Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(14)

Unified Diff: src/a64/assembler-a64-inl.h

Issue 148293020: Merge experimental/a64 to bleeding_edge. (Closed) Base URL: https://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: Remove ARM from OWNERS Created 6 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/a64/assembler-a64.cc ('k') | src/a64/builtins-a64.cc » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/a64/assembler-a64-inl.h
diff --git a/src/a64/assembler-a64-inl.h b/src/a64/assembler-a64-inl.h
new file mode 100644
index 0000000000000000000000000000000000000000..ebd3ec8b4d919b4e2212aefa5aa5fe919dd6ebc8
--- /dev/null
+++ b/src/a64/assembler-a64-inl.h
@@ -0,0 +1,1147 @@
+// Copyright 2013 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef V8_A64_ASSEMBLER_A64_INL_H_
+#define V8_A64_ASSEMBLER_A64_INL_H_
+
+#include "a64/assembler-a64.h"
+#include "cpu.h"
+#include "debug.h"
+
+
+namespace v8 {
+namespace internal {
+
+
+void RelocInfo::apply(intptr_t delta) {
+ UNIMPLEMENTED();
+}
+
+
+void RelocInfo::set_target_address(Address target, WriteBarrierMode mode) {
+ ASSERT(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
+ Assembler::set_target_address_at(pc_, target);
+ if (mode == UPDATE_WRITE_BARRIER && host() != NULL && IsCodeTarget(rmode_)) {
+ Object* target_code = Code::GetCodeFromTargetAddress(target);
+ host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
+ host(), this, HeapObject::cast(target_code));
+ }
+}
+
+
+inline unsigned CPURegister::code() const {
+ ASSERT(IsValid());
+ return reg_code;
+}
+
+
+inline CPURegister::RegisterType CPURegister::type() const {
+ ASSERT(IsValidOrNone());
+ return reg_type;
+}
+
+
+inline RegList CPURegister::Bit() const {
+ ASSERT(reg_code < (sizeof(RegList) * kBitsPerByte));
+ return IsValid() ? 1UL << reg_code : 0;
+}
+
+
+inline unsigned CPURegister::SizeInBits() const {
+ ASSERT(IsValid());
+ return reg_size;
+}
+
+
+inline int CPURegister::SizeInBytes() const {
+ ASSERT(IsValid());
+ ASSERT(SizeInBits() % 8 == 0);
+ return reg_size / 8;
+}
+
+
+inline bool CPURegister::Is32Bits() const {
+ ASSERT(IsValid());
+ return reg_size == 32;
+}
+
+
+inline bool CPURegister::Is64Bits() const {
+ ASSERT(IsValid());
+ return reg_size == 64;
+}
+
+
+inline bool CPURegister::IsValid() const {
+ if (IsValidRegister() || IsValidFPRegister()) {
+ ASSERT(!IsNone());
+ return true;
+ } else {
+ ASSERT(IsNone());
+ return false;
+ }
+}
+
+
+inline bool CPURegister::IsValidRegister() const {
+ return IsRegister() &&
+ ((reg_size == kWRegSize) || (reg_size == kXRegSize)) &&
+ ((reg_code < kNumberOfRegisters) || (reg_code == kSPRegInternalCode));
+}
+
+
+inline bool CPURegister::IsValidFPRegister() const {
+ return IsFPRegister() &&
+ ((reg_size == kSRegSize) || (reg_size == kDRegSize)) &&
+ (reg_code < kNumberOfFPRegisters);
+}
+
+
+inline bool CPURegister::IsNone() const {
+ // kNoRegister types should always have size 0 and code 0.
