| Index: src/a64/assembler-a64-inl.h | 
| diff --git a/src/a64/assembler-a64-inl.h b/src/a64/assembler-a64-inl.h | 
| new file mode 100644 | 
| index 0000000000000000000000000000000000000000..ebd3ec8b4d919b4e2212aefa5aa5fe919dd6ebc8 | 
| --- /dev/null | 
| +++ b/src/a64/assembler-a64-inl.h | 
| @@ -0,0 +1,1147 @@ | 
| +// Copyright 2013 the V8 project authors. All rights reserved. | 
| +// Redistribution and use in source and binary forms, with or without | 
| +// modification, are permitted provided that the following conditions are | 
| +// met: | 
| +// | 
| +//     * Redistributions of source code must retain the above copyright | 
| +//       notice, this list of conditions and the following disclaimer. | 
| +//     * Redistributions in binary form must reproduce the above | 
| +//       copyright notice, this list of conditions and the following | 
| +//       disclaimer in the documentation and/or other materials provided | 
| +//       with the distribution. | 
| +//     * Neither the name of Google Inc. nor the names of its | 
| +//       contributors may be used to endorse or promote products derived | 
| +//       from this software without specific prior written permission. | 
| +// | 
| +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
| +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
| +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
| +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
| +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
| +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
| +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
| +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
| +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
| +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
| +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
| + | 
| +#ifndef V8_A64_ASSEMBLER_A64_INL_H_ | 
| +#define V8_A64_ASSEMBLER_A64_INL_H_ | 
| + | 
| +#include "a64/assembler-a64.h" | 
| +#include "cpu.h" | 
| +#include "debug.h" | 
| + | 
| + | 
| +namespace v8 { | 
| +namespace internal { | 
| + | 
| + | 
| +void RelocInfo::apply(intptr_t delta) { | 
| +  UNIMPLEMENTED(); | 
| +} | 
| + | 
| + | 
| +void RelocInfo::set_target_address(Address target, WriteBarrierMode mode) { | 
| +  ASSERT(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)); | 
| +  Assembler::set_target_address_at(pc_, target); | 
| +  if (mode == UPDATE_WRITE_BARRIER && host() != NULL && IsCodeTarget(rmode_)) { | 
| +    Object* target_code = Code::GetCodeFromTargetAddress(target); | 
| +    host()->GetHeap()->incremental_marking()->RecordWriteIntoCode( | 
| +        host(), this, HeapObject::cast(target_code)); | 
| +  } | 
| +} | 
| + | 
| + | 
| +inline unsigned CPURegister::code() const { | 
| +  ASSERT(IsValid()); | 
| +  return reg_code; | 
| +} | 
| + | 
| + | 
| +inline CPURegister::RegisterType CPURegister::type() const { | 
| +  ASSERT(IsValidOrNone()); | 
| +  return reg_type; | 
| +} | 
| + | 
| + | 
| +inline RegList CPURegister::Bit() const { | 
| +  ASSERT(reg_code < (sizeof(RegList) * kBitsPerByte)); | 
| +  return IsValid() ? 1UL << reg_code : 0; | 
| +} | 
| + | 
| + | 
| +inline unsigned CPURegister::SizeInBits() const { | 
| +  ASSERT(IsValid()); | 
| +  return reg_size; | 
| +} | 
| + | 
| + | 
| +inline int CPURegister::SizeInBytes() const { | 
| +  ASSERT(IsValid()); | 
| +  ASSERT(SizeInBits() % 8 == 0); | 
| +  return reg_size / 8; | 
| +} | 
| + | 
| + | 
| +inline bool CPURegister::Is32Bits() const { | 
| +  ASSERT(IsValid()); | 
| +  return reg_size == 32; | 
| +} | 
| + | 
| + | 
| +inline bool CPURegister::Is64Bits() const { | 
| +  ASSERT(IsValid()); | 
| +  return reg_size == 64; | 
| +} | 
| + | 
| + | 
| +inline bool CPURegister::IsValid() const { | 
| +  if (IsValidRegister() || IsValidFPRegister()) { | 
| +    ASSERT(!IsNone()); | 
| +    return true; | 
| +  } else { | 
| +    ASSERT(IsNone()); | 
| +    return false; | 
| +  } | 
| +} | 
| + | 
| + | 
| +inline bool CPURegister::IsValidRegister() const { | 
| +  return IsRegister() && | 
| +         ((reg_size == kWRegSize) || (reg_size == kXRegSize)) && | 
| +         ((reg_code < kNumberOfRegisters) || (reg_code == kSPRegInternalCode)); | 
| +} | 
| + | 
| + | 
| +inline bool CPURegister::IsValidFPRegister() const { | 
| +  return IsFPRegister() && | 
| +         ((reg_size == kSRegSize) || (reg_size == kDRegSize)) && | 
| +         (reg_code < kNumberOfFPRegisters); | 
| +} | 
| + | 
| + | 
| +inline bool CPURegister::IsNone() const { | 
| +  // kNoRegister types should always have size 0 and code 0. | 
| +  ASSERT((reg_type != kNoRegister) || (reg_code == 0)); | 
| +  ASSERT((reg_type != kNoRegister) || (reg_size == 0)); | 
| + | 
| +  return reg_type == kNoRegister; | 
