| Index: src/a64/assembler-a64-inl.h
|
| diff --git a/src/a64/assembler-a64-inl.h b/src/a64/assembler-a64-inl.h
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..ebd3ec8b4d919b4e2212aefa5aa5fe919dd6ebc8
|
| --- /dev/null
|
| +++ b/src/a64/assembler-a64-inl.h
|
| @@ -0,0 +1,1147 @@
|
| +// Copyright 2013 the V8 project authors. All rights reserved.
|
| +// Redistribution and use in source and binary forms, with or without
|
| +// modification, are permitted provided that the following conditions are
|
| +// met:
|
| +//
|
| +// * Redistributions of source code must retain the above copyright
|
| +// notice, this list of conditions and the following disclaimer.
|
| +// * Redistributions in binary form must reproduce the above
|
| +// copyright notice, this list of conditions and the following
|
| +// disclaimer in the documentation and/or other materials provided
|
| +// with the distribution.
|
| +// * Neither the name of Google Inc. nor the names of its
|
| +// contributors may be used to endorse or promote products derived
|
| +// from this software without specific prior written permission.
|
| +//
|
| +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
| +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
| +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
| +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
| +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| +
|
| +#ifndef V8_A64_ASSEMBLER_A64_INL_H_
|
| +#define V8_A64_ASSEMBLER_A64_INL_H_
|
| +
|
| +#include "a64/assembler-a64.h"
|
| +#include "cpu.h"
|
| +#include "debug.h"
|
| +
|
| +
|
| +namespace v8 {
|
| +namespace internal {
|
| +
|
| +
|
| +void RelocInfo::apply(intptr_t delta) {
|
| + UNIMPLEMENTED();
|
| +}
|
| +
|
| +
|
| +void RelocInfo::set_target_address(Address target, WriteBarrierMode mode) {
|
| + ASSERT(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
|
| + Assembler::set_target_address_at(pc_, target);
|
| + if (mode == UPDATE_WRITE_BARRIER && host() != NULL && IsCodeTarget(rmode_)) {
|
| + Object* target_code = Code::GetCodeFromTargetAddress(target);
|
| + host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
|
| + host(), this, HeapObject::cast(target_code));
|
| + }
|
| +}
|
| +
|
| +
|
| +inline unsigned CPURegister::code() const {
|
| + ASSERT(IsValid());
|
| + return reg_code;
|
| +}
|
| +
|
| +
|
| +inline CPURegister::RegisterType CPURegister::type() const {
|
| + ASSERT(IsValidOrNone());
|
| + return reg_type;
|
| +}
|
| +
|
| +
|
| +inline RegList CPURegister::Bit() const {
|
| + ASSERT(reg_code < (sizeof(RegList) * kBitsPerByte));
|
| + return IsValid() ? 1UL << reg_code : 0;
|
| +}
|
| +
|
| +
|
| +inline unsigned CPURegister::SizeInBits() const {
|
| + ASSERT(IsValid());
|
| + return reg_size;
|
| +}
|
| +
|
| +
|
| +inline int CPURegister::SizeInBytes() const {
|
| + ASSERT(IsValid());
|
| + ASSERT(SizeInBits() % 8 == 0);
|
| + return reg_size / 8;
|
| +}
|
| +
|
| +
|
| +inline bool CPURegister::Is32Bits() const {
|
| + ASSERT(IsValid());
|
| + return reg_size == 32;
|
| +}
|
| +
|
| +
|
| +inline bool CPURegister::Is64Bits() const {
|
| + ASSERT(IsValid());
|
| + return reg_size == 64;
|
| +}
|
| +
|
| +
|
| +inline bool CPURegister::IsValid() const {
|
| + if (IsValidRegister() || IsValidFPRegister()) {
|
| + ASSERT(!IsNone());
|
| + return true;
|
| + } else {
|
| + ASSERT(IsNone());
|
| + return false;
|
| + }
|
| +}
|
| +
|
| +
|
| +inline bool CPURegister::IsValidRegister() const {
|
| + return IsRegister() &&
|
| + ((reg_size == kWRegSize) || (reg_size == kXRegSize)) &&
|
| + ((reg_code < kNumberOfRegisters) || (reg_code == kSPRegInternalCode));
|
| +}
|
| +
|
| +
|
| +inline bool CPURegister::IsValidFPRegister() const {
|
| + return IsFPRegister() &&
|
| + ((reg_size == kSRegSize) || (reg_size == kDRegSize)) &&
|
| + (reg_code < kNumberOfFPRegisters);
|
| +}
|
| +
|
| +
|
| +inline bool CPURegister::IsNone() const {
|
| + // kNoRegister types should always have size 0 and code 0.