+ ASSERT((reg_type != kNoRegister) || (reg_code == 0));
+ ASSERT((reg_type != kNoRegister) || (reg_size == 0));
+
+ return reg_type == kNoRegister;
+}
+
+
+inline bool CPURegister::Is(const CPURegister& other) const {
+ ASSERT(IsValidOrNone() && other.IsValidOrNone());
+ return (reg_code == other.reg_code) && (reg_size == other.reg_size) &&
+ (reg_type == other.reg_type);
+}
+
+
+inline bool CPURegister::IsRegister() const {
+ return reg_type == kRegister;
+}
+
+
+inline bool CPURegister::IsFPRegister() const {
+ return reg_type == kFPRegister;
+}
+
+
+inline bool CPURegister::IsSameSizeAndType(const CPURegister& other) const {
+ return (reg_size == other.reg_size) && (reg_type == other.reg_type);
+}
+
+
+inline bool CPURegister::IsValidOrNone() const {
+ return IsValid() || IsNone();
+}
+
+
+inline bool CPURegister::IsZero() const {
+ ASSERT(IsValid());
+ return IsRegister() && (reg_code == kZeroRegCode);
+}
+
+
+inline bool CPURegister::IsSP() const {
+ ASSERT(IsValid());
+ return IsRegister() && (reg_code == kSPRegInternalCode);
+}
+
+
+inline void CPURegList::Combine(const CPURegList& other) {
+ ASSERT(IsValid());
+ ASSERT(other.type() == type_);
+ ASSERT(other.RegisterSizeInBits() == size_);
+ list_ |= other.list();
+}
+
+
+inline void CPURegList::Remove(const CPURegList& other) {
+ ASSERT(IsValid());
+ ASSERT(other.type() == type_);
+ ASSERT(other.RegisterSizeInBits() == size_);
+ list_ &= ~other.list();
+}
+
+
+inline void CPURegList::Combine(const CPURegister& other) {
+ ASSERT(other.type() == type_);
+ ASSERT(other.SizeInBits() == size_);
+ Combine(other.code());
+}
+
+
+inline void CPURegList::Remove(const CPURegister& other) {
+ ASSERT(other.type() == type_);
+ ASSERT(other.SizeInBits() == size_);
+ Remove(other.code());
+}
+
+
+inline void CPURegList::Combine(int code) {
+ ASSERT(IsValid());
+ ASSERT(CPURegister::Create(code, size_, type_).IsValid());
+ list_ |= (1UL << code);
+}
+
+
+inline void CPURegList::Remove(int code) {
+ ASSERT(IsValid());
+ ASSERT(CPURegister::Create(code, size_, type_).IsValid());
+ list_ &= ~(1UL << code);
+}
+
+
+inline Register Register::XRegFromCode(unsigned code) {
+ // This function returns the zero register when code = 31. The stack pointer
+ // can not be returned.
+ ASSERT(code < kNumberOfRegisters);
+ return Register::Create(code, kXRegSize);
+}
+
+
+inline Register Register::WRegFromCode(unsigned code) {
+ ASSERT(code < kNumberOfRegisters);
+ return Register::Create(code, kWRegSize);
+}
+
+
+inline FPRegister FPRegister::SRegFromCode(unsigned code) {
+ ASSERT(code < kNumberOfFPRegisters);
+ return FPRegister::Create(code, kSRegSize);
+}
+
+
+inline FPRegister FPRegister::DRegFromCode(unsigned code) {
+ ASSERT(code < kNumberOfFPRegisters);
+ return FPRegister::Create(code, kDRegSize);
+}
+
+
+inline Register CPURegister::W() const {
+ ASSERT(IsValidRegister());
+ return Register::WRegFromCode(reg_code);
+}
+
+
+inline Register CPURegister::X() const {
+ ASSERT(IsValidRegister());
+ return Register::XRegFromCode(reg_code);
+}
+
+
+inline FPRegister CPURegister::S() const {
+ ASSERT(IsValidFPRegister());
+ return FPRegister::SRegFromCode(reg_code);
+}
+
+
+inline FPRegister CPURegister::D() const {
+ ASSERT(IsValidFPRegister());
+ return FPRegister::DRegFromCode(reg_code);
+}
+
+
+// Operand.
+#define DECLARE_INT_OPERAND_CONSTRUCTOR(type) \
+Operand::Operand(type immediate, RelocInfo::Mode rmode) \
+ : immediate_(immediate), \
+ reg_(NoReg), \
+ rmode_(rmode) {}
+DECLARE_INT_OPERAND_CONSTRUCTOR(int64_t)
+DECLARE_INT_OPERAND_CONSTRUCTOR(uint64_t)
+DECLARE_INT_OPERAND_CONSTRUCTOR(int32_t) // NOLINT(readability/casting)
+DECLARE_INT_OPERAND_CONSTRUCTOR(uint32_t)
+#undef DECLARE_INT_OPERAND_CONSTRUCTOR
+
+Operand::Operand(Register reg, Shift shift, unsigned shift_amount)
+ : reg_(reg),
+ shift_(shift),
+ extend_(NO_EXTEND),
+ shift_amount_(shift_amount),
+ rmode_(reg.Is64Bits() ? RelocInfo::NONE64 : RelocInfo::NONE32) {
+ ASSERT(reg.Is64Bits() || (shift_amount < kWRegSize));
+ ASSERT(reg.Is32Bits() || (shift_amount < kXRegSize));
+ ASSERT(!reg.IsSP());
+}
+
+
+Operand::Operand(Register reg, Extend extend, unsigned shift_amount)
+ : reg_(reg),
+ shift_(NO_SHIFT),
+ extend_(extend),
+ shift_amount_(shift_amount),
+ rmode_(reg.Is64Bits() ? RelocInfo::NONE64 : RelocInfo::NONE32) {
+ ASSERT(reg.IsValid());
+ ASSERT(shift_amount <= 4);
+ ASSERT(!reg.IsSP());
+
+ // Extend modes SXTX and UXTX require a 64-bit register.
