OLD | NEW |
(Empty) | |
| 1 // Copyright 2013 the V8 project authors. All rights reserved. |
| 2 // Redistribution and use in source and binary forms, with or without |
| 3 // modification, are permitted provided that the following conditions are |
| 4 // met: |
| 5 // |
| 6 // * Redistributions of source code must retain the above copyright |
| 7 // notice, this list of conditions and the following disclaimer. |
| 8 // * Redistributions in binary form must reproduce the above |
| 9 // copyright notice, this list of conditions and the following |
| 10 // disclaimer in the documentation and/or other materials provided |
| 11 // with the distribution. |
| 12 // * Neither the name of Google Inc. nor the names of its |
| 13 // contributors may be used to endorse or promote products derived |
| 14 // from this software without specific prior written permission. |
| 15 // |
| 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 |
| 28 #include <stdio.h> |
| 29 #include <stdlib.h> |
| 30 #include <string.h> |
| 31 #include <cmath> |
| 32 #include <limits> |
| 33 |
| 34 #include "v8.h" |
| 35 |
| 36 #include "macro-assembler.h" |
| 37 #include "a64/simulator-a64.h" |
| 38 #include "a64/disasm-a64.h" |
| 39 #include "a64/utils-a64.h" |
| 40 #include "cctest.h" |
| 41 #include "test-utils-a64.h" |
| 42 |
| 43 using namespace v8::internal; |
| 44 |
| 45 // Test infrastructure. |
| 46 // |
| 47 // Tests are functions which accept no parameters and have no return values. |
| 48 // The testing code should not perform an explicit return once completed. For |
| 49 // example to test the mov immediate instruction a very simple test would be: |
| 50 // |
| 51 // TEST(mov_x0_one) { |
| 52 // SETUP(); |
| 53 // |
| 54 // START(); |
| 55 // __ mov(x0, Operand(1)); |
| 56 // END(); |
| 57 // |
| 58 // RUN(); |
| 59 // |
| 60 // ASSERT_EQUAL_64(1, x0); |
| 61 // |
| 62 // TEARDOWN(); |
| 63 // } |
| 64 // |
| 65 // Within a START ... END block all registers but sp can be modified. sp has to |
| 66 // be explicitly saved/restored. The END() macro replaces the function return |
| 67 // so it may appear multiple times in a test if the test has multiple exit |
| 68 // points. |
| 69 // |
| 70 // Once the test has been run all integer and floating point registers as well |
| 71 // as flags are accessible through a RegisterDump instance, see |
| 72 // utils-a64.cc for more info on RegisterDump. |
| 73 // |
| 74 // We provide some helper assert to handle common cases: |
| 75 // |
| 76 // ASSERT_EQUAL_32(int32_t, int_32t) |
| 77 // ASSERT_EQUAL_FP32(float, float) |
| 78 // ASSERT_EQUAL_32(int32_t, W register) |
| 79 // ASSERT_EQUAL_FP32(float, S register) |
| 80 // ASSERT_EQUAL_64(int64_t, int_64t) |
| 81 // ASSERT_EQUAL_FP64(double, double) |
| 82 // ASSERT_EQUAL_64(int64_t, X register) |
| 83 // ASSERT_EQUAL_64(X register, X register) |
| 84 // ASSERT_EQUAL_FP64(double, D register) |
| 85 // |
| 86 // e.g. ASSERT_EQUAL_64(0.5, d30); |
| 87 // |
| 88 // If more advance computation is required before the assert then access the |
| 89 // RegisterDump named core directly: |
| 90 // |
| 91 // ASSERT_EQUAL_64(0x1234, core.xreg(0) & 0xffff); |
| 92 |
| 93 |
| 94 #if 0 // TODO(all): enable. |
| 95 static v8::Persistent<v8::Context> env; |
| 96 |
| 97 static void InitializeVM() { |
| 98 if (env.IsEmpty()) { |
| 99 env = v8::Context::New(); |
| 100 } |
| 101 } |
| 102 #endif |
| 103 |
| 104 #define __ masm. |
| 105 |
| 106 #define BUF_SIZE 8192 |
| 107 #define SETUP() SETUP_SIZE(BUF_SIZE) |
| 108 |
| 109 #define INIT_V8() \ |
| 110 CcTest::InitializeVM(); \ |
| 111 |
| 112 #ifdef USE_SIMULATOR |
| 113 |
| 114 // Run tests with the simulator. |
| 115 #define SETUP_SIZE(buf_size) \ |
| 116 Isolate* isolate = Isolate::Current(); \ |
| 117 HandleScope scope(isolate); \ |
| 118 ASSERT(isolate != NULL); \ |
| 119 byte* buf = new byte[buf_size]; \ |
| 120 MacroAssembler masm(isolate, buf, buf_size); \ |
| 121 Decoder decoder; \ |
| 122 Simulator simulator(&decoder); \ |
| 123 PrintDisassembler* pdis = NULL; \ |
| 124 RegisterDump core; |
| 125 |
| 126 /* if (Cctest::trace_sim()) { \ |
| 127 pdis = new PrintDisassembler(stdout); \ |
| 128 decoder.PrependVisitor(pdis); \ |
| 129 } \ |
| 130 */ |
| 131 |
| 132 // Reset the assembler and simulator, so that instructions can be generated, |
| 133 // but don't actually emit any code. This can be used by tests that need to |
| 134 // emit instructions at the start of the buffer. Note that START_AFTER_RESET |
| 135 // must be called before any callee-saved register is modified, and before an |
| 136 // END is encountered. |
| 137 // |
| 138 // Most tests should call START, rather than call RESET directly. |
| 139 #define RESET() \ |
| 140 __ Reset(); \ |
| 141 simulator.ResetState(); |
| 142 |
| 143 #define START_AFTER_RESET() \ |
| 144 __ SetStackPointer(csp); \ |
| 145 __ PushCalleeSavedRegisters(); \ |
| 146 __ Debug("Start test.", __LINE__, TRACE_ENABLE | LOG_ALL); |
| 147 |
| 148 #define START() \ |
| 149 RESET(); \ |
| 150 START_AFTER_RESET(); |
| 151 |
| 152 #define RUN() \ |
| 153 simulator.RunFrom(reinterpret_cast<Instruction*>(buf)) |
| 154 |
| 155 #define END() \ |
| 156 __ Debug("End test.", __LINE__, TRACE_DISABLE | LOG_ALL); \ |
| 157 core.Dump(&masm); \ |
| 158 __ PopCalleeSavedRegisters(); \ |
| 159 __ Ret(); \ |
| 160 __ GetCode(NULL); |
| 161 |
| 162 #define TEARDOWN() \ |
| 163 delete pdis; \ |
| 164 delete[] buf; |
| 165 |
| 166 #else // ifdef USE_SIMULATOR. |
| 167 // Run the test on real hardware or models. |
| 168 #define SETUP_SIZE(buf_size) \ |
| 169 Isolate* isolate = Isolate::Current(); \ |
| 170 HandleScope scope(isolate); \ |
| 171 ASSERT(isolate != NULL); \ |
| 172 byte* buf = new byte[buf_size]; \ |
| 173 MacroAssembler masm(isolate, buf, buf_size); \ |
| 174 RegisterDump core; \ |
| 175 CPU::SetUp(); |
| 176 |
| 177 #define RESET() \ |
| 178 __ Reset(); |
| 179 |
| 180 #define START_AFTER_RESET() \ |
| 181 __ SetStackPointer(csp); \ |
| 182 __ PushCalleeSavedRegisters(); |
| 183 |
| 184 #define START() \ |
| 185 RESET(); \ |
| 186 START_AFTER_RESET(); |
| 187 |
| 188 #define RUN() \ |
| 189 CPU::FlushICache(buf, masm.SizeOfGeneratedCode()); \ |
| 190 { \ |
| 191 void (*test_function)(void); \ |
| 192 memcpy(&test_function, &buf, sizeof(buf)); \ |
| 193 test_function(); \ |
| 194 } |
| 195 |
| 196 #define END() \ |
| 197 core.Dump(&masm); \ |
| 198 __ PopCalleeSavedRegisters(); \ |
| 199 __ Ret(); \ |
| 200 __ GetCode(NULL); |
| 201 |
| 202 #define TEARDOWN() \ |