| +} | 
| + | 
| + | 
| +inline bool CPURegister::Is(const CPURegister& other) const { | 
| +  ASSERT(IsValidOrNone() && other.IsValidOrNone()); | 
| +  return (reg_code == other.reg_code) && (reg_size == other.reg_size) && | 
| +         (reg_type == other.reg_type); | 
| +} | 
| + | 
| + | 
| +inline bool CPURegister::IsRegister() const { | 
| +  return reg_type == kRegister; | 
| +} | 
| + | 
| + | 
| +inline bool CPURegister::IsFPRegister() const { | 
| +  return reg_type == kFPRegister; | 
| +} | 
| + | 
| + | 
| +inline bool CPURegister::IsSameSizeAndType(const CPURegister& other) const { | 
| +  return (reg_size == other.reg_size) && (reg_type == other.reg_type); | 
| +} | 
| + | 
| + | 
| +inline bool CPURegister::IsValidOrNone() const { | 
| +  return IsValid() || IsNone(); | 
| +} | 
| + | 
| + | 
| +inline bool CPURegister::IsZero() const { | 
| +  ASSERT(IsValid()); | 
| +  return IsRegister() && (reg_code == kZeroRegCode); | 
| +} | 
| + | 
| + | 
| +inline bool CPURegister::IsSP() const { | 
| +  ASSERT(IsValid()); | 
| +  return IsRegister() && (reg_code == kSPRegInternalCode); | 
| +} | 
| + | 
| + | 
| +inline void CPURegList::Combine(const CPURegList& other) { | 
| +  ASSERT(IsValid()); | 
| +  ASSERT(other.type() == type_); | 
| +  ASSERT(other.RegisterSizeInBits() == size_); | 
| +  list_ |= other.list(); | 
| +} | 
| + | 
| + | 
| +inline void CPURegList::Remove(const CPURegList& other) { | 
| +  ASSERT(IsValid()); | 
| +  ASSERT(other.type() == type_); | 
| +  ASSERT(other.RegisterSizeInBits() == size_); | 
| +  list_ &= ~other.list(); | 
| +} | 
| + | 
| + | 
| +inline void CPURegList::Combine(const CPURegister& other) { | 
| +  ASSERT(other.type() == type_); | 
| +  ASSERT(other.SizeInBits() == size_); | 
| +  Combine(other.code()); | 
| +} | 
| + | 
| + | 
| +inline void CPURegList::Remove(const CPURegister& other) { | 
| +  ASSERT(other.type() == type_); | 
| +  ASSERT(other.SizeInBits() == size_); | 
| +  Remove(other.code()); | 
| +} | 
| + | 
| + | 
| +inline void CPURegList::Combine(int code) { | 
| +  ASSERT(IsValid()); | 
| +  ASSERT(CPURegister::Create(code, size_, type_).IsValid()); | 
| +  list_ |= (1UL << code); | 
| +} | 
| + | 
| + | 
| +inline void CPURegList::Remove(int code) { | 
| +  ASSERT(IsValid()); | 
| +  ASSERT(CPURegister::Create(code, size_, type_).IsValid()); | 
| +  list_ &= ~(1UL << code); | 
| +} | 
| + | 
| + | 
| +inline Register Register::XRegFromCode(unsigned code) { | 
| +  // This function returns the zero register when code = 31. The stack pointer | 
| +  // can not be returned. | 
| +  ASSERT(code < kNumberOfRegisters); | 
| +  return Register::Create(code, kXRegSize); | 
| +} | 
| + | 
| + | 
| +inline Register Register::WRegFromCode(unsigned code) { | 
| +  ASSERT(code < kNumberOfRegisters); | 
| +  return Register::Create(code, kWRegSize); | 
| +} | 
| + | 
| + | 
| +inline FPRegister FPRegister::SRegFromCode(unsigned code) { | 
| +  ASSERT(code < kNumberOfFPRegisters); | 
| +  return FPRegister::Create(code, kSRegSize); | 
| +} | 
| + | 
| + | 
| +inline FPRegister FPRegister::DRegFromCode(unsigned code) { | 
| +  ASSERT(code < kNumberOfFPRegisters); | 
| +  return FPRegister::Create(code, kDRegSize); | 
| +} | 
| + | 
| + | 
| +inline Register CPURegister::W() const { | 
| +  ASSERT(IsValidRegister()); | 
| +  return Register::WRegFromCode(reg_code); | 
| +} | 
| + | 
| + | 
| +inline Register CPURegister::X() const { | 
| +  ASSERT(IsValidRegister()); | 
| +  return Register::XRegFromCode(reg_code); | 
| +} | 
| + | 
| + | 
| +inline FPRegister CPURegister::S() const { | 
| +  ASSERT(IsValidFPRegister()); | 
| +  return FPRegister::SRegFromCode(reg_code); | 
| +} | 
| + | 
| + | 
| +inline FPRegister CPURegister::D() const { | 
| +  ASSERT(IsValidFPRegister()); | 
| +  return FPRegister::DRegFromCode(reg_code); | 
| +} | 
| + | 
| + | 
| +// Operand. | 
| +#define DECLARE_INT_OPERAND_CONSTRUCTOR(type)                                  \ | 
| +Operand::Operand(type immediate, RelocInfo::Mode rmode)                        \ | 
| +    : immediate_(immediate),                                                   \ | 
| +      reg_(NoReg),                                                             \ | 
| +      rmode_(rmode) {} | 
| +DECLARE_INT_OPERAND_CONSTRUCTOR(int64_t) | 
| +DECLARE_INT_OPERAND_CONSTRUCTOR(uint64_t) | 
| +DECLARE_INT_OPERAND_CONSTRUCTOR(int32_t)      // NOLINT(readability/casting) | 
| +DECLARE_INT_OPERAND_CONSTRUCTOR(uint32_t) | 
| +#undef DECLARE_INT_OPERAND_CONSTRUCTOR | 
| + | 
| +Operand::Operand(Register reg, Shift shift, unsigned shift_amount) | 
| +    : reg_(reg), | 
| +      shift_(shift), | 
| +      extend_(NO_EXTEND), | 
| +      shift_amount_(shift_amount), | 