+ ASSERT(reg.Is64Bits() || ((extend != SXTX) && (extend != UXTX)));
+}
+
+
+Operand::Operand(Smi* value)
+ : immediate_(reinterpret_cast<intptr_t>(value)),
+ reg_(NoReg),
+ rmode_(RelocInfo::NONE64) {}
+
+
+bool Operand::IsImmediate() const {
+ return reg_.Is(NoReg);
+}
+
+
+bool Operand::IsShiftedRegister() const {
+ return reg_.IsValid() && (shift_ != NO_SHIFT);
+}
+
+
+bool Operand::IsExtendedRegister() const {
+ return reg_.IsValid() && (extend_ != NO_EXTEND);
+}
+
+
+bool Operand::IsZero() const {
+ if (IsImmediate()) {
+ return immediate() == 0;
+ } else {
+ return reg().IsZero();
+ }
+}
+
+
+Operand Operand::ToExtendedRegister() const {
+ ASSERT(IsShiftedRegister());
+ ASSERT((shift_ == LSL) && (shift_amount_ <= 4));
+ return Operand(reg_, reg_.Is64Bits() ? UXTX : UXTW, shift_amount_);
+}
+
+
+int64_t Operand::immediate() const {
+ ASSERT(IsImmediate());
+ return immediate_;
+}
+
+
+Register Operand::reg() const {
+ ASSERT(IsShiftedRegister() || IsExtendedRegister());
+ return reg_;
+}
+
+
+Shift Operand::shift() const {
+ ASSERT(IsShiftedRegister());
+ return shift_;
+}
+
+
+Extend Operand::extend() const {
+ ASSERT(IsExtendedRegister());
+ return extend_;
+}
+
+
+unsigned Operand::shift_amount() const {
+ ASSERT(IsShiftedRegister() || IsExtendedRegister());
+ return shift_amount_;
+}
+
+
+Operand Operand::UntagSmi(Register smi) {
+ ASSERT(smi.Is64Bits());
+ return Operand(smi, ASR, kSmiShift);
+}
+
+
+Operand Operand::UntagSmiAndScale(Register smi, int scale) {
+ ASSERT(smi.Is64Bits());
+ ASSERT((scale >= 0) && (scale <= (64 - kSmiValueSize)));
+ if (scale > kSmiShift) {
+ return Operand(smi, LSL, scale - kSmiShift);
+ } else if (scale < kSmiShift) {
+ return Operand(smi, ASR, kSmiShift - scale);
+ }
+ return Operand(smi);
+}
+
+
+MemOperand::MemOperand(Register base, ptrdiff_t offset, AddrMode addrmode)
+ : base_(base), regoffset_(NoReg), offset_(offset), addrmode_(addrmode),
+ shift_(NO_SHIFT), extend_(NO_EXTEND), shift_amount_(0) {
+ ASSERT(base.Is64Bits() && !base.IsZero());
+}
+
+
+MemOperand::MemOperand(Register base,
+ Register regoffset,
+ Extend extend,
+ unsigned shift_amount)
+ : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset),
+ shift_(NO_SHIFT), extend_(extend), shift_amount_(shift_amount) {
+ ASSERT(base.Is64Bits() && !base.IsZero());
+ ASSERT(!regoffset.IsSP());
+ ASSERT((extend == UXTW) || (extend == SXTW) || (extend == SXTX));
+
+ // SXTX extend mode requires a 64-bit offset register.
+ ASSERT(regoffset.Is64Bits() || (extend != SXTX));
+}
+
+
+MemOperand::MemOperand(Register base,
+ Register regoffset,
+ Shift shift,
+ unsigned shift_amount)
+ : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset),
+ shift_(shift), extend_(NO_EXTEND), shift_amount_(shift_amount) {
+ ASSERT(base.Is64Bits() && !base.IsZero());
+ ASSERT(regoffset.Is64Bits() && !regoffset.IsSP());
+ ASSERT(shift == LSL);
+}
+
+
+MemOperand::MemOperand(Register base, const Operand& offset, AddrMode addrmode)
+ : base_(base), addrmode_(addrmode) {
+ ASSERT(base.Is64Bits() && !base.IsZero());
+
+ if (offset.IsImmediate()) {
+ offset_ = offset.immediate();
+
+ regoffset_ = NoReg;
+ } else if (offset.IsShiftedRegister()) {
+ ASSERT(addrmode == Offset);
+
+ regoffset_ = offset.reg();
+ shift_= offset.shift();
+ shift_amount_ = offset.shift_amount();
+
+ extend_ = NO_EXTEND;
+ offset_ = 0;
+
+ // These assertions match those in the shifted-register constructor.
+ ASSERT(regoffset_.Is64Bits() && !regoffset_.IsSP());
+ ASSERT(shift_ == LSL);
+ } else {
+ ASSERT(offset.IsExtendedRegister());
+ ASSERT(addrmode == Offset);
+
+ regoffset_ = offset.reg();
+ extend_ = offset.extend();
+ shift_amount_ = offset.shift_amount();
+
+ shift_= NO_SHIFT;
+ offset_ = 0;
+
+ // These assertions match those in the extended-register constructor.