|
| + ASSERT((reg_type != kNoRegister) || (reg_code == 0));
|
| + ASSERT((reg_type != kNoRegister) || (reg_size == 0));
|
| +
|
| + return reg_type == kNoRegister;
|
| +}
|
| +
|
| +
|
| +inline bool CPURegister::Is(const CPURegister& other) const {
|
| + ASSERT(IsValidOrNone() && other.IsValidOrNone());
|
| + return (reg_code == other.reg_code) && (reg_size == other.reg_size) &&
|
| + (reg_type == other.reg_type);
|
| +}
|
| +
|
| +
|
| +inline bool CPURegister::IsRegister() const {
|
| + return reg_type == kRegister;
|
| +}
|
| +
|
| +
|
| +inline bool CPURegister::IsFPRegister() const {
|
| + return reg_type == kFPRegister;
|
| +}
|
| +
|
| +
|
| +inline bool CPURegister::IsSameSizeAndType(const CPURegister& other) const {
|
| + return (reg_size == other.reg_size) && (reg_type == other.reg_type);
|
| +}
|
| +
|
| +
|
| +inline bool CPURegister::IsValidOrNone() const {
|
| + return IsValid() || IsNone();
|
| +}
|
| +
|
| +
|
| +inline bool CPURegister::IsZero() const {
|
| + ASSERT(IsValid());
|
| + return IsRegister() && (reg_code == kZeroRegCode);
|
| +}
|
| +
|
| +
|
| +inline bool CPURegister::IsSP() const {
|
| + ASSERT(IsValid());
|
| + return IsRegister() && (reg_code == kSPRegInternalCode);
|
| +}
|
| +
|
| +
|
| +inline void CPURegList::Combine(const CPURegList& other) {
|
| + ASSERT(IsValid());
|
| + ASSERT(other.type() == type_);
|
| + ASSERT(other.RegisterSizeInBits() == size_);
|
| + list_ |= other.list();
|
| +}
|
| +
|
| +
|
| +inline void CPURegList::Remove(const CPURegList& other) {
|
| + ASSERT(IsValid());
|
| + ASSERT(other.type() == type_);
|
| + ASSERT(other.RegisterSizeInBits() == size_);
|
| + list_ &= ~other.list();
|
| +}
|
| +
|
| +
|
| +inline void CPURegList::Combine(const CPURegister& other) {
|
| + ASSERT(other.type() == type_);
|
| + ASSERT(other.SizeInBits() == size_);
|
| + Combine(other.code());
|
| +}
|
| +
|
| +
|
| +inline void CPURegList::Remove(const CPURegister& other) {
|
| + ASSERT(other.type() == type_);
|
| + ASSERT(other.SizeInBits() == size_);
|
| + Remove(other.code());
|
| +}
|
| +
|
| +
|
| +inline void CPURegList::Combine(int code) {
|
| + ASSERT(IsValid());
|
| + ASSERT(CPURegister::Create(code, size_, type_).IsValid());
|
| + list_ |= (1UL << code);
|
| +}
|
| +
|
| +
|
| +inline void CPURegList::Remove(int code) {
|
| + ASSERT(IsValid());
|
| + ASSERT(CPURegister::Create(code, size_, type_).IsValid());
|
| + list_ &= ~(1UL << code);
|
| +}
|
| +
|
| +
|
| +inline Register Register::XRegFromCode(unsigned code) {
|
| + // This function returns the zero register when code = 31. The stack pointer
|
| + // can not be returned.
|
| + ASSERT(code < kNumberOfRegisters);
|
| + return Register::Create(code, kXRegSize);
|
| +}
|
| +
|
| +
|
| +inline Register Register::WRegFromCode(unsigned code) {
|
| + ASSERT(code < kNumberOfRegisters);
|
| + return Register::Create(code, kWRegSize);
|
| +}
|
| +
|
| +
|
| +inline FPRegister FPRegister::SRegFromCode(unsigned code) {
|
| + ASSERT(code < kNumberOfFPRegisters);
|
| + return FPRegister::Create(code, kSRegSize);
|
| +}
|
| +
|
| +
|
| +inline FPRegister FPRegister::DRegFromCode(unsigned code) {
|
| + ASSERT(code < kNumberOfFPRegisters);
|
| + return FPRegister::Create(code, kDRegSize);
|
| +}
|
| +
|
| +
|
| +inline Register CPURegister::W() const {
|
| + ASSERT(IsValidRegister());
|
| + return Register::WRegFromCode(reg_code);
|
| +}
|
| +
|
| +
|
| +inline Register CPURegister::X() const {
|
| + ASSERT(IsValidRegister());
|
| + return Register::XRegFromCode(reg_code);
|
| +}
|
| +
|
| +
|
| +inline FPRegister CPURegister::S() const {
|
| + ASSERT(IsValidFPRegister());
|
| + return FPRegister::SRegFromCode(reg_code);
|
| +}
|
| +
|
| +
|
| +inline FPRegister CPURegister::D() const {
|
| + ASSERT(IsValidFPRegister());
|
| + return FPRegister::DRegFromCode(reg_code);
|
| +}
|
| +
|
| +
|
| +// Operand.
|
| +#define DECLARE_INT_OPERAND_CONSTRUCTOR(type) \
|
| +Operand::Operand(type immediate, RelocInfo::Mode rmode) \
|
| + : immediate_(immediate), \
|
| + reg_(NoReg), \
|
| + rmode_(rmode) {}
|
| +DECLARE_INT_OPERAND_CONSTRUCTOR(int64_t)
|
| +DECLARE_INT_OPERAND_CONSTRUCTOR(uint64_t)
|
| +DECLARE_INT_OPERAND_CONSTRUCTOR(int32_t) // NOLINT(readability/casting)
|
| +DECLARE_INT_OPERAND_CONSTRUCTOR(uint32_t)
|
| +#undef DECLARE_INT_OPERAND_CONSTRUCTOR
|
| +
|
| +Operand::Operand(Register reg, Shift shift, unsigned shift_amount)
|
| + : reg_(reg),
|
| + shift_(shift),
|
| + extend_(NO_EXTEND),
|
| + shift_amount_(shift_amount),
|
| + rmode_(reg.Is64Bits() ? RelocInfo::NONE64 : RelocInfo::NONE32) {
|
| + ASSERT(reg.Is64Bits() || (shift_amount < kWRegSize));
|
| + ASSERT(reg.Is32Bits() || (shift_amount < kXRegSize));
|
| + ASSERT(!reg.IsSP());
|
| +}
|
| +
|
| +
|
| +Operand::Operand(Register reg, Extend extend, unsigned shift_amount)
|
| + : reg_(reg),
|
| + shift_(NO_SHIFT),
|
| + extend_(extend),
|
| + shift_amount_(shift_amount),
|
| + rmode_(reg.Is64Bits() ? RelocInfo::NONE64 : RelocInfo::NONE32) {
|
| + ASSERT(reg.IsValid());
|
| + ASSERT(shift_amount <= 4);
|
| + ASSERT(!reg.IsSP());
|
| +
|
| + // Extend modes SXTX and UXTX require a 64-bit register.
