMemOperand(scratch1,
+ SharedFunctionInfo::kInstanceClassNameOffset));
+
+ // The class name we are testing against is internalized since it's a literal.
+ // The name in the constructor is internalized because of the way the context
+ // is booted. This routine isn't expected to work for random API-created
+ // classes and it doesn't have to because you can't access it with natives
+ // syntax. Since both sides are internalized it is sufficient to use an
+ // identity comparison.
+ EmitCompareAndBranch(instr, eq, scratch1, Operand(class_name));
+}
+
+
+void LCodeGen::DoCmpHoleAndBranchD(LCmpHoleAndBranchD* instr) {
+ ASSERT(instr->hydrogen()->representation().IsDouble());
+ FPRegister object = ToDoubleRegister(instr->object());
+ Register temp = ToRegister(instr->temp());
+
+ // If we don't have a NaN, we don't have the hole, so branch now to avoid the
+ // (relatively expensive) hole-NaN check.
+ __ Fcmp(object, object);
+ __ B(vc, instr->FalseLabel(chunk_));
+
+ // We have a NaN, but is it the hole?
+ __ Fmov(temp, object);
+ EmitCompareAndBranch(instr, eq, temp, kHoleNanInt64);
+}
+
+
+void LCodeGen::DoCmpHoleAndBranchT(LCmpHoleAndBranchT* instr) {
+ ASSERT(instr->hydrogen()->representation().IsTagged());
+ Register object = ToRegister(instr->object());
+
+ EmitBranchIfRoot(instr, object, Heap::kTheHoleValueRootIndex);
+}
+
+
+void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
+ Register value = ToRegister(instr->value());
+ Register map = ToRegister(instr->temp());
+
+ __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
+ EmitCompareAndBranch(instr, eq, map, Operand(instr->map()));
+}
+
+
+void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) {
+ Representation rep = instr->hydrogen()->value()->representation();
+ ASSERT(!rep.IsInteger32());
+ Register scratch = ToRegister(instr->temp());
+
+ if (rep.IsDouble()) {
+ __ JumpIfMinusZero(ToDoubleRegister(instr->value()),
+ instr->TrueLabel(chunk()));
+ } else {
+ Register value = ToRegister(instr->value());
+ __ CheckMap(value, scratch, Heap::kHeapNumberMapRootIndex,
+ instr->FalseLabel(chunk()), DO_SMI_CHECK);
+ __ Ldr(double_scratch(), FieldMemOperand(value, HeapNumber::kValueOffset));
+ __ JumpIfMinusZero(double_scratch(), instr->TrueLabel(chunk()));
+ }
+ EmitGoto(instr->FalseDestination(chunk()));
+}
+
+
+void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
+ LOperand* left = instr->left();
+ LOperand* right = instr->right();
+ Condition cond = TokenToCondition(instr->op(), false);
+
+ if (left->IsConstantOperand() && right->IsConstantOperand()) {
+ // We can statically evaluate the comparison.
+ double left_val = ToDouble(LConstantOperand::cast(left));
+ double right_val = ToDouble(LConstantOperand::cast(right));
+ int next_block = EvalComparison(instr->op(), left_val, right_val) ?
+ instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_);
+ EmitGoto(next_block);
+ } else {
+ if (instr->is_double()) {
+ if (right->IsConstantOperand()) {
+ __ Fcmp(ToDoubleRegister(left),
+ ToDouble(LConstantOperand::cast(right)));
+ } else if (left->IsConstantOperand()) {
+ // Transpose the operands and reverse the condition.
+ __ Fcmp(ToDoubleRegister(right),
+ ToDouble(LConstantOperand::cast(left)));
+ cond = ReverseConditionForCmp(cond);
+ } else {
+ __ Fcmp(ToDoubleRegister(left), ToDoubleRegister(right));
+ }
+
+ // If a NaN is involved, i.e. the result is unordered (V set),
+ // jump to false block label.
+ __ B(vs, instr->FalseLabel(chunk_));
+ EmitBranch(instr, cond);
+ } else {
+ if (instr->hydrogen_value()->representation().IsInteger32()) {
+ if (right->IsConstantOperand()) {
+ EmitCompareAndBranch(instr,
+ cond,
+ ToRegister32(left),
+ ToOperand32I(right));
+ } else {
+ // Transpose the operands and reverse the condition.
+ EmitCompareAndBranch(instr,
+ ReverseConditionForCmp(cond),
+ ToRegister32(right),
+ ToOperand32I(left));
+ }
+ } else {
+ ASSERT(instr->hydrogen_value()->representation().IsSmi());
+ if (right->IsConstantOperand()) {
+ int32_t value = ToInteger32(LConstantOperand::cast(right));
+ EmitCompareAndBranch(instr,
+ cond,
+ ToRegister(left),
+ Operand(Smi::FromInt(value)));
+ } else if (left->IsConstantOperand()) {
+ // Transpose the operands and reverse the condition.
+ int32_t value = ToInteger32(LConstantOperand::cast(left));
+ EmitCompareAndBranch(instr,
+ ReverseConditionForCmp(cond),
+ ToRegister(right),
+ Operand(Smi::FromInt(value)));
+ } else {
+ EmitCompareAndBranch(instr,
+ cond,
+ ToRegister(left),
+ ToRegister(right));
+ }
+ }
+ }
+ }
+}
+
+
+void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
+ Register left = ToRegister(instr->left());
+ Register right = ToRegister(instr->right());
+ EmitCompareAndBranch(instr, eq, left, right);
+}
+
+
+void LCodeGen::DoCmpT(LCmpT* instr) {
+ ASSERT(ToRegister(instr->context()).is(cp));
+ Token::Value op = instr->op();
+ Condition cond = TokenToCondition(op, false);
+
+ ASSERT(ToRegister(instr->left()).Is(x1));
+ ASSERT(ToRegister(instr->right()).Is(x0));
+ Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op);
+ CallCode(ic, RelocInfo::CODE_TARGET, instr);
+ // Signal that we don't inline smi code before this stub.
+ InlineSmiCheckInfo::EmitNotInlined(masm());
+
+ // Return true or false depending on CompareIC result.
+ // This instruction is marked as call. We can clobber any register.
+ ASSERT(instr->IsMarkedAsCall());
+ __ LoadTrueFalseRoots(x1, x2);
+ __ Cmp(x0, 0);
+ __ Csel(ToRegister(instr->result()), x1, x2, cond);
+}
+
+
+void LCodeGen::DoConstantD(LConstantD* instr) {
+ ASSERT(instr->result()->IsDoubleRegister());
+ DoubleRegister result = ToDoubleRegister(instr->result());
+ __ Fmov(result, instr->value());
+}
+
+
+void LCodeGen::DoConstantE(LConstantE* instr) {
+ __ Mov(ToRegister(instr->result()), Operand(instr->value()));
+}
+
+
+void LCodeGen::DoConstantI(LConstantI* instr) {
+ __ Mov(ToRegister(instr->result()), instr->value());
+}
+
+
+void LCodeGen::DoConstantS(LConstantS* instr) {
+ __ Mov(ToRegister(instr->result()), Operand(instr->value()));
+}
+
+
+void LCodeGen::DoConstantT(LConstantT* instr) {
+ Handle<Object> value = instr->value(isolate());
+ AllowDeferredHandleDereference smi_check;
+ __ LoadObject(ToRegister(instr->result()), value);
+}
+
+
+void LCodeGen::DoContext(LContext* instr) {
+ // If there is a non-return use, the context must be moved to a register.
+ Register result = ToRegister(instr->result());
+ if (info()->IsOptimizing()) {
+ __ Ldr(result, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ } else {
+ // If there is no frame, the context must be in cp.
+ ASSERT(result.is(cp));
+ }
+}
+
+
+void LCodeGen::DoCheckValue(LCheckValue* instr) {
+ Register reg = ToRegister(instr->value());
+ Handle<HeapObject> object = instr->hydrogen()->object().handle();
+ AllowDeferredHandleDereference smi_check;
+ if (isolate()->heap()->InNewSpace(*object)) {
+ Register temp = ToRegister(instr->temp());
+ Handle<Cell> cell = isolate()->factory()->NewCell(object);
+ __ Mov(temp, Operand(Handle<Object>(cell)));
+ __ Ldr(temp, FieldMemOperand(temp, Cell::kValueOffset));
+ __ Cmp(reg, temp);
+ } else {
+ __ Cmp(reg, Operand(object));
+ }
+ DeoptimizeIf(ne, instr->environment());
+}
+
+
+void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
+ EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
+ ASSERT(instr->HasEnvironment());
+ LEnvironment* env = instr->environment();
+ RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
+ safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
+}
+
+
+void LCodeGen::DoDateField(LDateField* instr) {
+ Register object = ToRegister(instr->date());
+ Register result = ToRegister(instr->result());
+ Register temp1 = x10;
+ Register temp2 = x11;
+ Smi* index = instr->index();
+ Label runtime, done, deopt, obj_ok;
+
+ ASSERT(object.is(result) && object.Is(x0));
+ ASSERT(instr->IsMarkedAsCall());
+
+ __ JumpIfSmi(object, &deopt);
+ __ CompareObjectType(object, temp1, temp1, JS_DATE_TYPE);
+ __ B(eq, &obj_ok);
+
+ __ Bind(&deopt);
+ Deoptimize(instr->environment());
+
+ __ Bind(&obj_ok);
+ if (index->value() == 0) {
+ __ Ldr(result, FieldMemOperand(object, JSDate::kValueOffset));
+ } else {
+ if (index->value() < JSDate::kFirstUncachedField) {
+ ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
+ __ Mov(temp1, Operand(stamp));
+ __ Ldr(temp1, MemOperand(temp1));
+ __ Ldr(temp2, FieldMemOperand(object, JSDate::kCacheStampOffset));
+ __ Cmp(temp1, temp2);
+ __ B(ne, &runtime);
+ __ Ldr(result, FieldMemOperand(object, JSDate::kValueOffset +
+ kPointerSize * index->value()));
+ __ B(&done);
+ }
+
+ __ Bind(&runtime);
+ __ Mov(x1, Operand(index));
+ __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
+ }
+
+ __ Bind(&done);
+}
+
+
+void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
+ Deoptimizer::BailoutType type = instr->hydrogen()->type();
+ // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
+ // needed return address), even though the implementation of LAZY and EAGER is
+ // now identical. When LAZY is eventually completely folded into EAGER, remove
+ // the special case below.
+ if (info()->IsStub() && (type == Deoptimizer::EAGER)) {
+ type = Deoptimizer::LAZY;
+ }
+
+ Comment(";;; deoptimize: %s", instr->hydrogen()->reason());
+ DeoptimizeHeader(instr->environment(), &type);
+ Deoptimize(instr->environment(), type);
+}
+
+
+void LCodeGen::DoDivI(LDivI* instr) {
+ Register dividend = ToRegister32(instr->left());
+ Register result = ToRegister32(instr->result());
+
+ bool has_power_of_2_divisor = instr->hydrogen()->RightIsPowerOf2();
+ bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+ bool bailout_on_minus_zero =
+ instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
+ bool can_be_div_by_zero =
+ instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero);
+ bool all_uses_truncating_to_int32 =
+ instr->hydrogen()->CheckFlag(HInstruction::kAllUsesTruncatingToInt32);
+
+ if (has_power_of_2_divisor) {
+ ASSERT(instr->temp() == NULL);
+ int32_t divisor = ToInteger32(LConstantOperand::cast(instr->right()));
+ int32_t power;
+ int32_t power_mask;
+ Label deopt, done;
+
+ ASSERT(divisor != 0);
+ if (divisor > 0) {
+ power = WhichPowerOf2(divisor);
+ power_mask = divisor - 1;
+ } else {
+ // Check for (0 / -x) as that will produce negative zero.
+ if (bailout_on_minus_zero) {
+ if (all_uses_truncating_to_int32) {
+ // If all uses truncate, and the dividend is zero, the truncated
+ // result is zero.
+ __ Mov(result, 0);
+ __ Cbz(dividend, &done);
+ } else {
+ __ Cbz(dividend, &deopt);
+ }
+ }
+ // Check for (kMinInt / -1).
+ if ((divisor == -1) && can_overflow && !all_uses_truncating_to_int32) {
+ // Check for kMinInt by subtracting one and checking for overflow.
+ __ Cmp(dividend, 1);
+ __ B(vs, &deopt);
+ }
+ power = WhichPowerOf2(-divisor);
+ power_mask = -divisor - 1;
+ }
+
+ if (power_mask != 0) {
+ if (all_uses_truncating_to_int32) {
+ __ Cmp(dividend, 0);
+ __ Cneg(result, dividend, lt);
+ __ Asr(result, result, power);
+ if (divisor > 0) __ Cneg(result, result, lt);
+ if (divisor < 0) __ Cneg(result, result, gt);
+ return; // Don't fall through to negation below.
+ } else {
+ // Deoptimize if remainder is not 0. If the least-significant
+ // power bits aren't 0, it's not a multiple of 2^power, and
+ // therefore, there will be a remainder.
+ __ TestAndBranchIfAnySet(dividend, power_mask, &deopt);
+ __ Asr(result, dividend, power);
+ if (divisor < 0) __ Neg(result, result);
+ }
+ } else {
+ ASSERT((divisor == 1) || (divisor == -1));
+ if (divisor < 0) {
+ __ Neg(result, dividend);
+ } else {
+ __ Mov(result, dividend);
+ }
+ }
+ __ B(&done);
+ __ Bind(&deopt);
+ Deoptimize(instr->environment());
+ __ Bind(&done);
+ } else {
+ Register divisor = ToRegister32(instr->right());
+
+ // Issue the division first, and then check for any deopt cases whilst the
+ // result is computed.
+ __ Sdiv(result, dividend, divisor);
+
+ if (!all_uses_truncating_to_int32) {
+ Label deopt;
+ // Check for x / 0.
+ if (can_be_div_by_zero) {
+ __ Cbz(divisor, &deopt);
+ }
+
+ // Check for (0 / -x) as that will produce negative zero.
+ if (bailout_on_minus_zero) {
+ __ Cmp(divisor, 0);
+
+ // If the divisor < 0 (mi), compare the dividend, and deopt if it is
+ // zero, ie. zero dividend with negative divisor deopts.
+ // If the divisor >= 0 (pl, the opposite of mi) set the flags to
+ // condition ne, so we don't deopt, ie. positive divisor doesn't deopt.
+ __ Ccmp(dividend, 0, NoFlag, mi);
+ __ B(eq, &deopt);
+ }
+
+ // Check for (kMinInt / -1).
+ if (can_overflow) {
+ // Test dividend for kMinInt by subtracting one (cmp) and checking for
+ // overflow.
+ __ Cmp(dividend, 1);
+ // If overflow is set, ie. dividend = kMinInt, compare the divisor with
+ // -1. If overflow is clear, set the flags for condition ne, as the
+ // dividend isn't -1, and thus we shouldn't deopt.
+ __ Ccmp(divisor, -1, NoFlag, vs);
+ __ B(eq, &deopt);
+ }
+
+ // Compute remainder and deopt if it's not zero.