+ ASSERT(!regoffset_.IsSP());
+ ASSERT((extend_ == UXTW) || (extend_ == SXTW) || (extend_ == SXTX));
+ ASSERT((regoffset_.Is64Bits() || (extend_ != SXTX)));
+ }
+}
+
+bool MemOperand::IsImmediateOffset() const {
+ return (addrmode_ == Offset) && regoffset_.Is(NoReg);
+}
+
+
+bool MemOperand::IsRegisterOffset() const {
+ return (addrmode_ == Offset) && !regoffset_.Is(NoReg);
+}
+
+
+bool MemOperand::IsPreIndex() const {
+ return addrmode_ == PreIndex;
+}
+
+
+bool MemOperand::IsPostIndex() const {
+ return addrmode_ == PostIndex;
+}
+
+Operand MemOperand::OffsetAsOperand() const {
+ if (IsImmediateOffset()) {
+ return offset();
+ } else {
+ ASSERT(IsRegisterOffset());
+ if (extend() == NO_EXTEND) {
+ return Operand(regoffset(), shift(), shift_amount());
+ } else {
+ return Operand(regoffset(), extend(), shift_amount());
+ }
+ }
+}
+
+
+Address Assembler::target_pointer_address_at(Address pc) {
+ Instruction* instr = reinterpret_cast<Instruction*>(pc);
+ ASSERT(instr->IsLdrLiteralX());
+ return reinterpret_cast<Address>(instr->ImmPCOffsetTarget());
+}
+
+
+// Read/Modify the code target address in the branch/call instruction at pc.
+Address Assembler::target_address_at(Address pc) {
+ return Memory::Address_at(target_pointer_address_at(pc));
+}
+
+
+Address Assembler::target_address_from_return_address(Address pc) {
+ // Returns the address of the call target from the return address that will
+ // be returned to after a call.
+ // Call sequence on A64 is:
+ // ldr ip0, #... @ load from literal pool
+ // blr ip0
+ Address candidate = pc - 2 * kInstructionSize;
+ Instruction* instr = reinterpret_cast<Instruction*>(candidate);
+ USE(instr);
+ ASSERT(instr->IsLdrLiteralX());
+ return candidate;
+}
+
+
+Address Assembler::return_address_from_call_start(Address pc) {
+ // The call, generated by MacroAssembler::Call, is one of two possible
+ // sequences:
+ //
+ // Without relocation:
+ // movz ip0, #(target & 0x000000000000ffff)
+ // movk ip0, #(target & 0x00000000ffff0000)
+ // movk ip0, #(target & 0x0000ffff00000000)
+ // movk ip0, #(target & 0xffff000000000000)
+ // blr ip0
+ //
+ // With relocation:
+ // ldr ip0, =target
+ // blr ip0
+ //
+ // The return address is immediately after the blr instruction in both cases,
+ // so it can be found by adding the call size to the address at the start of
+ // the call sequence.
+ STATIC_ASSERT(Assembler::kCallSizeWithoutRelocation == 5 * kInstructionSize);
+ STATIC_ASSERT(Assembler::kCallSizeWithRelocation == 2 * kInstructionSize);
+
+ Instruction* instr = reinterpret_cast<Instruction*>(pc);
+ if (instr->IsMovz()) {
+ // Verify the instruction sequence.
+ ASSERT(instr->following(1)->IsMovk());
+ ASSERT(instr->following(2)->IsMovk());
+ ASSERT(instr->following(3)->IsMovk());
+ ASSERT(instr->following(4)->IsBranchAndLinkToRegister());
+ return pc + Assembler::kCallSizeWithoutRelocation;
+ } else {
+ // Verify the instruction sequence.
+ ASSERT(instr->IsLdrLiteralX());
+ ASSERT(instr->following(1)->IsBranchAndLinkToRegister());
+ return pc + Assembler::kCallSizeWithRelocation;
+ }
+}
+
+
+void Assembler::deserialization_set_special_target_at(
+ Address constant_pool_entry, Address target) {
+ Memory::Address_at(constant_pool_entry) = target;
+}
+
+
+void Assembler::set_target_address_at(Address pc, Address target) {
+ Memory::Address_at(target_pointer_address_at(pc)) = target;
+ // Intuitively, we would think it is necessary to always flush the
+ // instruction cache after patching a target address in the code as follows:
+ // CPU::FlushICache(pc, sizeof(target));
+ // However, on ARM, an instruction is actually patched in the case of
+ // embedded constants of the form:
+ // ldr ip, [pc, #...]
+ // since the instruction accessing this address in the constant pool remains
+ // unchanged, a flush is not required.