|
| + ASSERT(reg.Is64Bits() || ((extend != SXTX) && (extend != UXTX)));
|
| +}
|
| +
|
| +
|
| +Operand::Operand(Smi* value)
|
| + : immediate_(reinterpret_cast<intptr_t>(value)),
|
| + reg_(NoReg),
|
| + rmode_(RelocInfo::NONE64) {}
|
| +
|
| +
|
| +bool Operand::IsImmediate() const {
|
| + return reg_.Is(NoReg);
|
| +}
|
| +
|
| +
|
| +bool Operand::IsShiftedRegister() const {
|
| + return reg_.IsValid() && (shift_ != NO_SHIFT);
|
| +}
|
| +
|
| +
|
| +bool Operand::IsExtendedRegister() const {
|
| + return reg_.IsValid() && (extend_ != NO_EXTEND);
|
| +}
|
| +
|
| +
|
| +bool Operand::IsZero() const {
|
| + if (IsImmediate()) {
|
| + return immediate() == 0;
|
| + } else {
|
| + return reg().IsZero();
|
| + }
|
| +}
|
| +
|
| +
|
| +Operand Operand::ToExtendedRegister() const {
|
| + ASSERT(IsShiftedRegister());
|
| + ASSERT((shift_ == LSL) && (shift_amount_ <= 4));
|
| + return Operand(reg_, reg_.Is64Bits() ? UXTX : UXTW, shift_amount_);
|
| +}
|
| +
|
| +
|
| +int64_t Operand::immediate() const {
|
| + ASSERT(IsImmediate());
|
| + return immediate_;
|
| +}
|
| +
|
| +
|
| +Register Operand::reg() const {
|
| + ASSERT(IsShiftedRegister() || IsExtendedRegister());
|
| + return reg_;
|
| +}
|
| +
|
| +
|
| +Shift Operand::shift() const {
|
| + ASSERT(IsShiftedRegister());
|
| + return shift_;
|
| +}
|
| +
|
| +
|
| +Extend Operand::extend() const {
|
| + ASSERT(IsExtendedRegister());
|
| + return extend_;
|
| +}
|
| +
|
| +
|
| +unsigned Operand::shift_amount() const {
|
| + ASSERT(IsShiftedRegister() || IsExtendedRegister());
|
| + return shift_amount_;
|
| +}
|
| +
|
| +
|
| +Operand Operand::UntagSmi(Register smi) {
|
| + ASSERT(smi.Is64Bits());
|
| + return Operand(smi, ASR, kSmiShift);
|
| +}
|
| +
|
| +
|
| +Operand Operand::UntagSmiAndScale(Register smi, int scale) {
|
| + ASSERT(smi.Is64Bits());
|
| + ASSERT((scale >= 0) && (scale <= (64 - kSmiValueSize)));
|
| + if (scale > kSmiShift) {
|
| + return Operand(smi, LSL, scale - kSmiShift);
|
| + } else if (scale < kSmiShift) {
|
| + return Operand(smi, ASR, kSmiShift - scale);
|
| + }
|
| + return Operand(smi);
|
| +}
|
| +
|
| +
|
| +MemOperand::MemOperand(Register base, ptrdiff_t offset, AddrMode addrmode)
|
| + : base_(base), regoffset_(NoReg), offset_(offset), addrmode_(addrmode),
|
| + shift_(NO_SHIFT), extend_(NO_EXTEND), shift_amount_(0) {
|
| + ASSERT(base.Is64Bits() && !base.IsZero());
|
| +}
|
| +
|
| +
|
| +MemOperand::MemOperand(Register base,
|
| + Register regoffset,
|
| + Extend extend,
|
| + unsigned shift_amount)
|
| + : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset),
|
| + shift_(NO_SHIFT), extend_(extend), shift_amount_(shift_amount) {
|
| + ASSERT(base.Is64Bits() && !base.IsZero());
|
| + ASSERT(!regoffset.IsSP());
|
| + ASSERT((extend == UXTW) || (extend == SXTW) || (extend == SXTX));
|
| +
|
| + // SXTX extend mode requires a 64-bit offset register.
|
| + ASSERT(regoffset.Is64Bits() || (extend != SXTX));
|
| +}
|
| +
|
| +
|
| +MemOperand::MemOperand(Register base,
|
| + Register regoffset,
|
| + Shift shift,
|
| + unsigned shift_amount)
|
| + : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset),
|
| + shift_(shift), extend_(NO_EXTEND), shift_amount_(shift_amount) {
|
| + ASSERT(base.Is64Bits() && !base.IsZero());
|
| + ASSERT(regoffset.Is64Bits() && !regoffset.IsSP());
|
| + ASSERT(shift == LSL);
|
| +}
|
| +
|
| +
|
| +MemOperand::MemOperand(Register base, const Operand& offset, AddrMode addrmode)
|
| + : base_(base), addrmode_(addrmode) {
|
| + ASSERT(base.Is64Bits() && !base.IsZero());
|
| +
|
| + if (offset.IsImmediate()) {
|
| + offset_ = offset.immediate();
|
| +
|
| + regoffset_ = NoReg;
|
| + } else if (offset.IsShiftedRegister()) {
|
| + ASSERT(addrmode == Offset);
|
| +
|
| + regoffset_ = offset.reg();
|
| + shift_= offset.shift();
|
| + shift_amount_ = offset.shift_amount();
|
| +
|
| + extend_ = NO_EXTEND;
|
| + offset_ = 0;
|
| +
|
| + // These assertions match those in the shifted-register constructor.