+ Register remainder = ToRegister32(instr->temp());
+ __ Msub(remainder, result, divisor, dividend);
+ __ Cbnz(remainder, &deopt);
+
+ Label div_ok;
+ __ B(&div_ok);
+ __ Bind(&deopt);
+ Deoptimize(instr->environment());
+ __ Bind(&div_ok);
+ } else {
+ ASSERT(instr->temp() == NULL);
+ }
+ }
+}
+
+
+void LCodeGen::DoDoubleToIntOrSmi(LDoubleToIntOrSmi* instr) {
+ DoubleRegister input = ToDoubleRegister(instr->value());
+ Register result = ToRegister32(instr->result());
+ Label done, deopt;
+
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ __ JumpIfMinusZero(input, &deopt);
+ }
+
+ __ TryConvertDoubleToInt32(result, input, double_scratch(), &done);
+ __ Bind(&deopt);
+ Deoptimize(instr->environment());
+ __ Bind(&done);
+
+ if (instr->tag_result()) {
+ __ SmiTag(result.X());
+ }
+}
+
+
+void LCodeGen::DoDrop(LDrop* instr) {
+ __ Drop(instr->count());
+}
+
+
+void LCodeGen::DoDummy(LDummy* instr) {
+ // Nothing to see here, move on!
+}
+
+
+void LCodeGen::DoDummyUse(LDummyUse* instr) {
+ // Nothing to see here, move on!
+}
+
+
+void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
+ ASSERT(ToRegister(instr->context()).is(cp));
+ // FunctionLiteral instruction is marked as call, we can trash any register.
+ ASSERT(instr->IsMarkedAsCall());
+
+ // Use the fast case closure allocation code that allocates in new
+ // space for nested functions that don't need literals cloning.
+ bool pretenure = instr->hydrogen()->pretenure();
+ if (!pretenure && instr->hydrogen()->has_no_literals()) {
+ FastNewClosureStub stub(instr->hydrogen()->language_mode(),
+ instr->hydrogen()->is_generator());
+ __ Mov(x2, Operand(instr->hydrogen()->shared_info()));
+ CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
+ } else {
+ __ Mov(x2, Operand(instr->hydrogen()->shared_info()));
+ __ Mov(x1, Operand(pretenure ? factory()->true_value()
+ : factory()->false_value()));
+ __ Push(cp, x2, x1);
+ CallRuntime(Runtime::kNewClosure, 3, instr);
+ }
+}
+
+
+void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
+ Register map = ToRegister(instr->map());
+ Register result = ToRegister(instr->result());
+ Label load_cache, done;
+
+ __ EnumLengthUntagged(result, map);
+ __ Cbnz(result, &load_cache);
+
+ __ Mov(result, Operand(isolate()->factory()->empty_fixed_array()));
+ __ B(&done);
+
+ __ Bind(&load_cache);
+ __ LoadInstanceDescriptors(map, result);
+ __ Ldr(result, FieldMemOperand(result, DescriptorArray::kEnumCacheOffset));
+ __ Ldr(result, FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
+ DeoptimizeIfZero(result, instr->environment());
+
+ __ Bind(&done);
+}
+
+
+void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
+ Register object = ToRegister(instr->object());
+ Register null_value = x5;
+
+ ASSERT(instr->IsMarkedAsCall());
+ ASSERT(object.Is(x0));
+
+ Label deopt;
+
+ __ JumpIfRoot(object, Heap::kUndefinedValueRootIndex, &deopt);
+
+ __ LoadRoot(null_value, Heap::kNullValueRootIndex);
+ __ Cmp(object, null_value);
+ __ B(eq, &deopt);
+
+ __ JumpIfSmi(object, &deopt);
+
+ STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
+ __ CompareObjectType(object, x1, x1, LAST_JS_PROXY_TYPE);
+ __ B(le, &deopt);
+
+ Label use_cache, call_runtime;
+ __ CheckEnumCache(object, null_value, x1, x2, x3, x4, &call_runtime);
+
+ __ Ldr(object, FieldMemOperand(object, HeapObject::kMapOffset));
+ __ B(&use_cache);
+
+ __ Bind(&deopt);
+ Deoptimize(instr->environment());
+
+ // Get the set of properties to enumerate.
+ __ Bind(&call_runtime);
+ __ Push(object);
+ CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr);
+
+ __ Ldr(x1, FieldMemOperand(object, HeapObject::kMapOffset));
+ __ JumpIfNotRoot(x1, Heap::kMetaMapRootIndex, &deopt);
+
+ __ Bind(&use_cache);
+}
+
+
+void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
+ Register input = ToRegister(instr->value());
+ Register result = ToRegister(instr->result());
+
+ __ AssertString(input);
+
+ // Assert that we can use a W register load to get the hash.
+ ASSERT((String::kHashShift + String::kArrayIndexValueBits) < kWRegSize);
+ __ Ldr(result.W(), FieldMemOperand(input, String::kHashFieldOffset));
+ __ IndexFromHash(result, result);
+}
+
+
+void LCodeGen::EmitGoto(int block) {
+ // Do not emit jump if we are emitting a goto to the next block.
+ if (!IsNextEmittedBlock(block)) {
+ __ B(chunk_->GetAssemblyLabel(LookupDestination(block)));
+ }
+}
+
+
+void LCodeGen::DoGoto(LGoto* instr) {
+ EmitGoto(instr->block_id());
+}
+
+
+void LCodeGen::DoHasCachedArrayIndexAndBranch(
+ LHasCachedArrayIndexAndBranch* instr) {
+ Register input = ToRegister(instr->value());
+ Register temp = ToRegister32(instr->temp());
+
+ // Assert that the cache status bits fit in a W register.
+ ASSERT(is_uint32(String::kContainsCachedArrayIndexMask));
+ __ Ldr(temp, FieldMemOperand(input, String::kHashFieldOffset));
+ __ Tst(temp, String::kContainsCachedArrayIndexMask);
+ EmitBranch(instr, eq);
+}
+
+
+// HHasInstanceTypeAndBranch instruction is built with an interval of type
+// to test but is only used in very restricted ways. The only possible kinds
+// of intervals are:
+// - [ FIRST_TYPE, instr->to() ]
+// - [ instr->form(), LAST_TYPE ]
+// - instr->from() == instr->to()
+//
+// These kinds of intervals can be check with only one compare instruction
+// providing the correct value and test condition are used.
+//
+// TestType() will return the value to use in the compare instruction and
+// BranchCondition() will return the condition to use depending on the kind
+// of interval actually specified in the instruction.
+static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
+ InstanceType from = instr->from();
+ InstanceType to = instr->to();
+ if (from == FIRST_TYPE) return to;
+ ASSERT((from == to) || (to == LAST_TYPE));
+ return from;
+}
+
+
+// See comment above TestType function for what this function does.
+static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
+ InstanceType from = instr->from();
+ InstanceType to = instr->to();
+ if (from == to) return eq;
+ if (to == LAST_TYPE) return hs;
+ if (from == FIRST_TYPE) return ls;
+ UNREACHABLE();
+ return eq;
+}
+
+
+void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
+ Register input = ToRegister(instr->value());
+ Register scratch = ToRegister(instr->temp());
+
+ if (!instr->hydrogen()->value()->IsHeapObject()) {
+ __ JumpIfSmi(input, instr->FalseLabel(chunk_));
+ }
+ __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen()));
+ EmitBranch(instr, BranchCondition(instr->hydrogen()));
+}
+
+
+void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
+ Register result = ToRegister(instr->result());
+ Register base = ToRegister(instr->base_object());
+ __ Add(result, base, ToOperand(instr->offset()));
+}
+
+
+void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
+ ASSERT(ToRegister(instr->context()).is(cp));
+ // Assert that the arguments are in the registers expected by InstanceofStub.
+ ASSERT(ToRegister(instr->left()).Is(InstanceofStub::left()));
+ ASSERT(ToRegister(instr->right()).Is(InstanceofStub::right()));
+
+ InstanceofStub stub(InstanceofStub::kArgsInRegisters);
+ CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
+
+ // InstanceofStub returns a result in x0:
+ // 0 => not an instance
+ // smi 1 => instance.
+ __ Cmp(x0, 0);
+ __ LoadTrueFalseRoots(x0, x1);
+ __ Csel(x0, x0, x1, eq);
+}
+
+
+void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
+ class DeferredInstanceOfKnownGlobal: public LDeferredCode {
+ public:
+ DeferredInstanceOfKnownGlobal(LCodeGen* codegen,
+ LInstanceOfKnownGlobal* instr)
+ : LDeferredCode(codegen), instr_(instr) { }
+ virtual void Generate() {
+ codegen()->DoDeferredInstanceOfKnownGlobal(instr_);
+ }
+ virtual LInstruction* instr() { return instr_; }
+ private:
+ LInstanceOfKnownGlobal* instr_;
+ };
+
+ DeferredInstanceOfKnownGlobal* deferred =
+ new(zone()) DeferredInstanceOfKnownGlobal(this, instr);
+
+ Label map_check, return_false, cache_miss, done;
+ Register object = ToRegister(instr->value());
+ Register result = ToRegister(instr->result());
+ // x4 is expected in the associated deferred code and stub.
+ Register map_check_site = x4;
+ Register map = x5;
+
+ // This instruction is marked as call. We can clobber any register.
+ ASSERT(instr->IsMarkedAsCall());
+
+ // We must take into account that object is in x11.
+ ASSERT(object.Is(x11));
+ Register scratch = x10;
+
+ // A Smi is not instance of anything.
+ __ JumpIfSmi(object, &return_false);
+
+ // This is the inlined call site instanceof cache. The two occurences of the
+ // hole value will be patched to the last map/result pair generated by the
+ // instanceof stub.
+ __ Ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
+ {
+ // Below we use Factory::the_hole_value() on purpose instead of loading from
+ // the root array to force relocation and later be able to patch with a
+ // custom value.
+ InstructionAccurateScope scope(masm(), 5);
+ __ bind(&map_check);
+ // Will be patched with the cached map.
+ Handle<Cell> cell = factory()->NewCell(factory()->the_hole_value());
+ __ LoadRelocated(scratch, Operand(Handle<Object>(cell)));
+ __ ldr(scratch, FieldMemOperand(scratch, PropertyCell::kValueOffset));
+ __ cmp(map, Operand(scratch));
+ __ b(&cache_miss, ne);
+ // The address of this instruction is computed relative to the map check
+ // above, so check the size of the code generated.
+ ASSERT(masm()->InstructionsGeneratedSince(&map_check) == 4);
+ // Will be patched with the cached result.
+ __ LoadRelocated(result, Operand(factory()->the_hole_value()));
+ }
+ __ B(&done);
+
+ // The inlined call site cache did not match.
+ // Check null and string before calling the deferred code.
+ __ Bind(&cache_miss);
+ // Compute the address of the map check. It must not be clobbered until the
+ // InstanceOfStub has used it.
+ __ Adr(map_check_site, &map_check);
+ // Null is not instance of anything.
+ __ JumpIfRoot(object, Heap::kNullValueRootIndex, &return_false);
+
+ // String values are not instances of anything.
+ // Return false if the object is a string. Otherwise, jump to the deferred
+ // code.
+ // Note that we can't jump directly to deferred code from
+ // IsObjectJSStringType, because it uses tbz for the jump and the deferred
+ // code can be out of range.
+ __ IsObjectJSStringType(object, scratch, NULL, &return_false);
+ __ B(deferred->entry());
+
+ __ Bind(&return_false);
+ __ LoadRoot(result, Heap::kFalseValueRootIndex);
+
+ // Here result is either true or false.
+ __ Bind(deferred->exit());
+ __ Bind(&done);
+}
+
+
+void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
+ Register result = ToRegister(instr->result());
+ ASSERT(result.Is(x0)); // InstanceofStub returns its result in x0.
+ InstanceofStub::Flags flags = InstanceofStub::kNoFlags;
+ flags = static_cast<InstanceofStub::Flags>(
+ flags | InstanceofStub::kArgsInRegisters);
+ flags = static_cast<InstanceofStub::Flags>(
+ flags | InstanceofStub::kReturnTrueFalseObject);
+ flags = static_cast<InstanceofStub::Flags>(
+ flags | InstanceofStub::kCallSiteInlineCheck);
+
+ PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
+ LoadContextFromDeferred(instr->context());
+
+ // Prepare InstanceofStub arguments.
+ ASSERT(ToRegister(instr->value()).Is(InstanceofStub::left()));
+ __ LoadObject(InstanceofStub::right(), instr->function());
+
+ InstanceofStub stub(flags);
+ CallCodeGeneric(stub.GetCode(isolate()),
+ RelocInfo::CODE_TARGET,
+ instr,
+ RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
+ LEnvironment* env = instr->GetDeferredLazyDeoptimizationEnvironment();
+ safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
+
+ // Put the result value into the result register slot.
+ __ StoreToSafepointRegisterSlot(result, result);
+}
+
+
+void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
+ DoGap(instr);
+}
+
+
+void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
+ Register value = ToRegister32(instr->value());
+ DoubleRegister result = ToDoubleRegister(instr->result());
+ __ Scvtf(result, value);
+}
+
+
+void LCodeGen::DoInteger32ToSmi(LInteger32ToSmi* instr) {
+ // A64 smis can represent all Integer32 values, so this cannot deoptimize.
+ ASSERT(!instr->hydrogen()->value()->HasRange() ||
+ instr->hydrogen()->value()->range()->IsInSmiRange());
+
+ Register value = ToRegister(instr->value());
+ Register result = ToRegister(instr->result());
+ __ SmiTag(result, value);
+}
+
+
+void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
+ ASSERT(ToRegister(instr->context()).is(cp));
+ // The function is required to be in x1.
+ ASSERT(ToRegister(instr->function()).is(x1));
+ ASSERT(instr->HasPointerMap());
+
+ Handle<JSFunction> known_function = instr->hydrogen()->known_function();
+ if (known_function.is_null()) {
+ LPointerMap* pointers = instr->pointer_map();
+ SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
+ ParameterCount count(instr->arity());
+ __ InvokeFunction(x1, count, CALL_FUNCTION, generator);
+ } else {
+ CallKnownFunction(known_function,
+ instr->hydrogen()->formal_parameter_count(),
+ instr->arity(),
+ instr,
+ x1);
+ }
+}
+
+
+void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
+ Register temp1 = ToRegister(instr->temp1());
+ Register temp2 = ToRegister(instr->temp2());
+
+ // Get the frame pointer for the calling frame.
+ __ Ldr(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+
+ // Skip the arguments adaptor frame if it exists.
+ Label check_frame_marker;
+ __ Ldr(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset));
+ __ Cmp(temp2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+ __ B(ne, &check_frame_marker);
+ __ Ldr(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset));
+
+ // Check the marker in the calling frame.
+ __ Bind(&check_frame_marker);
+ __ Ldr(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset));
+
+ EmitCompareAndBranch(
+ instr, eq, temp1, Operand(Smi::FromInt(StackFrame::CONSTRUCT)));
+}
+
+
+void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
+ Label* is_object = instr->TrueLabel(chunk_);
+ Label* is_not_object = instr->FalseLabel(chunk_);
+ Register value = ToRegister(instr->value());
+ Register map = ToRegister(instr->temp1());
+ Register scratch = ToRegister(instr->temp2());
+
+ __ JumpIfSmi(value, is_not_object);
+ __ JumpIfRoot(value, Heap::kNullValueRootIndex, is_object);
+
+ __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
+
+ // Check for undetectable objects.
+ __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
+ __ TestAndBranchIfAnySet(scratch, 1 << Map::kIsUndetectable, is_not_object);
+
+ // Check that instance type is in object type range.
+ __ IsInstanceJSObjectType(map, scratch, NULL);
+ // Flags have been updated by IsInstanceJSObjectType. We can now test the
+ // flags for "le" condition to check if the object's type is a valid
+ // JS object type.