| +      rmode_(reg.Is64Bits() ? RelocInfo::NONE64 : RelocInfo::NONE32) { | 
| +  ASSERT(reg.Is64Bits() || (shift_amount < kWRegSize)); | 
| +  ASSERT(reg.Is32Bits() || (shift_amount < kXRegSize)); | 
| +  ASSERT(!reg.IsSP()); | 
| +} | 
| + | 
| + | 
| +Operand::Operand(Register reg, Extend extend, unsigned shift_amount) | 
| +    : reg_(reg), | 
| +      shift_(NO_SHIFT), | 
| +      extend_(extend), | 
| +      shift_amount_(shift_amount), | 
| +      rmode_(reg.Is64Bits() ? RelocInfo::NONE64 : RelocInfo::NONE32) { | 
| +  ASSERT(reg.IsValid()); | 
| +  ASSERT(shift_amount <= 4); | 
| +  ASSERT(!reg.IsSP()); | 
| + | 
| +  // Extend modes SXTX and UXTX require a 64-bit register. | 
| +  ASSERT(reg.Is64Bits() || ((extend != SXTX) && (extend != UXTX))); | 
| +} | 
| + | 
| + | 
| +Operand::Operand(Smi* value) | 
| +    : immediate_(reinterpret_cast<intptr_t>(value)), | 
| +      reg_(NoReg), | 
| +      rmode_(RelocInfo::NONE64) {} | 
| + | 
| + | 
| +bool Operand::IsImmediate() const { | 
| +  return reg_.Is(NoReg); | 
| +} | 
| + | 
| + | 
| +bool Operand::IsShiftedRegister() const { | 
| +  return reg_.IsValid() && (shift_ != NO_SHIFT); | 
| +} | 
| + | 
| + | 
| +bool Operand::IsExtendedRegister() const { | 
| +  return reg_.IsValid() && (extend_ != NO_EXTEND); | 
| +} | 
| + | 
| + | 
| +bool Operand::IsZero() const { | 
| +  if (IsImmediate()) { | 
| +    return immediate() == 0; | 
| +  } else { | 
| +    return reg().IsZero(); | 
| +  } | 
| +} | 
| + | 
| + | 
| +Operand Operand::ToExtendedRegister() const { | 
| +  ASSERT(IsShiftedRegister()); | 
| +  ASSERT((shift_ == LSL) && (shift_amount_ <= 4)); | 
| +  return Operand(reg_, reg_.Is64Bits() ? UXTX : UXTW, shift_amount_); | 
| +} | 
| + | 
| + | 
| +int64_t Operand::immediate() const { | 
| +  ASSERT(IsImmediate()); | 
| +  return immediate_; | 
| +} | 
| + | 
| + | 
| +Register Operand::reg() const { | 
| +  ASSERT(IsShiftedRegister() || IsExtendedRegister()); | 
| +  return reg_; | 
| +} | 
| + | 
| + | 
| +Shift Operand::shift() const { | 
| +  ASSERT(IsShiftedRegister()); | 
| +  return shift_; | 
| +} | 
| + | 
| + | 
| +Extend Operand::extend() const { | 
| +  ASSERT(IsExtendedRegister()); | 
| +  return extend_; | 
| +} | 
| + | 
| + | 
| +unsigned Operand::shift_amount() const { | 
| +  ASSERT(IsShiftedRegister() || IsExtendedRegister()); | 
| +  return shift_amount_; | 
| +} | 
| + | 
| + | 
| +Operand Operand::UntagSmi(Register smi) { | 
| +  ASSERT(smi.Is64Bits()); | 
| +  return Operand(smi, ASR, kSmiShift); | 
| +} | 
| + | 
| + | 
| +Operand Operand::UntagSmiAndScale(Register smi, int scale) { | 
| +  ASSERT(smi.Is64Bits()); | 
| +  ASSERT((scale >= 0) && (scale <= (64 - kSmiValueSize))); | 
| +  if (scale > kSmiShift) { | 
| +    return Operand(smi, LSL, scale - kSmiShift); | 
| +  } else if (scale < kSmiShift) { | 
| +    return Operand(smi, ASR, kSmiShift - scale); | 
| +  } | 
| +  return Operand(smi); | 
| +} | 
| + | 
| + | 
| +MemOperand::MemOperand(Register base, ptrdiff_t offset, AddrMode addrmode) | 
| +  : base_(base), regoffset_(NoReg), offset_(offset), addrmode_(addrmode), | 
| +    shift_(NO_SHIFT), extend_(NO_EXTEND), shift_amount_(0) { | 
| +  ASSERT(base.Is64Bits() && !base.IsZero()); | 
| +} | 
| + | 
| + | 
| +MemOperand::MemOperand(Register base, | 
| +                       Register regoffset, | 
| +                       Extend extend, | 
| +                       unsigned shift_amount) | 
| +  : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset), | 
| +    shift_(NO_SHIFT), extend_(extend), shift_amount_(shift_amount) { | 
| +  ASSERT(base.Is64Bits() && !base.IsZero()); | 
| +  ASSERT(!regoffset.IsSP()); | 
| +  ASSERT((extend == UXTW) || (extend == SXTW) || (extend == SXTX)); | 
| + | 
| +  // SXTX extend mode requires a 64-bit offset register. | 
| +  ASSERT(regoffset.Is64Bits() || (extend != SXTX)); | 
| +} | 
| + | 
| + | 
| +MemOperand::MemOperand(Register base, | 
| +                       Register regoffset, | 
| +                       Shift shift, | 
| +                       unsigned shift_amount) | 
| +  : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset), | 
| +    shift_(shift), extend_(NO_EXTEND), shift_amount_(shift_amount) { | 
| +  ASSERT(base.Is64Bits() && !base.IsZero()); | 
| +  ASSERT(regoffset.Is64Bits() && !regoffset.IsSP()); | 
| +  ASSERT(shift == LSL); | 
| +} | 
| + | 
| + | 
| +MemOperand::MemOperand(Register base, const Operand& offset, AddrMode addrmode) | 
| +  : base_(base), addrmode_(addrmode) { | 
| +  ASSERT(base.Is64Bits() && !base.IsZero()); | 
| + | 
| +  if (offset.IsImmediate()) { | 
| +    offset_ = offset.immediate(); | 
| + | 
| +    regoffset_ = NoReg; | 
| +  } else if (offset.IsShiftedRegister()) { | 
| +    ASSERT(addrmode == Offset); | 