|
| + ASSERT(regoffset_.Is64Bits() && !regoffset_.IsSP());
|
| + ASSERT(shift_ == LSL);
|
| + } else {
|
| + ASSERT(offset.IsExtendedRegister());
|
| + ASSERT(addrmode == Offset);
|
| +
|
| + regoffset_ = offset.reg();
|
| + extend_ = offset.extend();
|
| + shift_amount_ = offset.shift_amount();
|
| +
|
| + shift_= NO_SHIFT;
|
| + offset_ = 0;
|
| +
|
| + // These assertions match those in the extended-register constructor.
|
| + ASSERT(!regoffset_.IsSP());
|
| + ASSERT((extend_ == UXTW) || (extend_ == SXTW) || (extend_ == SXTX));
|
| + ASSERT((regoffset_.Is64Bits() || (extend_ != SXTX)));
|
| + }
|
| +}
|
| +
|
| +bool MemOperand::IsImmediateOffset() const {
|
| + return (addrmode_ == Offset) && regoffset_.Is(NoReg);
|
| +}
|
| +
|
| +
|
| +bool MemOperand::IsRegisterOffset() const {
|
| + return (addrmode_ == Offset) && !regoffset_.Is(NoReg);
|
| +}
|
| +
|
| +
|
| +bool MemOperand::IsPreIndex() const {
|
| + return addrmode_ == PreIndex;
|
| +}
|
| +
|
| +
|
| +bool MemOperand::IsPostIndex() const {
|
| + return addrmode_ == PostIndex;
|
| +}
|
| +
|
| +Operand MemOperand::OffsetAsOperand() const {
|
| + if (IsImmediateOffset()) {
|
| + return offset();
|
| + } else {
|
| + ASSERT(IsRegisterOffset());
|
| + if (extend() == NO_EXTEND) {
|
| + return Operand(regoffset(), shift(), shift_amount());
|
| + } else {
|
| + return Operand(regoffset(), extend(), shift_amount());
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +Address Assembler::target_pointer_address_at(Address pc) {
|
| + Instruction* instr = reinterpret_cast<Instruction*>(pc);
|
| + ASSERT(instr->IsLdrLiteralX());
|
| + return reinterpret_cast<Address>(instr->ImmPCOffsetTarget());
|
| +}
|
| +
|
| +
|
| +// Read/Modify the code target address in the branch/call instruction at pc.
|
| +Address Assembler::target_address_at(Address pc) {
|
| + return Memory::Address_at(target_pointer_address_at(pc));
|
| +}
|
| +
|
| +
|
| +Address Assembler::target_address_from_return_address(Address pc) {
|
| + // Returns the address of the call target from the return address that will
|
| + // be returned to after a call.
|
| + // Call sequence on A64 is:
|
| + // ldr ip0, #... @ load from literal pool
|
| + // blr ip0
|
| + Address candidate = pc - 2 * kInstructionSize;
|
| + Instruction* instr = reinterpret_cast<Instruction*>(candidate);
|
| + USE(instr);
|
| + ASSERT(instr->IsLdrLiteralX());
|
| + return candidate;
|
| +}
|
| +
|
| +
|
| +Address Assembler::return_address_from_call_start(Address pc) {
|
| + // The call, generated by MacroAssembler::Call, is one of two possible
|
| + // sequences:
|
| + //
|
| + // Without relocation:
|
| + // movz ip0, #(target & 0x000000000000ffff)
|
| + // movk ip0, #(target & 0x00000000ffff0000)
|
| + // movk ip0, #(target & 0x0000ffff00000000)
|
| + // movk ip0, #(target & 0xffff000000000000)
|
| + // blr ip0
|
| + //
|
| + // With relocation:
|
| + // ldr ip0, =target
|
| + // blr ip0
|
| + //
|
| + // The return address is immediately after the blr instruction in both cases,
|
| + // so it can be found by adding the call size to the address at the start of
|
| + // the call sequence.
|
| + STATIC_ASSERT(Assembler::kCallSizeWithoutRelocation == 5 * kInstructionSize);
|
| + STATIC_ASSERT(Assembler::kCallSizeWithRelocation == 2 * kInstructionSize);
|
| +
|
| + Instruction* instr = reinterpret_cast<Instruction*>(pc);
|
| + if (instr->IsMovz()) {
|
| + // Verify the instruction sequence.
|
| + ASSERT(instr->following(1)->IsMovk());
|
| + ASSERT(instr->following(2)->IsMovk());
|
| + ASSERT(instr->following(3)->IsMovk());
|
| + ASSERT(instr->following(4)->IsBranchAndLinkToRegister());
|
| + return pc + Assembler::kCallSizeWithoutRelocation;
|
| + } else {
|
| + // Verify the instruction sequence.
|
| + ASSERT(instr->IsLdrLiteralX());
|
| + ASSERT(instr->following(1)->IsBranchAndLinkToRegister());
|
| + return pc + Assembler::kCallSizeWithRelocation;
|
| + }
|
| +}
|
| +
|
| +
|
| +void Assembler::deserialization_set_special_target_at(
|
| + Address constant_pool_entry, Address target) {
|
| + Memory::Address_at(constant_pool_entry) = target;
|
| +}
|
| +
|
| +
|
| +void Assembler::set_target_address_at(Address pc, Address target) {
|
| + Memory::Address_at(target_pointer_address_at(pc)) = target;
|
| + // Intuitively, we would think it is necessary to always flush the
|
| + // instruction cache after patching a target address in the code as follows:
|
| + // CPU::FlushICache(pc, sizeof(target));
|
| + // However, on ARM, an instruction is actually patched in the case of
|
| + // embedded constants of the form:
|
| + // ldr ip, [pc, #...]
|
| + // since the instruction accessing this address in the constant pool remains
|
| + // unchanged, a flush is not required.