| 203 delete[] buf; |
| 204 |
| 205 #endif // ifdef USE_SIMULATOR. |
| 206 |
| 207 #define ASSERT_EQUAL_NZCV(expected) \ |
| 208 CHECK(EqualNzcv(expected, core.flags_nzcv())) |
| 209 |
| 210 #define ASSERT_EQUAL_REGISTERS(expected) \ |
| 211 CHECK(EqualRegisters(&expected, &core)) |
| 212 |
| 213 #define ASSERT_EQUAL_32(expected, result) \ |
| 214 CHECK(Equal32(static_cast<uint32_t>(expected), &core, result)) |
| 215 |
| 216 #define ASSERT_EQUAL_FP32(expected, result) \ |
| 217 CHECK(EqualFP32(expected, &core, result)) |
| 218 |
| 219 #define ASSERT_EQUAL_64(expected, result) \ |
| 220 CHECK(Equal64(expected, &core, result)) |
| 221 |
| 222 #define ASSERT_EQUAL_FP64(expected, result) \ |
| 223 CHECK(EqualFP64(expected, &core, result)) |
| 224 |
| 225 #ifdef DEBUG |
| 226 #define ASSERT_LITERAL_POOL_SIZE(expected) \ |
| 227 CHECK((expected) == (__ LiteralPoolSize())) |
| 228 #else |
| 229 #define ASSERT_LITERAL_POOL_SIZE(expected) \ |
| 230 ((void) 0) |
| 231 #endif |
| 232 |
| 233 |
| 234 TEST(stack_ops) { |
| 235 INIT_V8(); |
| 236 SETUP(); |
| 237 |
| 238 START(); |
| 239 // save csp. |
| 240 __ Mov(x29, csp); |
| 241 |
| 242 // Set the csp to a known value. |
| 243 __ Mov(x16, 0x1000); |
| 244 __ Mov(csp, x16); |
| 245 __ Mov(x0, csp); |
| 246 |
| 247 // Add immediate to the csp, and move the result to a normal register. |
| 248 __ Add(csp, csp, Operand(0x50)); |
| 249 __ Mov(x1, csp); |
| 250 |
| 251 // Add extended to the csp, and move the result to a normal register. |
| 252 __ Mov(x17, 0xfff); |
| 253 __ Add(csp, csp, Operand(x17, SXTB)); |
| 254 __ Mov(x2, csp); |
| 255 |
| 256 // Create an csp using a logical instruction, and move to normal register. |
| 257 __ Orr(csp, xzr, Operand(0x1fff)); |
| 258 __ Mov(x3, csp); |
| 259 |
| 260 // Write wcsp using a logical instruction. |
| 261 __ Orr(wcsp, wzr, Operand(0xfffffff8L)); |
| 262 __ Mov(x4, csp); |
| 263 |
| 264 // Write csp, and read back wcsp. |
| 265 __ Orr(csp, xzr, Operand(0xfffffff8L)); |
| 266 __ Mov(w5, wcsp); |
| 267 |
| 268 // restore csp. |
| 269 __ Mov(csp, x29); |
| 270 END(); |
| 271 |
| 272 RUN(); |
| 273 |
| 274 ASSERT_EQUAL_64(0x1000, x0); |
| 275 ASSERT_EQUAL_64(0x1050, x1); |
| 276 ASSERT_EQUAL_64(0x104f, x2); |
| 277 ASSERT_EQUAL_64(0x1fff, x3); |
| 278 ASSERT_EQUAL_64(0xfffffff8, x4); |
| 279 ASSERT_EQUAL_64(0xfffffff8, x5); |
| 280 |
| 281 TEARDOWN(); |
| 282 } |
| 283 |
| 284 |
| 285 TEST(mvn) { |
| 286 INIT_V8(); |
| 287 SETUP(); |
| 288 |
| 289 START(); |
| 290 __ Mvn(w0, 0xfff); |
| 291 __ Mvn(x1, 0xfff); |
| 292 __ Mvn(w2, Operand(w0, LSL, 1)); |
| 293 __ Mvn(x3, Operand(x1, LSL, 2)); |
| 294 __ Mvn(w4, Operand(w0, LSR, 3)); |
| 295 __ Mvn(x5, Operand(x1, LSR, 4)); |
| 296 __ Mvn(w6, Operand(w0, ASR, 11)); |
| 297 __ Mvn(x7, Operand(x1, ASR, 12)); |
| 298 __ Mvn(w8, Operand(w0, ROR, 13)); |
| 299 __ Mvn(x9, Operand(x1, ROR, 14)); |
| 300 __ Mvn(w10, Operand(w2, UXTB)); |
| 301 __ Mvn(x11, Operand(x2, SXTB, 1)); |
| 302 __ Mvn(w12, Operand(w2, UXTH, 2)); |
| 303 __ Mvn(x13, Operand(x2, SXTH, 3)); |
| 304 __ Mvn(x14, Operand(w2, UXTW, 4)); |
| 305 __ Mvn(x15, Operand(w2, SXTW, 4)); |
| 306 END(); |
| 307 |
| 308 RUN(); |
| 309 |
| 310 ASSERT_EQUAL_64(0xfffff000, x0); |
| 311 ASSERT_EQUAL_64(0xfffffffffffff000UL, x1); |
| 312 ASSERT_EQUAL_64(0x00001fff, x2); |
| 313 ASSERT_EQUAL_64(0x0000000000003fffUL, x3); |
| 314 ASSERT_EQUAL_64(0xe00001ff, x4); |
| 315 ASSERT_EQUAL_64(0xf0000000000000ffUL, x5); |
| 316 ASSERT_EQUAL_64(0x00000001, x6); |
| 317 ASSERT_EQUAL_64(0x0, x7); |
| 318 ASSERT_EQUAL_64(0x7ff80000, x8); |
| 319 ASSERT_EQUAL_64(0x3ffc000000000000UL, x9); |
| 320 ASSERT_EQUAL_64(0xffffff00, x10); |
| 321 ASSERT_EQUAL_64(0x0000000000000001UL, x11); |
| 322 ASSERT_EQUAL_64(0xffff8003, x12); |
| 323 ASSERT_EQUAL_64(0xffffffffffff0007UL, x13); |
| 324 ASSERT_EQUAL_64(0xfffffffffffe000fUL, x14); |
| 325 ASSERT_EQUAL_64(0xfffffffffffe000fUL, x15); |
| 326 |
| 327 TEARDOWN(); |
| 328 } |
| 329 |
| 330 |
| 331 TEST(mov) { |
| 332 INIT_V8(); |
| 333 SETUP(); |
| 334 |
| 335 START(); |
| 336 __ Mov(x0, 0xffffffffffffffffL); |
| 337 __ Mov(x1, 0xffffffffffffffffL); |
| 338 __ Mov(x2, 0xffffffffffffffffL); |
| 339 __ Mov(x3, 0xffffffffffffffffL); |
| 340 |
| 341 __ Mov(x0, 0x0123456789abcdefL); |
| 342 |
| 343 __ movz(x1, 0xabcdL << 16); |
| 344 __ movk(x2, 0xabcdL << 32); |
| 345 __ movn(x3, 0xabcdL << 48); |
| 346 |
| 347 __ Mov(x4, 0x0123456789abcdefL); |
| 348 __ Mov(x5, x4); |
| 349 |
| 350 __ Mov(w6, -1); |
| 351 |
| 352 // Test that moves back to the same register have the desired effect. This |
| 353 // is a no-op for X registers, and a truncation for W registers. |
| 354 __ Mov(x7, 0x0123456789abcdefL); |
| 355 __ Mov(x7, x7); |
| 356 __ Mov(x8, 0x0123456789abcdefL); |
| 357 __ Mov(w8, w8); |
| 358 __ Mov(x9, 0x0123456789abcdefL); |
| 359 __ Mov(x9, Operand(x9)); |
| 360 __ Mov(x10, 0x0123456789abcdefL); |
| 361 __ Mov(w10, Operand(w10)); |
| 362 |
| 363 __ Mov(w11, 0xfff); |
| 364 __ Mov(x12, 0xfff); |
| 365 __ Mov(w13, Operand(w11, LSL, 1)); |
| 366 __ Mov(x14, Operand(x12, LSL, 2)); |
| 367 __ Mov(w15, Operand(w11, LSR, 3)); |
| 368 __ Mov(x18, Operand(x12, LSR, 4)); |
| 369 __ Mov(w19, Operand(w11, ASR, 11)); |
| 370 __ Mov(x20, Operand(x12, ASR, 12)); |
| 371 __ Mov(w21, Operand(w11, ROR, 13)); |
| 372 __ Mov(x22, Operand(x12, ROR, 14)); |
| 373 __ Mov(w23, Operand(w13, UXTB)); |
| 374 __ Mov(x24, Operand(x13, SXTB, 1)); |
| 375 __ Mov(w25, Operand(w13, UXTH, 2)); |
| 376 __ Mov(x26, Operand(x13, SXTH, 3)); |
| 377 __ Mov(x27, Operand(w13, UXTW, 4)); |
| 378 END(); |
| 379 |
| 380 RUN(); |
| 381 |
| 382 ASSERT_EQUAL_64(0x0123456789abcdefL, x0); |
| 383 ASSERT_EQUAL_64(0x00000000abcd0000L, x1); |
| 384 ASSERT_EQUAL_64(0xffffabcdffffffffL, x2); |
| 385 ASSERT_EQUAL_64(0x5432ffffffffffffL, x3); |
| 386 ASSERT_EQUAL_64(x4, x5); |
| 387 ASSERT_EQUAL_32(-1, w6); |
| 388 ASSERT_EQUAL_64(0x0123456789abcdefL, x7); |
| 389 ASSERT_EQUAL_32(0x89abcdefL, w8); |
| 390 ASSERT_EQUAL_64(0x0123456789abcdefL, x9); |
| 391 ASSERT_EQUAL_32(0x89abcdefL, w10); |
| 392 ASSERT_EQUAL_64(0x00000fff, x11); |
| 393 ASSERT_EQUAL_64(0x0000000000000fffUL, x12); |
| 394 ASSERT_EQUAL_64(0x00001ffe, x13); |
| 395 ASSERT_EQUAL_64(0x0000000000003ffcUL, x14); |
| 396 ASSERT_EQUAL_64(0x000001ff, x15); |
| 397 ASSERT_EQUAL_64(0x00000000000000ffUL, x18); |
| 398 ASSERT_EQUAL_64(0x00000001, x19); |
| 399 ASSERT_EQUAL_64(0x0, x20); |
| 400 ASSERT_EQUAL_64(0x7ff80000, x21); |
| 401 ASSERT_EQUAL_64(0x3ffc000000000000UL, x22); |