| + | 
| +    regoffset_ = offset.reg(); | 
| +    shift_= offset.shift(); | 
| +    shift_amount_ = offset.shift_amount(); | 
| + | 
| +    extend_ = NO_EXTEND; | 
| +    offset_ = 0; | 
| + | 
| +    // These assertions match those in the shifted-register constructor. | 
| +    ASSERT(regoffset_.Is64Bits() && !regoffset_.IsSP()); | 
| +    ASSERT(shift_ == LSL); | 
| +  } else { | 
| +    ASSERT(offset.IsExtendedRegister()); | 
| +    ASSERT(addrmode == Offset); | 
| + | 
| +    regoffset_ = offset.reg(); | 
| +    extend_ = offset.extend(); | 
| +    shift_amount_ = offset.shift_amount(); | 
| + | 
| +    shift_= NO_SHIFT; | 
| +    offset_ = 0; | 
| + | 
| +    // These assertions match those in the extended-register constructor. | 
| +    ASSERT(!regoffset_.IsSP()); | 
| +    ASSERT((extend_ == UXTW) || (extend_ == SXTW) || (extend_ == SXTX)); | 
| +    ASSERT((regoffset_.Is64Bits() || (extend_ != SXTX))); | 
| +  } | 
| +} | 
| + | 
| +bool MemOperand::IsImmediateOffset() const { | 
| +  return (addrmode_ == Offset) && regoffset_.Is(NoReg); | 
| +} | 
| + | 
| + | 
| +bool MemOperand::IsRegisterOffset() const { | 
| +  return (addrmode_ == Offset) && !regoffset_.Is(NoReg); | 
| +} | 
| + | 
| + | 
| +bool MemOperand::IsPreIndex() const { | 
| +  return addrmode_ == PreIndex; | 
| +} | 
| + | 
| + | 
| +bool MemOperand::IsPostIndex() const { | 
| +  return addrmode_ == PostIndex; | 
| +} | 
| + | 
| +Operand MemOperand::OffsetAsOperand() const { | 
| +  if (IsImmediateOffset()) { | 
| +    return offset(); | 
| +  } else { | 
| +    ASSERT(IsRegisterOffset()); | 
| +    if (extend() == NO_EXTEND) { | 
| +      return Operand(regoffset(), shift(), shift_amount()); | 
| +    } else { | 
| +      return Operand(regoffset(), extend(), shift_amount()); | 
| +    } | 
| +  } | 
| +} | 
| + | 
| + | 
| +Address Assembler::target_pointer_address_at(Address pc) { | 
| +  Instruction* instr = reinterpret_cast<Instruction*>(pc); | 
| +  ASSERT(instr->IsLdrLiteralX()); | 
| +  return reinterpret_cast<Address>(instr->ImmPCOffsetTarget()); | 
| +} | 
| + | 
| + | 
| +// Read/Modify the code target address in the branch/call instruction at pc. | 
| +Address Assembler::target_address_at(Address pc) { | 
| +  return Memory::Address_at(target_pointer_address_at(pc)); | 
| +} | 
| + | 
| + | 
| +Address Assembler::target_address_from_return_address(Address pc) { | 
| +  // Returns the address of the call target from the return address that will | 
| +  // be returned to after a call. | 
| +  // Call sequence on A64 is: | 
| +  //  ldr ip0, #... @ load from literal pool | 
| +  //  blr ip0 | 
| +  Address candidate = pc - 2 * kInstructionSize; | 
| +  Instruction* instr = reinterpret_cast<Instruction*>(candidate); | 
| +  USE(instr); | 
| +  ASSERT(instr->IsLdrLiteralX()); | 
| +  return candidate; | 
| +} | 
| + | 
| + | 
| +Address Assembler::return_address_from_call_start(Address pc) { | 
| +  // The call, generated by MacroAssembler::Call, is one of two possible | 
| +  // sequences: | 
| +  // | 
| +  // Without relocation: | 
| +  //  movz  ip0, #(target & 0x000000000000ffff) | 
| +  //  movk  ip0, #(target & 0x00000000ffff0000) | 
| +  //  movk  ip0, #(target & 0x0000ffff00000000) | 
| +  //  movk  ip0, #(target & 0xffff000000000000) | 
| +  //  blr   ip0 | 
| +  // | 
| +  // With relocation: | 
| +  //  ldr   ip0, =target | 
| +  //  blr   ip0 | 
| +  // | 
| +  // The return address is immediately after the blr instruction in both cases, | 
| +  // so it can be found by adding the call size to the address at the start of | 
| +  // the call sequence. | 
| +  STATIC_ASSERT(Assembler::kCallSizeWithoutRelocation == 5 * kInstructionSize); | 
| +  STATIC_ASSERT(Assembler::kCallSizeWithRelocation == 2 * kInstructionSize); | 
| + | 
| +  Instruction* instr = reinterpret_cast<Instruction*>(pc); | 
| +  if (instr->IsMovz()) { | 
| +    // Verify the instruction sequence. | 
| +    ASSERT(instr->following(1)->IsMovk()); | 
| +    ASSERT(instr->following(2)->IsMovk()); | 
| +    ASSERT(instr->following(3)->IsMovk()); | 
| +    ASSERT(instr->following(4)->IsBranchAndLinkToRegister()); | 
| +    return pc + Assembler::kCallSizeWithoutRelocation; | 
| +  } else { | 
| +    // Verify the instruction sequence. | 
| +    ASSERT(instr->IsLdrLiteralX()); | 
| +    ASSERT(instr->following(1)->IsBranchAndLinkToRegister()); | 
| +    return pc + Assembler::kCallSizeWithRelocation; | 
| +  } | 
| +} | 
| + | 
| + | 
| +void Assembler::deserialization_set_special_target_at( | 
| +    Address constant_pool_entry, Address target) { | 
| +  Memory::Address_at(constant_pool_entry) = target; | 
| +} | 
| + | 
| + | 
| +void Assembler::set_target_address_at(Address pc, Address target) { | 