|
| +}
|
| +
|
| +
|
| +int RelocInfo::target_address_size() {
|
| + return kPointerSize;
|
| +}
|
| +
|
| +
|
| +Address RelocInfo::target_address() {
|
| + ASSERT(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
|
| + return Assembler::target_address_at(pc_);
|
| +}
|
| +
|
| +
|
| +Address RelocInfo::target_address_address() {
|
| + ASSERT(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
|
| + || rmode_ == EMBEDDED_OBJECT
|
| + || rmode_ == EXTERNAL_REFERENCE);
|
| + return Assembler::target_pointer_address_at(pc_);
|
| +}
|
| +
|
| +
|
| +Object* RelocInfo::target_object() {
|
| + ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
|
| + return reinterpret_cast<Object*>(Assembler::target_address_at(pc_));
|
| +}
|
| +
|
| +
|
| +Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
|
| + ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
|
| + return Handle<Object>(reinterpret_cast<Object**>(
|
| + Assembler::target_address_at(pc_)));
|
| +}
|
| +
|
| +
|
| +void RelocInfo::set_target_object(Object* target, WriteBarrierMode mode) {
|
| + ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
|
| + ASSERT(!target->IsConsString());
|
| + Assembler::set_target_address_at(pc_, reinterpret_cast<Address>(target));
|
| + if (mode == UPDATE_WRITE_BARRIER &&
|
| + host() != NULL &&
|
| + target->IsHeapObject()) {
|
| + host()->GetHeap()->incremental_marking()->RecordWrite(
|
| + host(), &Memory::Object_at(pc_), HeapObject::cast(target));
|
| + }
|
| +}
|
| +
|
| +
|
| +Address RelocInfo::target_reference() {
|
| + ASSERT(rmode_ == EXTERNAL_REFERENCE);
|
| + return Assembler::target_address_at(pc_);
|
| +}
|
| +
|
| +
|
| +Address RelocInfo::target_runtime_entry(Assembler* origin) {
|
| + ASSERT(IsRuntimeEntry(rmode_));
|
| + return target_address();
|
| +}
|
| +
|
| +
|
| +void RelocInfo::set_target_runtime_entry(Address target,
|
| + WriteBarrierMode mode) {
|
| + ASSERT(IsRuntimeEntry(rmode_));
|
| + if (target_address() != target) set_target_address(target, mode);
|
| +}
|
| +
|
| +
|
| +Handle<Cell> RelocInfo::target_cell_handle() {
|
| + UNIMPLEMENTED();
|
| + Cell *null_cell = NULL;
|
| + return Handle<Cell>(null_cell);
|
| +}
|
| +
|
| +
|
| +Cell* RelocInfo::target_cell() {
|
| + ASSERT(rmode_ == RelocInfo::CELL);
|
| + return Cell::FromValueAddress(Memory::Address_at(pc_));
|
| +}
|
| +
|
| +
|
| +void RelocInfo::set_target_cell(Cell* cell, WriteBarrierMode mode) {
|
| + UNIMPLEMENTED();
|
| +}
|
| +
|
| +
|
| +static const int kCodeAgeSequenceSize = 5 * kInstructionSize;
|
| +static const int kCodeAgeStubEntryOffset = 3 * kInstructionSize;
|
| +
|
| +
|
| +Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
|
| + UNREACHABLE(); // This should never be reached on A64.
|
| + return Handle<Object>();
|
| +}
|
| +
|
| +
|
| +Code* RelocInfo::code_age_stub() {
|
| + ASSERT(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
|
| + ASSERT(!Code::IsYoungSequence(pc_));
|
| + // Read the stub entry point from the code age sequence.
|
| + Address stub_entry_address = pc_ + kCodeAgeStubEntryOffset;
|
| + return Code::GetCodeFromTargetAddress(Memory::Address_at(stub_entry_address));
|
| +}
|
| +
|
| +
|
| +void RelocInfo::set_code_age_stub(Code* stub) {
|
| + ASSERT(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
|
| + ASSERT(!Code::IsYoungSequence(pc_));
|
| + // Overwrite the stub entry point in the code age sequence. This is loaded as
|
| + // a literal so there is no need to call FlushICache here.
|
| + Address stub_entry_address = pc_ + kCodeAgeStubEntryOffset;
|
| + Memory::Address_at(stub_entry_address) = stub->instruction_start();
|
| +}
|
| +
|
| +
|
| +Address RelocInfo::call_address() {
|
| + ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
|
| + (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
|
| + // For the above sequences the Relocinfo points to the load literal loading
|
| + // the call address.
|
| + return Assembler::target_address_at(pc_);
|
| +}
|
| +
|
| +
|
| +void RelocInfo::set_call_address(Address target) {
|
| + ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
|
| + (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
|
| + Assembler::set_target_address_at(pc_, target);
|
| + if (host() != NULL) {
|
| + Object* target_code = Code::GetCodeFromTargetAddress(target);
|
| + host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
|
| + host(), this, HeapObject::cast(target_code));
|
| + }
|
| +}
|
| +
|
| +
|
| +void RelocInfo::WipeOut() {
|
| + ASSERT(IsEmbeddedObject(rmode_) ||
|
| + IsCodeTarget(rmode_) ||
|
| + IsRuntimeEntry(rmode_) ||
|
| + IsExternalReference(rmode_));
|
| + Assembler::set_target_address_at(pc_, NULL);
|
| +}
|
| +
|
| +
|
| +bool RelocInfo::IsPatchedReturnSequence() {
|
| + // The sequence must be:
|
| + // ldr ip0, [pc, #offset]
|
| + // blr ip0
|
| + // See a64/debug-a64.cc BreakLocationIterator::SetDebugBreakAtReturn().