+}
+
+
+int RelocInfo::target_address_size() {
+ return kPointerSize;
+}
+
+
+Address RelocInfo::target_address() {
+ ASSERT(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
+ return Assembler::target_address_at(pc_);
+}
+
+
+Address RelocInfo::target_address_address() {
+ ASSERT(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
+ || rmode_ == EMBEDDED_OBJECT
+ || rmode_ == EXTERNAL_REFERENCE);
+ return Assembler::target_pointer_address_at(pc_);
+}
+
+
+Object* RelocInfo::target_object() {
+ ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
+ return reinterpret_cast<Object*>(Assembler::target_address_at(pc_));
+}
+
+
+Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
+ ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
+ return Handle<Object>(reinterpret_cast<Object**>(
+ Assembler::target_address_at(pc_)));
+}
+
+
+void RelocInfo::set_target_object(Object* target, WriteBarrierMode mode) {
+ ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
+ ASSERT(!target->IsConsString());
+ Assembler::set_target_address_at(pc_, reinterpret_cast<Address>(target));
+ if (mode == UPDATE_WRITE_BARRIER &&
+ host() != NULL &&
+ target->IsHeapObject()) {
+ host()->GetHeap()->incremental_marking()->RecordWrite(
+ host(), &Memory::Object_at(pc_), HeapObject::cast(target));
+ }
+}
+
+
+Address RelocInfo::target_reference() {
+ ASSERT(rmode_ == EXTERNAL_REFERENCE);
+ return Assembler::target_address_at(pc_);
+}
+
+
+Address RelocInfo::target_runtime_entry(Assembler* origin) {
+ ASSERT(IsRuntimeEntry(rmode_));
+ return target_address();
+}
+
+
+void RelocInfo::set_target_runtime_entry(Address target,
+ WriteBarrierMode mode) {
+ ASSERT(IsRuntimeEntry(rmode_));
+ if (target_address() != target) set_target_address(target, mode);
+}
+
+
+Handle<Cell> RelocInfo::target_cell_handle() {
+ UNIMPLEMENTED();
+ Cell *null_cell = NULL;
+ return Handle<Cell>(null_cell);
+}
+
+
+Cell* RelocInfo::target_cell() {
+ ASSERT(rmode_ == RelocInfo::CELL);
+ return Cell::FromValueAddress(Memory::Address_at(pc_));
+}
+
+
+void RelocInfo::set_target_cell(Cell* cell, WriteBarrierMode mode) {
+ UNIMPLEMENTED();
+}
+
+
+static const int kCodeAgeSequenceSize = 5 * kInstructionSize;
+static const int kCodeAgeStubEntryOffset = 3 * kInstructionSize;
+
+
+Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
+ UNREACHABLE(); // This should never be reached on A64.
+ return Handle<Object>();
+}
+
+
+Code* RelocInfo::code_age_stub() {
+ ASSERT(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
+ ASSERT(!Code::IsYoungSequence(pc_));
+ // Read the stub entry point from the code age sequence.
+ Address stub_entry_address = pc_ + kCodeAgeStubEntryOffset;
+ return Code::GetCodeFromTargetAddress(Memory::Address_at(stub_entry_address));
+}
+
+
+void RelocInfo::set_code_age_stub(Code* stub) {
+ ASSERT(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
+ ASSERT(!Code::IsYoungSequence(pc_));
+ // Overwrite the stub entry point in the code age sequence. This is loaded as
+ // a literal so there is no need to call FlushICache here.
+ Address stub_entry_address = pc_ + kCodeAgeStubEntryOffset;
+ Memory::Address_at(stub_entry_address) = stub->instruction_start();
+}
+
+
+Address RelocInfo::call_address() {
+ ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
+ (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
+ // For the above sequences the Relocinfo points to the load literal loading
+ // the call address.
+ return Assembler::target_address_at(pc_);
+}
+
+
+void RelocInfo::set_call_address(Address target) {
+ ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
+ (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
+ Assembler::set_target_address_at(pc_, target);
+ if (host() != NULL) {
+ Object* target_code = Code::GetCodeFromTargetAddress(target);
+ host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
+ host(), this, HeapObject::cast(target_code));
+ }
+}
+
+
+void RelocInfo::WipeOut() {
+ ASSERT(IsEmbeddedObject(rmode_) ||
+ IsCodeTarget(rmode_) ||
+ IsRuntimeEntry(rmode_) ||
+ IsExternalReference(rmode_));
+ Assembler::set_target_address_at(pc_, NULL);
+}
+
+
+bool RelocInfo::IsPatchedReturnSequence() {
+ // The sequence must be:
+ // ldr ip0, [pc, #offset]
+ // blr ip0
+ // See a64/debug-a64.cc BreakLocationIterator::SetDebugBreakAtReturn().