| +  Memory::Address_at(target_pointer_address_at(pc)) = target; | 
| +  // Intuitively, we would think it is necessary to always flush the | 
| +  // instruction cache after patching a target address in the code as follows: | 
| +  //   CPU::FlushICache(pc, sizeof(target)); | 
| +  // However, on ARM, an instruction is actually patched in the case of | 
| +  // embedded constants of the form: | 
| +  // ldr   ip, [pc, #...] | 
| +  // since the instruction accessing this address in the constant pool remains | 
| +  // unchanged, a flush is not required. | 
| +} | 
| + | 
| + | 
| +int RelocInfo::target_address_size() { | 
| +  return kPointerSize; | 
| +} | 
| + | 
| + | 
| +Address RelocInfo::target_address() { | 
| +  ASSERT(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)); | 
| +  return Assembler::target_address_at(pc_); | 
| +} | 
| + | 
| + | 
| +Address RelocInfo::target_address_address() { | 
| +  ASSERT(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) | 
| +                              || rmode_ == EMBEDDED_OBJECT | 
| +                              || rmode_ == EXTERNAL_REFERENCE); | 
| +  return Assembler::target_pointer_address_at(pc_); | 
| +} | 
| + | 
| + | 
| +Object* RelocInfo::target_object() { | 
| +  ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); | 
| +  return reinterpret_cast<Object*>(Assembler::target_address_at(pc_)); | 
| +} | 
| + | 
| + | 
| +Handle<Object> RelocInfo::target_object_handle(Assembler* origin) { | 
| +  ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); | 
| +  return Handle<Object>(reinterpret_cast<Object**>( | 
| +      Assembler::target_address_at(pc_))); | 
| +} | 
| + | 
| + | 
| +void RelocInfo::set_target_object(Object* target, WriteBarrierMode mode) { | 
| +  ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); | 
| +  ASSERT(!target->IsConsString()); | 
| +  Assembler::set_target_address_at(pc_, reinterpret_cast<Address>(target)); | 
| +  if (mode == UPDATE_WRITE_BARRIER && | 
| +      host() != NULL && | 
| +      target->IsHeapObject()) { | 
| +    host()->GetHeap()->incremental_marking()->RecordWrite( | 
| +        host(), &Memory::Object_at(pc_), HeapObject::cast(target)); | 
| +  } | 
| +} | 
| + | 
| + | 
| +Address RelocInfo::target_reference() { | 
| +  ASSERT(rmode_ == EXTERNAL_REFERENCE); | 
| +  return Assembler::target_address_at(pc_); | 
| +} | 
| + | 
| + | 
| +Address RelocInfo::target_runtime_entry(Assembler* origin) { | 
| +  ASSERT(IsRuntimeEntry(rmode_)); | 
| +  return target_address(); | 
| +} | 
| + | 
| + | 
| +void RelocInfo::set_target_runtime_entry(Address target, | 
| +                                         WriteBarrierMode mode) { | 
| +  ASSERT(IsRuntimeEntry(rmode_)); | 
| +  if (target_address() != target) set_target_address(target, mode); | 
| +} | 
| + | 
| + | 
| +Handle<Cell> RelocInfo::target_cell_handle() { | 
| +  UNIMPLEMENTED(); | 
| +  Cell *null_cell = NULL; | 
| +  return Handle<Cell>(null_cell); | 
| +} | 
| + | 
| + | 
| +Cell* RelocInfo::target_cell() { | 
| +  ASSERT(rmode_ == RelocInfo::CELL); | 
| +  return Cell::FromValueAddress(Memory::Address_at(pc_)); | 
| +} | 
| + | 
| + | 
| +void RelocInfo::set_target_cell(Cell* cell, WriteBarrierMode mode) { | 
| +  UNIMPLEMENTED(); | 
| +} | 
| + | 
| + | 
| +static const int kCodeAgeSequenceSize = 5 * kInstructionSize; | 
| +static const int kCodeAgeStubEntryOffset = 3 * kInstructionSize; | 
| + | 
| + | 
| +Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) { | 
| +  UNREACHABLE();  // This should never be reached on A64. | 
| +  return Handle<Object>(); | 
| +} | 
| + | 
| + | 
| +Code* RelocInfo::code_age_stub() { | 
| +  ASSERT(rmode_ == RelocInfo::CODE_AGE_SEQUENCE); | 
| +  ASSERT(!Code::IsYoungSequence(pc_)); | 
| +  // Read the stub entry point from the code age sequence. | 
| +  Address stub_entry_address = pc_ + kCodeAgeStubEntryOffset; | 
| +  return Code::GetCodeFromTargetAddress(Memory::Address_at(stub_entry_address)); | 
| +} | 
| + | 
| + | 
| +void RelocInfo::set_code_age_stub(Code* stub) { | 
| +  ASSERT(rmode_ == RelocInfo::CODE_AGE_SEQUENCE); | 
| +  ASSERT(!Code::IsYoungSequence(pc_)); | 
| +  // Overwrite the stub entry point in the code age sequence. This is loaded as | 
| +  // a literal so there is no need to call FlushICache here. | 
| +  Address stub_entry_address = pc_ + kCodeAgeStubEntryOffset; | 
| +  Memory::Address_at(stub_entry_address) = stub->instruction_start(); | 
| +} | 
| + | 
| + | 
| +Address RelocInfo::call_address() { | 
| +  ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) || | 
| +         (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence())); | 
| +  // For the above sequences the Relocinfo points to the load literal loading | 
| +  // the call address. | 