+ EmitBranch(instr, le);
+}
+
+
+Condition LCodeGen::EmitIsString(Register input,
+ Register temp1,
+ Label* is_not_string,
+ SmiCheck check_needed = INLINE_SMI_CHECK) {
+ if (check_needed == INLINE_SMI_CHECK) {
+ __ JumpIfSmi(input, is_not_string);
+ }
+ __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE);
+
+ return lt;
+}
+
+
+void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
+ Register val = ToRegister(instr->value());
+ Register scratch = ToRegister(instr->temp());
+
+ SmiCheck check_needed =
+ instr->hydrogen()->value()->IsHeapObject()
+ ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
+ Condition true_cond =
+ EmitIsString(val, scratch, instr->FalseLabel(chunk_), check_needed);
+
+ EmitBranch(instr, true_cond);
+}
+
+
+void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
+ Register value = ToRegister(instr->value());
+ STATIC_ASSERT(kSmiTag == 0);
+ EmitTestAndBranch(instr, eq, value, kSmiTagMask);
+}
+
+
+void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
+ Register input = ToRegister(instr->value());
+ Register temp = ToRegister(instr->temp());
+
+ if (!instr->hydrogen()->value()->IsHeapObject()) {
+ __ JumpIfSmi(input, instr->FalseLabel(chunk_));
+ }
+ __ Ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset));
+ __ Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
+
+ EmitTestAndBranch(instr, ne, temp, 1 << Map::kIsUndetectable);
+}
+
+
+static const char* LabelType(LLabel* label) {
+ if (label->is_loop_header()) return " (loop header)";
+ if (label->is_osr_entry()) return " (OSR entry)";
+ return "";
+}
+
+
+void LCodeGen::DoLabel(LLabel* label) {
+ Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
+ current_instruction_,
+ label->hydrogen_value()->id(),
+ label->block_id(),
+ LabelType(label));
+
+ __ Bind(label->label());
+ current_block_ = label->block_id();
+ DoGap(label);
+}
+
+
+void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
+ Register context = ToRegister(instr->context());
+ Register result = ToRegister(instr->result());
+ __ Ldr(result, ContextMemOperand(context, instr->slot_index()));
+ if (instr->hydrogen()->RequiresHoleCheck()) {
+ if (instr->hydrogen()->DeoptimizesOnHole()) {
+ DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex,
+ instr->environment());
+ } else {
+ Label not_the_hole;
+ __ JumpIfNotRoot(result, Heap::kTheHoleValueRootIndex, &not_the_hole);
+ __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
+ __ Bind(&not_the_hole);
+ }
+ }
+}
+
+
+void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
+ Register function = ToRegister(instr->function());
+ Register result = ToRegister(instr->result());
+ Register temp = ToRegister(instr->temp());
+ Label deopt;
+
+ // Check that the function really is a function. Leaves map in the result
+ // register.
+ __ JumpIfNotObjectType(function, result, temp, JS_FUNCTION_TYPE, &deopt);
+
+ // Make sure that the function has an instance prototype.
+ Label non_instance;
+ __ Ldrb(temp, FieldMemOperand(result, Map::kBitFieldOffset));
+ __ Tbnz(temp, Map::kHasNonInstancePrototype, &non_instance);
+
+ // Get the prototype or initial map from the function.
+ __ Ldr(result, FieldMemOperand(function,
+ JSFunction::kPrototypeOrInitialMapOffset));
+
+ // Check that the function has a prototype or an initial map.
+ __ JumpIfRoot(result, Heap::kTheHoleValueRootIndex, &deopt);
+
+ // If the function does not have an initial map, we're done.
+ Label done;
+ __ CompareObjectType(result, temp, temp, MAP_TYPE);
+ __ B(ne, &done);
+
+ // Get the prototype from the initial map.
+ __ Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
+ __ B(&done);
+
+ // Non-instance prototype: fetch prototype from constructor field in initial
+ // map.
+ __ Bind(&non_instance);
+ __ Ldr(result, FieldMemOperand(result, Map::kConstructorOffset));
+ __ B(&done);
+
+ // Deoptimize case.
+ __ Bind(&deopt);
+ Deoptimize(instr->environment());
+
+ // All done.
+ __ Bind(&done);
+}
+
+
+void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) {
+ Register result = ToRegister(instr->result());
+ __ Mov(result, Operand(Handle<Object>(instr->hydrogen()->cell().handle())));
+ __ Ldr(result, FieldMemOperand(result, Cell::kValueOffset));
+ if (instr->hydrogen()->RequiresHoleCheck()) {
+ DeoptimizeIfRoot(
+ result, Heap::kTheHoleValueRootIndex, instr->environment());
+ }
+}
+
+
+void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
+ ASSERT(ToRegister(instr->context()).is(cp));
+ ASSERT(ToRegister(instr->global_object()).Is(x0));
+ ASSERT(ToRegister(instr->result()).Is(x0));
+ __ Mov(x2, Operand(instr->name()));
+ ContextualMode mode = instr->for_typeof() ? NOT_CONTEXTUAL : CONTEXTUAL;
+ Handle<Code> ic = LoadIC::initialize_stub(isolate(), mode);
+ CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+MemOperand LCodeGen::PrepareKeyedExternalArrayOperand(
+ Register key,
+ Register base,
+ Register scratch,
+ bool key_is_smi,
+ bool key_is_constant,
+ int constant_key,
+ ElementsKind elements_kind,
+ int additional_index) {
+ int element_size_shift = ElementsKindToShiftSize(elements_kind);
+ int additional_offset = IsFixedTypedArrayElementsKind(elements_kind)
+ ? FixedTypedArrayBase::kDataOffset - kHeapObjectTag
+ : 0;
+
+ if (key_is_constant) {
+ int base_offset = ((constant_key + additional_index) << element_size_shift);
+ return MemOperand(base, base_offset + additional_offset);
+ }
+
+ if (additional_index == 0) {
+ if (key_is_smi) {
+ // Key is smi: untag, and scale by element size.
+ __ Add(scratch, base, Operand::UntagSmiAndScale(key, element_size_shift));
+ return MemOperand(scratch, additional_offset);
+ } else {
+ // Key is not smi, and element size is not byte: scale by element size.
+ if (additional_offset == 0) {
+ return MemOperand(base, key, LSL, element_size_shift);
+ } else {
+ __ Add(scratch, base, Operand(key, LSL, element_size_shift));
+ return MemOperand(scratch, additional_offset);
+ }
+ }
+ } else {
+ // TODO(all): Try to combine these cases a bit more intelligently.
+ if (additional_offset == 0) {
+ if (key_is_smi) {
+ __ SmiUntag(scratch, key);
+ __ Add(scratch, scratch, additional_index);
+ } else {
+ __ Add(scratch, key, additional_index);
+ }
+ return MemOperand(base, scratch, LSL, element_size_shift);
+ } else {
+ if (key_is_smi) {
+ __ Add(scratch, base,
+ Operand::UntagSmiAndScale(key, element_size_shift));
+ } else {
+ __ Add(scratch, base, Operand(key, LSL, element_size_shift));
+ }
+ return MemOperand(
+ scratch,
+ (additional_index << element_size_shift) + additional_offset);
+ }
+ }
+}
+
+
+void LCodeGen::DoLoadKeyedExternal(LLoadKeyedExternal* instr) {
+ Register ext_ptr = ToRegister(instr->elements());
+ Register scratch;
+ ElementsKind elements_kind = instr->elements_kind();
+
+ bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
+ bool key_is_constant = instr->key()->IsConstantOperand();
+ Register key = no_reg;
+ int constant_key = 0;
+ if (key_is_constant) {
+ ASSERT(instr->temp() == NULL);
+ constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
+ if (constant_key & 0xf0000000) {
+ Abort(kArrayIndexConstantValueTooBig);
+ }
+ } else {
+ scratch = ToRegister(instr->temp());
+ key = ToRegister(instr->key());
+ }
+
+ MemOperand mem_op =
+ PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi,
+ key_is_constant, constant_key,
+ elements_kind,
+ instr->additional_index());
+
+ if ((elements_kind == EXTERNAL_FLOAT32_ELEMENTS) ||
+ (elements_kind == FLOAT32_ELEMENTS)) {
+ DoubleRegister result = ToDoubleRegister(instr->result());
+ __ Ldr(result.S(), mem_op);
+ __ Fcvt(result, result.S());
+ } else if ((elements_kind == EXTERNAL_FLOAT64_ELEMENTS) ||
+ (elements_kind == FLOAT64_ELEMENTS)) {
+ DoubleRegister result = ToDoubleRegister(instr->result());
+ __ Ldr(result, mem_op);
+ } else {
+ Register result = ToRegister(instr->result());
+
+ switch (elements_kind) {
+ case EXTERNAL_INT8_ELEMENTS:
+ case INT8_ELEMENTS:
+ __ Ldrsb(result, mem_op);
+ break;
+ case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
+ case EXTERNAL_UINT8_ELEMENTS:
+ case UINT8_ELEMENTS:
+ case UINT8_CLAMPED_ELEMENTS:
+ __ Ldrb(result, mem_op);
+ break;
+ case EXTERNAL_INT16_ELEMENTS:
+ case INT16_ELEMENTS:
+ __ Ldrsh(result, mem_op);
+ break;
+ case EXTERNAL_UINT16_ELEMENTS:
+ case UINT16_ELEMENTS:
+ __ Ldrh(result, mem_op);
+ break;
+ case EXTERNAL_INT32_ELEMENTS:
+ case INT32_ELEMENTS:
+ __ Ldrsw(result, mem_op);
+ break;
+ case EXTERNAL_UINT32_ELEMENTS:
+ case UINT32_ELEMENTS:
+ __ Ldr(result.W(), mem_op);
+ if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
+ // Deopt if value > 0x80000000.
+ __ Tst(result, 0xFFFFFFFF80000000);
+ DeoptimizeIf(ne, instr->environment());
+ }
+ break;
+ case FLOAT32_ELEMENTS:
+ case FLOAT64_ELEMENTS:
+ case EXTERNAL_FLOAT32_ELEMENTS:
+ case EXTERNAL_FLOAT64_ELEMENTS:
+ case FAST_HOLEY_DOUBLE_ELEMENTS:
+ case FAST_HOLEY_ELEMENTS:
+ case FAST_HOLEY_SMI_ELEMENTS:
+ case FAST_DOUBLE_ELEMENTS:
+ case FAST_ELEMENTS:
+ case FAST_SMI_ELEMENTS:
+ case DICTIONARY_ELEMENTS:
+ case NON_STRICT_ARGUMENTS_ELEMENTS:
+ UNREACHABLE();
+ break;
+ }
+ }
+}
+
+
+void LCodeGen::CalcKeyedArrayBaseRegister(Register base,
+ Register elements,
+ Register key,
+ bool key_is_tagged,
+ ElementsKind elements_kind) {
+ int element_size_shift = ElementsKindToShiftSize(elements_kind);
+
+ // Even though the HLoad/StoreKeyed instructions force the input
+ // representation for the key to be an integer, the input gets replaced during
+ // bounds check elimination with the index argument to the bounds check, which
+ // can be tagged, so that case must be handled here, too.
+ if (key_is_tagged) {
+ __ Add(base, elements, Operand::UntagSmiAndScale(key, element_size_shift));
+ } else {
+ // Sign extend key because it could be a 32-bit negative value and the
+ // address computation happens in 64-bit.
+ ASSERT((element_size_shift >= 0) && (element_size_shift <= 4));
+ __ Add(base, elements, Operand(key, SXTW, element_size_shift));
+ }
+}
+
+
+void LCodeGen::DoLoadKeyedFixedDouble(LLoadKeyedFixedDouble* instr) {
+ Register elements = ToRegister(instr->elements());
+ DoubleRegister result = ToDoubleRegister(instr->result());
+ Register load_base;
+ int offset = 0;
+
+ if (instr->key()->IsConstantOperand()) {
+ ASSERT(instr->hydrogen()->RequiresHoleCheck() ||
+ (instr->temp() == NULL));
+
+ int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
+ if (constant_key & 0xf0000000) {
+ Abort(kArrayIndexConstantValueTooBig);
+ }
+ offset = FixedDoubleArray::OffsetOfElementAt(constant_key +
+ instr->additional_index());
+ load_base = elements;
+ } else {
+ load_base = ToRegister(instr->temp());
+ Register key = ToRegister(instr->key());
+ bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
+ CalcKeyedArrayBaseRegister(load_base, elements, key, key_is_tagged,
+ instr->hydrogen()->elements_kind());
+ offset = FixedDoubleArray::OffsetOfElementAt(instr->additional_index());
+ }
+ __ Ldr(result, FieldMemOperand(load_base, offset));
+
+ if (instr->hydrogen()->RequiresHoleCheck()) {
+ Register scratch = ToRegister(instr->temp());
+
+ // TODO(all): Is it faster to reload this value to an integer register, or
+ // move from fp to integer?
+ __ Fmov(scratch, result);
+ __ Cmp(scratch, kHoleNanInt64);
+ DeoptimizeIf(eq, instr->environment());
+ }
+}
+
+
+void LCodeGen::DoLoadKeyedFixed(LLoadKeyedFixed* instr) {
+ Register elements = ToRegister(instr->elements());
+ Register result = ToRegister(instr->result());
+ Register load_base;
+ int offset = 0;
+
+ if (instr->key()->IsConstantOperand()) {
+ ASSERT(instr->temp() == NULL);
+ LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
+ offset = FixedArray::OffsetOfElementAt(ToInteger32(const_operand) +
+ instr->additional_index());
+ load_base = elements;
+ } else {
+ load_base = ToRegister(instr->temp());
+ Register key = ToRegister(instr->key());
+ bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
+ CalcKeyedArrayBaseRegister(load_base, elements, key, key_is_tagged,
+ instr->hydrogen()->elements_kind());
+ offset = FixedArray::OffsetOfElementAt(instr->additional_index());
+ }
+ Representation representation = instr->hydrogen()->representation();
+
+ if (representation.IsInteger32() &&
+ instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS) {
+ STATIC_ASSERT(kSmiValueSize == 32 && kSmiShift == 32 && kSmiTag == 0);
+ __ Load(result, UntagSmiFieldMemOperand(load_base, offset),
+ Representation::Integer32());
+ } else {
+ __ Load(result, FieldMemOperand(load_base, offset),
+ representation);
+ }
+
+ if (instr->hydrogen()->RequiresHoleCheck()) {
+ if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
+ DeoptimizeIfNotSmi(result, instr->environment());
+ } else {
+ DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex,
+ instr->environment());
+ }
+ }
+}
+
+
+void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
+ ASSERT(ToRegister(instr->context()).is(cp));
+ ASSERT(ToRegister(instr->object()).Is(x1));
+ ASSERT(ToRegister(instr->key()).Is(x0));
+
+ Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
+ CallCode(ic, RelocInfo::CODE_TARGET, instr);
+
+ ASSERT(ToRegister(instr->result()).Is(x0));
+}
+
+
+void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
+ HObjectAccess access = instr->hydrogen()->access();
+ int offset = access.offset();
+ Register object = ToRegister(instr->object());
+
+ if (access.IsExternalMemory()) {
+ Register result = ToRegister(instr->result());
+ __ Load(result, MemOperand(object, offset), access.representation());
+ return;
+ }
+
+ if (instr->hydrogen()->representation().IsDouble()) {
+ FPRegister result = ToDoubleRegister(instr->result());
+ __ Ldr(result, FieldMemOperand(object, offset));
+ return;
+ }
+
+ Register result = ToRegister(instr->result());
+ Register source;
+ if (access.IsInobject()) {
+ source = object;
+ } else {
+ // Load the properties array, using result as a scratch register.