+ Instruction* i1 = reinterpret_cast<Instruction*>(pc_);
+ Instruction* i2 = i1->following();
+ return i1->IsLdrLiteralX() && (i1->Rt() == ip0.code()) &&
+ i2->IsBranchAndLinkToRegister() && (i2->Rn() == ip0.code());
+}
+
+
+bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
+ Instruction* current_instr = reinterpret_cast<Instruction*>(pc_);
+ return !current_instr->IsNop(Assembler::DEBUG_BREAK_NOP);
+}
+
+
+void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
+ RelocInfo::Mode mode = rmode();
+ if (mode == RelocInfo::EMBEDDED_OBJECT) {
+ visitor->VisitEmbeddedPointer(this);
+ } else if (RelocInfo::IsCodeTarget(mode)) {
+ visitor->VisitCodeTarget(this);
+ } else if (mode == RelocInfo::CELL) {
+ visitor->VisitCell(this);
+ } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
+ visitor->VisitExternalReference(this);
+#ifdef ENABLE_DEBUGGER_SUPPORT
+ } else if (((RelocInfo::IsJSReturn(mode) &&
+ IsPatchedReturnSequence()) ||
+ (RelocInfo::IsDebugBreakSlot(mode) &&
+ IsPatchedDebugBreakSlotSequence())) &&
+ isolate->debug()->has_break_points()) {
+ visitor->VisitDebugTarget(this);
+#endif
+ } else if (RelocInfo::IsRuntimeEntry(mode)) {
+ visitor->VisitRuntimeEntry(this);
+ }
+}
+
+
+template<typename StaticVisitor>
+void RelocInfo::Visit(Heap* heap) {
+ RelocInfo::Mode mode = rmode();
+ if (mode == RelocInfo::EMBEDDED_OBJECT) {
+ StaticVisitor::VisitEmbeddedPointer(heap, this);
+ } else if (RelocInfo::IsCodeTarget(mode)) {
+ StaticVisitor::VisitCodeTarget(heap, this);
+ } else if (mode == RelocInfo::CELL) {
+ StaticVisitor::VisitCell(heap, this);
+ } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
+ StaticVisitor::VisitExternalReference(this);
+#ifdef ENABLE_DEBUGGER_SUPPORT
+ } else if (heap->isolate()->debug()->has_break_points() &&
+ ((RelocInfo::IsJSReturn(mode) &&
+ IsPatchedReturnSequence()) ||
+ (RelocInfo::IsDebugBreakSlot(mode) &&
+ IsPatchedDebugBreakSlotSequence()))) {
+ StaticVisitor::VisitDebugTarget(heap, this);
+#endif
+ } else if (RelocInfo::IsRuntimeEntry(mode)) {
+ StaticVisitor::VisitRuntimeEntry(this);
+ }
+}
+
+
+LoadStoreOp Assembler::LoadOpFor(const CPURegister& rt) {
+ ASSERT(rt.IsValid());
+ if (rt.IsRegister()) {
+ return rt.Is64Bits() ? LDR_x : LDR_w;
+ } else {
+ ASSERT(rt.IsFPRegister());
+ return rt.Is64Bits() ? LDR_d : LDR_s;
+ }
+}
+
+
+LoadStorePairOp Assembler::LoadPairOpFor(const CPURegister& rt,
+ const CPURegister& rt2) {
+ ASSERT(AreSameSizeAndType(rt, rt2));
+ USE(rt2);
+ if (rt.IsRegister()) {
+ return rt.Is64Bits() ? LDP_x : LDP_w;
+ } else {
+ ASSERT(rt.IsFPRegister());
+ return rt.Is64Bits() ? LDP_d : LDP_s;
+ }
+}
+
+
+LoadStoreOp Assembler::StoreOpFor(const CPURegister& rt) {
+ ASSERT(rt.IsValid());
+ if (rt.IsRegister()) {
+ return rt.Is64Bits() ? STR_x : STR_w;
+ } else {
+ ASSERT(rt.IsFPRegister());
+ return rt.Is64Bits() ? STR_d : STR_s;
+ }
+}
+
+
+LoadStorePairOp Assembler::StorePairOpFor(const CPURegister& rt,
+ const CPURegister& rt2) {
+ ASSERT(AreSameSizeAndType(rt, rt2));
+ USE(rt2);
+ if (rt.IsRegister()) {
+ return rt.Is64Bits() ? STP_x : STP_w;
+ } else {
+ ASSERT(rt.IsFPRegister());
+ return rt.Is64Bits() ? STP_d : STP_s;
+ }
+}
+
+
+LoadStorePairNonTemporalOp Assembler::LoadPairNonTemporalOpFor(
+ const CPURegister& rt, const CPURegister& rt2) {
+ ASSERT(AreSameSizeAndType(rt, rt2));
+ USE(rt2);
+ if (rt.IsRegister()) {
+ return rt.Is64Bits() ? LDNP_x : LDNP_w;
+ } else {
+ ASSERT(rt.IsFPRegister());
+ return rt.Is64Bits() ? LDNP_d : LDNP_s;
+ }
+}
+
+
+LoadStorePairNonTemporalOp Assembler::StorePairNonTemporalOpFor(