| 402 ASSERT_EQUAL_64(0x000000fe, x23); |
| 403 ASSERT_EQUAL_64(0xfffffffffffffffcUL, x24); |
| 404 ASSERT_EQUAL_64(0x00007ff8, x25); |
| 405 ASSERT_EQUAL_64(0x000000000000fff0UL, x26); |
| 406 ASSERT_EQUAL_64(0x000000000001ffe0UL, x27); |
| 407 |
| 408 TEARDOWN(); |
| 409 } |
| 410 |
| 411 |
| 412 TEST(mov_imm_w) { |
| 413 INIT_V8(); |
| 414 SETUP(); |
| 415 |
| 416 START(); |
| 417 __ Mov(w0, 0xffffffffL); |
| 418 __ Mov(w1, 0xffff1234L); |
| 419 __ Mov(w2, 0x1234ffffL); |
| 420 __ Mov(w3, 0x00000000L); |
| 421 __ Mov(w4, 0x00001234L); |
| 422 __ Mov(w5, 0x12340000L); |
| 423 __ Mov(w6, 0x12345678L); |
| 424 END(); |
| 425 |
| 426 RUN(); |
| 427 |
| 428 ASSERT_EQUAL_64(0xffffffffL, x0); |
| 429 ASSERT_EQUAL_64(0xffff1234L, x1); |
| 430 ASSERT_EQUAL_64(0x1234ffffL, x2); |
| 431 ASSERT_EQUAL_64(0x00000000L, x3); |
| 432 ASSERT_EQUAL_64(0x00001234L, x4); |
| 433 ASSERT_EQUAL_64(0x12340000L, x5); |
| 434 ASSERT_EQUAL_64(0x12345678L, x6); |
| 435 |
| 436 TEARDOWN(); |
| 437 } |
| 438 |
| 439 |
| 440 TEST(mov_imm_x) { |
| 441 INIT_V8(); |
| 442 SETUP(); |
| 443 |
| 444 START(); |
| 445 __ Mov(x0, 0xffffffffffffffffL); |
| 446 __ Mov(x1, 0xffffffffffff1234L); |
| 447 __ Mov(x2, 0xffffffff12345678L); |
| 448 __ Mov(x3, 0xffff1234ffff5678L); |
| 449 __ Mov(x4, 0x1234ffffffff5678L); |
| 450 __ Mov(x5, 0x1234ffff5678ffffL); |
| 451 __ Mov(x6, 0x12345678ffffffffL); |
| 452 __ Mov(x7, 0x1234ffffffffffffL); |
| 453 __ Mov(x8, 0x123456789abcffffL); |
| 454 __ Mov(x9, 0x12345678ffff9abcL); |
| 455 __ Mov(x10, 0x1234ffff56789abcL); |
| 456 __ Mov(x11, 0xffff123456789abcL); |
| 457 __ Mov(x12, 0x0000000000000000L); |
| 458 __ Mov(x13, 0x0000000000001234L); |
| 459 __ Mov(x14, 0x0000000012345678L); |
| 460 __ Mov(x15, 0x0000123400005678L); |
| 461 __ Mov(x18, 0x1234000000005678L); |
| 462 __ Mov(x19, 0x1234000056780000L); |
| 463 __ Mov(x20, 0x1234567800000000L); |
| 464 __ Mov(x21, 0x1234000000000000L); |
| 465 __ Mov(x22, 0x123456789abc0000L); |
| 466 __ Mov(x23, 0x1234567800009abcL); |
| 467 __ Mov(x24, 0x1234000056789abcL); |
| 468 __ Mov(x25, 0x0000123456789abcL); |
| 469 __ Mov(x26, 0x123456789abcdef0L); |
| 470 __ Mov(x27, 0xffff000000000001L); |
| 471 __ Mov(x28, 0x8000ffff00000000L); |
| 472 END(); |
| 473 |
| 474 RUN(); |
| 475 |
| 476 ASSERT_EQUAL_64(0xffffffffffff1234L, x1); |
| 477 ASSERT_EQUAL_64(0xffffffff12345678L, x2); |
| 478 ASSERT_EQUAL_64(0xffff1234ffff5678L, x3); |
| 479 ASSERT_EQUAL_64(0x1234ffffffff5678L, x4); |
| 480 ASSERT_EQUAL_64(0x1234ffff5678ffffL, x5); |
| 481 ASSERT_EQUAL_64(0x12345678ffffffffL, x6); |
| 482 ASSERT_EQUAL_64(0x1234ffffffffffffL, x7); |
| 483 ASSERT_EQUAL_64(0x123456789abcffffL, x8); |
| 484 ASSERT_EQUAL_64(0x12345678ffff9abcL, x9); |
| 485 ASSERT_EQUAL_64(0x1234ffff56789abcL, x10); |
| 486 ASSERT_EQUAL_64(0xffff123456789abcL, x11); |
| 487 ASSERT_EQUAL_64(0x0000000000000000L, x12); |
| 488 ASSERT_EQUAL_64(0x0000000000001234L, x13); |
| 489 ASSERT_EQUAL_64(0x0000000012345678L, x14); |
| 490 ASSERT_EQUAL_64(0x0000123400005678L, x15); |
| 491 ASSERT_EQUAL_64(0x1234000000005678L, x18); |
| 492 ASSERT_EQUAL_64(0x1234000056780000L, x19); |
| 493 ASSERT_EQUAL_64(0x1234567800000000L, x20); |
| 494 ASSERT_EQUAL_64(0x1234000000000000L, x21); |
| 495 ASSERT_EQUAL_64(0x123456789abc0000L, x22); |
| 496 ASSERT_EQUAL_64(0x1234567800009abcL, x23); |
| 497 ASSERT_EQUAL_64(0x1234000056789abcL, x24); |
| 498 ASSERT_EQUAL_64(0x0000123456789abcL, x25); |
| 499 ASSERT_EQUAL_64(0x123456789abcdef0L, x26); |
| 500 ASSERT_EQUAL_64(0xffff000000000001L, x27); |
| 501 ASSERT_EQUAL_64(0x8000ffff00000000L, x28); |
| 502 |
| 503 TEARDOWN(); |
| 504 } |
| 505 |
| 506 |
| 507 TEST(orr) { |
| 508 INIT_V8(); |
| 509 SETUP(); |
| 510 |
| 511 START(); |
| 512 __ Mov(x0, 0xf0f0); |
| 513 __ Mov(x1, 0xf00000ff); |
| 514 |
| 515 __ Orr(x2, x0, Operand(x1)); |
| 516 __ Orr(w3, w0, Operand(w1, LSL, 28)); |
| 517 __ Orr(x4, x0, Operand(x1, LSL, 32)); |
| 518 __ Orr(x5, x0, Operand(x1, LSR, 4)); |
| 519 __ Orr(w6, w0, Operand(w1, ASR, 4)); |
| 520 __ Orr(x7, x0, Operand(x1, ASR, 4)); |
| 521 __ Orr(w8, w0, Operand(w1, ROR, 12)); |
| 522 __ Orr(x9, x0, Operand(x1, ROR, 12)); |
| 523 __ Orr(w10, w0, Operand(0xf)); |
| 524 __ Orr(x11, x0, Operand(0xf0000000f0000000L)); |
| 525 END(); |
| 526 |
| 527 RUN(); |
| 528 |
| 529 ASSERT_EQUAL_64(0xf000f0ff, x2); |
| 530 ASSERT_EQUAL_64(0xf000f0f0, x3); |
| 531 ASSERT_EQUAL_64(0xf00000ff0000f0f0L, x4); |
| 532 ASSERT_EQUAL_64(0x0f00f0ff, x5); |
| 533 ASSERT_EQUAL_64(0xff00f0ff, x6); |
| 534 ASSERT_EQUAL_64(0x0f00f0ff, x7); |
| 535 ASSERT_EQUAL_64(0x0ffff0f0, x8); |
| 536 ASSERT_EQUAL_64(0x0ff00000000ff0f0L, x9); |
| 537 ASSERT_EQUAL_64(0xf0ff, x10); |
| 538 ASSERT_EQUAL_64(0xf0000000f000f0f0L, x11); |
| 539 |
| 540 TEARDOWN(); |
| 541 } |
| 542 |
| 543 |
| 544 TEST(orr_extend) { |
| 545 INIT_V8(); |
| 546 SETUP(); |
| 547 |
| 548 START(); |
| 549 __ Mov(x0, 1); |
| 550 __ Mov(x1, 0x8000000080008080UL); |
| 551 __ Orr(w6, w0, Operand(w1, UXTB)); |
| 552 __ Orr(x7, x0, Operand(x1, UXTH, 1)); |
| 553 __ Orr(w8, w0, Operand(w1, UXTW, 2)); |
| 554 __ Orr(x9, x0, Operand(x1, UXTX, 3)); |
| 555 __ Orr(w10, w0, Operand(w1, SXTB)); |
| 556 __ Orr(x11, x0, Operand(x1, SXTH, 1)); |
| 557 __ Orr(x12, x0, Operand(x1, SXTW, 2)); |
| 558 __ Orr(x13, x0, Operand(x1, SXTX, 3)); |
| 559 END(); |
| 560 |
| 561 RUN(); |
| 562 |
| 563 ASSERT_EQUAL_64(0x00000081, x6); |
| 564 ASSERT_EQUAL_64(0x00010101, x7); |
| 565 ASSERT_EQUAL_64(0x00020201, x8); |
| 566 ASSERT_EQUAL_64(0x0000000400040401UL, x9); |
| 567 ASSERT_EQUAL_64(0x00000000ffffff81UL, x10); |
| 568 ASSERT_EQUAL_64(0xffffffffffff0101UL, x11); |
| 569 ASSERT_EQUAL_64(0xfffffffe00020201UL, x12); |
| 570 ASSERT_EQUAL_64(0x0000000400040401UL, x13); |
| 571 |
| 572 TEARDOWN(); |
| 573 } |
| 574 |
| 575 |
| 576 TEST(bitwise_wide_imm) { |
| 577 INIT_V8(); |
| 578 SETUP(); |
| 579 |
| 580 START(); |
| 581 __ Mov(x0, 0); |
| 582 __ Mov(x1, 0xf0f0f0f0f0f0f0f0UL); |
| 583 |
| 584 __ Orr(x10, x0, Operand(0x1234567890abcdefUL)); |
| 585 __ Orr(w11, w1, Operand(0x90abcdef)); |
| 586 END(); |
| 587 |
| 588 RUN(); |
| 589 |
| 590 ASSERT_EQUAL_64(0, x0); |
| 591 ASSERT_EQUAL_64(0xf0f0f0f0f0f0f0f0UL, x1); |
| 592 ASSERT_EQUAL_64(0x1234567890abcdefUL, x10); |
| 593 ASSERT_EQUAL_64(0xf0fbfdffUL, x11); |
| 594 |
| 595 TEARDOWN(); |
| 596 } |
| 597 |
| 598 |
| 599 TEST(orn) { |
| 600 INIT_V8(); |
| 601 SETUP(); |
| 602 |
| 603 START(); |
| 604 __ Mov(x0, 0xf0f0); |
| 605 __ Mov(x1, 0xf00000ff); |
| 606 |
| 607 __ Orn(x2, x0, Operand(x1)); |