+ __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
+ source = result;
+ }
+
+ if (access.representation().IsSmi() &&
+ instr->hydrogen()->representation().IsInteger32()) {
+ // Read int value directly from upper half of the smi.
+ STATIC_ASSERT(kSmiValueSize == 32 && kSmiShift == 32 && kSmiTag == 0);
+ __ Load(result, UntagSmiFieldMemOperand(source, offset),
+ Representation::Integer32());
+ } else {
+ __ Load(result, FieldMemOperand(source, offset), access.representation());
+ }
+}
+
+
+void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
+ ASSERT(ToRegister(instr->context()).is(cp));
+ // LoadIC expects x2 to hold the name, and x0 to hold the receiver.
+ ASSERT(ToRegister(instr->object()).is(x0));
+ __ Mov(x2, Operand(instr->name()));
+
+ Handle<Code> ic = LoadIC::initialize_stub(isolate(), NOT_CONTEXTUAL);
+ CallCode(ic, RelocInfo::CODE_TARGET, instr);
+
+ ASSERT(ToRegister(instr->result()).is(x0));
+}
+
+
+void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
+ Register result = ToRegister(instr->result());
+ __ LoadRoot(result, instr->index());
+}
+
+
+void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) {
+ Register result = ToRegister(instr->result());
+ Register map = ToRegister(instr->value());
+ __ EnumLengthSmi(result, map);
+}
+
+
+void LCodeGen::DoMathAbs(LMathAbs* instr) {
+ Representation r = instr->hydrogen()->value()->representation();
+ if (r.IsDouble()) {
+ DoubleRegister input = ToDoubleRegister(instr->value());
+ DoubleRegister result = ToDoubleRegister(instr->result());
+ __ Fabs(result, input);
+ } else if (r.IsSmi() || r.IsInteger32()) {
+ Register input = r.IsSmi() ? ToRegister(instr->value())
+ : ToRegister32(instr->value());
+ Register result = r.IsSmi() ? ToRegister(instr->result())
+ : ToRegister32(instr->result());
+ Label done;
+ __ Abs(result, input, NULL, &done);
+ Deoptimize(instr->environment());
+ __ Bind(&done);
+ }
+}
+
+
+void LCodeGen::DoDeferredMathAbsTagged(LMathAbsTagged* instr,
+ Label* exit,
+ Label* allocation_entry) {
+ // Handle the tricky cases of MathAbsTagged:
+ // - HeapNumber inputs.
+ // - Negative inputs produce a positive result, so a new HeapNumber is
+ // allocated to hold it.
+ // - Positive inputs are returned as-is, since there is no need to allocate
+ // a new HeapNumber for the result.
+ // - The (smi) input -0x80000000, produces +0x80000000, which does not fit
+ // a smi. In this case, the inline code sets the result and jumps directly
+ // to the allocation_entry label.
+ ASSERT(instr->context() != NULL);
+ ASSERT(ToRegister(instr->context()).is(cp));
+ Register input = ToRegister(instr->value());
+ Register temp1 = ToRegister(instr->temp1());
+ Register temp2 = ToRegister(instr->temp2());
+ Register result_bits = ToRegister(instr->temp3());
+ Register result = ToRegister(instr->result());
+
+ Label runtime_allocation;
+
+ // Deoptimize if the input is not a HeapNumber.
+ __ Ldr(temp1, FieldMemOperand(input, HeapObject::kMapOffset));
+ DeoptimizeIfNotRoot(temp1, Heap::kHeapNumberMapRootIndex,
+ instr->environment());
+
+ // If the argument is positive, we can return it as-is, without any need to
+ // allocate a new HeapNumber for the result. We have to do this in integer
+ // registers (rather than with fabs) because we need to be able to distinguish
+ // the two zeroes.
+ __ Ldr(result_bits, FieldMemOperand(input, HeapNumber::kValueOffset));
+ __ Mov(result, input);
+ __ Tbz(result_bits, kXSignBit, exit);
+
+ // Calculate abs(input) by clearing the sign bit.
+ __ Bic(result_bits, result_bits, kXSignMask);
+
+ // Allocate a new HeapNumber to hold the result.
+ // result_bits The bit representation of the (double) result.
+ __ Bind(allocation_entry);
+ __ AllocateHeapNumber(result, &runtime_allocation, temp1, temp2);
+ // The inline (non-deferred) code will store result_bits into result.
+ __ B(exit);
+
+ __ Bind(&runtime_allocation);
+ if (FLAG_debug_code) {
+ // Because result is in the pointer map, we need to make sure it has a valid
+ // tagged value before we call the runtime. We speculatively set it to the
+ // input (for abs(+x)) or to a smi (for abs(-SMI_MIN)), so it should already
+ // be valid.
+ Label result_ok;
+ Register input = ToRegister(instr->value());
+ __ JumpIfSmi(result, &result_ok);
+ __ Cmp(input, result);
+ // TODO(all): Shouldn't we assert here?
+ DeoptimizeIf(ne, instr->environment());
+ __ Bind(&result_ok);
+ }
+
+ { PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
+ CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr,
+ instr->context());
+ __ StoreToSafepointRegisterSlot(x0, result);
+ }
+ // The inline (non-deferred) code will store result_bits into result.
+}
+
+
+void LCodeGen::DoMathAbsTagged(LMathAbsTagged* instr) {
+ // Class for deferred case.
+ class DeferredMathAbsTagged: public LDeferredCode {
+ public:
+ DeferredMathAbsTagged(LCodeGen* codegen, LMathAbsTagged* instr)
+ : LDeferredCode(codegen), instr_(instr) { }
+ virtual void Generate() {
+ codegen()->DoDeferredMathAbsTagged(instr_, exit(),
+ allocation_entry());
+ }
+ virtual LInstruction* instr() { return instr_; }
+ Label* allocation_entry() { return &allocation; }
+ private:
+ LMathAbsTagged* instr_;
+ Label allocation;
+ };
+
+ // TODO(jbramley): The early-exit mechanism would skip the new frame handling
+ // in GenerateDeferredCode. Tidy this up.
+ ASSERT(!NeedsDeferredFrame());
+
+ DeferredMathAbsTagged* deferred =
+ new(zone()) DeferredMathAbsTagged(this, instr);
+
+ ASSERT(instr->hydrogen()->value()->representation().IsTagged() ||
+ instr->hydrogen()->value()->representation().IsSmi());
+ Register input = ToRegister(instr->value());
+ Register result_bits = ToRegister(instr->temp3());
+ Register result = ToRegister(instr->result());
+ Label done;
+
+ // Handle smis inline.
+ // We can treat smis as 64-bit integers, since the (low-order) tag bits will
+ // never get set by the negation. This is therefore the same as the Integer32
+ // case in DoMathAbs, except that it operates on 64-bit values.
+ STATIC_ASSERT((kSmiValueSize == 32) && (kSmiShift == 32) && (kSmiTag == 0));
+
+ // TODO(jbramley): We can't use JumpIfNotSmi here because the tbz it uses
+ // doesn't always have enough range. Consider making a variant of it, or a
+ // TestIsSmi helper.
+ STATIC_ASSERT(kSmiTag == 0);
+ __ Tst(input, kSmiTagMask);
+ __ B(ne, deferred->entry());
+
+ __ Abs(result, input, NULL, &done);
+
+ // The result is the magnitude (abs) of the smallest value a smi can
+ // represent, encoded as a double.
+ __ Mov(result_bits, double_to_rawbits(0x80000000));
+ __ B(deferred->allocation_entry());
+
+ __ Bind(deferred->exit());
+ __ Str(result_bits, FieldMemOperand(result, HeapNumber::kValueOffset));
+
+ __ Bind(&done);
+}
+
+
+void LCodeGen::DoMathExp(LMathExp* instr) {
+ DoubleRegister input = ToDoubleRegister(instr->value());
+ DoubleRegister result = ToDoubleRegister(instr->result());
+ DoubleRegister double_temp1 = ToDoubleRegister(instr->double_temp1());
+ DoubleRegister double_temp2 = double_scratch();
+ Register temp1 = ToRegister(instr->temp1());
+ Register temp2 = ToRegister(instr->temp2());
+ Register temp3 = ToRegister(instr->temp3());
+
+ MathExpGenerator::EmitMathExp(masm(), input, result,
+ double_temp1, double_temp2,
+ temp1, temp2, temp3);
+}
+
+
+void LCodeGen::DoMathFloor(LMathFloor* instr) {
+ // TODO(jbramley): If we could provide a double result, we could use frintm
+ // and produce a valid double result in a single instruction.
+ DoubleRegister input = ToDoubleRegister(instr->value());
+ Register result = ToRegister(instr->result());
+ Label deopt;
+ Label done;
+
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ __ JumpIfMinusZero(input, &deopt);
+ }
+
+ __ Fcvtms(result, input);
+
+ // Check that the result fits into a 32-bit integer.
+ // - The result did not overflow.
+ __ Cmp(result, Operand(result, SXTW));
+ // - The input was not NaN.
+ __ Fccmp(input, input, NoFlag, eq);
+ __ B(&done, eq);
+
+ __ Bind(&deopt);
+ Deoptimize(instr->environment());
+
+ __ Bind(&done);
+}
+
+
+void LCodeGen::DoMathFloorOfDiv(LMathFloorOfDiv* instr) {
+ Register result = ToRegister32(instr->result());
+ Register left = ToRegister32(instr->left());
+ Register right = ToRegister32(instr->right());
+ Register remainder = ToRegister32(instr->temp());
+
+ // This can't cause an exception on ARM, so we can speculatively
+ // execute it already now.
+ __ Sdiv(result, left, right);
+
+ // Check for x / 0.
+ DeoptimizeIfZero(right, instr->environment());
+
+ // Check for (kMinInt / -1).
+ if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
+ // The V flag will be set iff left == kMinInt.
+ __ Cmp(left, 1);
+ __ Ccmp(right, -1, NoFlag, vs);
+ DeoptimizeIf(eq, instr->environment());
+ }
+
+ // Check for (0 / -x) that will produce negative zero.
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ __ Cmp(right, 0);
+ __ Ccmp(left, 0, ZFlag, mi);
+ // "right" can't be null because the code would have already been
+ // deoptimized. The Z flag is set only if (right < 0) and (left == 0).
+ // In this case we need to deoptimize to produce a -0.
+ DeoptimizeIf(eq, instr->environment());
+ }
+
+ Label done;
+ // If both operands have the same sign then we are done.
+ __ Eor(remainder, left, right);
+ __ Tbz(remainder, kWSignBit, &done);
+
+ // Check if the result needs to be corrected.
+ __ Msub(remainder, result, right, left);
+ __ Cbz(remainder, &done);
+ __ Sub(result, result, 1);
+
+ __ Bind(&done);
+}
+
+
+void LCodeGen::DoMathLog(LMathLog* instr) {
+ ASSERT(instr->IsMarkedAsCall());
+ ASSERT(ToDoubleRegister(instr->value()).is(d0));
+ __ CallCFunction(ExternalReference::math_log_double_function(isolate()),
+ 0, 1);
+ ASSERT(ToDoubleRegister(instr->result()).Is(d0));
+}
+
+
+void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
+ DoubleRegister input = ToDoubleRegister(instr->value());
+ DoubleRegister result = ToDoubleRegister(instr->result());
+ Label done;
+
+ // Math.pow(x, 0.5) differs from fsqrt(x) in the following cases:
+ // Math.pow(-Infinity, 0.5) == +Infinity
+ // Math.pow(-0.0, 0.5) == +0.0
+
+ // Catch -infinity inputs first.
+ // TODO(jbramley): A constant infinity register would be helpful here.
+ __ Fmov(double_scratch(), kFP64NegativeInfinity);
+ __ Fcmp(double_scratch(), input);
+ __ Fabs(result, input);
+ __ B(&done, eq);
+
+ // Add +0.0 to convert -0.0 to +0.0.
+ // TODO(jbramley): A constant zero register would be helpful here.
+ __ Fmov(double_scratch(), 0.0);
+ __ Fadd(double_scratch(), input, double_scratch());
+ __ Fsqrt(result, double_scratch());
+
+ __ Bind(&done);
+}
+
+
+void LCodeGen::DoPower(LPower* instr) {
+ Representation exponent_type = instr->hydrogen()->right()->representation();
+ // Having marked this as a call, we can use any registers.
+ // Just make sure that the input/output registers are the expected ones.
+ ASSERT(!instr->right()->IsDoubleRegister() ||
+ ToDoubleRegister(instr->right()).is(d1));
+ ASSERT(exponent_type.IsInteger32() || !instr->right()->IsRegister() ||
+ ToRegister(instr->right()).is(x11));
+ ASSERT(!exponent_type.IsInteger32() || ToRegister(instr->right()).is(x12));
+ ASSERT(ToDoubleRegister(instr->left()).is(d0));
+ ASSERT(ToDoubleRegister(instr->result()).is(d0));
+
+ if (exponent_type.IsSmi()) {
+ MathPowStub stub(MathPowStub::TAGGED);
+ __ CallStub(&stub);
+ } else if (exponent_type.IsTagged()) {
+ Label no_deopt;
+ __ JumpIfSmi(x11, &no_deopt);
+ __ Ldr(x0, FieldMemOperand(x11, HeapObject::kMapOffset));
+ DeoptimizeIfNotRoot(x0, Heap::kHeapNumberMapRootIndex,
+ instr->environment());
+ __ Bind(&no_deopt);
+ MathPowStub stub(MathPowStub::TAGGED);
+ __ CallStub(&stub);
+ } else if (exponent_type.IsInteger32()) {
+ MathPowStub stub(MathPowStub::INTEGER);
+ __ CallStub(&stub);
+ } else {
+ ASSERT(exponent_type.IsDouble());
+ MathPowStub stub(MathPowStub::DOUBLE);
+ __ CallStub(&stub);
+ }
+}
+
+
+void LCodeGen::DoMathRound(LMathRound* instr) {
+ // TODO(jbramley): We could provide a double result here using frint.
+ DoubleRegister input = ToDoubleRegister(instr->value());
+ DoubleRegister temp1 = ToDoubleRegister(instr->temp1());
+ Register result = ToRegister(instr->result());
+ Label try_rounding;
+ Label deopt;
+ Label done;
+
+ // Math.round() rounds to the nearest integer, with ties going towards
+ // +infinity. This does not match any IEEE-754 rounding mode.
+ // - Infinities and NaNs are propagated unchanged, but cause deopts because
+ // they can't be represented as integers.
+ // - The sign of the result is the same as the sign of the input. This means
+ // that -0.0 rounds to itself, and values -0.5 <= input < 0 also produce a
+ // result of -0.0.
+
+ DoubleRegister dot_five = double_scratch();
+ __ Fmov(dot_five, 0.5);
+ __ Fabs(temp1, input);
+ __ Fcmp(temp1, dot_five);
+ // If input is in [-0.5, -0], the result is -0.
+ // If input is in [+0, +0.5[, the result is +0.
+ // If the input is +0.5, the result is 1.
+ __ B(hi, &try_rounding); // hi so NaN will also branch.
+
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ __ Fmov(result, input);
+ __ Cmp(result, 0);
+ DeoptimizeIf(mi, instr->environment()); // [-0.5, -0.0].
+ }
+ __ Fcmp(input, dot_five);
+ __ Mov(result, 1); // +0.5.
+ // Remaining cases: [+0, +0.5[ or [-0.5, +0.5[, depending on
+ // flag kBailoutOnMinusZero, will return 0 (xzr).