+ const CPURegister& rt, const CPURegister& rt2) {
+ ASSERT(AreSameSizeAndType(rt, rt2));
+ USE(rt2);
+ if (rt.IsRegister()) {
+ return rt.Is64Bits() ? STNP_x : STNP_w;
+ } else {
+ ASSERT(rt.IsFPRegister());
+ return rt.Is64Bits() ? STNP_d : STNP_s;
+ }
+}
+
+
+int Assembler::LinkAndGetInstructionOffsetTo(Label* label) {
+ ASSERT(kStartOfLabelLinkChain == 0);
+ int offset = LinkAndGetByteOffsetTo(label);
+ ASSERT(IsAligned(offset, kInstructionSize));
+ return offset >> kInstructionSizeLog2;
+}
+
+
+Instr Assembler::Flags(FlagsUpdate S) {
+ if (S == SetFlags) {
+ return 1 << FlagsUpdate_offset;
+ } else if (S == LeaveFlags) {
+ return 0 << FlagsUpdate_offset;
+ }
+ UNREACHABLE();
+ return 0;
+}
+
+
+Instr Assembler::Cond(Condition cond) {
+ return cond << Condition_offset;
+}
+
+
+Instr Assembler::ImmPCRelAddress(int imm21) {
+ CHECK(is_int21(imm21));
+ Instr imm = static_cast<Instr>(truncate_to_int21(imm21));
+ Instr immhi = (imm >> ImmPCRelLo_width) << ImmPCRelHi_offset;
+ Instr immlo = imm << ImmPCRelLo_offset;
+ return (immhi & ImmPCRelHi_mask) | (immlo & ImmPCRelLo_mask);
+}
+
+
+Instr Assembler::ImmUncondBranch(int imm26) {
+ CHECK(is_int26(imm26));
+ return truncate_to_int26(imm26) << ImmUncondBranch_offset;
+}
+
+
+Instr Assembler::ImmCondBranch(int imm19) {
+ CHECK(is_int19(imm19));
+ return truncate_to_int19(imm19) << ImmCondBranch_offset;
+}
+
+
+Instr Assembler::ImmCmpBranch(int imm19) {
+ CHECK(is_int19(imm19));
+ return truncate_to_int19(imm19) << ImmCmpBranch_offset;
+}
+
+
+Instr Assembler::ImmTestBranch(int imm14) {
+ CHECK(is_int14(imm14));
+ return truncate_to_int14(imm14) << ImmTestBranch_offset;
+}
+
+
+Instr Assembler::ImmTestBranchBit(unsigned bit_pos) {
+ ASSERT(is_uint6(bit_pos));
+ // Subtract five from the shift offset, as we need bit 5 from bit_pos.
+ unsigned b5 = bit_pos << (ImmTestBranchBit5_offset - 5);
+ unsigned b40 = bit_pos << ImmTestBranchBit40_offset;
+ b5 &= ImmTestBranchBit5_mask;
+ b40 &= ImmTestBranchBit40_mask;
+ return b5 | b40;
+}
+
+
+Instr Assembler::SF(Register rd) {
+ return rd.Is64Bits() ? SixtyFourBits : ThirtyTwoBits;
+}
+
+
+Instr Assembler::ImmAddSub(int64_t imm) {
+ ASSERT(IsImmAddSub(imm));
+ if (is_uint12(imm)) { // No shift required.
+ return imm << ImmAddSub_offset;
+ } else {
+ return ((imm >> 12) << ImmAddSub_offset) | (1 << ShiftAddSub_offset);
+ }
+}
+
+
+Instr Assembler::ImmS(unsigned imms, unsigned reg_size) {
+ ASSERT(((reg_size == kXRegSize) && is_uint6(imms)) ||
+ ((reg_size == kWRegSize) && is_uint5(imms)));
+ USE(reg_size);
+ return imms << ImmS_offset;
+}
+
+
+Instr Assembler::ImmR(unsigned immr, unsigned reg_size) {
+ ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
+ ((reg_size == kWRegSize) && is_uint5(immr)));
+ USE(reg_size);
+ ASSERT(is_uint6(immr));
+ return immr << ImmR_offset;
+}
+
+
+Instr Assembler::ImmSetBits(unsigned imms, unsigned reg_size) {
+ ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
+ ASSERT(is_uint6(imms));
+ ASSERT((reg_size == kXRegSize) || is_uint6(imms + 3));
+ USE(reg_size);
+ return imms << ImmSetBits_offset;
+}
+
+
+Instr Assembler::ImmRotate(unsigned immr, unsigned reg_size) {
+ ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
+ ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
+ ((reg_size == kWRegSize) && is_uint5(immr)));
+ USE(reg_size);
+ return immr << ImmRotate_offset;
+}
+
+
+Instr Assembler::ImmLLiteral(int imm19) {
+ CHECK(is_int19(imm19));
+ return truncate_to_int19(imm19) << ImmLLiteral_offset;
+}
+
+
+Instr Assembler::BitN(unsigned bitn, unsigned reg_size) {
+ ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