| +  return Assembler::target_address_at(pc_); | 
| +} | 
| + | 
| + | 
| +void RelocInfo::set_call_address(Address target) { | 
| +  ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) || | 
| +         (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence())); | 
| +  Assembler::set_target_address_at(pc_, target); | 
| +  if (host() != NULL) { | 
| +    Object* target_code = Code::GetCodeFromTargetAddress(target); | 
| +    host()->GetHeap()->incremental_marking()->RecordWriteIntoCode( | 
| +        host(), this, HeapObject::cast(target_code)); | 
| +  } | 
| +} | 
| + | 
| + | 
| +void RelocInfo::WipeOut() { | 
| +  ASSERT(IsEmbeddedObject(rmode_) || | 
| +         IsCodeTarget(rmode_) || | 
| +         IsRuntimeEntry(rmode_) || | 
| +         IsExternalReference(rmode_)); | 
| +  Assembler::set_target_address_at(pc_, NULL); | 
| +} | 
| + | 
| + | 
| +bool RelocInfo::IsPatchedReturnSequence() { | 
| +  // The sequence must be: | 
| +  //   ldr ip0, [pc, #offset] | 
| +  //   blr ip0 | 
| +  // See a64/debug-a64.cc BreakLocationIterator::SetDebugBreakAtReturn(). | 
| +  Instruction* i1 = reinterpret_cast<Instruction*>(pc_); | 
| +  Instruction* i2 = i1->following(); | 
| +  return i1->IsLdrLiteralX() && (i1->Rt() == ip0.code()) && | 
| +         i2->IsBranchAndLinkToRegister() && (i2->Rn() == ip0.code()); | 
| +} | 
| + | 
| + | 
| +bool RelocInfo::IsPatchedDebugBreakSlotSequence() { | 
| +  Instruction* current_instr = reinterpret_cast<Instruction*>(pc_); | 
| +  return !current_instr->IsNop(Assembler::DEBUG_BREAK_NOP); | 
| +} | 
| + | 
| + | 
| +void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) { | 
| +  RelocInfo::Mode mode = rmode(); | 
| +  if (mode == RelocInfo::EMBEDDED_OBJECT) { | 
| +    visitor->VisitEmbeddedPointer(this); | 
| +  } else if (RelocInfo::IsCodeTarget(mode)) { | 
| +    visitor->VisitCodeTarget(this); | 
| +  } else if (mode == RelocInfo::CELL) { | 
| +    visitor->VisitCell(this); | 
| +  } else if (mode == RelocInfo::EXTERNAL_REFERENCE) { | 
| +    visitor->VisitExternalReference(this); | 
| +#ifdef ENABLE_DEBUGGER_SUPPORT | 
| +  } else if (((RelocInfo::IsJSReturn(mode) && | 
| +              IsPatchedReturnSequence()) || | 
| +             (RelocInfo::IsDebugBreakSlot(mode) && | 
| +              IsPatchedDebugBreakSlotSequence())) && | 
| +             isolate->debug()->has_break_points()) { | 
| +    visitor->VisitDebugTarget(this); | 
| +#endif | 
| +  } else if (RelocInfo::IsRuntimeEntry(mode)) { | 
| +    visitor->VisitRuntimeEntry(this); | 
| +  } | 
| +} | 
| + | 
| + | 
| +template<typename StaticVisitor> | 
| +void RelocInfo::Visit(Heap* heap) { | 
| +  RelocInfo::Mode mode = rmode(); | 
| +  if (mode == RelocInfo::EMBEDDED_OBJECT) { | 
| +    StaticVisitor::VisitEmbeddedPointer(heap, this); | 
| +  } else if (RelocInfo::IsCodeTarget(mode)) { | 
| +    StaticVisitor::VisitCodeTarget(heap, this); | 
| +  } else if (mode == RelocInfo::CELL) { | 
| +    StaticVisitor::VisitCell(heap, this); | 
| +  } else if (mode == RelocInfo::EXTERNAL_REFERENCE) { | 
| +    StaticVisitor::VisitExternalReference(this); | 
| +#ifdef ENABLE_DEBUGGER_SUPPORT | 
| +  } else if (heap->isolate()->debug()->has_break_points() && | 
| +             ((RelocInfo::IsJSReturn(mode) && | 
| +              IsPatchedReturnSequence()) || | 
| +             (RelocInfo::IsDebugBreakSlot(mode) && | 
| +              IsPatchedDebugBreakSlotSequence()))) { | 
| +    StaticVisitor::VisitDebugTarget(heap, this); | 
| +#endif | 
| +  } else if (RelocInfo::IsRuntimeEntry(mode)) { | 
| +    StaticVisitor::VisitRuntimeEntry(this); | 
| +  } | 
| +} | 
| + | 
| + | 
| +LoadStoreOp Assembler::LoadOpFor(const CPURegister& rt) { | 
| +  ASSERT(rt.IsValid()); | 
| +  if (rt.IsRegister()) { | 
| +    return rt.Is64Bits() ? LDR_x : LDR_w; | 
| +  } else { | 
| +    ASSERT(rt.IsFPRegister()); | 
| +    return rt.Is64Bits() ? LDR_d : LDR_s; | 
| +  } | 
| +} | 
| + | 
| + | 
| +LoadStorePairOp Assembler::LoadPairOpFor(const CPURegister& rt, | 
| +                                         const CPURegister& rt2) { | 
| +  ASSERT(AreSameSizeAndType(rt, rt2)); | 
| +  USE(rt2); | 
| +  if (rt.IsRegister()) { | 
| +    return rt.Is64Bits() ? LDP_x : LDP_w; | 
| +  } else { | 
| +    ASSERT(rt.IsFPRegister()); | 
| +    return rt.Is64Bits() ? LDP_d : LDP_s; | 
| +  } | 
| +} | 
| + | 
| + | 
| +LoadStoreOp Assembler::StoreOpFor(const CPURegister& rt) { | 
| +  ASSERT(rt.IsValid()); | 
| +  if (rt.IsRegister()) { | 
| +    return rt.Is64Bits() ? STR_x : STR_w; | 
| +  } else { | 
| +    ASSERT(rt.IsFPRegister()); | 
| +    return rt.Is64Bits() ? STR_d : STR_s; | 
| +  } | 
| +} | 
| + | 
| + | 
| +LoadStorePairOp Assembler::StorePairOpFor(const CPURegister& rt, | 