+ __ Csel(result, result, xzr, eq);
+ __ B(&done);
+
+ __ Bind(&deopt);
+ Deoptimize(instr->environment());
+
+ __ Bind(&try_rounding);
+ // Since we're providing a 32-bit result, we can implement ties-to-infinity by
+ // adding 0.5 to the input, then taking the floor of the result. This does not
+ // work for very large positive doubles because adding 0.5 would cause an
+ // intermediate rounding stage, so a different approach will be necessary if a
+ // double result is needed.
+ __ Fadd(temp1, input, dot_five);
+ __ Fcvtms(result, temp1);
+
+ // Deopt if
+ // * the input was NaN
+ // * the result is not representable using a 32-bit integer.
+ __ Fcmp(input, 0.0);
+ __ Ccmp(result, Operand(result.W(), SXTW), NoFlag, vc);
+ __ B(ne, &deopt);
+
+ __ Bind(&done);
+}
+
+
+void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
+ DoubleRegister input = ToDoubleRegister(instr->value());
+ DoubleRegister result = ToDoubleRegister(instr->result());
+ __ Fsqrt(result, input);
+}
+
+
+void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
+ HMathMinMax::Operation op = instr->hydrogen()->operation();
+ if (instr->hydrogen()->representation().IsInteger32()) {
+ Register result = ToRegister32(instr->result());
+ Register left = ToRegister32(instr->left());
+ Operand right = ToOperand32I(instr->right());
+
+ __ Cmp(left, right);
+ __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le);
+ } else if (instr->hydrogen()->representation().IsSmi()) {
+ Register result = ToRegister(instr->result());
+ Register left = ToRegister(instr->left());
+ Operand right = ToOperand(instr->right());
+
+ __ Cmp(left, right);
+ __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le);
+ } else {
+ ASSERT(instr->hydrogen()->representation().IsDouble());
+ DoubleRegister result = ToDoubleRegister(instr->result());
+ DoubleRegister left = ToDoubleRegister(instr->left());
+ DoubleRegister right = ToDoubleRegister(instr->right());
+
+ if (op == HMathMinMax::kMathMax) {
+ __ Fmax(result, left, right);
+ } else {
+ ASSERT(op == HMathMinMax::kMathMin);
+ __ Fmin(result, left, right);
+ }
+ }
+}
+
+
+void LCodeGen::DoModI(LModI* instr) {
+ HMod* hmod = instr->hydrogen();
+ HValue* hleft = hmod->left();
+ HValue* hright = hmod->right();
+
+ Label done;
+ Register result = ToRegister32(instr->result());
+ Register dividend = ToRegister32(instr->left());
+
+ bool need_minus_zero_check = (hmod->CheckFlag(HValue::kBailoutOnMinusZero) &&
+ hleft->CanBeNegative() && hmod->CanBeZero());
+
+ if (hmod->RightIsPowerOf2()) {
+ // Note: The code below even works when right contains kMinInt.
+ int32_t divisor = Abs(hright->GetInteger32Constant());
+
+ if (hleft->CanBeNegative()) {
+ __ Cmp(dividend, 0);
+ __ Cneg(result, dividend, mi);
+ __ And(result, result, divisor - 1);
+ __ Cneg(result, result, mi);
+ if (need_minus_zero_check) {
+ __ Cbnz(result, &done);
+ // The result is 0. Deoptimize if the dividend was negative.
+ DeoptimizeIf(mi, instr->environment());
+ }
+ } else {
+ __ And(result, dividend, divisor - 1);
+ }
+
+ } else {
+ Label deopt;
+ Register divisor = ToRegister32(instr->right());
+ // Compute:
+ // modulo = dividend - quotient * divisor
+ __ Sdiv(result, dividend, divisor);
+ if (hright->CanBeZero()) {
+ // Combine the deoptimization sites.
+ Label ok;
+ __ Cbnz(divisor, &ok);
+ __ Bind(&deopt);
+ Deoptimize(instr->environment());
+ __ Bind(&ok);
+ }
+ __ Msub(result, result, divisor, dividend);
+ if (need_minus_zero_check) {
+ __ Cbnz(result, &done);
+ if (deopt.is_bound()) {
+ __ Tbnz(dividend, kWSignBit, &deopt);
+ } else {
+ DeoptimizeIfNegative(dividend, instr->environment());
+ }
+ }
+ }
+ __ Bind(&done);
+}
+
+
+void LCodeGen::DoMulConstIS(LMulConstIS* instr) {
+ ASSERT(instr->hydrogen()->representation().IsSmiOrInteger32());
+ bool is_smi = instr->hydrogen()->representation().IsSmi();
+ Register result =
+ is_smi ? ToRegister(instr->result()) : ToRegister32(instr->result());
+ Register left =
+ is_smi ? ToRegister(instr->left()) : ToRegister32(instr->left()) ;
+ int32_t right = ToInteger32(instr->right());
+
+ bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+ bool bailout_on_minus_zero =
+ instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
+
+ if (bailout_on_minus_zero) {
+ if (right < 0) {
+ // The result is -0 if right is negative and left is zero.
+ DeoptimizeIfZero(left, instr->environment());
+ } else if (right == 0) {
+ // The result is -0 if the right is zero and the left is negative.
+ DeoptimizeIfNegative(left, instr->environment());
+ }
+ }
+
+ switch (right) {
+ // Cases which can detect overflow.
+ case -1:
+ if (can_overflow) {
+ // Only 0x80000000 can overflow here.
+ __ Negs(result, left);
+ DeoptimizeIf(vs, instr->environment());
+ } else {
+ __ Neg(result, left);
+ }
+ break;
+ case 0:
+ // This case can never overflow.
+ __ Mov(result, 0);
+ break;
+ case 1:
+ // This case can never overflow.
+ __ Mov(result, left, kDiscardForSameWReg);
+ break;
+ case 2:
+ if (can_overflow) {
+ __ Adds(result, left, left);
+ DeoptimizeIf(vs, instr->environment());
+ } else {
+ __ Add(result, left, left);
+ }
+ break;
+
+ // All other cases cannot detect overflow, because it would probably be no
+ // faster than using the smull method in LMulI.
+ // TODO(jbramley): Investigate this, and add overflow support if it would
+ // be useful.
+ default:
+ ASSERT(!can_overflow);
+
+ // Multiplication by constant powers of two (and some related values)
+ // can be done efficiently with shifted operands.
+ if (right >= 0) {
+ if (IsPowerOf2(right)) {
+ // result = left << log2(right)
+ __ Lsl(result, left, WhichPowerOf2(right));
+ } else if (IsPowerOf2(right - 1)) {
+ // result = left + left << log2(right - 1)
+ __ Add(result, left, Operand(left, LSL, WhichPowerOf2(right - 1)));
+ } else if (IsPowerOf2(right + 1)) {
+ // result = -left + left << log2(right + 1)
+ __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(right + 1)));
+ __ Neg(result, result);
+ } else {
+ UNREACHABLE();
+ }
+ } else {
+ if (IsPowerOf2(-right)) {
+ // result = -left << log2(-right)
+ __ Neg(result, Operand(left, LSL, WhichPowerOf2(-right)));
+ } else if (IsPowerOf2(-right + 1)) {
+ // result = left - left << log2(-right + 1)
+ __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(-right + 1)));
+ } else if (IsPowerOf2(-right - 1)) {
+ // result = -left - left << log2(-right - 1)
+ __ Add(result, left, Operand(left, LSL, WhichPowerOf2(-right - 1)));
+ __ Neg(result, result);
+ } else {
+ UNREACHABLE();
+ }
+ }
+ break;
+ }
+}
+
+
+void LCodeGen::DoMulI(LMulI* instr) {
+ Register result = ToRegister32(instr->result());
+ Register left = ToRegister32(instr->left());
+ Register right = ToRegister32(instr->right());
+
+ bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+ bool bailout_on_minus_zero =
+ instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
+
+ if (bailout_on_minus_zero) {
+ // If one operand is zero and the other is negative, the result is -0.
+ // - Set Z (eq) if either left or right, or both, are 0.
+ __ Cmp(left, 0);
+ __ Ccmp(right, 0, ZFlag, ne);
+ // - If so (eq), set N (mi) if left + right is negative.
+ // - Otherwise, clear N.
+ __ Ccmn(left, right, NoFlag, eq);
+ DeoptimizeIf(mi, instr->environment());
+ }
+
+ if (can_overflow) {
+ __ Smull(result.X(), left, right);
+ __ Cmp(result.X(), Operand(result, SXTW));
+ DeoptimizeIf(ne, instr->environment());
+ } else {
+ __ Mul(result, left, right);
+ }
+}
+
+
+void LCodeGen::DoMulS(LMulS* instr) {
+ Register result = ToRegister(instr->result());
+ Register left = ToRegister(instr->left());
+ Register right = ToRegister(instr->right());
+
+ bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+ bool bailout_on_minus_zero =
+ instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
+
+ if (bailout_on_minus_zero) {
+ // If one operand is zero and the other is negative, the result is -0.
+ // - Set Z (eq) if either left or right, or both, are 0.
+ __ Cmp(left, 0);
+ __ Ccmp(right, 0, ZFlag, ne);
+ // - If so (eq), set N (mi) if left + right is negative.
+ // - Otherwise, clear N.
+ __ Ccmn(left, right, NoFlag, eq);
+ DeoptimizeIf(mi, instr->environment());
+ }
+
+ STATIC_ASSERT((kSmiShift == 32) && (kSmiTag == 0));
+ if (can_overflow) {
+ __ Smulh(result, left, right);
+ __ Cmp(result, Operand(result.W(), SXTW));
+ __ SmiTag(result);
+ DeoptimizeIf(ne, instr->environment());
+ } else {
+ // TODO(jbramley): This could be rewritten to support UseRegisterAtStart.
+ ASSERT(!AreAliased(result, right));
+ __ SmiUntag(result, left);
+ __ Mul(result, result, right);
+ }
+}
+
+
+void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
+ // TODO(3095996): Get rid of this. For now, we need to make the
+ // result register contain a valid pointer because it is already
+ // contained in the register pointer map.
+ Register result = ToRegister(instr->result());
+ __ Mov(result, 0);
+
+ PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
+ // NumberTagU and NumberTagD use the context from the frame, rather than
+ // the environment's HContext or HInlinedContext value.
+ // They only call Runtime::kAllocateHeapNumber.
+ // The corresponding HChange instructions are added in a phase that does
+ // not have easy access to the local context.
+ __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
+ RecordSafepointWithRegisters(
+ instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
+ __ StoreToSafepointRegisterSlot(x0, result);
+}
+
+
+void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
+ class DeferredNumberTagD: public LDeferredCode {
+ public:
+ DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
+ : LDeferredCode(codegen), instr_(instr) { }
+ virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); }
+ virtual LInstruction* instr() { return instr_; }
+ private:
+ LNumberTagD* instr_;
+ };
+
+ DoubleRegister input = ToDoubleRegister(instr->value());
+ Register result = ToRegister(instr->result());
+ Register temp1 = ToRegister(instr->temp1());
+ Register temp2 = ToRegister(instr->temp2());
+
+ DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
+ if (FLAG_inline_new) {
+ __ AllocateHeapNumber(result, deferred->entry(), temp1, temp2);
+ } else {
+ __ B(deferred->entry());
+ }
+
+ __ Bind(deferred->exit());
+ __ Str(input, FieldMemOperand(result, HeapNumber::kValueOffset));
+}
+
+
+void LCodeGen::DoDeferredNumberTagU(LInstruction* instr,
+ LOperand* value,
+ LOperand* temp1,
+ LOperand* temp2) {
+ Label slow, convert_and_store;
+ Register src = ToRegister32(value);
+ Register dst = ToRegister(instr->result());
+ Register scratch1 = ToRegister(temp1);
+
+ if (FLAG_inline_new) {
+ Register scratch2 = ToRegister(temp2);
+ __ AllocateHeapNumber(dst, &slow, scratch1, scratch2);
+ __ B(&convert_and_store);
+ }
+
+ // Slow case: call the runtime system to do the number allocation.
+ __ Bind(&slow);
+ // TODO(3095996): Put a valid pointer value in the stack slot where the result
+ // register is stored, as this register is in the pointer map, but contains an
+ // integer value.
+ __ Mov(dst, 0);
+ {
+ // Preserve the value of all registers.
+ PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
+
+ // NumberTagU and NumberTagD use the context from the frame, rather than
+ // the environment's HContext or HInlinedContext value.
+ // They only call Runtime::kAllocateHeapNumber.
+ // The corresponding HChange instructions are added in a phase that does
+ // not have easy access to the local context.
+ __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
+ RecordSafepointWithRegisters(
+ instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
+ __ StoreToSafepointRegisterSlot(x0, dst);
+ }
+
+ // Convert number to floating point and store in the newly allocated heap
+ // number.
+ __ Bind(&convert_and_store);
+ DoubleRegister dbl_scratch = double_scratch();
+ __ Ucvtf(dbl_scratch, src);
+ __ Str(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset));
+}
+
+
+void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
+ class DeferredNumberTagU: public LDeferredCode {
+ public:
+ DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
+ : LDeferredCode(codegen), instr_(instr) { }
+ virtual void Generate() {
+ codegen()->DoDeferredNumberTagU(instr_,
+ instr_->value(),
+ instr_->temp1(),
+ instr_->temp2());
+ }
+ virtual LInstruction* instr() { return instr_; }
+ private:
+ LNumberTagU* instr_;
+ };
+
+ Register value = ToRegister(instr->value());
+ Register result = ToRegister(instr->result());
+
+ DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
+ __ Cmp(value, Smi::kMaxValue);
+ __ B(hi, deferred->entry());
+ __ SmiTag(result, value);
+ __ Bind(deferred->exit());
+}
+
+
+void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
+ Register input = ToRegister(instr->value());
+ Register scratch = ToRegister(instr->temp());
+ DoubleRegister result = ToDoubleRegister(instr->result());
+ bool can_convert_undefined_to_nan =
+ instr->hydrogen()->can_convert_undefined_to_nan();
+
+ Label done, load_smi;
+
+ // Work out what untag mode we're working with.
+ HValue* value = instr->hydrogen()->value();
+ NumberUntagDMode mode = value->representation().IsSmi()
+ ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
+
+ if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
+ __ JumpIfSmi(input, &load_smi);
+
+ Label convert_undefined, deopt;
+
+ // Heap number map check.
+ Label* not_heap_number = can_convert_undefined_to_nan ? &convert_undefined
+ : &deopt;
+ __ Ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
+ __ JumpIfNotRoot(scratch, Heap::kHeapNumberMapRootIndex, not_heap_number);
+
+ // Load heap number.
+ __ Ldr(result, FieldMemOperand(input, HeapNumber::kValueOffset));
+ if (instr->hydrogen()->deoptimize_on_minus_zero()) {
+ __ JumpIfMinusZero(result, &deopt);
+ }
+ __ B(&done);
+
+ if (can_convert_undefined_to_nan) {
+ __ Bind(&convert_undefined);
+ __ JumpIfNotRoot(input, Heap::kUndefinedValueRootIndex, &deopt);
+
+ __ LoadRoot(scratch, Heap::kNanValueRootIndex);
+ __ Ldr(result, FieldMemOperand(scratch, HeapNumber::kValueOffset));
+ __ B(&done);
+ }
+
+ __ Bind(&deopt);
+ Deoptimize(instr->environment());
+ } else {
+ ASSERT(mode == NUMBER_CANDIDATE_IS_SMI);
+ // Fall through to load_smi.
+ }
+
+ // Smi to double register conversion.
+ __ Bind(&load_smi);
+ __ SmiUntagToDouble(result, input);
+
+ __ Bind(&done);
+}
+
+
+void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
+ // This is a pseudo-instruction that ensures that the environment here is
+ // properly registered for deoptimization and records the assembler's PC
+ // offset.