|
| + Instruction* i1 = reinterpret_cast<Instruction*>(pc_);
|
| + Instruction* i2 = i1->following();
|
| + return i1->IsLdrLiteralX() && (i1->Rt() == ip0.code()) &&
|
| + i2->IsBranchAndLinkToRegister() && (i2->Rn() == ip0.code());
|
| +}
|
| +
|
| +
|
| +bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
|
| + Instruction* current_instr = reinterpret_cast<Instruction*>(pc_);
|
| + return !current_instr->IsNop(Assembler::DEBUG_BREAK_NOP);
|
| +}
|
| +
|
| +
|
| +void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
|
| + RelocInfo::Mode mode = rmode();
|
| + if (mode == RelocInfo::EMBEDDED_OBJECT) {
|
| + visitor->VisitEmbeddedPointer(this);
|
| + } else if (RelocInfo::IsCodeTarget(mode)) {
|
| + visitor->VisitCodeTarget(this);
|
| + } else if (mode == RelocInfo::CELL) {
|
| + visitor->VisitCell(this);
|
| + } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
|
| + visitor->VisitExternalReference(this);
|
| +#ifdef ENABLE_DEBUGGER_SUPPORT
|
| + } else if (((RelocInfo::IsJSReturn(mode) &&
|
| + IsPatchedReturnSequence()) ||
|
| + (RelocInfo::IsDebugBreakSlot(mode) &&
|
| + IsPatchedDebugBreakSlotSequence())) &&
|
| + isolate->debug()->has_break_points()) {
|
| + visitor->VisitDebugTarget(this);
|
| +#endif
|
| + } else if (RelocInfo::IsRuntimeEntry(mode)) {
|
| + visitor->VisitRuntimeEntry(this);
|
| + }
|
| +}
|
| +
|
| +
|
| +template<typename StaticVisitor>
|
| +void RelocInfo::Visit(Heap* heap) {
|
| + RelocInfo::Mode mode = rmode();
|
| + if (mode == RelocInfo::EMBEDDED_OBJECT) {
|
| + StaticVisitor::VisitEmbeddedPointer(heap, this);
|
| + } else if (RelocInfo::IsCodeTarget(mode)) {
|
| + StaticVisitor::VisitCodeTarget(heap, this);
|
| + } else if (mode == RelocInfo::CELL) {
|
| + StaticVisitor::VisitCell(heap, this);
|
| + } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
|
| + StaticVisitor::VisitExternalReference(this);
|
| +#ifdef ENABLE_DEBUGGER_SUPPORT
|
| + } else if (heap->isolate()->debug()->has_break_points() &&
|
| + ((RelocInfo::IsJSReturn(mode) &&
|
| + IsPatchedReturnSequence()) ||
|
| + (RelocInfo::IsDebugBreakSlot(mode) &&
|
| + IsPatchedDebugBreakSlotSequence()))) {
|
| + StaticVisitor::VisitDebugTarget(heap, this);
|
| +#endif
|
| + } else if (RelocInfo::IsRuntimeEntry(mode)) {
|
| + StaticVisitor::VisitRuntimeEntry(this);
|
| + }
|
| +}
|
| +
|
| +
|
| +LoadStoreOp Assembler::LoadOpFor(const CPURegister& rt) {
|
| + ASSERT(rt.IsValid());
|
| + if (rt.IsRegister()) {
|
| + return rt.Is64Bits() ? LDR_x : LDR_w;
|
| + } else {
|
| + ASSERT(rt.IsFPRegister());
|
| + return rt.Is64Bits() ? LDR_d : LDR_s;
|
| + }
|
| +}
|
| +
|
| +
|
| +LoadStorePairOp Assembler::LoadPairOpFor(const CPURegister& rt,
|
| + const CPURegister& rt2) {
|
| + ASSERT(AreSameSizeAndType(rt, rt2));
|
| + USE(rt2);
|
| + if (rt.IsRegister()) {
|
| + return rt.Is64Bits() ? LDP_x : LDP_w;
|
| + } else {
|
| + ASSERT(rt.IsFPRegister());
|
| + return rt.Is64Bits() ? LDP_d : LDP_s;
|
| + }
|
| +}
|
| +
|
| +
|
| +LoadStoreOp Assembler::StoreOpFor(const CPURegister& rt) {
|
| + ASSERT(rt.IsValid());
|
| + if (rt.IsRegister()) {
|
| + return rt.Is64Bits() ? STR_x : STR_w;
|
| + } else {
|
| + ASSERT(rt.IsFPRegister());
|
| + return rt.Is64Bits() ? STR_d : STR_s;
|
| + }
|
| +}
|
| +
|
| +
|
| +LoadStorePairOp Assembler::StorePairOpFor(const CPURegister& rt,
|
| + const CPURegister& rt2) {
|
| + ASSERT(AreSameSizeAndType(rt, rt2));
|
| + USE(rt2);
|
| + if (rt.IsRegister()) {
|
| + return rt.Is64Bits() ? STP_x : STP_w;
|
| + } else {
|
| + ASSERT(rt.IsFPRegister());
|
| + return rt.Is64Bits() ? STP_d : STP_s;
|
| + }
|
| +}
|
| +
|
| +
|
| +LoadStorePairNonTemporalOp Assembler::LoadPairNonTemporalOpFor(
|
| + const CPURegister& rt, const CPURegister& rt2) {
|
| + ASSERT(AreSameSizeAndType(rt, rt2));
|
| + USE(rt2);
|
| + if (rt.IsRegister()) {
|
| + return rt.Is64Bits() ? LDNP_x : LDNP_w;
|
| + } else {
|
| + ASSERT(rt.IsFPRegister());
|
| + return rt.Is64Bits() ? LDNP_d : LDNP_s;
|
| + }
|
| +}
|
| +
|
| +
|
| +LoadStorePairNonTemporalOp Assembler::StorePairNonTemporalOpFor(
|
| + const CPURegister& rt, const CPURegister& rt2) {