| +                                          const CPURegister& rt2) { | 
| +  ASSERT(AreSameSizeAndType(rt, rt2)); | 
| +  USE(rt2); | 
| +  if (rt.IsRegister()) { | 
| +    return rt.Is64Bits() ? STP_x : STP_w; | 
| +  } else { | 
| +    ASSERT(rt.IsFPRegister()); | 
| +    return rt.Is64Bits() ? STP_d : STP_s; | 
| +  } | 
| +} | 
| + | 
| + | 
| +LoadStorePairNonTemporalOp Assembler::LoadPairNonTemporalOpFor( | 
| +    const CPURegister& rt, const CPURegister& rt2) { | 
| +  ASSERT(AreSameSizeAndType(rt, rt2)); | 
| +  USE(rt2); | 
| +  if (rt.IsRegister()) { | 
| +    return rt.Is64Bits() ? LDNP_x : LDNP_w; | 
| +  } else { | 
| +    ASSERT(rt.IsFPRegister()); | 
| +    return rt.Is64Bits() ? LDNP_d : LDNP_s; | 
| +  } | 
| +} | 
| + | 
| + | 
| +LoadStorePairNonTemporalOp Assembler::StorePairNonTemporalOpFor( | 
| +    const CPURegister& rt, const CPURegister& rt2) { | 
| +  ASSERT(AreSameSizeAndType(rt, rt2)); | 
| +  USE(rt2); | 
| +  if (rt.IsRegister()) { | 
| +    return rt.Is64Bits() ? STNP_x : STNP_w; | 
| +  } else { | 
| +    ASSERT(rt.IsFPRegister()); | 
| +    return rt.Is64Bits() ? STNP_d : STNP_s; | 
| +  } | 
| +} | 
| + | 
| + | 
| +int Assembler::LinkAndGetInstructionOffsetTo(Label* label) { | 
| +  ASSERT(kStartOfLabelLinkChain == 0); | 
| +  int offset = LinkAndGetByteOffsetTo(label); | 
| +  ASSERT(IsAligned(offset, kInstructionSize)); | 
| +  return offset >> kInstructionSizeLog2; | 
| +} | 
| + | 
| + | 
| +Instr Assembler::Flags(FlagsUpdate S) { | 
| +  if (S == SetFlags) { | 
| +    return 1 << FlagsUpdate_offset; | 
| +  } else if (S == LeaveFlags) { | 
| +    return 0 << FlagsUpdate_offset; | 
| +  } | 
| +  UNREACHABLE(); | 
| +  return 0; | 
| +} | 
| + | 
| + | 
| +Instr Assembler::Cond(Condition cond) { | 
| +  return cond << Condition_offset; | 
| +} | 
| + | 
| + | 
| +Instr Assembler::ImmPCRelAddress(int imm21) { | 
| +  CHECK(is_int21(imm21)); | 
| +  Instr imm = static_cast<Instr>(truncate_to_int21(imm21)); | 
| +  Instr immhi = (imm >> ImmPCRelLo_width) << ImmPCRelHi_offset; | 
| +  Instr immlo = imm << ImmPCRelLo_offset; | 
| +  return (immhi & ImmPCRelHi_mask) | (immlo & ImmPCRelLo_mask); | 
| +} | 
| + | 
| + | 
| +Instr Assembler::ImmUncondBranch(int imm26) { | 
| +  CHECK(is_int26(imm26)); | 
| +  return truncate_to_int26(imm26) << ImmUncondBranch_offset; | 
| +} | 
| + | 
| + | 
| +Instr Assembler::ImmCondBranch(int imm19) { | 
| +  CHECK(is_int19(imm19)); | 
| +  return truncate_to_int19(imm19) << ImmCondBranch_offset; | 
| +} | 
| + | 
| + | 
| +Instr Assembler::ImmCmpBranch(int imm19) { | 
| +  CHECK(is_int19(imm19)); | 
| +  return truncate_to_int19(imm19) << ImmCmpBranch_offset; | 
| +} | 
| + | 
| + | 
| +Instr Assembler::ImmTestBranch(int imm14) { | 
| +  CHECK(is_int14(imm14)); | 
| +  return truncate_to_int14(imm14) << ImmTestBranch_offset; | 
| +} | 
| + | 
| + | 
| +Instr Assembler::ImmTestBranchBit(unsigned bit_pos) { | 
| +  ASSERT(is_uint6(bit_pos)); | 
| +  // Subtract five from the shift offset, as we need bit 5 from bit_pos. | 
| +  unsigned b5 = bit_pos << (ImmTestBranchBit5_offset - 5); | 
| +  unsigned b40 = bit_pos << ImmTestBranchBit40_offset; | 
| +  b5 &= ImmTestBranchBit5_mask; | 
| +  b40 &= ImmTestBranchBit40_mask; | 
| +  return b5 | b40; | 
| +} | 
| + | 
| + | 
| +Instr Assembler::SF(Register rd) { | 
| +    return rd.Is64Bits() ? SixtyFourBits : ThirtyTwoBits; | 
| +} | 
| + | 
| + | 
| +Instr Assembler::ImmAddSub(int64_t imm) { | 
| +  ASSERT(IsImmAddSub(imm)); | 
| +  if (is_uint12(imm)) {  // No shift required. | 
| +    return imm << ImmAddSub_offset; | 
| +  } else { | 
| +    return ((imm >> 12) << ImmAddSub_offset) | (1 << ShiftAddSub_offset); | 
| +  } | 
| +} | 
| + | 
| + | 
| +Instr Assembler::ImmS(unsigned imms, unsigned reg_size) { | 
| +  ASSERT(((reg_size == kXRegSize) && is_uint6(imms)) || | 
| +         ((reg_size == kWRegSize) && is_uint5(imms))); | 
| +  USE(reg_size); | 
| +  return imms << ImmS_offset; | 
| +} | 
| + | 
| + | 
| +Instr Assembler::ImmR(unsigned immr, unsigned reg_size) { | 
| +  ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) || | 
| +         ((reg_size == kWRegSize) && is_uint5(immr))); | 
| +  USE(reg_size); | 
| +  ASSERT(is_uint6(immr)); | 
| +  return immr << ImmR_offset; | 
| +} | 
| + | 
| + | 
| +Instr Assembler::ImmSetBits(unsigned imms, unsigned reg_size) { | 
| +  ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize)); | 
| +  ASSERT(is_uint6(imms)); | 
| +  ASSERT((reg_size == kXRegSize) || is_uint6(imms + 3)); | 
| +  USE(reg_size); | 
| +  return imms << ImmSetBits_offset; | 
| +} | 
| + | 
| + | 
| +Instr Assembler::ImmRotate(unsigned immr, unsigned reg_size) { | 
| +  ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize)); | 