+ LEnvironment* environment = instr->environment();
+
+ // If the environment were already registered, we would have no way of
+ // backpatching it with the spill slot operands.
+ ASSERT(!environment->HasBeenRegistered());
+ RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
+
+ GenerateOsrPrologue();
+}
+
+
+void LCodeGen::DoParameter(LParameter* instr) {
+ // Nothing to do.
+}
+
+
+void LCodeGen::DoPushArgument(LPushArgument* instr) {
+ LOperand* argument = instr->value();
+ if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) {
+ Abort(kDoPushArgumentNotImplementedForDoubleType);
+ } else {
+ __ Push(ToRegister(argument));
+ }
+}
+
+
+void LCodeGen::DoReturn(LReturn* instr) {
+ if (FLAG_trace && info()->IsOptimizing()) {
+ // Push the return value on the stack as the parameter.
+ // Runtime::TraceExit returns its parameter in x0. We're leaving the code
+ // managed by the register allocator and tearing down the frame, it's
+ // safe to write to the context register.
+ __ Push(x0);
+ __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ __ CallRuntime(Runtime::kTraceExit, 1);
+ }
+
+ if (info()->saves_caller_doubles()) {
+ RestoreCallerDoubles();
+ }
+
+ int no_frame_start = -1;
+ if (NeedsEagerFrame()) {
+ Register stack_pointer = masm()->StackPointer();
+ __ Mov(stack_pointer, fp);
+ no_frame_start = masm_->pc_offset();
+ __ Pop(fp, lr);
+ }
+
+ if (instr->has_constant_parameter_count()) {
+ int parameter_count = ToInteger32(instr->constant_parameter_count());
+ __ Drop(parameter_count + 1);
+ } else {
+ Register parameter_count = ToRegister(instr->parameter_count());
+ __ DropBySMI(parameter_count);
+ }
+ __ Ret();
+
+ if (no_frame_start != -1) {
+ info_->AddNoFrameRange(no_frame_start, masm_->pc_offset());
+ }
+}
+
+
+MemOperand LCodeGen::BuildSeqStringOperand(Register string,
+ Register temp,
+ LOperand* index,
+ String::Encoding encoding) {
+ if (index->IsConstantOperand()) {
+ int offset = ToInteger32(LConstantOperand::cast(index));
+ if (encoding == String::TWO_BYTE_ENCODING) {
+ offset *= kUC16Size;
+ }
+ STATIC_ASSERT(kCharSize == 1);
+ return FieldMemOperand(string, SeqString::kHeaderSize + offset);
+ }
+ ASSERT(!temp.is(string));
+ ASSERT(!temp.is(ToRegister(index)));
+ if (encoding == String::ONE_BYTE_ENCODING) {
+ __ Add(temp, string, Operand(ToRegister(index)));
+ } else {
+ STATIC_ASSERT(kUC16Size == 2);
+ __ Add(temp, string, Operand(ToRegister(index), LSL, 1));
+ }
+ return FieldMemOperand(temp, SeqString::kHeaderSize);
+}
+
+
+void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
+ String::Encoding encoding = instr->hydrogen()->encoding();
+ Register string = ToRegister(instr->string());
+ Register result = ToRegister(instr->result());
+ Register temp = ToRegister(instr->temp());
+
+ if (FLAG_debug_code) {
+ __ Ldr(temp, FieldMemOperand(string, HeapObject::kMapOffset));
+ __ Ldrb(temp, FieldMemOperand(temp, Map::kInstanceTypeOffset));
+
+ __ And(temp, temp,
+ Operand(kStringRepresentationMask | kStringEncodingMask));
+ static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
+ static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
+ __ Cmp(temp, Operand(encoding == String::ONE_BYTE_ENCODING
+ ? one_byte_seq_type : two_byte_seq_type));
+ __ Check(eq, kUnexpectedStringType);
+ }
+
+ MemOperand operand =
+ BuildSeqStringOperand(string, temp, instr->index(), encoding);
+ if (encoding == String::ONE_BYTE_ENCODING) {
+ __ Ldrb(result, operand);
+ } else {
+ __ Ldrh(result, operand);
+ }
+}
+
+
+void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
+ String::Encoding encoding = instr->hydrogen()->encoding();
+ Register string = ToRegister(instr->string());
+ Register value = ToRegister(instr->value());
+ Register temp = ToRegister(instr->temp());
+
+ if (FLAG_debug_code) {
+ ASSERT(ToRegister(instr->context()).is(cp));
+ Register index = ToRegister(instr->index());
+ static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
+ static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
+ int encoding_mask =
+ instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
+ ? one_byte_seq_type : two_byte_seq_type;
+ __ EmitSeqStringSetCharCheck(string, index, kIndexIsInteger32, temp,
+ encoding_mask);
+ }
+ MemOperand operand =
+ BuildSeqStringOperand(string, temp, instr->index(), encoding);
+ if (encoding == String::ONE_BYTE_ENCODING) {
+ __ Strb(value, operand);
+ } else {
+ __ Strh(value, operand);
+ }
+}
+
+
+void LCodeGen::DoSmiTag(LSmiTag* instr) {
+ ASSERT(!instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow));
+ __ SmiTag(ToRegister(instr->result()), ToRegister(instr->value()));
+}
+
+
+void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
+ Register input = ToRegister(instr->value());
+ Register result = ToRegister(instr->result());
+ Label done, untag;
+
+ if (instr->needs_check()) {
+ DeoptimizeIfNotSmi(input, instr->environment());
+ }
+
+ __ Bind(&untag);
+ __ SmiUntag(result, input);
+ __ Bind(&done);
+}
+
+
+void LCodeGen::DoShiftI(LShiftI* instr) {
+ LOperand* right_op = instr->right();
+ Register left = ToRegister32(instr->left());
+ Register result = ToRegister32(instr->result());
+
+ if (right_op->IsRegister()) {
+ Register right = ToRegister32(instr->right());
+ switch (instr->op()) {
+ case Token::ROR: __ Ror(result, left, right); break;
+ case Token::SAR: __ Asr(result, left, right); break;
+ case Token::SHL: __ Lsl(result, left, right); break;
+ case Token::SHR:
+ if (instr->can_deopt()) {
+ Label right_not_zero;
+ __ Cbnz(right, &right_not_zero);
+ DeoptimizeIfNegative(left, instr->environment());
+ __ Bind(&right_not_zero);
+ }
+ __ Lsr(result, left, right);
+ break;
+ default: UNREACHABLE();
+ }
+ } else {
+ ASSERT(right_op->IsConstantOperand());
+ int shift_count = ToInteger32(LConstantOperand::cast(right_op)) & 0x1f;
+ if (shift_count == 0) {
+ if ((instr->op() == Token::SHR) && instr->can_deopt()) {
+ DeoptimizeIfNegative(left, instr->environment());
+ }
+ __ Mov(result, left, kDiscardForSameWReg);
+ } else {
+ switch (instr->op()) {
+ case Token::ROR: __ Ror(result, left, shift_count); break;
+ case Token::SAR: __ Asr(result, left, shift_count); break;
+ case Token::SHL: __ Lsl(result, left, shift_count); break;
+ case Token::SHR: __ Lsr(result, left, shift_count); break;
+ default: UNREACHABLE();
+ }
+ }
+ }
+}
+
+
+void LCodeGen::DoShiftS(LShiftS* instr) {
+ LOperand* right_op = instr->right();
+ Register left = ToRegister(instr->left());
+ Register result = ToRegister(instr->result());
+
+ // Only ROR by register needs a temp.
+ ASSERT(((instr->op() == Token::ROR) && right_op->IsRegister()) ||
+ (instr->temp() == NULL));
+
+ if (right_op->IsRegister()) {
+ Register right = ToRegister(instr->right());
+ switch (instr->op()) {
+ case Token::ROR: {
+ Register temp = ToRegister(instr->temp());
+ __ Ubfx(temp, right, kSmiShift, 5);
+ __ SmiUntag(result, left);
+ __ Ror(result.W(), result.W(), temp.W());
+ __ SmiTag(result);
+ break;
+ }
+ case Token::SAR:
+ __ Ubfx(result, right, kSmiShift, 5);
+ __ Asr(result, left, result);
+ __ Bic(result, result, kSmiShiftMask);
+ break;
+ case Token::SHL:
+ __ Ubfx(result, right, kSmiShift, 5);
+ __ Lsl(result, left, result);
+ break;
+ case Token::SHR:
+ if (instr->can_deopt()) {
+ Label right_not_zero;
+ __ Cbnz(right, &right_not_zero);
+ DeoptimizeIfNegative(left, instr->environment());
+ __ Bind(&right_not_zero);
+ }
+ __ Ubfx(result, right, kSmiShift, 5);
+ __ Lsr(result, left, result);
+ __ Bic(result, result, kSmiShiftMask);
+ break;
+ default: UNREACHABLE();
+ }
+ } else {
+ ASSERT(right_op->IsConstantOperand());
+ int shift_count = ToInteger32(LConstantOperand::cast(right_op)) & 0x1f;
+ if (shift_count == 0) {
+ if ((instr->op() == Token::SHR) && instr->can_deopt()) {
+ DeoptimizeIfNegative(left, instr->environment());
+ }
+ __ Mov(result, left);
+ } else {
+ switch (instr->op()) {
+ case Token::ROR:
+ __ SmiUntag(result, left);
+ __ Ror(result.W(), result.W(), shift_count);
+ __ SmiTag(result);
+ break;
+ case Token::SAR:
+ __ Asr(result, left, shift_count);
+ __ Bic(result, result, kSmiShiftMask);
+ break;
+ case Token::SHL:
+ __ Lsl(result, left, shift_count);
+ break;
+ case Token::SHR:
+ __ Lsr(result, left, shift_count);
+ __ Bic(result, result, kSmiShiftMask);
+ break;
+ default: UNREACHABLE();
+ }
+ }
+ }
+}
+
+
+void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
+ __ Debug("LDebugBreak", 0, BREAK);
+}
+
+
+void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
+ ASSERT(ToRegister(instr->context()).is(cp));
+ Register scratch1 = x5;
+ Register scratch2 = x6;
+ ASSERT(instr->IsMarkedAsCall());
+
+ ASM_UNIMPLEMENTED_BREAK("DoDeclareGlobals");
+ // TODO(all): if Mov could handle object in new space then it could be used
+ // here.
+ __ LoadHeapObject(scratch1, instr->hydrogen()->pairs());
+ __ Mov(scratch2, Operand(Smi::FromInt(instr->hydrogen()->flags())));
+ __ Push(cp, scratch1, scratch2); // The context is the first argument.
+ CallRuntime(Runtime::kDeclareGlobals, 3, instr);
+}
+
+
+void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
+ PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
+ LoadContextFromDeferred(instr->context());
+ __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
+ RecordSafepointWithLazyDeopt(
+ instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
+ ASSERT(instr->HasEnvironment());
+ LEnvironment* env = instr->environment();
+ safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
+}
+
+
+void LCodeGen::DoStackCheck(LStackCheck* instr) {
+ class DeferredStackCheck: public LDeferredCode {
+ public:
+ DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
+ : LDeferredCode(codegen), instr_(instr) { }
+ virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); }
+ virtual LInstruction* instr() { return instr_; }
+ private:
+ LStackCheck* instr_;
+ };
+
+ ASSERT(instr->HasEnvironment());
+ LEnvironment* env = instr->environment();
+ // There is no LLazyBailout instruction for stack-checks. We have to
+ // prepare for lazy deoptimization explicitly here.
+ if (instr->hydrogen()->is_function_entry()) {
+ // Perform stack overflow check.
+ Label done;
+ __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex);
+ __ B(hs, &done);
+
+ PredictableCodeSizeScope predictable(masm_,
+ Assembler::kCallSizeWithRelocation);
+ ASSERT(instr->context()->IsRegister());
+ ASSERT(ToRegister(instr->context()).is(cp));
+ CallCode(isolate()->builtins()->StackCheck(),
+ RelocInfo::CODE_TARGET,
+ instr);
+ EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
+
+ __ Bind(&done);
+ RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
+ safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
+ } else {
+ ASSERT(instr->hydrogen()->is_backwards_branch());
+ // Perform stack overflow check if this goto needs it before jumping.
+ DeferredStackCheck* deferred_stack_check =
+ new(zone()) DeferredStackCheck(this, instr);
+ __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex);
+ __ B(lo, deferred_stack_check->entry());
+
+ EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
+ __ Bind(instr->done_label());
+ deferred_stack_check->SetExit(instr->done_label());
+ RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
+ // Don't record a deoptimization index for the safepoint here.
+ // This will be done explicitly when emitting call and the safepoint in
+ // the deferred code.
+ }
+}
+
+
+void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
+ Register function = ToRegister(instr->function());
+ Register code_object = ToRegister(instr->code_object());
+ Register temp = ToRegister(instr->temp());
+ __ Add(temp, code_object, Code::kHeaderSize - kHeapObjectTag);
+ __ Str(temp, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
+}
+
+
+void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
+ Register context = ToRegister(instr->context());
+ Register value = ToRegister(instr->value());
+ Register scratch = ToRegister(instr->temp());
+ MemOperand target = ContextMemOperand(context, instr->slot_index());
+
+ Label skip_assignment;
+
+ if (instr->hydrogen()->RequiresHoleCheck()) {
+ __ Ldr(scratch, target);
+ if (instr->hydrogen()->DeoptimizesOnHole()) {
+ DeoptimizeIfRoot(scratch, Heap::kTheHoleValueRootIndex,
+ instr->environment());
+ } else {
+ __ JumpIfNotRoot(scratch, Heap::kTheHoleValueRootIndex, &skip_assignment);
+ }
+ }
+
+ __ Str(value, target);
+ if (instr->hydrogen()->NeedsWriteBarrier()) {
+ SmiCheck check_needed =
+ instr->hydrogen()->value()->IsHeapObject()
+ ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
+ __ RecordWriteContextSlot(context,
+ target.offset(),
+ value,
+ scratch,
+ GetLinkRegisterState(),
+ kSaveFPRegs,
+ EMIT_REMEMBERED_SET,
+ check_needed);
+ }
+ __ Bind(&skip_assignment);
+}
+
+
+void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) {
+ Register value = ToRegister(instr->value());
+ Register cell = ToRegister(instr->temp1());
+
+ // Load the cell.
+ __ Mov(cell, Operand(instr->hydrogen()->cell().handle()));
+
+ // If the cell we are storing to contains the hole it could have
+ // been deleted from the property dictionary. In that case, we need
+ // to update the property details in the property dictionary to mark
+ // it as no longer deleted. We deoptimize in that case.
+ if (instr->hydrogen()->RequiresHoleCheck()) {
+ Register payload = ToRegister(instr->temp2());
+ __ Ldr(payload, FieldMemOperand(cell, Cell::kValueOffset));
+ DeoptimizeIfRoot(
+ payload, Heap::kTheHoleValueRootIndex, instr->environment());
+ }
+
+ // Store the value.
+ __ Str(value, FieldMemOperand(cell, Cell::kValueOffset));
+ // Cells are always rescanned, so no write barrier here.