| 608 __ Orn(w3, w0, Operand(w1, LSL, 4)); |
| 609 __ Orn(x4, x0, Operand(x1, LSL, 4)); |
| 610 __ Orn(x5, x0, Operand(x1, LSR, 1)); |
| 611 __ Orn(w6, w0, Operand(w1, ASR, 1)); |
| 612 __ Orn(x7, x0, Operand(x1, ASR, 1)); |
| 613 __ Orn(w8, w0, Operand(w1, ROR, 16)); |
| 614 __ Orn(x9, x0, Operand(x1, ROR, 16)); |
| 615 __ Orn(w10, w0, Operand(0xffff)); |
| 616 __ Orn(x11, x0, Operand(0xffff0000ffffL)); |
| 617 END(); |
| 618 |
| 619 RUN(); |
| 620 |
| 621 ASSERT_EQUAL_64(0xffffffff0ffffff0L, x2); |
| 622 ASSERT_EQUAL_64(0xfffff0ff, x3); |
| 623 ASSERT_EQUAL_64(0xfffffff0fffff0ffL, x4); |
| 624 ASSERT_EQUAL_64(0xffffffff87fffff0L, x5); |
| 625 ASSERT_EQUAL_64(0x07fffff0, x6); |
| 626 ASSERT_EQUAL_64(0xffffffff87fffff0L, x7); |
| 627 ASSERT_EQUAL_64(0xff00ffff, x8); |
| 628 ASSERT_EQUAL_64(0xff00ffffffffffffL, x9); |
| 629 ASSERT_EQUAL_64(0xfffff0f0, x10); |
| 630 ASSERT_EQUAL_64(0xffff0000fffff0f0L, x11); |
| 631 |
| 632 TEARDOWN(); |
| 633 } |
| 634 |
| 635 |
| 636 TEST(orn_extend) { |
| 637 INIT_V8(); |
| 638 SETUP(); |
| 639 |
| 640 START(); |
| 641 __ Mov(x0, 1); |
| 642 __ Mov(x1, 0x8000000080008081UL); |
| 643 __ Orn(w6, w0, Operand(w1, UXTB)); |
| 644 __ Orn(x7, x0, Operand(x1, UXTH, 1)); |
| 645 __ Orn(w8, w0, Operand(w1, UXTW, 2)); |
| 646 __ Orn(x9, x0, Operand(x1, UXTX, 3)); |
| 647 __ Orn(w10, w0, Operand(w1, SXTB)); |
| 648 __ Orn(x11, x0, Operand(x1, SXTH, 1)); |
| 649 __ Orn(x12, x0, Operand(x1, SXTW, 2)); |
| 650 __ Orn(x13, x0, Operand(x1, SXTX, 3)); |
| 651 END(); |
| 652 |
| 653 RUN(); |
| 654 |
| 655 ASSERT_EQUAL_64(0xffffff7f, x6); |
| 656 ASSERT_EQUAL_64(0xfffffffffffefefdUL, x7); |
| 657 ASSERT_EQUAL_64(0xfffdfdfb, x8); |
| 658 ASSERT_EQUAL_64(0xfffffffbfffbfbf7UL, x9); |
| 659 ASSERT_EQUAL_64(0x0000007f, x10); |
| 660 ASSERT_EQUAL_64(0x0000fefd, x11); |
| 661 ASSERT_EQUAL_64(0x00000001fffdfdfbUL, x12); |
| 662 ASSERT_EQUAL_64(0xfffffffbfffbfbf7UL, x13); |
| 663 |
| 664 TEARDOWN(); |
| 665 } |
| 666 |
| 667 |
| 668 TEST(and_) { |
| 669 INIT_V8(); |
| 670 SETUP(); |
| 671 |
| 672 START(); |
| 673 __ Mov(x0, 0xfff0); |
| 674 __ Mov(x1, 0xf00000ff); |
| 675 |
| 676 __ And(x2, x0, Operand(x1)); |
| 677 __ And(w3, w0, Operand(w1, LSL, 4)); |
| 678 __ And(x4, x0, Operand(x1, LSL, 4)); |
| 679 __ And(x5, x0, Operand(x1, LSR, 1)); |
| 680 __ And(w6, w0, Operand(w1, ASR, 20)); |
| 681 __ And(x7, x0, Operand(x1, ASR, 20)); |
| 682 __ And(w8, w0, Operand(w1, ROR, 28)); |
| 683 __ And(x9, x0, Operand(x1, ROR, 28)); |
| 684 __ And(w10, w0, Operand(0xff00)); |
| 685 __ And(x11, x0, Operand(0xff)); |
| 686 END(); |
| 687 |
| 688 RUN(); |
| 689 |
| 690 ASSERT_EQUAL_64(0x000000f0, x2); |
| 691 ASSERT_EQUAL_64(0x00000ff0, x3); |
| 692 ASSERT_EQUAL_64(0x00000ff0, x4); |
| 693 ASSERT_EQUAL_64(0x00000070, x5); |
| 694 ASSERT_EQUAL_64(0x0000ff00, x6); |
| 695 ASSERT_EQUAL_64(0x00000f00, x7); |
| 696 ASSERT_EQUAL_64(0x00000ff0, x8); |
| 697 ASSERT_EQUAL_64(0x00000000, x9); |
| 698 ASSERT_EQUAL_64(0x0000ff00, x10); |
| 699 ASSERT_EQUAL_64(0x000000f0, x11); |
| 700 |
| 701 TEARDOWN(); |
| 702 } |
| 703 |
| 704 |
| 705 TEST(and_extend) { |
| 706 INIT_V8(); |
| 707 SETUP(); |
| 708 |
| 709 START(); |
| 710 __ Mov(x0, 0xffffffffffffffffUL); |
| 711 __ Mov(x1, 0x8000000080008081UL); |
| 712 __ And(w6, w0, Operand(w1, UXTB)); |
| 713 __ And(x7, x0, Operand(x1, UXTH, 1)); |
| 714 __ And(w8, w0, Operand(w1, UXTW, 2)); |
| 715 __ And(x9, x0, Operand(x1, UXTX, 3)); |
| 716 __ And(w10, w0, Operand(w1, SXTB)); |
| 717 __ And(x11, x0, Operand(x1, SXTH, 1)); |
| 718 __ And(x12, x0, Operand(x1, SXTW, 2)); |
| 719 __ And(x13, x0, Operand(x1, SXTX, 3)); |
| 720 END(); |
| 721 |
| 722 RUN(); |
| 723 |
| 724 ASSERT_EQUAL_64(0x00000081, x6); |
| 725 ASSERT_EQUAL_64(0x00010102, x7); |
| 726 ASSERT_EQUAL_64(0x00020204, x8); |
| 727 ASSERT_EQUAL_64(0x0000000400040408UL, x9); |
| 728 ASSERT_EQUAL_64(0xffffff81, x10); |
| 729 ASSERT_EQUAL_64(0xffffffffffff0102UL, x11); |
| 730 ASSERT_EQUAL_64(0xfffffffe00020204UL, x12); |
| 731 ASSERT_EQUAL_64(0x0000000400040408UL, x13); |
| 732 |
| 733 TEARDOWN(); |
| 734 } |
| 735 |
| 736 |
| 737 TEST(ands) { |
| 738 INIT_V8(); |
| 739 SETUP(); |
| 740 |
| 741 START(); |
| 742 __ Mov(x1, 0xf00000ff); |
| 743 __ Ands(w0, w1, Operand(w1)); |
| 744 END(); |
| 745 |
| 746 RUN(); |
| 747 |
| 748 ASSERT_EQUAL_NZCV(NFlag); |
| 749 ASSERT_EQUAL_64(0xf00000ff, x0); |
| 750 |
| 751 START(); |
| 752 __ Mov(x0, 0xfff0); |
| 753 __ Mov(x1, 0xf00000ff); |
| 754 __ Ands(w0, w0, Operand(w1, LSR, 4)); |
| 755 END(); |
| 756 |
| 757 RUN(); |
| 758 |
| 759 ASSERT_EQUAL_NZCV(ZFlag); |
| 760 ASSERT_EQUAL_64(0x00000000, x0); |
| 761 |
| 762 START(); |
| 763 __ Mov(x0, 0x8000000000000000L); |
| 764 __ Mov(x1, 0x00000001); |
| 765 __ Ands(x0, x0, Operand(x1, ROR, 1)); |
| 766 END(); |
| 767 |
| 768 RUN(); |
| 769 |
| 770 ASSERT_EQUAL_NZCV(NFlag); |
| 771 ASSERT_EQUAL_64(0x8000000000000000L, x0); |
| 772 |
| 773 START(); |
| 774 __ Mov(x0, 0xfff0); |
| 775 __ Ands(w0, w0, Operand(0xf)); |
| 776 END(); |
| 777 |
| 778 RUN(); |
| 779 |
| 780 ASSERT_EQUAL_NZCV(ZFlag); |
| 781 ASSERT_EQUAL_64(0x00000000, x0); |
| 782 |
| 783 START(); |
| 784 __ Mov(x0, 0xff000000); |
| 785 __ Ands(w0, w0, Operand(0x80000000)); |
| 786 END(); |
| 787 |
| 788 RUN(); |
| 789 |
| 790 ASSERT_EQUAL_NZCV(NFlag); |
| 791 ASSERT_EQUAL_64(0x80000000, x0); |
| 792 |
| 793 TEARDOWN(); |
| 794 } |
| 795 |
| 796 |
| 797 TEST(bic) { |
| 798 INIT_V8(); |
| 799 SETUP(); |
| 800 |
| 801 START(); |
| 802 __ Mov(x0, 0xfff0); |
| 803 __ Mov(x1, 0xf00000ff); |
| 804 |
| 805 __ Bic(x2, x0, Operand(x1)); |
| 806 __ Bic(w3, w0, Operand(w1, LSL, 4)); |
| 807 __ Bic(x4, x0, Operand(x1, LSL, 4)); |
| 808 __ Bic(x5, x0, Operand(x1, LSR, 1)); |
| 809 __ Bic(w6, w0, Operand(w1, ASR, 20)); |
| 810 __ Bic(x7, x0, Operand(x1, ASR, 20)); |
| 811 __ Bic(w8, w0, Operand(w1, ROR, 28)); |
| 812 __ Bic(x9, x0, Operand(x1, ROR, 24)); |
| 813 __ Bic(x10, x0, Operand(0x1f)); |
| 814 __ Bic(x11, x0, Operand(0x100)); |
| 815 |
| 816 // Test bic into csp when the constant cannot be encoded in the immediate |
| 817 // field. |
| 818 // Use x20 to preserve csp. We check for the result via x21 because the |
| 819 // test infrastructure requires that csp be restored to its original value. |
| 820 __ Mov(x20, csp); |
| 821 __ Mov(x0, 0xffffff); |
| 822 __ Bic(csp, x0, Operand(0xabcdef)); |
| 823 __ Mov(x21, csp); |
| 824 __ Mov(csp, x20); |
| 825 END(); |
| 826 |
| 827 RUN(); |
| 828 |
| 829 ASSERT_EQUAL_64(0x0000ff00, x2); |
| 830 ASSERT_EQUAL_64(0x0000f000, x3); |