|
| + ASSERT(AreSameSizeAndType(rt, rt2));
|
| + USE(rt2);
|
| + if (rt.IsRegister()) {
|
| + return rt.Is64Bits() ? STNP_x : STNP_w;
|
| + } else {
|
| + ASSERT(rt.IsFPRegister());
|
| + return rt.Is64Bits() ? STNP_d : STNP_s;
|
| + }
|
| +}
|
| +
|
| +
|
| +int Assembler::LinkAndGetInstructionOffsetTo(Label* label) {
|
| + ASSERT(kStartOfLabelLinkChain == 0);
|
| + int offset = LinkAndGetByteOffsetTo(label);
|
| + ASSERT(IsAligned(offset, kInstructionSize));
|
| + return offset >> kInstructionSizeLog2;
|
| +}
|
| +
|
| +
|
| +Instr Assembler::Flags(FlagsUpdate S) {
|
| + if (S == SetFlags) {
|
| + return 1 << FlagsUpdate_offset;
|
| + } else if (S == LeaveFlags) {
|
| + return 0 << FlagsUpdate_offset;
|
| + }
|
| + UNREACHABLE();
|
| + return 0;
|
| +}
|
| +
|
| +
|
| +Instr Assembler::Cond(Condition cond) {
|
| + return cond << Condition_offset;
|
| +}
|
| +
|
| +
|
| +Instr Assembler::ImmPCRelAddress(int imm21) {
|
| + CHECK(is_int21(imm21));
|
| + Instr imm = static_cast<Instr>(truncate_to_int21(imm21));
|
| + Instr immhi = (imm >> ImmPCRelLo_width) << ImmPCRelHi_offset;
|
| + Instr immlo = imm << ImmPCRelLo_offset;
|
| + return (immhi & ImmPCRelHi_mask) | (immlo & ImmPCRelLo_mask);
|
| +}
|
| +
|
| +
|
| +Instr Assembler::ImmUncondBranch(int imm26) {
|
| + CHECK(is_int26(imm26));
|
| + return truncate_to_int26(imm26) << ImmUncondBranch_offset;
|
| +}
|
| +
|
| +
|
| +Instr Assembler::ImmCondBranch(int imm19) {
|
| + CHECK(is_int19(imm19));
|
| + return truncate_to_int19(imm19) << ImmCondBranch_offset;
|
| +}
|
| +
|
| +
|
| +Instr Assembler::ImmCmpBranch(int imm19) {
|
| + CHECK(is_int19(imm19));
|
| + return truncate_to_int19(imm19) << ImmCmpBranch_offset;
|
| +}
|
| +
|
| +
|
| +Instr Assembler::ImmTestBranch(int imm14) {
|
| + CHECK(is_int14(imm14));
|
| + return truncate_to_int14(imm14) << ImmTestBranch_offset;
|
| +}
|
| +
|
| +
|
| +Instr Assembler::ImmTestBranchBit(unsigned bit_pos) {
|
| + ASSERT(is_uint6(bit_pos));
|
| + // Subtract five from the shift offset, as we need bit 5 from bit_pos.
|
| + unsigned b5 = bit_pos << (ImmTestBranchBit5_offset - 5);
|
| + unsigned b40 = bit_pos << ImmTestBranchBit40_offset;
|
| + b5 &= ImmTestBranchBit5_mask;
|
| + b40 &= ImmTestBranchBit40_mask;
|
| + return b5 | b40;
|
| +}
|
| +
|
| +
|
| +Instr Assembler::SF(Register rd) {
|
| + return rd.Is64Bits() ? SixtyFourBits : ThirtyTwoBits;
|
| +}
|
| +
|
| +
|
| +Instr Assembler::ImmAddSub(int64_t imm) {
|
| + ASSERT(IsImmAddSub(imm));
|
| + if (is_uint12(imm)) { // No shift required.
|
| + return imm << ImmAddSub_offset;
|
| + } else {
|
| + return ((imm >> 12) << ImmAddSub_offset) | (1 << ShiftAddSub_offset);
|
| + }
|
| +}
|
| +
|
| +
|
| +Instr Assembler::ImmS(unsigned imms, unsigned reg_size) {
|
| + ASSERT(((reg_size == kXRegSize) && is_uint6(imms)) ||
|
| + ((reg_size == kWRegSize) && is_uint5(imms)));
|
| + USE(reg_size);
|
| + return imms << ImmS_offset;
|
| +}
|
| +
|
| +
|
| +Instr Assembler::ImmR(unsigned immr, unsigned reg_size) {
|
| + ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
|
| + ((reg_size == kWRegSize) && is_uint5(immr)));
|
| + USE(reg_size);
|
| + ASSERT(is_uint6(immr));
|
| + return immr << ImmR_offset;
|
| +}
|
| +
|
| +
|
| +Instr Assembler::ImmSetBits(unsigned imms, unsigned reg_size) {
|
| + ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
|
| + ASSERT(is_uint6(imms));
|
| + ASSERT((reg_size == kXRegSize) || is_uint6(imms + 3));
|
| + USE(reg_size);
|
| + return imms << ImmSetBits_offset;
|
| +}
|
| +
|
| +
|
| +Instr Assembler::ImmRotate(unsigned immr, unsigned reg_size) {
|
| + ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
|
| + ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
|
| + ((reg_size == kWRegSize) && is_uint5(immr)));
|
| + USE(reg_size);
|
| + return immr << ImmRotate_offset;
|
| +}
|
| +
|
| +
|
| +Instr Assembler::ImmLLiteral(int imm19) {
|
| + CHECK(is_int19(imm19));
|
| + return truncate_to_int19(imm19) << ImmLLiteral_offset;
|
| +}
|
| +
|
| +
|
| +Instr Assembler::BitN(unsigned bitn, unsigned reg_size) {
|
| + ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
|
| + ASSERT((reg_size == kXRegSize) || (bitn == 0));
|
| + USE(reg_size);
|
| + return bitn << BitN_offset;
|
| +}
|
| +
|
| +
|
| +Instr Assembler::ShiftDP(Shift shift) {
|
| + ASSERT(shift == LSL || shift == LSR || shift == ASR || shift == ROR);
|
| + return shift << ShiftDP_offset;
|
| +}
|
| +
|
| +
|
| +Instr Assembler::ImmDPShift(unsigned amount) {
|
| + ASSERT(is_uint6(amount));
|
| + return amount << ImmDPShift_offset;
|
| +}
|
| +
|
| +
|
| +Instr Assembler::ExtendMode(Extend extend) {
|
| + return extend << ExtendMode_offset;
|
| +}
|
| +
|
| +
|
| +Instr Assembler::ImmExtendShift(unsigned left_shift) {
|
| + ASSERT(left_shift <= 4);
|
| + return left_shift << ImmExtendShift_offset;
|
| +}
|
| +
|
| +
|
| +Instr Assembler::ImmCondCmp(unsigned imm) {
|
| + ASSERT(is_uint5(imm));
|
| + return imm << ImmCondCmp_offset;
|
| +}
|
| +
|
| +
|
| +Instr Assembler::Nzcv(StatusFlags nzcv) {
|
| + return ((nzcv >> Flags_offset) & 0xf) << Nzcv_offset;
|
| +}
|
| +
|
| +
|
| +Instr Assembler::ImmLSUnsigned(int imm12) {
|
| + ASSERT(is_uint12(imm12));
|
| + return imm12 << ImmLSUnsigned_offset;
|
| +}
|
| +
|
| +
|
| +Instr Assembler::ImmLS(int imm9) {
|
| + ASSERT(is_int9(imm9));
|
| + return truncate_to_int9(imm9) << ImmLS_offset;
|
| +}
|
| +
|
| +
|
| +Instr Assembler::ImmLSPair(int imm7, LSDataSize size) {
|
| + ASSERT(((imm7 >> size) << size) == imm7);
|
| + int scaled_imm7 = imm7 >> size;
|
| + ASSERT(is_int7(scaled_imm7));
|
| + return truncate_to_int7(scaled_imm7) << ImmLSPair_offset;
|
| +}
|
| +
|
| +
|
| +Instr Assembler::ImmShiftLS(unsigned shift_amount) {
|
| + ASSERT(is_uint1(shift_amount));
|
| + return shift_amount << ImmShiftLS_offset;
|
| +}
|
| +
|
| +
|
| +Instr Assembler::ImmException(int imm16) {
|
| + ASSERT(is_uint16(imm16));
|
| + return imm16 << ImmException_offset;
|
| +}
|
| +
|
| +
|
| +Instr Assembler::ImmSystemRegister(int imm15) {
|
| + ASSERT(is_uint15(imm15));
|
| + return imm15 << ImmSystemRegister_offset;
|
| +}
|
| +
|
| +
|
| +Instr Assembler::ImmHint(int imm7) {
|
| + ASSERT(is_uint7(imm7));
|
| + return imm7 << ImmHint_offset;
|
| +}
|
| +
|
| +
|
| +Instr Assembler::ImmBarrierDomain(int imm2) {
|
| + ASSERT(is_uint2(imm2));
|
| + return imm2 << ImmBarrierDomain_offset;
|
| +}
|
| +
|
| +
|
| +Instr Assembler::ImmBarrierType(int imm2) {
|
| + ASSERT(is_uint2(imm2));
|
| + return imm2 << ImmBarrierType_offset;
|
| +}
|
| +
|
| +
|
| +LSDataSize Assembler::CalcLSDataSize(LoadStoreOp op) {
|
| + ASSERT((SizeLS_offset + SizeLS_width) == (kInstructionSize * 8));
|
| + return static_cast<LSDataSize>(op >> SizeLS_offset);
|
| +}
|
| +
|
| +
|
| +Instr Assembler::ImmMoveWide(uint64_t imm) {
|
| + ASSERT(is_uint16(imm));
|
| + return imm << ImmMoveWide_offset;
|
| +}
|
| +
|
| +
|
| +Instr Assembler::ShiftMoveWide(int64_t shift) {
|
| + ASSERT(is_uint2(shift));
|
| + return shift << ShiftMoveWide_offset;
|
| +}
|
| +
|
| +
|
| +Instr Assembler::FPType(FPRegister fd) {
|
| + return fd.Is64Bits() ? FP64 : FP32;
|
| +}
|
| +
|
| +
|
| +Instr Assembler::FPScale(unsigned scale) {
|
| + ASSERT(is_uint6(scale));
|
| + return scale << FPScale_offset;
|
| +}
|
| +
|
| +
|
| +const Register& Assembler::AppropriateZeroRegFor(const CPURegister& reg) const {
|
| + return reg.Is64Bits() ? xzr : wzr;
|
| +}
|
| +
|
| +
|
| +void Assembler::LoadRelocated(const CPURegister& rt, const Operand& operand) {
|
| + LoadRelocatedValue(rt, operand, LDR_x_lit);
|
| +}
|
| +
|
| +
|
| +inline void Assembler::CheckBuffer() {
|
| + ASSERT(pc_ < (buffer_ + buffer_size_));
|
| + if (buffer_space() < kGap) {
|
| + GrowBuffer();
|
| + }
|
| + if (pc_offset() >= next_buffer_check_) {
|
| + CheckConstPool(false, true);
|
| + }
|
| +}
|
| +
|
| +
|
| +TypeFeedbackId Assembler::RecordedAstId() {
|
| + ASSERT(!recorded_ast_id_.IsNone());
|
| + return recorded_ast_id_;
|
| +}
|
| +
|
| +
|
| +void Assembler::ClearRecordedAstId() {
|
| + recorded_ast_id_ = TypeFeedbackId::None();
|
| +}
|
| +
|
| +
|
| +} } // namespace v8::internal
|
| +
|
| +#endif // V8_A64_ASSEMBLER_A64_INL_H_
|
|
|