+ ASSERT((reg_size == kXRegSize) || (bitn == 0));
+ USE(reg_size);
+ return bitn << BitN_offset;
+}
+
+
+Instr Assembler::ShiftDP(Shift shift) {
+ ASSERT(shift == LSL || shift == LSR || shift == ASR || shift == ROR);
+ return shift << ShiftDP_offset;
+}
+
+
+Instr Assembler::ImmDPShift(unsigned amount) {
+ ASSERT(is_uint6(amount));
+ return amount << ImmDPShift_offset;
+}
+
+
+Instr Assembler::ExtendMode(Extend extend) {
+ return extend << ExtendMode_offset;
+}
+
+
+Instr Assembler::ImmExtendShift(unsigned left_shift) {
+ ASSERT(left_shift <= 4);
+ return left_shift << ImmExtendShift_offset;
+}
+
+
+Instr Assembler::ImmCondCmp(unsigned imm) {
+ ASSERT(is_uint5(imm));
+ return imm << ImmCondCmp_offset;
+}
+
+
+Instr Assembler::Nzcv(StatusFlags nzcv) {
+ return ((nzcv >> Flags_offset) & 0xf) << Nzcv_offset;
+}
+
+
+Instr Assembler::ImmLSUnsigned(int imm12) {
+ ASSERT(is_uint12(imm12));
+ return imm12 << ImmLSUnsigned_offset;
+}
+
+
+Instr Assembler::ImmLS(int imm9) {
+ ASSERT(is_int9(imm9));
+ return truncate_to_int9(imm9) << ImmLS_offset;
+}
+
+
+Instr Assembler::ImmLSPair(int imm7, LSDataSize size) {
+ ASSERT(((imm7 >> size) << size) == imm7);
+ int scaled_imm7 = imm7 >> size;
+ ASSERT(is_int7(scaled_imm7));
+ return truncate_to_int7(scaled_imm7) << ImmLSPair_offset;
+}
+
+
+Instr Assembler::ImmShiftLS(unsigned shift_amount) {
+ ASSERT(is_uint1(shift_amount));
+ return shift_amount << ImmShiftLS_offset;
+}
+
+
+Instr Assembler::ImmException(int imm16) {
+ ASSERT(is_uint16(imm16));
+ return imm16 << ImmException_offset;
+}
+
+
+Instr Assembler::ImmSystemRegister(int imm15) {
+ ASSERT(is_uint15(imm15));
+ return imm15 << ImmSystemRegister_offset;
+}
+
+
+Instr Assembler::ImmHint(int imm7) {
+ ASSERT(is_uint7(imm7));
+ return imm7 << ImmHint_offset;
+}
+
+
+Instr Assembler::ImmBarrierDomain(int imm2) {
+ ASSERT(is_uint2(imm2));
+ return imm2 << ImmBarrierDomain_offset;
+}
+
+
+Instr Assembler::ImmBarrierType(int imm2) {
+ ASSERT(is_uint2(imm2));
+ return imm2 << ImmBarrierType_offset;
+}
+
+
+LSDataSize Assembler::CalcLSDataSize(LoadStoreOp op) {
+ ASSERT((SizeLS_offset + SizeLS_width) == (kInstructionSize * 8));
+ return static_cast<LSDataSize>(op >> SizeLS_offset);
+}
+
+
+Instr Assembler::ImmMoveWide(uint64_t imm) {
+ ASSERT(is_uint16(imm));
+ return imm << ImmMoveWide_offset;
+}
+
+
+Instr Assembler::ShiftMoveWide(int64_t shift) {
+ ASSERT(is_uint2(shift));
+ return shift << ShiftMoveWide_offset;
+}
+
+
+Instr Assembler::FPType(FPRegister fd) {
+ return fd.Is64Bits() ? FP64 : FP32;
+}
+
+
+Instr Assembler::FPScale(unsigned scale) {
+ ASSERT(is_uint6(scale));
+ return scale << FPScale_offset;
+}
+
+
+const Register& Assembler::AppropriateZeroRegFor(const CPURegister& reg) const {
+ return reg.Is64Bits() ? xzr : wzr;
+}
+
+
+void Assembler::LoadRelocated(const CPURegister& rt, const Operand& operand) {
+ LoadRelocatedValue(rt, operand, LDR_x_lit);
+}
+
+
+inline void Assembler::CheckBuffer() {
+ ASSERT(pc_ < (buffer_ + buffer_size_));
+ if (buffer_space() < kGap) {
+ GrowBuffer();
+ }
+ if (pc_offset() >= next_buffer_check_) {
+ CheckConstPool(false, true);
+ }
+}
+
+
+TypeFeedbackId Assembler::RecordedAstId() {
+ ASSERT(!recorded_ast_id_.IsNone());
+ return recorded_ast_id_;
+}
+
+
+void Assembler::ClearRecordedAstId() {
+ recorded_ast_id_ = TypeFeedbackId::None();
+}
+
+
+} } // namespace v8::internal
+
+#endif // V8_A64_ASSEMBLER_A64_INL_H_
« no previous file with comments | « src/a64/assembler-a64.cc ('k') | src/a64/builtins-a64.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698