| 831 ASSERT_EQUAL_64(0x0000f000, x4); |
| 832 ASSERT_EQUAL_64(0x0000ff80, x5); |
| 833 ASSERT_EQUAL_64(0x000000f0, x6); |
| 834 ASSERT_EQUAL_64(0x0000f0f0, x7); |
| 835 ASSERT_EQUAL_64(0x0000f000, x8); |
| 836 ASSERT_EQUAL_64(0x0000ff00, x9); |
| 837 ASSERT_EQUAL_64(0x0000ffe0, x10); |
| 838 ASSERT_EQUAL_64(0x0000fef0, x11); |
| 839 |
| 840 ASSERT_EQUAL_64(0x543210, x21); |
| 841 |
| 842 TEARDOWN(); |
| 843 } |
| 844 |
| 845 |
| 846 TEST(bic_extend) { |
| 847 INIT_V8(); |
| 848 SETUP(); |
| 849 |
| 850 START(); |
| 851 __ Mov(x0, 0xffffffffffffffffUL); |
| 852 __ Mov(x1, 0x8000000080008081UL); |
| 853 __ Bic(w6, w0, Operand(w1, UXTB)); |
| 854 __ Bic(x7, x0, Operand(x1, UXTH, 1)); |
| 855 __ Bic(w8, w0, Operand(w1, UXTW, 2)); |
| 856 __ Bic(x9, x0, Operand(x1, UXTX, 3)); |
| 857 __ Bic(w10, w0, Operand(w1, SXTB)); |
| 858 __ Bic(x11, x0, Operand(x1, SXTH, 1)); |
| 859 __ Bic(x12, x0, Operand(x1, SXTW, 2)); |
| 860 __ Bic(x13, x0, Operand(x1, SXTX, 3)); |
| 861 END(); |
| 862 |
| 863 RUN(); |
| 864 |
| 865 ASSERT_EQUAL_64(0xffffff7e, x6); |
| 866 ASSERT_EQUAL_64(0xfffffffffffefefdUL, x7); |
| 867 ASSERT_EQUAL_64(0xfffdfdfb, x8); |
| 868 ASSERT_EQUAL_64(0xfffffffbfffbfbf7UL, x9); |
| 869 ASSERT_EQUAL_64(0x0000007e, x10); |
| 870 ASSERT_EQUAL_64(0x0000fefd, x11); |
| 871 ASSERT_EQUAL_64(0x00000001fffdfdfbUL, x12); |
| 872 ASSERT_EQUAL_64(0xfffffffbfffbfbf7UL, x13); |
| 873 |
| 874 TEARDOWN(); |
| 875 } |
| 876 |
| 877 |
| 878 TEST(bics) { |
| 879 INIT_V8(); |
| 880 SETUP(); |
| 881 |
| 882 START(); |
| 883 __ Mov(x1, 0xffff); |
| 884 __ Bics(w0, w1, Operand(w1)); |
| 885 END(); |
| 886 |
| 887 RUN(); |
| 888 |
| 889 ASSERT_EQUAL_NZCV(ZFlag); |
| 890 ASSERT_EQUAL_64(0x00000000, x0); |
| 891 |
| 892 START(); |
| 893 __ Mov(x0, 0xffffffff); |
| 894 __ Bics(w0, w0, Operand(w0, LSR, 1)); |
| 895 END(); |
| 896 |
| 897 RUN(); |
| 898 |
| 899 ASSERT_EQUAL_NZCV(NFlag); |
| 900 ASSERT_EQUAL_64(0x80000000, x0); |
| 901 |
| 902 START(); |
| 903 __ Mov(x0, 0x8000000000000000L); |
| 904 __ Mov(x1, 0x00000001); |
| 905 __ Bics(x0, x0, Operand(x1, ROR, 1)); |
| 906 END(); |
| 907 |
| 908 RUN(); |
| 909 |
| 910 ASSERT_EQUAL_NZCV(ZFlag); |
| 911 ASSERT_EQUAL_64(0x00000000, x0); |
| 912 |
| 913 START(); |
| 914 __ Mov(x0, 0xffffffffffffffffL); |
| 915 __ Bics(x0, x0, Operand(0x7fffffffffffffffL)); |
| 916 END(); |
| 917 |
| 918 RUN(); |
| 919 |
| 920 ASSERT_EQUAL_NZCV(NFlag); |
| 921 ASSERT_EQUAL_64(0x8000000000000000L, x0); |
| 922 |
| 923 START(); |
| 924 __ Mov(w0, 0xffff0000); |
| 925 __ Bics(w0, w0, Operand(0xfffffff0)); |
| 926 END(); |
| 927 |
| 928 RUN(); |
| 929 |
| 930 ASSERT_EQUAL_NZCV(ZFlag); |
| 931 ASSERT_EQUAL_64(0x00000000, x0); |
| 932 |
| 933 TEARDOWN(); |
| 934 } |
| 935 |
| 936 |
| 937 TEST(eor) { |
| 938 INIT_V8(); |
| 939 SETUP(); |
| 940 |
| 941 START(); |
| 942 __ Mov(x0, 0xfff0); |
| 943 __ Mov(x1, 0xf00000ff); |
| 944 |
| 945 __ Eor(x2, x0, Operand(x1)); |
| 946 __ Eor(w3, w0, Operand(w1, LSL, 4)); |
| 947 __ Eor(x4, x0, Operand(x1, LSL, 4)); |
| 948 __ Eor(x5, x0, Operand(x1, LSR, 1)); |
| 949 __ Eor(w6, w0, Operand(w1, ASR, 20)); |
| 950 __ Eor(x7, x0, Operand(x1, ASR, 20)); |
| 951 __ Eor(w8, w0, Operand(w1, ROR, 28)); |
| 952 __ Eor(x9, x0, Operand(x1, ROR, 28)); |
| 953 __ Eor(w10, w0, Operand(0xff00ff00)); |
| 954 __ Eor(x11, x0, Operand(0xff00ff00ff00ff00L)); |
| 955 END(); |
| 956 |
| 957 RUN(); |
| 958 |
| 959 ASSERT_EQUAL_64(0xf000ff0f, x2); |
| 960 ASSERT_EQUAL_64(0x0000f000, x3); |
| 961 ASSERT_EQUAL_64(0x0000000f0000f000L, x4); |
| 962 ASSERT_EQUAL_64(0x7800ff8f, x5); |
| 963 ASSERT_EQUAL_64(0xffff00f0, x6); |
| 964 ASSERT_EQUAL_64(0x0000f0f0, x7); |
| 965 ASSERT_EQUAL_64(0x0000f00f, x8); |
| 966 ASSERT_EQUAL_64(0x00000ff00000ffffL, x9); |
| 967 ASSERT_EQUAL_64(0xff0000f0, x10); |
| 968 ASSERT_EQUAL_64(0xff00ff00ff0000f0L, x11); |
| 969 |
| 970 TEARDOWN(); |
| 971 } |
| 972 |
| 973 |
| 974 TEST(eor_extend) { |
| 975 INIT_V8(); |
| 976 SETUP(); |
| 977 |
| 978 START(); |
| 979 __ Mov(x0, 0x1111111111111111UL); |
| 980 __ Mov(x1, 0x8000000080008081UL); |
| 981 __ Eor(w6, w0, Operand(w1, UXTB)); |
| 982 __ Eor(x7, x0, Operand(x1, UXTH, 1)); |
| 983 __ Eor(w8, w0, Operand(w1, UXTW, 2)); |
| 984 __ Eor(x9, x0, Operand(x1, UXTX, 3)); |
| 985 __ Eor(w10, w0, Operand(w1, SXTB)); |
| 986 __ Eor(x11, x0, Operand(x1, SXTH, 1)); |
| 987 __ Eor(x12, x0, Operand(x1, SXTW, 2)); |
| 988 __ Eor(x13, x0, Operand(x1, SXTX, 3)); |
| 989 END(); |
| 990 |
| 991 RUN(); |
| 992 |
| 993 ASSERT_EQUAL_64(0x11111190, x6); |
| 994 ASSERT_EQUAL_64(0x1111111111101013UL, x7); |
| 995 ASSERT_EQUAL_64(0x11131315, x8); |
| 996 ASSERT_EQUAL_64(0x1111111511151519UL, x9); |
| 997 ASSERT_EQUAL_64(0xeeeeee90, x10); |
| 998 ASSERT_EQUAL_64(0xeeeeeeeeeeee1013UL, x11); |
| 999 ASSERT_EQUAL_64(0xeeeeeeef11131315UL, x12); |
| 1000 ASSERT_EQUAL_64(0x1111111511151519UL, x13); |
| 1001 |
| 1002 TEARDOWN(); |
| 1003 } |
| 1004 |
| 1005 |
| 1006 TEST(eon) { |
| 1007 INIT_V8(); |
| 1008 SETUP(); |
| 1009 |
| 1010 START(); |
| 1011 __ Mov(x0, 0xfff0); |
| 1012 __ Mov(x1, 0xf00000ff); |
| 1013 |
| 1014 __ Eon(x2, x0, Operand(x1)); |
| 1015 __ Eon(w3, w0, Operand(w1, LSL, 4)); |
| 1016 __ Eon(x4, x0, Operand(x1, LSL, 4)); |
| 1017 __ Eon(x5, x0, Operand(x1, LSR, 1)); |
| 1018 __ Eon(w6, w0, Operand(w1, ASR, 20)); |
| 1019 __ Eon(x7, x0, Operand(x1, ASR, 20)); |
| 1020 __ Eon(w8, w0, Operand(w1, ROR, 28)); |
| 1021 __ Eon(x9, x0, Operand(x1, ROR, 28)); |
| 1022 __ Eon(w10, w0, Operand(0x03c003c0)); |
| 1023 __ Eon(x11, x0, Operand(0x0000100000001000L)); |
| 1024 END(); |
| 1025 |
| 1026 RUN(); |
| 1027 |
| 1028 ASSERT_EQUAL_64(0xffffffff0fff00f0L, x2); |
| 1029 ASSERT_EQUAL_64(0xffff0fff, x3); |
| 1030 ASSERT_EQUAL_64(0xfffffff0ffff0fffL, x4); |
| 1031 ASSERT_EQUAL_64(0xffffffff87ff0070L, x5); |
| 1032 ASSERT_EQUAL_64(0x0000ff0f, x6); |
| 1033 ASSERT_EQUAL_64(0xffffffffffff0f0fL, x7); |
| 1034 ASSERT_EQUAL_64(0xffff0ff0, x8); |
| 1035 ASSERT_EQUAL_64(0xfffff00fffff0000L, x9); |
| 1036 ASSERT_EQUAL_64(0xfc3f03cf, x10); |
| 1037 ASSERT_EQUAL_64(0xffffefffffff100fL, x11); |
| 1038 |
| 1039 TEARDOWN(); |
| 1040 } |
| 1041 |
| 1042 |
| 1043 TEST(eon_extend) { |
| 1044 INIT_V8(); |
| 1045 SETUP(); |
| 1046 |
| 1047 START(); |
| 1048 __ Mov(x0, 0x1111111111111111UL); |
| 1049 __ Mov(x1, 0x8000000080008081UL); |
| 1050 __ Eon(w6, w0, Operand(w1, UXTB)); |
| 1051 __ Eon(x7, x0, Operand(x1, UXTH, 1)); |
| 1052 __ Eon(w8, w0, Operand(w1, UXTW, 2)); |
| 1053 __ Eon(x9, x0, Operand(x1, UXTX, 3)); |
| 1054 __ Eon(w10, w0, Operand(w1, SXTB)); |