+}
+
+
+void LCodeGen::DoStoreKeyedExternal(LStoreKeyedExternal* instr) {
+ Register ext_ptr = ToRegister(instr->elements());
+ Register key = no_reg;
+ Register scratch;
+ ElementsKind elements_kind = instr->elements_kind();
+
+ bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
+ bool key_is_constant = instr->key()->IsConstantOperand();
+ int constant_key = 0;
+ if (key_is_constant) {
+ ASSERT(instr->temp() == NULL);
+ constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
+ if (constant_key & 0xf0000000) {
+ Abort(kArrayIndexConstantValueTooBig);
+ }
+ } else {
+ key = ToRegister(instr->key());
+ scratch = ToRegister(instr->temp());
+ }
+
+ MemOperand dst =
+ PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi,
+ key_is_constant, constant_key,
+ elements_kind,
+ instr->additional_index());
+
+ if ((elements_kind == EXTERNAL_FLOAT32_ELEMENTS) ||
+ (elements_kind == FLOAT32_ELEMENTS)) {
+ DoubleRegister value = ToDoubleRegister(instr->value());
+ DoubleRegister dbl_scratch = double_scratch();
+ __ Fcvt(dbl_scratch.S(), value);
+ __ Str(dbl_scratch.S(), dst);
+ } else if ((elements_kind == EXTERNAL_FLOAT64_ELEMENTS) ||
+ (elements_kind == FLOAT64_ELEMENTS)) {
+ DoubleRegister value = ToDoubleRegister(instr->value());
+ __ Str(value, dst);
+ } else {
+ Register value = ToRegister(instr->value());
+
+ switch (elements_kind) {
+ case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
+ case EXTERNAL_INT8_ELEMENTS:
+ case EXTERNAL_UINT8_ELEMENTS:
+ case UINT8_ELEMENTS:
+ case UINT8_CLAMPED_ELEMENTS:
+ case INT8_ELEMENTS:
+ __ Strb(value, dst);
+ break;
+ case EXTERNAL_INT16_ELEMENTS:
+ case EXTERNAL_UINT16_ELEMENTS:
+ case INT16_ELEMENTS:
+ case UINT16_ELEMENTS:
+ __ Strh(value, dst);
+ break;
+ case EXTERNAL_INT32_ELEMENTS:
+ case EXTERNAL_UINT32_ELEMENTS:
+ case INT32_ELEMENTS:
+ case UINT32_ELEMENTS:
+ __ Str(value.W(), dst);
+ break;
+ case FLOAT32_ELEMENTS:
+ case FLOAT64_ELEMENTS:
+ case EXTERNAL_FLOAT32_ELEMENTS:
+ case EXTERNAL_FLOAT64_ELEMENTS:
+ case FAST_DOUBLE_ELEMENTS:
+ case FAST_ELEMENTS:
+ case FAST_SMI_ELEMENTS:
+ case FAST_HOLEY_DOUBLE_ELEMENTS:
+ case FAST_HOLEY_ELEMENTS:
+ case FAST_HOLEY_SMI_ELEMENTS:
+ case DICTIONARY_ELEMENTS:
+ case NON_STRICT_ARGUMENTS_ELEMENTS:
+ UNREACHABLE();
+ break;
+ }
+ }
+}
+
+
+void LCodeGen::DoStoreKeyedFixedDouble(LStoreKeyedFixedDouble* instr) {
+ Register elements = ToRegister(instr->elements());
+ DoubleRegister value = ToDoubleRegister(instr->value());
+ Register store_base = ToRegister(instr->temp());
+ int offset = 0;
+
+ if (instr->key()->IsConstantOperand()) {
+ int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
+ if (constant_key & 0xf0000000) {
+ Abort(kArrayIndexConstantValueTooBig);
+ }
+ offset = FixedDoubleArray::OffsetOfElementAt(constant_key +
+ instr->additional_index());
+ store_base = elements;
+ } else {
+ Register key = ToRegister(instr->key());
+ bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
+ CalcKeyedArrayBaseRegister(store_base, elements, key, key_is_tagged,
+ instr->hydrogen()->elements_kind());
+ offset = FixedDoubleArray::OffsetOfElementAt(instr->additional_index());
+ }
+
+ if (instr->NeedsCanonicalization()) {
+ DoubleRegister dbl_scratch = double_scratch();
+ __ Fmov(dbl_scratch,
+ FixedDoubleArray::canonical_not_the_hole_nan_as_double());
+ __ Fmaxnm(dbl_scratch, dbl_scratch, value);
+ __ Str(dbl_scratch, FieldMemOperand(store_base, offset));
+ } else {
+ __ Str(value, FieldMemOperand(store_base, offset));
+ }
+}
+
+
+void LCodeGen::DoStoreKeyedFixed(LStoreKeyedFixed* instr) {
+ Register value = ToRegister(instr->value());
+ Register elements = ToRegister(instr->elements());
+ Register store_base = ToRegister(instr->temp());
+ Register key = no_reg;
+ int offset = 0;
+
+ if (instr->key()->IsConstantOperand()) {
+ ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
+ LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
+ offset = FixedArray::OffsetOfElementAt(ToInteger32(const_operand) +
+ instr->additional_index());
+ store_base = elements;
+ } else {
+ key = ToRegister(instr->key());
+ bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
+ CalcKeyedArrayBaseRegister(store_base, elements, key, key_is_tagged,
+ instr->hydrogen()->elements_kind());
+ offset = FixedArray::OffsetOfElementAt(instr->additional_index());
+ }
+ Representation representation = instr->hydrogen()->value()->representation();
+ if (representation.IsInteger32()) {
+ ASSERT(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
+ ASSERT(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS);
+ STATIC_ASSERT(kSmiValueSize == 32 && kSmiShift == 32 && kSmiTag == 0);
+ __ Store(value, UntagSmiFieldMemOperand(store_base, offset),
+ Representation::Integer32());
+ } else {
+ __ Store(value, FieldMemOperand(store_base, offset), representation);
+ }
+
+ if (instr->hydrogen()->NeedsWriteBarrier()) {
+ SmiCheck check_needed =
+ instr->hydrogen()->value()->IsHeapObject()
+ ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
+ // Compute address of modified element and store it into key register.
+ __ Add(key, store_base, offset - kHeapObjectTag);
+ __ RecordWrite(elements, key, value, GetLinkRegisterState(), kSaveFPRegs,
+ EMIT_REMEMBERED_SET, check_needed);
+ }
+}
+
+
+void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
+ ASSERT(ToRegister(instr->context()).is(cp));
+ ASSERT(ToRegister(instr->object()).Is(x2));
+ ASSERT(ToRegister(instr->key()).Is(x1));
+ ASSERT(ToRegister(instr->value()).Is(x0));
+
+ Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode)
+ ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
+ : isolate()->builtins()->KeyedStoreIC_Initialize();
+ CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+// TODO(jbramley): Once the merge is done and we're tracking bleeding_edge, try
+// to tidy up this function.
+void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
+ Representation representation = instr->representation();
+
+ Register object = ToRegister(instr->object());
+ Register temp0 = ToRegister(instr->temp0());
+ Register temp1 = ToRegister(instr->temp1());
+ HObjectAccess access = instr->hydrogen()->access();
+ int offset = access.offset();
+
+ if (access.IsExternalMemory()) {
+ Register value = ToRegister(instr->value());
+ __ Store(value, MemOperand(object, offset), representation);
+ return;
+ }
+
+ Handle<Map> transition = instr->transition();
+
+ if (FLAG_track_heap_object_fields && representation.IsHeapObject()) {
+ Register value = ToRegister(instr->value());
+ if (!instr->hydrogen()->value()->type().IsHeapObject()) {
+ DeoptimizeIfSmi(value, instr->environment());
+ }
+ } else if (representation.IsDouble()) {
+ ASSERT(transition.is_null());
+ ASSERT(access.IsInobject());
+ ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
+ FPRegister value = ToDoubleRegister(instr->value());
+ __ Str(value, FieldMemOperand(object, offset));
+ return;
+ }
+
+ if (!transition.is_null()) {
+ // Store the new map value.
+ Register new_map_value = temp0;
+ __ Mov(new_map_value, Operand(transition));
+ __ Str(new_map_value, FieldMemOperand(object, HeapObject::kMapOffset));
+ if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
+ // Update the write barrier for the map field.
+ __ RecordWriteField(object,
+ HeapObject::kMapOffset,
+ new_map_value,
+ temp1,
+ GetLinkRegisterState(),
+ kSaveFPRegs,
+ OMIT_REMEMBERED_SET,
+ OMIT_SMI_CHECK);
+ }
+ }
+
+ // Do the store.
+ Register value = ToRegister(instr->value());
+ Register destination;
+ SmiCheck check_needed =
+ instr->hydrogen()->value()->IsHeapObject()
+ ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
+ if (access.IsInobject()) {
+ destination = object;
+ } else {
+ __ Ldr(temp0, FieldMemOperand(object, JSObject::kPropertiesOffset));
+ destination = temp0;
+ }
+
+ if (representation.IsSmi() &&
+ instr->hydrogen()->value()->representation().IsInteger32()) {
+ ASSERT(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
+ STATIC_ASSERT(kSmiValueSize == 32 && kSmiShift == 32 && kSmiTag == 0);
+ __ Store(value, UntagSmiFieldMemOperand(destination, offset),
+ Representation::Integer32());
+ } else {
+ __ Store(value, FieldMemOperand(destination, offset), representation);
+ }
+ if (instr->hydrogen()->NeedsWriteBarrier()) {
+ __ RecordWriteField(destination,
+ offset,
+ value, // Clobbered.
+ temp1, // Clobbered.
+ GetLinkRegisterState(),
+ kSaveFPRegs,
+ EMIT_REMEMBERED_SET,
+ check_needed);
+ }
+}
+
+
+void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
+ ASSERT(ToRegister(instr->context()).is(cp));
+ ASSERT(ToRegister(instr->value()).is(x0));
+ ASSERT(ToRegister(instr->object()).is(x1));
+
+ // Name must be in x2.
+ __ Mov(x2, Operand(instr->name()));
+ Handle<Code> ic = StoreIC::initialize_stub(isolate(),
+ instr->strict_mode_flag());
+ CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoStringAdd(LStringAdd* instr) {
+ ASSERT(ToRegister(instr->context()).is(cp));
+ ASSERT(ToRegister(instr->left()).Is(x1));
+ ASSERT(ToRegister(instr->right()).Is(x0));
+ StringAddStub stub(instr->hydrogen()->flags(),
+ instr->hydrogen()->pretenure_flag());
+ CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
+ class DeferredStringCharCodeAt: public LDeferredCode {
+ public:
+ DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
+ : LDeferredCode(codegen), instr_(instr) { }
+ virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); }
+ virtual LInstruction* instr() { return instr_; }
+ private:
+ LStringCharCodeAt* instr_;
+ };
+
+ DeferredStringCharCodeAt* deferred =
+ new(zone()) DeferredStringCharCodeAt(this, instr);
+
+ StringCharLoadGenerator::Generate(masm(),
+ ToRegister(instr->string()),
+ ToRegister(instr->index()),
+ ToRegister(instr->result()),
+ deferred->entry());
+ __ Bind(deferred->exit());
+}
+
+
+void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
+ Register string = ToRegister(instr->string());
+ Register result = ToRegister(instr->result());
+
+ // TODO(3095996): Get rid of this. For now, we need to make the
+ // result register contain a valid pointer because it is already
+ // contained in the register pointer map.
+ __ Mov(result, 0);
+
+ PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
+ __ Push(string);
+ // Push the index as a smi. This is safe because of the checks in
+ // DoStringCharCodeAt above.
+ Register index = ToRegister(instr->index());
+ __ SmiTag(index);
+ __ Push(index);
+
+ CallRuntimeFromDeferred(Runtime::kStringCharCodeAt, 2, instr,
+ instr->context());
+ __ AssertSmi(x0);
+ __ SmiUntag(x0);
+ __ StoreToSafepointRegisterSlot(x0, result);
+}
+
+
+void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
+ class DeferredStringCharFromCode: public LDeferredCode {
+ public:
+ DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
+ : LDeferredCode(codegen), instr_(instr) { }
+ virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); }
+ virtual LInstruction* instr() { return instr_; }
+ private:
+ LStringCharFromCode* instr_;
+ };
+
+ DeferredStringCharFromCode* deferred =
+ new(zone()) DeferredStringCharFromCode(this, instr);
+
+ ASSERT(instr->hydrogen()->value()->representation().IsInteger32());
+ Register char_code = ToRegister(instr->char_code());
+ Register result = ToRegister(instr->result());
+
+ __ Cmp(char_code, Operand(String::kMaxOneByteCharCode));
+ __ B(hi, deferred->entry());
+ __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
+ __ Add(result, result, Operand(char_code, LSL, kPointerSizeLog2));
+ __ Ldr(result, FieldMemOperand(result, FixedArray::kHeaderSize));
+ __ CompareRoot(result, Heap::kUndefinedValueRootIndex);
+ __ B(eq, deferred->entry());
+ __ Bind(deferred->exit());
+}
+
+
+void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
+ Register char_code = ToRegister(instr->char_code());
+ Register result = ToRegister(instr->result());
+
+ // TODO(3095996): Get rid of this. For now, we need to make the
+ // result register contain a valid pointer because it is already
+ // contained in the register pointer map.
+ __ Mov(result, 0);
+
+ PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
+ __ SmiTag(char_code);
+ __ Push(char_code);
+ CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr, instr->context());
+ __ StoreToSafepointRegisterSlot(x0, result);
+}
+
+
+void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
+ ASSERT(ToRegister(instr->context()).is(cp));
+ Token::Value op = instr->op();
+
+ Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op);
+ CallCode(ic, RelocInfo::CODE_TARGET, instr);
+ InlineSmiCheckInfo::EmitNotInlined(masm());
+
+ Condition condition = TokenToCondition(op, false);
+
+ EmitCompareAndBranch(instr, condition, x0, 0);
+}
+
+
+void LCodeGen::DoSubI(LSubI* instr) {
+ bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+ Register result = ToRegister32(instr->result());
+ Register left = ToRegister32(instr->left());
+ Operand right = ToOperand32I(instr->right());
+ if (can_overflow) {
+ __ Subs(result, left, right);
+ DeoptimizeIf(vs, instr->environment());
+ } else {
+ __ Sub(result, left, right);
+ }
+}
+
+
+void LCodeGen::DoSubS(LSubS* instr) {
+ bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+ Register result = ToRegister(instr->result());
+ Register left = ToRegister(instr->left());
+ Operand right = ToOperand(instr->right());
+ if (can_overflow) {
+ __ Subs(result, left, right);
+ DeoptimizeIf(vs, instr->environment());
+ } else {
+ __ Sub(result, left, right);
+ }
+}
+
+
+void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr,
+ LOperand* value,
+ LOperand* temp1,
+ LOperand* temp2) {
+ Register input = ToRegister(value);
+ Register scratch1 = ToRegister(temp1);
+ DoubleRegister dbl_scratch1 = double_scratch();
+
+ Label done;
+
+ // Load heap object map.
+ __ Ldr(scratch1, FieldMemOperand(input, HeapObject::kMapOffset));
+
+ if (instr->truncating()) {
+ Register output = ToRegister(instr->result());
+ Register scratch2 = ToRegister(temp2);
+ Label check_bools;
+
+ // If it's not a heap number, jump to undefined check.
+ __ JumpIfNotRoot(scratch1, Heap::kHeapNumberMapRootIndex, &check_bools);
+
+ // A heap number: load value and convert to int32 using truncating function.
+ __ Ldr(dbl_scratch1, FieldMemOperand(input, HeapNumber::kValueOffset));
+ __ ECMA262ToInt32(output, dbl_scratch1, scratch1, scratch2);
+ __ B(&done);
+
+ __ Bind(&check_bools);
+
+ Register true_root = output;
+ Register false_root = scratch2;
+ __ LoadTrueFalseRoots(true_root, false_root);
+ __ Cmp(scratch1, true_root);
+ __ Cset(output, eq);
+ __ Ccmp(scratch1, false_root, ZFlag, ne);
+ __ B(eq, &done);
+
+ // Output contains zero, undefined is converted to zero for truncating
+ // conversions.
+ DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex,
+ instr->environment());
+ } else {
+ Register output = ToRegister32(instr->result());
+
+ DoubleRegister dbl_scratch2 = ToDoubleRegister(temp2);
+ Label converted;
+
+ // Deoptimized if it's not a heap number.
+ DeoptimizeIfNotRoot(scratch1, Heap::kHeapNumberMapRootIndex,
+ instr->environment());
+
+ // A heap number: load value and convert to int32 using non-truncating
+ // function. If the result is out of range, branch to deoptimize.
+ __ Ldr(dbl_scratch1, FieldMemOperand(input, HeapNumber::kValueOffset));
+ __ TryConvertDoubleToInt32(output, dbl_scratch1, dbl_scratch2, &converted);
+ Deoptimize(instr->environment());
+
+ __ Bind(&converted);
+
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ __ Cmp(output, 0);
+ __ B(ne, &done);
+ __ Fmov(scratch1, dbl_scratch1);
+ DeoptimizeIfNegative(scratch1, instr->environment());
+ }
+ }
+ __ Bind(&done);
+}
+
+
+void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
+ class DeferredTaggedToI: public LDeferredCode {
+ public:
+ DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
+ : LDeferredCode(codegen), instr_(instr) { }
+ virtual void Generate() {
+ codegen()->DoDeferredTaggedToI(instr_, instr_->value(), instr_->temp1(),
+ instr_->temp2());
+ }
+
+ virtual LInstruction* instr() { return instr_; }
+ private:
+ LTaggedToI* instr_;
+ };
+
+ Register input = ToRegister(instr->value());
+ Register output = ToRegister(instr->result());
+
+ if (instr->hydrogen()->value()->representation().IsSmi()) {
+ __ SmiUntag(input);
+ } else {
+ DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
+
+ // TODO(jbramley): We can't use JumpIfNotSmi here because the tbz it uses
+ // doesn't always have enough range. Consider making a variant of it, or a
+ // TestIsSmi helper.
+ STATIC_ASSERT(kSmiTag == 0);
+ __ Tst(input, kSmiTagMask);
+ __ B(ne, deferred->entry());
+
+ __ SmiUntag(output, input);
+ __ Bind(deferred->exit());
+ }
+}
+
+
+void LCodeGen::DoThisFunction(LThisFunction* instr) {
+ Register result = ToRegister(instr->result());
+ __ Ldr(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+}
+
+
+void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
+ ASSERT(ToRegister(instr->value()).Is(x0));
+ ASSERT(ToRegister(instr->result()).Is(x0));
+ __ Push(x0);
+ CallRuntime(Runtime::kToFastProperties, 1, instr);
+}
+
+
+void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
+ ASSERT(ToRegister(instr->context()).is(cp));
+ Label materialized;
+ // Registers will be used as follows:
+ // x7 = literals array.
+ // x1 = regexp literal.
+ // x0 = regexp literal clone.
+ // x10-x12 are used as temporaries.
+ int literal_offset =
+ FixedArray::OffsetOfElementAt(instr->hydrogen()->literal_index());
+ __ LoadObject(x7, instr->hydrogen()->literals());
+ __ Ldr(x1, FieldMemOperand(x7, literal_offset));
+ __ JumpIfNotRoot(x1, Heap::kUndefinedValueRootIndex, &materialized);
+
+ // Create regexp literal using runtime function
+ // Result will be in x0.
+ __ Mov(x12, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
+ __ Mov(x11, Operand(instr->hydrogen()->pattern()));
+ __ Mov(x10, Operand(instr->hydrogen()->flags()));
+ __ Push(x7, x12, x11, x10);
+ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr);
+ __ Mov(x1, x0);
+
+ __ Bind(&materialized);
+ int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
+ Label allocated, runtime_allocate;
+
+ __ Allocate(size, x0, x10, x11, &runtime_allocate, TAG_OBJECT);
+ __ B(&allocated);
+
+ __ Bind(&runtime_allocate);
+ __ Mov(x0, Operand(Smi::FromInt(size)));
+ __ Push(x1, x0);
+ CallRuntime(Runtime::kAllocateInNewSpace, 1, instr);
+ __ Pop(x1);
+
+ __ Bind(&allocated);
+ // Copy the content into the newly allocated memory.
+ __ CopyFields(x0, x1, CPURegList(x10, x11, x12), size / kPointerSize);
+}
+
+
+void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
+ Register object = ToRegister(instr->object());
+ Register temp1 = ToRegister(instr->temp1());
+
+ Handle<Map> from_map = instr->original_map();
+ Handle<Map> to_map = instr->transitioned_map();
+ ElementsKind from_kind = instr->from_kind();
+ ElementsKind to_kind = instr->to_kind();
+
+ Label not_applicable;
+ __ CheckMap(object, temp1, from_map, &not_applicable, DONT_DO_SMI_CHECK);
+
+ if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
+ Register new_map = ToRegister(instr->temp2());
+ __ Mov(new_map, Operand(to_map));
+ __ Str(new_map, FieldMemOperand(object, HeapObject::kMapOffset));
+ // Write barrier.
+ __ RecordWriteField(object, HeapObject::kMapOffset, new_map, temp1,
+ GetLinkRegisterState(), kDontSaveFPRegs);
+ } else {
+ ASSERT(ToRegister(instr->context()).is(cp));
+ PushSafepointRegistersScope scope(
+ this, Safepoint::kWithRegistersAndDoubles);
+ __ Mov(x0, object);
+ __ Mov(x1, Operand(to_map));
+ TransitionElementsKindStub stub(from_kind, to_kind);
+ __ CallStub(&stub);
+ RecordSafepointWithRegistersAndDoubles(
+ instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
+ }
+ __ Bind(&not_applicable);
+}
+
+
+void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
+ Register object = ToRegister(instr->object());
+ Register temp1 = ToRegister(instr->temp1());
+ Register temp2 = ToRegister(instr->temp2());
+
+ Label no_memento_found;
+ __ JumpIfJSArrayHasAllocationMemento(object, temp1, temp2, &no_memento_found);
+ Deoptimize(instr->environment());
+ __ Bind(&no_memento_found);
+}
+
+
+void LCodeGen::DoTruncateDoubleToIntOrSmi(LTruncateDoubleToIntOrSmi* instr) {
+ DoubleRegister input = ToDoubleRegister(instr->value());
+ Register result = ToRegister(instr->result());
+ __ ECMA262ToInt32(result, input,
+ ToRegister(instr->temp1()),
+ ToRegister(instr->temp2()),
+ instr->tag_result()
+ ? MacroAssembler::SMI
+ : MacroAssembler::INT32_IN_W);
+}
+
+
+void LCodeGen::DoTypeof(LTypeof* instr) {
+ Register input = ToRegister(instr->value());
+ __ Push(input);
+ CallRuntime(Runtime::kTypeof, 1, instr);
+}
+
+
+void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
+ Handle<String> type_name = instr->type_literal();
+ Label* true_label = instr->TrueLabel(chunk_);
+ Label* false_label = instr->FalseLabel(chunk_);
+ Register value = ToRegister(instr->value());
+
+ if (type_name->Equals(heap()->number_string())) {
+ ASSERT(instr->temp1() != NULL);
+ Register map = ToRegister(instr->temp1());
+
+ __ JumpIfSmi(value, true_label);
+ __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
+ __ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
+ EmitBranch(instr, eq);
+
+ } else if (type_name->Equals(heap()->string_string())) {
+ ASSERT((instr->temp1() != NULL) && (instr->temp2() != NULL));
+ Register map = ToRegister(instr->temp1());
+ Register scratch = ToRegister(instr->temp2());
+
+ __ JumpIfSmi(value, false_label);
+ __ JumpIfObjectType(
+ value, map, scratch, FIRST_NONSTRING_TYPE, false_label, ge);
+ __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
+ EmitTestAndBranch(instr, eq, scratch, 1 << Map::kIsUndetectable);
+
+ } else if (type_name->Equals(heap()->symbol_string())) {
+ ASSERT((instr->temp1() != NULL) && (instr->temp2() != NULL));
+ Register map = ToRegister(instr->temp1());
+ Register scratch = ToRegister(instr->temp2());
+
+ __ JumpIfSmi(value, false_label);
+ __ CompareObjectType(value, map, scratch, SYMBOL_TYPE);
+ EmitBranch(instr, eq);
+
+ } else if (type_name->Equals(heap()->boolean_string())) {
+ __ JumpIfRoot(value, Heap::kTrueValueRootIndex, true_label);
+ __ CompareRoot(value, Heap::kFalseValueRootIndex);
+ EmitBranch(instr, eq);
+
+ } else if (FLAG_harmony_typeof && type_name->Equals(heap()->null_string())) {
+ __ CompareRoot(value, Heap::kNullValueRootIndex);
+ EmitBranch(instr, eq);
+
+ } else if (type_name->Equals(heap()->undefined_string())) {
+ ASSERT(instr->temp1() != NULL);
+ Register scratch = ToRegister(instr->temp1());
+
+ __ JumpIfRoot(value, Heap::kUndefinedValueRootIndex, true_label);
+ __ JumpIfSmi(value, false_label);
+ // Check for undetectable objects and jump to the true branch in this case.
+ __ Ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
+ __ Ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
+ EmitTestAndBranch(instr, ne, scratch, 1 << Map::kIsUndetectable);
+
+ } else if (type_name->Equals(heap()->function_string())) {
+ STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
+ ASSERT(instr->temp1() != NULL);
+ Register type = ToRegister(instr->temp1());
+
+ __ JumpIfSmi(value, false_label);
+ __ JumpIfObjectType(value, type, type, JS_FUNCTION_TYPE, true_label);
+ // HeapObject's type has been loaded into type register by JumpIfObjectType.
+ EmitCompareAndBranch(instr, eq, type, JS_FUNCTION_PROXY_TYPE);
+
+ } else if (type_name->Equals(heap()->object_string())) {
+ ASSERT((instr->temp1() != NULL) && (instr->temp2() != NULL));
+ Register map = ToRegister(instr->temp1());
+ Register scratch = ToRegister(instr->temp2());
+
+ __ JumpIfSmi(value, false_label);
+ if (!FLAG_harmony_typeof) {
+ __ JumpIfRoot(value, Heap::kNullValueRootIndex, true_label);
+ }
+ __ JumpIfObjectType(value, map, scratch,
+ FIRST_NONCALLABLE_SPEC_OBJECT_TYPE, false_label, lt);
+ __ CompareInstanceType(map, scratch, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
+ __ B(gt, false_label);
+ // Check for undetectable objects => false.
+ __ Ldrb(scratch, FieldMemOperand(value, Map::kBitFieldOffset));
+ EmitTestAndBranch(instr, eq, scratch, 1 << Map::kIsUndetectable);
+
+ } else {
+ __ B(false_label);
+ }
+}
+
+
+void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
+ __ Ucvtf(ToDoubleRegister(instr->result()), ToRegister32(instr->value()));
+}
+
+
+void LCodeGen::DoUint32ToSmi(LUint32ToSmi* instr) {
+ Register value = ToRegister(instr->value());
+ Register result = ToRegister(instr->result());
+
+ if (!instr->hydrogen()->value()->HasRange() ||
+ !instr->hydrogen()->value()->range()->IsInSmiRange() ||
+ instr->hydrogen()->value()->range()->upper() == kMaxInt) {
+ // The Range class can't express upper bounds in the (kMaxInt, kMaxUint32]
+ // interval, so we treat kMaxInt as a sentinel for this entire interval.
+ DeoptimizeIfNegative(value.W(), instr->environment());
+ }
+ __ SmiTag(result, value);
+}
+
+
+void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
+ Register object = ToRegister(instr->value());
+ Register map = ToRegister(instr->map());
+ Register temp = ToRegister(instr->temp());
+ __ Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
+ __ Cmp(map, temp);
+ DeoptimizeIf(ne, instr->environment());
+}
+
+
+void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
+ Register receiver = ToRegister(instr->receiver());
+ Register function = ToRegister(instr->function());
+ Register result = ToRegister(instr->result());
+
+ // If the receiver is null or undefined, we have to pass the global object as
+ // a receiver to normal functions. Values have to be passed unchanged to
+ // builtins and strict-mode functions.
+ Label global_object, done, deopt;
+
+ if (!instr->hydrogen()->known_function()) {
+ __ Ldr(result, FieldMemOperand(function,
+ JSFunction::kSharedFunctionInfoOffset));
+
+ // CompilerHints is an int32 field. See objects.h.
+ __ Ldr(result.W(),
+ FieldMemOperand(result, SharedFunctionInfo::kCompilerHintsOffset));
+
+ // Do not transform the receiver to object for strict mode functions.
+ __ Tbnz(result, SharedFunctionInfo::kStrictModeFunction, &done);
+
+ // Do not transform the receiver to object for builtins.
+ __ Tbnz(result, SharedFunctionInfo::kNative, &done);
+ }
+
+ // Normal function. Replace undefined or null with global receiver.
+ __ JumpIfRoot(receiver, Heap::kNullValueRootIndex, &global_object);
+ __ JumpIfRoot(receiver, Heap::kUndefinedValueRootIndex, &global_object);
+
+ // Deoptimize if the receiver is not a JS object.
+ __ JumpIfSmi(receiver, &deopt);
+ __ CompareObjectType(receiver, result, result, FIRST_SPEC_OBJECT_TYPE);
+ __ B(ge, &done);
+ // Otherwise, fall through to deopt.
+
+ __ Bind(&deopt);
+ Deoptimize(instr->environment());
+
+ __ Bind(&global_object);
+ // We could load directly into the result register here, but the additional
+ // branches required are likely to be more time consuming than one additional
+ // move.
+ __ Ldr(receiver, FieldMemOperand(function, JSFunction::kContextOffset));
+ __ Ldr(receiver, ContextMemOperand(receiver, Context::GLOBAL_OBJECT_INDEX));
+ __ Ldr(receiver,
+ FieldMemOperand(receiver, GlobalObject::kGlobalReceiverOffset));
+
+ __ Bind(&done);
+ __ Mov(result, receiver);
+}
+
+
+void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
+ Register object = ToRegister(instr->object());
+ Register index = ToRegister(instr->index());
+ Register result = ToRegister(instr->result());
+
+ __ AssertSmi(index);
+
+ Label out_of_object, done;
+ __ Cmp(index, Operand(Smi::FromInt(0)));
+ __ B(lt, &out_of_object);
+
+ STATIC_ASSERT(kPointerSizeLog2 > kSmiTagSize);
+ __ Add(result, object, Operand::UntagSmiAndScale(index, kPointerSizeLog2));
+ __ Ldr(result, FieldMemOperand(result, JSObject::kHeaderSize));
+
+ __ B(&done);
+
+ __ Bind(&out_of_object);
+ __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
+ // Index is equal to negated out of object property index plus 1.
+ __ Sub(result, result, Operand::UntagSmiAndScale(index, kPointerSizeLog2));
+ __ Ldr(result, FieldMemOperand(result,
+ FixedArray::kHeaderSize - kPointerSize));
+ __ Bind(&done);
+}
+
+} } // namespace v8::internal
« no previous file with comments | « src/a64/lithium-codegen-a64.h ('k') | src/a64/lithium-gap-resolver-a64.h » ('j') | no next file with comments »

Powered by Google App Engine