| +  ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) || | 
| +         ((reg_size == kWRegSize) && is_uint5(immr))); | 
| +  USE(reg_size); | 
| +  return immr << ImmRotate_offset; | 
| +} | 
| + | 
| + | 
| +Instr Assembler::ImmLLiteral(int imm19) { | 
| +  CHECK(is_int19(imm19)); | 
| +  return truncate_to_int19(imm19) << ImmLLiteral_offset; | 
| +} | 
| + | 
| + | 
| +Instr Assembler::BitN(unsigned bitn, unsigned reg_size) { | 
| +  ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize)); | 
| +  ASSERT((reg_size == kXRegSize) || (bitn == 0)); | 
| +  USE(reg_size); | 
| +  return bitn << BitN_offset; | 
| +} | 
| + | 
| + | 
| +Instr Assembler::ShiftDP(Shift shift) { | 
| +  ASSERT(shift == LSL || shift == LSR || shift == ASR || shift == ROR); | 
| +  return shift << ShiftDP_offset; | 
| +} | 
| + | 
| + | 
| +Instr Assembler::ImmDPShift(unsigned amount) { | 
| +  ASSERT(is_uint6(amount)); | 
| +  return amount << ImmDPShift_offset; | 
| +} | 
| + | 
| + | 
| +Instr Assembler::ExtendMode(Extend extend) { | 
| +  return extend << ExtendMode_offset; | 
| +} | 
| + | 
| + | 
| +Instr Assembler::ImmExtendShift(unsigned left_shift) { | 
| +  ASSERT(left_shift <= 4); | 
| +  return left_shift << ImmExtendShift_offset; | 
| +} | 
| + | 
| + | 
| +Instr Assembler::ImmCondCmp(unsigned imm) { | 
| +  ASSERT(is_uint5(imm)); | 
| +  return imm << ImmCondCmp_offset; | 
| +} | 
| + | 
| + | 
| +Instr Assembler::Nzcv(StatusFlags nzcv) { | 
| +  return ((nzcv >> Flags_offset) & 0xf) << Nzcv_offset; | 
| +} | 
| + | 
| + | 
| +Instr Assembler::ImmLSUnsigned(int imm12) { | 
| +  ASSERT(is_uint12(imm12)); | 
| +  return imm12 << ImmLSUnsigned_offset; | 
| +} | 
| + | 
| + | 
| +Instr Assembler::ImmLS(int imm9) { | 
| +  ASSERT(is_int9(imm9)); | 
| +  return truncate_to_int9(imm9) << ImmLS_offset; | 
| +} | 
| + | 
| + | 
| +Instr Assembler::ImmLSPair(int imm7, LSDataSize size) { | 
| +  ASSERT(((imm7 >> size) << size) == imm7); | 
| +  int scaled_imm7 = imm7 >> size; | 
| +  ASSERT(is_int7(scaled_imm7)); | 
| +  return truncate_to_int7(scaled_imm7) << ImmLSPair_offset; | 
| +} | 
| + | 
| + | 
| +Instr Assembler::ImmShiftLS(unsigned shift_amount) { | 
| +  ASSERT(is_uint1(shift_amount)); | 
| +  return shift_amount << ImmShiftLS_offset; | 
| +} | 
| + | 
| + | 
| +Instr Assembler::ImmException(int imm16) { | 
| +  ASSERT(is_uint16(imm16)); | 
| +  return imm16 << ImmException_offset; | 
| +} | 
| + | 
| + | 
| +Instr Assembler::ImmSystemRegister(int imm15) { | 
| +  ASSERT(is_uint15(imm15)); | 
| +  return imm15 << ImmSystemRegister_offset; | 
| +} | 
| + | 
| + | 
| +Instr Assembler::ImmHint(int imm7) { | 
| +  ASSERT(is_uint7(imm7)); | 
| +  return imm7 << ImmHint_offset; | 
| +} | 
| + | 
| + | 
| +Instr Assembler::ImmBarrierDomain(int imm2) { | 
| +  ASSERT(is_uint2(imm2)); | 
| +  return imm2 << ImmBarrierDomain_offset; | 
| +} | 
| + | 
| + | 
| +Instr Assembler::ImmBarrierType(int imm2) { | 
| +  ASSERT(is_uint2(imm2)); | 
| +  return imm2 << ImmBarrierType_offset; | 
| +} | 
| + | 
| + | 
| +LSDataSize Assembler::CalcLSDataSize(LoadStoreOp op) { | 
| +  ASSERT((SizeLS_offset + SizeLS_width) == (kInstructionSize * 8)); | 
| +  return static_cast<LSDataSize>(op >> SizeLS_offset); | 
| +} | 
| + | 
| + | 
| +Instr Assembler::ImmMoveWide(uint64_t imm) { | 
| +  ASSERT(is_uint16(imm)); | 
| +  return imm << ImmMoveWide_offset; | 
| +} | 
| + | 
| + | 
| +Instr Assembler::ShiftMoveWide(int64_t shift) { | 
| +  ASSERT(is_uint2(shift)); | 
| +  return shift << ShiftMoveWide_offset; | 
| +} | 
| + | 
| + | 
| +Instr Assembler::FPType(FPRegister fd) { | 
| +  return fd.Is64Bits() ? FP64 : FP32; | 
| +} | 
| + | 
| + | 
| +Instr Assembler::FPScale(unsigned scale) { | 
| +  ASSERT(is_uint6(scale)); | 
| +  return scale << FPScale_offset; | 
| +} | 
| + | 
| + | 
| +const Register& Assembler::AppropriateZeroRegFor(const CPURegister& reg) const { | 
| +  return reg.Is64Bits() ? xzr : wzr; | 
| +} | 
| + | 
| + | 
| +void Assembler::LoadRelocated(const CPURegister& rt, const Operand& operand) { | 
| +  LoadRelocatedValue(rt, operand, LDR_x_lit); | 
| +} | 
| + | 
| + | 
| +inline void Assembler::CheckBuffer() { | 
| +  ASSERT(pc_ < (buffer_ + buffer_size_)); | 
| +  if (buffer_space() < kGap) { | 
| +    GrowBuffer(); | 
| +  } | 
| +  if (pc_offset() >= next_buffer_check_) { | 
| +    CheckConstPool(false, true); | 
| +  } | 
| +} | 
| + | 
| + | 
| +TypeFeedbackId Assembler::RecordedAstId() { | 
| +  ASSERT(!recorded_ast_id_.IsNone()); | 
| +  return recorded_ast_id_; | 
| +} | 
| + | 
| + | 
| +void Assembler::ClearRecordedAstId() { | 
| +  recorded_ast_id_ = TypeFeedbackId::None(); | 
| +} | 
| + | 
| + | 
| +} }  // namespace v8::internal | 
| + | 
| +#endif  // V8_A64_ASSEMBLER_A64_INL_H_ | 
|  |