| 1055 __ Eon(x11, x0, Operand(x1, SXTH, 1)); |
| 1056 __ Eon(x12, x0, Operand(x1, SXTW, 2)); |
| 1057 __ Eon(x13, x0, Operand(x1, SXTX, 3)); |
| 1058 END(); |
| 1059 |
| 1060 RUN(); |
| 1061 |
| 1062 ASSERT_EQUAL_64(0xeeeeee6f, x6); |
| 1063 ASSERT_EQUAL_64(0xeeeeeeeeeeefefecUL, x7); |
| 1064 ASSERT_EQUAL_64(0xeeececea, x8); |
| 1065 ASSERT_EQUAL_64(0xeeeeeeeaeeeaeae6UL, x9); |
| 1066 ASSERT_EQUAL_64(0x1111116f, x10); |
| 1067 ASSERT_EQUAL_64(0x111111111111efecUL, x11); |
| 1068 ASSERT_EQUAL_64(0x11111110eeececeaUL, x12); |
| 1069 ASSERT_EQUAL_64(0xeeeeeeeaeeeaeae6UL, x13); |
| 1070 |
| 1071 TEARDOWN(); |
| 1072 } |
| 1073 |
| 1074 |
| 1075 TEST(mul) { |
| 1076 INIT_V8(); |
| 1077 SETUP(); |
| 1078 |
| 1079 START(); |
| 1080 __ Mov(x16, 0); |
| 1081 __ Mov(x17, 1); |
| 1082 __ Mov(x18, 0xffffffff); |
| 1083 __ Mov(x19, 0xffffffffffffffffUL); |
| 1084 |
| 1085 __ Mul(w0, w16, w16); |
| 1086 __ Mul(w1, w16, w17); |
| 1087 __ Mul(w2, w17, w18); |
| 1088 __ Mul(w3, w18, w19); |
| 1089 __ Mul(x4, x16, x16); |
| 1090 __ Mul(x5, x17, x18); |
| 1091 __ Mul(x6, x18, x19); |
| 1092 __ Mul(x7, x19, x19); |
| 1093 __ Smull(x8, w17, w18); |
| 1094 __ Smull(x9, w18, w18); |
| 1095 __ Smull(x10, w19, w19); |
| 1096 __ Mneg(w11, w16, w16); |
| 1097 __ Mneg(w12, w16, w17); |
| 1098 __ Mneg(w13, w17, w18); |
| 1099 __ Mneg(w14, w18, w19); |
| 1100 __ Mneg(x20, x16, x16); |
| 1101 __ Mneg(x21, x17, x18); |
| 1102 __ Mneg(x22, x18, x19); |
| 1103 __ Mneg(x23, x19, x19); |
| 1104 END(); |
| 1105 |
| 1106 RUN(); |
| 1107 |
| 1108 ASSERT_EQUAL_64(0, x0); |
| 1109 ASSERT_EQUAL_64(0, x1); |
| 1110 ASSERT_EQUAL_64(0xffffffff, x2); |
| 1111 ASSERT_EQUAL_64(1, x3); |
| 1112 ASSERT_EQUAL_64(0, x4); |
| 1113 ASSERT_EQUAL_64(0xffffffff, x5); |
| 1114 ASSERT_EQUAL_64(0xffffffff00000001UL, x6); |
| 1115 ASSERT_EQUAL_64(1, x7); |
| 1116 ASSERT_EQUAL_64(0xffffffffffffffffUL, x8); |
| 1117 ASSERT_EQUAL_64(1, x9); |
| 1118 ASSERT_EQUAL_64(1, x10); |
| 1119 ASSERT_EQUAL_64(0, x11); |
| 1120 ASSERT_EQUAL_64(0, x12); |
| 1121 ASSERT_EQUAL_64(1, x13); |
| 1122 ASSERT_EQUAL_64(0xffffffff, x14); |
| 1123 ASSERT_EQUAL_64(0, x20); |
| 1124 ASSERT_EQUAL_64(0xffffffff00000001UL, x21); |
| 1125 ASSERT_EQUAL_64(0xffffffff, x22); |
| 1126 ASSERT_EQUAL_64(0xffffffffffffffffUL, x23); |
| 1127 |
| 1128 TEARDOWN(); |
| 1129 } |
| 1130 |
| 1131 |
| 1132 static void SmullHelper(int64_t expected, int64_t a, int64_t b) { |
| 1133 SETUP(); |
| 1134 START(); |
| 1135 __ Mov(w0, a); |
| 1136 __ Mov(w1, b); |
| 1137 __ Smull(x2, w0, w1); |
| 1138 END(); |
| 1139 RUN(); |
| 1140 ASSERT_EQUAL_64(expected, x2); |
| 1141 TEARDOWN(); |
| 1142 } |
| 1143 |
| 1144 |
| 1145 TEST(smull) { |
| 1146 INIT_V8(); |
| 1147 SmullHelper(0, 0, 0); |
| 1148 SmullHelper(1, 1, 1); |
| 1149 SmullHelper(-1, -1, 1); |
| 1150 SmullHelper(1, -1, -1); |
| 1151 SmullHelper(0xffffffff80000000, 0x80000000, 1); |
| 1152 SmullHelper(0x0000000080000000, 0x00010000, 0x00008000); |
| 1153 } |
| 1154 |
| 1155 |
| 1156 TEST(madd) { |
| 1157 INIT_V8(); |
| 1158 SETUP(); |
| 1159 |
| 1160 START(); |
| 1161 __ Mov(x16, 0); |
| 1162 __ Mov(x17, 1); |
| 1163 __ Mov(x18, 0xffffffff); |
| 1164 __ Mov(x19, 0xffffffffffffffffUL); |
| 1165 |
| 1166 __ Madd(w0, w16, w16, w16); |
| 1167 __ Madd(w1, w16, w16, w17); |
| 1168 __ Madd(w2, w16, w16, w18); |
| 1169 __ Madd(w3, w16, w16, w19); |
| 1170 __ Madd(w4, w16, w17, w17); |
| 1171 __ Madd(w5, w17, w17, w18); |
| 1172 __ Madd(w6, w17, w17, w19); |
| 1173 __ Madd(w7, w17, w18, w16); |
| 1174 __ Madd(w8, w17, w18, w18); |
| 1175 __ Madd(w9, w18, w18, w17); |
| 1176 __ Madd(w10, w18, w19, w18); |
| 1177 __ Madd(w11, w19, w19, w19); |
| 1178 |
| 1179 __ Madd(x12, x16, x16, x16); |
| 1180 __ Madd(x13, x16, x16, x17); |
| 1181 __ Madd(x14, x16, x16, x18); |
| 1182 __ Madd(x15, x16, x16, x19); |
| 1183 __ Madd(x20, x16, x17, x17); |
| 1184 __ Madd(x21, x17, x17, x18); |
| 1185 __ Madd(x22, x17, x17, x19); |
| 1186 __ Madd(x23, x17, x18, x16); |
| 1187 __ Madd(x24, x17, x18, x18); |
| 1188 __ Madd(x25, x18, x18, x17); |
| 1189 __ Madd(x26, x18, x19, x18); |
| 1190 __ Madd(x27, x19, x19, x19); |
| 1191 |
| 1192 END(); |
| 1193 |
| 1194 RUN(); |
| 1195 |
| 1196 ASSERT_EQUAL_64(0, x0); |
| 1197 ASSERT_EQUAL_64(1, x1); |
| 1198 ASSERT_EQUAL_64(0xffffffff, x2); |
| 1199 ASSERT_EQUAL_64(0xffffffff, x3); |
| 1200 ASSERT_EQUAL_64(1, x4); |
| 1201 ASSERT_EQUAL_64(0, x5); |
| 1202 ASSERT_EQUAL_64(0, x6); |
| 1203 ASSERT_EQUAL_64(0xffffffff, x7); |
| 1204 ASSERT_EQUAL_64(0xfffffffe, x8); |
| 1205 ASSERT_EQUAL_64(2, x9); |
| 1206 ASSERT_EQUAL_64(0, x10); |
| 1207 ASSERT_EQUAL_64(0, x11); |
| 1208 |
| 1209 ASSERT_EQUAL_64(0, x12); |
| 1210 ASSERT_EQUAL_64(1, x13); |
| 1211 ASSERT_EQUAL_64(0xffffffff, x14); |
| 1212 ASSERT_EQUAL_64(0xffffffffffffffff, x15); |
| 1213 ASSERT_EQUAL_64(1, x20); |
| 1214 ASSERT_EQUAL_64(0x100000000UL, x21); |
| 1215 ASSERT_EQUAL_64(0, x22); |
| 1216 ASSERT_EQUAL_64(0xffffffff, x23); |
| 1217 ASSERT_EQUAL_64(0x1fffffffe, x24); |
| 1218 ASSERT_EQUAL_64(0xfffffffe00000002UL, x25); |
| 1219 ASSERT_EQUAL_64(0, x26); |
| 1220 ASSERT_EQUAL_64(0, x27); |
| 1221 |
| 1222 TEARDOWN(); |
| 1223 } |
| 1224 |
| 1225 |
| 1226 TEST(msub) { |
| 1227 INIT_V8(); |
| 1228 SETUP(); |
| 1229 |
| 1230 START(); |
| 1231 __ Mov(x16, 0); |
| 1232 __ Mov(x17, 1); |
| 1233 __ Mov(x18, 0xffffffff); |
| 1234 __ Mov(x19, 0xffffffffffffffffUL); |
| 1235 |
| 1236 __ Msub(w0, w16, w16, w16); |
| 1237 __ Msub(w1, w16, w16, w17); |
| 1238 __ Msub(w2, w16, w16, w18); |
| 1239 __ Msub(w3, w16, w16, w19); |
| 1240 __ Msub(w4, w16, w17, w17); |
| 1241 __ Msub(w5, w17, w17, w18); |
| 1242 __ Msub(w6, w17, w17, w19); |
| 1243 __ Msub(w7, w17, w18, w16); |
| 1244 __ Msub(w8, w17, w18, w18); |
| 1245 __ Msub(w9, w18, w18, w17); |
| 1246 __ Msub(w10, w18, w19, w18); |
| 1247 __ Msub(w11, w19, w19, w19); |
| 1248 |
| 1249 __ Msub(x12, x16, x16, x16); |
| 1250 __ Msub(x13, x16, x16, x17); |
| 1251 __ Msub(x14, x16, x16, x18); |
| 1252 __ Msub(x15, x16, x16, x19); |
| 1253 __ Msub(x20, x16, x17, x17); |
| 1254 __ Msub(x21, x17, x17, x18); |
| 1255 __ Msub(x22, x17, x17, x19); |
| 1256 __ Msub(x23, x17, x18, x16); |
| 1257 __ Msub(x24, x17, x18, x18); |
| 1258 __ Msub(x25, x18, x18, x17); |
| 1259 __ Msub(x26, x18, x19, x18); |
| 1260 __ Msub(x27, x19, x19, x19); |
| 1261 |
| 1262 END(); |
| 1263 |
| 1264 RUN(); |
| 1265 |
| 1266 ASSERT_EQUAL_64(0, x0); |
| 1267 ASSERT_EQUAL_64(1, x1); |
| 1268 ASSERT_EQUAL_64(0xffffffff, x2); |
| 1269 ASSERT_EQUAL_64(0xffffffff, x3); |
| 1270 ASSERT_EQUAL_64(1, x4); |
| 1271 ASSERT_EQUAL_64(0xfffffffe, x5); |
| 1272 ASSERT_EQUAL_64(0xfffffffe, x6); |
| 1273 ASSERT_EQUAL_64(1, x7); |
| 1274 ASSERT_EQUAL_64(0, x8); |
| 1275 ASSERT_EQUAL_64(0, x9); |
| 1276 ASSERT_EQUAL_64(0xfffffffe, x10); |
| 1277 ASSERT_EQUAL_64(0xfffffffe, x11); |
| 1278 |
| 1279 ASSERT_EQUAL_64(0, x12); |
| 1280 ASSERT_EQUAL_64(1, x13); |
| 1281 ASSERT_EQUAL_64(0xffffffff, x14); |
| 1282 ASSERT_EQUAL_64(0xffffffffffffffffUL, x15); |
| 1283 ASSERT_EQUAL_64(1, x20); |
| 1284 ASSERT_EQUAL_64(0xfffffffeUL, x21); |
| 1285 ASSERT_EQUAL_64(0xfffffffffffffffeUL, x22); |
| 1286 ASSERT_EQUAL_64(0xffffffff00000001UL, x23); |
| 1287 ASSERT_EQUAL_64(0, x24); |
| 1288 ASSERT_EQUAL_64(0x200000000UL, x25); |
| 1289 ASSERT_EQUAL_64(0x1fffffffeUL, x26); |
| 1290 ASSERT_EQUAL_64(0xfffffffffffffffeUL, x27); |
| 1291 |
| 1292 TEARDOWN(); |
| 1293 } |
| 1294 |
| 1295 |
| 1296 TEST(smulh) { |
| 1297 INIT_V8(); |
| 1298 SETUP(); |
| 1299 |
| 1300 START(); |
| 1301 __ Mov(x20, 0); |
| 1302 __ Mov(x21, 1); |
| 1303 __ Mov(x22, 0x0000000100000000L); |
| 1304 __ Mov(x23, 0x12345678); |
| 1305 __ Mov(x24, 0x0123456789abcdefL); |
| 1306 __ Mov(x25, 0x0000000200000000L); |
| 1307 __ Mov(x26, 0x8000000000000000UL); |
| 1308 __ Mov(x27, 0xffffffffffffffffUL); |
| 1309 __ Mov(x28, 0x5555555555555555UL); |
| 1310 __ Mov(x29, 0xaaaaaaaaaaaaaaaaUL); |
| 1311 |
| 1312 __ Smulh(x0, x20, x24); |
| 1313 __ Smulh(x1, x21, x24); |
| 1314 __ Smulh(x2, x22, x23); |
| 1315 __ Smulh(x3, x22, x24); |
| 1316 __ Smulh(x4, x24, x25); |
| 1317 __ Smulh(x5, x23, x27); |
| 1318 __ Smulh(x6, x26, x26); |
| 1319 __ Smulh(x7, x26, x27); |
| 1320 __ Smulh(x8, x27, x27); |
| 1321 __ Smulh(x9, x28, x28); |
| 1322 __ Smulh(x10, x28, x29); |
| 1323 __ Smulh(x11, x29, x29); |
| 1324 END(); |
| 1325 |
| 1326 RUN(); |
| 1327 |
| 1328 ASSERT_EQUAL_64(0, x0); |
| 1329 ASSERT_EQUAL_64(0, x1); |
| 1330 ASSERT_EQUAL_64(0, x2); |
| 1331 ASSERT_EQUAL_64(0x01234567, x3); |
| 1332 ASSERT_EQUAL_64(0x02468acf, x4); |
| 1333 ASSERT_EQUAL_64(0xffffffffffffffffUL, x5); |
| 1334 ASSERT_EQUAL_64(0x4000000000000000UL, x6); |
| 1335 ASSERT_EQUAL_64(0, x7); |
| 1336 ASSERT_EQUAL_64(0, x8); |
| 1337 ASSERT_EQUAL_64(0x1c71c71c71c71c71UL, x9); |
| 1338 ASSERT_EQUAL_64(0xe38e38e38e38e38eUL, x10); |
| 1339 ASSERT_EQUAL_64(0x1c71c71c71c71c72UL, x11); |
| 1340 |
| 1341 TEARDOWN(); |
| 1342 } |
| 1343 |
| 1344 |
| 1345 TEST(smaddl_umaddl) { |
| 1346 INIT_V8(); |
| 1347 SETUP(); |
| 1348 |
| 1349 START(); |
| 1350 __ Mov(x17, 1); |
| 1351 __ Mov(x18, 0xffffffff); |
| 1352 __ Mov(x19, 0xffffffffffffffffUL); |
| 1353 __ Mov(x20, 4); |
| 1354 __ Mov(x21, 0x200000000UL); |
| 1355 |
| 1356 __ Smaddl(x9, w17, w18, x20); |
| 1357 __ Smaddl(x10, w18, w18, x20); |
| 1358 __ Smaddl(x11, w19, w19, x20); |
| 1359 __ Smaddl(x12, w19, w19, x21); |
| 1360 __ Umaddl(x13, w17, w18, x20); |
| 1361 __ Umaddl(x14, w18, w18, x20); |
| 1362 __ Umaddl(x15, w19, w19, x20); |
| 1363 __ Umaddl(x22, w19, w19, x21); |
| 1364 END(); |
| 1365 |
| 1366 RUN(); |
| 1367 |
| 1368 ASSERT_EQUAL_64(3, x9); |
| 1369 ASSERT_EQUAL_64(5, x10); |
| 1370 ASSERT_EQUAL_64(5, x11); |
| 1371 ASSERT_EQUAL_64(0x200000001UL, x12); |
| 1372 ASSERT_EQUAL_64(0x100000003UL, x13); |
| 1373 ASSERT_EQUAL_64(0xfffffffe00000005UL, x14); |
| 1374 ASSERT_EQUAL_64(0xfffffffe00000005UL, x15); |
| 1375 ASSERT_EQUAL_64(0x1, x22); |
| 1376 |
| 1377 TEARDOWN(); |
| 1378 } |
| 1379 |
| 1380 |
| 1381 TEST(smsubl_umsubl) { |
| 1382 INIT_V8(); |
| 1383 SETUP(); |
| 1384 |
| 1385 START(); |
| 1386 __ Mov(x17, 1); |
| 1387 __ Mov(x18, 0xffffffff); |
| 1388 __ Mov(x19, 0xffffffffffffffffUL); |
| 1389 __ Mov(x20, 4); |
| 1390 __ Mov(x21, 0x200000000UL); |
| 1391 |
| 1392 __ Smsubl(x9, w17, w18, x20); |
| 1393 __ Smsubl(x10, w18, w18, x20); |
| 1394 __ Smsubl(x11, w19, w19, x20); |
| 1395 __ Smsubl(x12, w19, w19, x21); |
| 1396 __ Umsubl(x13, w17, w18, x20); |
| 1397 __ Umsubl(x14, w18, w18, x20); |
| 1398 __ Umsubl(x15, w19, w19, x20); |
| 1399 __ Umsubl(x22, w19, w19, x21); |
| 1400 END(); |
| 1401 |
| 1402 RUN(); |
| 1403 |
| 1404 ASSERT_EQUAL_64(5, x9); |
| 1405 ASSERT_EQUAL_64(3, x10); |
| 1406 ASSERT_EQUAL_64(3, x11); |
| 1407 ASSERT_EQUAL_64(0x1ffffffffUL, x12); |
| 1408 ASSERT_EQUAL_64(0xffffffff00000005UL, x13); |
| 1409 ASSERT_EQUAL_64(0x200000003UL, x14); |
| 1410 ASSERT_EQUAL_64(0x200000003UL, x15); |
| 1411 ASSERT_EQUAL_64(0x3ffffffffUL, x22); |
| 1412 |
| 1413 TEARDOWN(); |
| 1414 } |
| 1415 |
| 1416 |
| 1417 TEST(div) { |
| 1418 INIT_V8(); |
| 1419 SETUP(); |
| 1420 |
| 1421 START(); |
| 1422 __ Mov(x16, 1); |
| 1423 __ Mov(x17, 0xffffffff); |
| 1424 __ Mov(x18, 0xffffffffffffffffUL); |
| 1425 __ Mov(x19, 0x80000000); |
| 1426 __ Mov(x20, 0x8000000000000000UL); |
| 1427 __ Mov(x21, 2); |
| 1428 |
| 1429 __ Udiv(w0, w16, w16); |
| 1430 __ Udiv(w1, w17, w16); |
| 1431 __ Sdiv(w2, w16, w16); |
| 1432 __ Sdiv(w3, w16, w17); |
| 1433 __ Sdiv(w4, w17, w18); |
| 1434 |
| 1435 __ Udiv(x5, x16, x16); |
| 1436 __ Udiv(x6, x17, x18); |
| 1437 __ Sdiv(x7, x16, x16); |
| 1438 __ Sdiv(x8, x16, x17); |
| 1439 __ Sdiv(x9, x17, x18); |
| 1440 |
| 1441 __ Udiv(w10, w19, w21); |
| 1442 __ Sdiv(w11, w19, w21); |
| 1443 __ Udiv(x12, x19, x21); |
| 1444 __ Sdiv(x13, x19, x21); |
| 1445 __ Udiv(x14, x20, x21); |
| 1446 __ Sdiv(x15, x20, x21); |
| 1447 |
| 1448 __ Udiv(w22, w19, w17); |
| 1449 __ Sdiv(w23, w19, w17); |
| 1450 __ Udiv(x24, x20, x18); |
| 1451 __ Sdiv(x25, x20, x18); |
| 1452 |
| 1453 __ Udiv(x26, x16, x21); |
| 1454 __ Sdiv(x27, x16, x21); |
| 1455 __ Udiv(x28, x18, x21); |
| 1456 __ Sdiv(x29, x18, x21); |
| 1457 |
| 1458 __ Mov(x17, 0); |
| 1459 __ Udiv(w18, w16, w17); |
| 1460 __ Sdiv(w19, w16, w17); |
| 1461 __ Udiv(x20, x16, x17); |
| 1462 __ Sdiv(x21, x16, x17); |
| 1463 END(); |
| 1464 |
| 1465 RUN(); |
| 1466 |
| 1467 ASSERT_EQUAL_64(1, x0); |
| 1468 ASSERT_EQUAL_64(0xffffffff, x1); |
| 1469 ASSERT_EQUAL_64(1, x2); |
| 1470 ASSERT_EQUAL_64(0xffffffff, x3); |
| 1471 ASSERT_EQUAL_64(1, x4); |
| 1472 ASSERT_EQUAL_64(1, x5); |
| 1473 ASSERT_EQUAL_64(0, x6); |
| 1474 ASSERT_EQUAL_64(1, x7); |
| 1475 ASSERT_EQUAL_64(0, x8); |
| 1476 ASSERT_EQUAL_64(0xffffffff00000001UL, x9); |
| 1477 ASSERT_EQUAL_64(0x40000000, x10); |
| 1478 ASSERT_EQUAL_64(0xC0000000, x11); |
| 1479 ASSERT_EQUAL_64(0x40000000, x12); |
| 1480 ASSERT_EQUAL_64(0x40000000, x13); |
| 1481 ASSERT_EQUAL_64(0x4000000000000000UL, x14); |
| 1482 ASSERT_EQUAL_64(0xC000000000000000UL, x15); |
| 1483 ASSERT_EQUAL_64(0, x22); |
| 1484 ASSERT_EQUAL_64(0x80000000, x23); |
| 1485 ASSERT_EQUAL_64(0, x24); |
| 1486 ASSERT_EQUAL_64(0x8000000000000000UL, x25); |
| 1487 ASSERT_EQUAL_64(0, x26); |
| 1488 ASSERT_EQUAL_64(0, x27); |
| 1489 ASSERT_EQUAL_64(0x7fffffffffffffffUL, x28); |
| 1490 ASSERT_EQUAL_64(0, x29); |
| 1491 ASSERT_EQUAL_64(0, x18); |
| 1492 ASSERT_EQUAL_64(0, x19); |
| 1493 ASSERT_EQUAL_64(0, x20); |
| 1494 ASSERT_EQUAL_64(0, x21); |
| 1495 |
| 1496 TEARDOWN(); |
| 1497 } |
| 1498 |
| 1499 |
| 1500 TEST(rbit_rev) { |
| 1501 INIT_V8(); |
| 1502 SETUP(); |
| 1503 |
| 1504 START(); |
| 1505 __ Mov(x24, 0xfedcba9876543210UL); |
| 1506 __ Rbit(w0, w24); |
| 1507 __ Rbit(x1, x24); |
| 1508 __ Rev16(w2, w24); |
| 1509 __ Rev16(x3, x24); |
| 1510 __ Rev(w4, w24); |
| 1511 __ Rev32(x5, x24); |
| 1512 __ Rev(x6, x24); |
| 1513 END(); |
| 1514 |
| 1515 RUN(); |
| 1516 |
| 1517 ASSERT_EQUAL_64(0x084c2a6e, x0); |
| 1518 ASSERT_EQUAL_64(0x084c2a6e195d3b7fUL, x1); |
| 1519 ASSERT_EQUAL_64(0x54761032, x2); |
| 1520 ASSERT_EQUAL_64(0xdcfe98ba54761032UL, x3); |
| 1521 ASSERT_EQUAL_64(0x10325476, x4); |
| 1522 ASSERT_EQUAL_64(0x98badcfe10325476UL, x5); |
| 1523 ASSERT_EQUAL_64(0x1032547698badcfeUL, x6); |
| 1524 |
| 1525 TEARDOWN(); |
| 1526 } |
| 1527 |
| 1528 |
| 1529 TEST(clz_cls) { |
| 1530 INIT_V8(); |
| 1531 SETUP(); |
| 1532 |
| 1533 START(); |
| 1534 __ Mov(x24, 0x0008000000800000UL); |
| 1535 __ Mov(x25, 0xff800000fff80000UL); |
| 1536 __ Mov(x26, 0); |
| 1537 __ Clz(w0, w24); |
| 1538 __ Clz(x1, x24); |
| 1539 __ Clz(w2, w25); |
| 1540 __ Clz(x3, x25); |
| 1541 __ Clz(w4, w26); |
| 1542 __ Clz(x5, x26); |
| 1543 __ Cls(w6, w24); |
| 1544 __ Cls(x7, x24); |
| 1545 __ Cls(w8, w25); |
| 1546 __ Cls(x9, x25); |
| 1547 __ Cls(w10, w26); |
| 1548 __ Cls(x11, x26); |
| 1549 END(); |
| 1550 |
| 1551 RUN(); |
| 1552 |
| 1553 ASSERT_EQUAL_64(8, x0); |
| 1554 ASSERT_EQUAL_64(12, x1); |
| 1555 ASSERT_EQUAL_64(0, x2); |
| 1556 ASSERT_EQUAL_64(0, x3); |
| 1557 ASSERT_EQUAL_64(32, x4); |
| 1558 ASSERT_EQUAL_64(64, x5); |
| 1559 ASSERT_EQUAL_64(7, x6); |
| 1560 ASSERT_EQUAL_64(11, x7); |
| 1561 ASSERT_EQUAL_64(12, x8); |
| 1562 ASSERT_EQUAL_64(8, x9); |
| 1563 ASSERT_EQUAL_64(31, x10); |
| 1564 ASSERT_EQUAL_64(63, x11); |
| 1565 |
| 1566 TEARDOWN(); |
| 1567 } |
| 1568 |
| 1569 |
| 1570 TEST(label) { |
| 1571 INIT_V8(); |
| 1572 SETUP(); |
| 1573 |
| 1574 Label label_1, label_2, label_3, label_4; |
| 1575 |
| 1576 START(); |
| 1577 __ Mov(x0, 0x1); |
| 1578 __ Mov(x1, 0x0); |
| 1579 __ Mov(x22, lr); // Save lr. |
| 1580 |
| 1581 __ B(&label_1); |
| 1582 __ B(&label_1); |
| 1583 __ B(&label_1); // Multiple branches to the same label. |
| 1584 __ Mov(x0, 0x0); |
| 1585 __ Bind(&label_2); |
| 1586 __ B(&label_3); // Forward branch. |
| 1587 __ Mov(x0, 0x0); |
| 1588 __ Bind(&label_1); |
| 1589 __ B(&label_2); // Backward branch. |
| 1590 __ Mov(x0, 0x0); |
| 1591 __ Bind(&label_3); |
| 1592 __ Bl(&label_4); |
| 1593 END(); |
| 1594 |
| 1595 __ Bind(&label_4); |
| 1596 __ Mov(x1, 0x1); |
| 1597 __ Mov(lr, x22); |
| 1598 END(); |
| 1599 |
| 1600 RUN(); |
| 1601 |
| 1602 ASSERT_EQUAL_64(0x1, x0); |
| 1603 ASSERT_EQUAL_64(0x1, x1); |
| 1604 |
| 1605 TEARDOWN(); |
| 1606 } |
| 1607 |
| 1608 |
| 1609 TEST(branch_at_start) { |
| 1610 INIT_V8(); |
| 1611 SETUP(); |
| 1612 |
| 1613 Label good, exit; |
| 1614 |
| 1615 // Test that branches can exist at the start of the buffer. (This is a |
| 1616 // boundary condition in the label-handling code.) To achieve this, we have |
| 1617 // to work around the code generated by START. |
| 1618 RESET(); |
| 1619 __ B(&good); |
| 1620 |
| 1621 START_AFTER_RESET(); |
| 1622 __ Mov(x0, 0x0); |
| 1623 END(); |
| 1624 |
| 1625 __ Bind(&exit); |
| 1626 START_AFTER_RESET(); |
| 1627 __ Mov(x0, 0x1); |
| 1628 END(); |
| 1629 |
| 1630 __ Bind(&good); |
| 1631 __ B(&exit); |
| 1632 END(); |
| 1633 |
| 1634 RUN(); |
| 1635 |
| 1636 ASSERT_EQUAL_64(0x1, x0); |
| 1637 TEARDOWN(); |
| 1638 } |
| 1639 |
| 1640 |
| 1641 TEST(adr) { |
| 1642 INIT_V8(); |
| 1643 SETUP(); |
| 1644 |
| 1645 Label label_1, label_2, label_3, label_4; |
| 1646 |
| 1647 START(); |
| 1648 __ Mov(x0, 0x0); // Set to non-zero to indicate failure. |
| 1649 __ Adr(x1, &label_3); // Set to zero to indicate success. |
| 1650 |
| 1651 __ Adr(x2, &label_1); // Multiple forward references to the same label. |
| 1652 __ Adr(x3, &label_1); |
| 1653 __ Adr(x4, &label_1); |
| 1654 |
| 1655 __ Bind(&label_2); |
| 1656 __ Eor(x5, x2, Operand(x3)); // Ensure that x2,x3 and x4 are identical. |
| 1657 __ Eor(x6, x2, Operand(x4)); |
| 1658 __ Orr(x0, x0, Operand(x5)); |
| 1659 __ Orr(x0, x0, Operand(x6)); |
| 1660 __ Br(x2); // label_1, label_3 |
| 1661 |
| 1662 __ Bind(&label_3); |
| 1663 __ Adr(x2, &label_3); // Self-reference (offset 0). |
| 1664 __ Eor(x1, x1, Operand(x2)); |
| 1665 __ Adr(x2, &label_4); // Simple forward reference. |
| 1666 __ Br(x2); // label_4 |
| 1667 |
| 1668 __ Bind(&label_1); |
| 1669 __ Adr(x2, &label_3); // Multiple reverse references to the same label. |
| 1670 __ Adr(x3, &label_3); |
| 1671 __ Adr(x4, &label_3); |
| 1672 __ Adr(x5, &label_2); // Simple reverse reference. |
| 1673 __ Br(x5); // label_2 |
| 1674 |
| 1675 __ Bind(&label_4); |
| 1676 END(); |
| 1677 |
| 1678 RUN(); |
| 1679 |
| 1680 ASSERT_EQUAL_64(0x0, x0); |
| 1681 ASSERT_EQUAL_64(0x0, x1); |
| 1682 |
| 1683 TEARDOWN(); |
| 1684 } |
| 1685 |
| 1686 |
| 1687 TEST(branch_cond) { |
| 1688 INIT_V8(); |
| 1689 SETUP(); |
| 1690 |
| 1691 Label wrong; |
| 1692 |
| 1693 START(); |
| 1694 __ Mov(x0, 0x1); |
| 1695 __ Mov(x1, 0x1); |
| 1696 __ Mov(x2, 0x8000000000000000L); |
| 1697 |
| 1698 // For each 'cmp' instruction below, condition codes other than the ones |
| 1699 // following it would branch. |
| 1700 |
| 1701 __ Cmp(x1, 0); |
| 1702 __ B(&wrong, eq); |
| 1703 __ B(&wrong, lo); |
| 1704 __ B(&wrong, mi); |
| 1705 __ B(&wrong, vs); |
| 1706 __ B(&wrong, ls); |
| 1707 __ B(&wrong, lt); |
| 1708 __ B(&wrong, le); |
| 1709 Label ok_1; |
| 1710 __ B(&ok_1, ne); |
| 1711 __ Mov(x0, 0x0); |
| 1712 __ Bind(&ok_1); |
| 1713 |
| 1714 __ Cmp(x1, 1); |
| 1715 __ B(&wrong, ne); |
| 1716 __ B(&wrong, lo); |
| 1717 __ B(&wrong, mi); |
| 1718 __ B(&wrong, vs); |
| 1719 __ B(&wrong, hi); |
| 1720 __ B(&wrong, lt); |
| 1721 __ B(&wrong, gt); |
| 1722 Label ok_2; |
| 1723 __ B(&ok_2, pl); |
| 1724 __ Mov(x0, 0x0); |
| 1725 __ Bind(&ok_2); |
| 1726 |
| 1727 __ Cmp(x1, 2); |
| 1728 __ B(&wrong, eq); |
| 1729 __ B(&wrong, hs); |
| 1730 __ B(&wrong, pl); |
| 1731 __ B(&wrong, vs); |
| 1732 __ B(&wrong, hi); |
| 1733 __ B(&wrong, ge); |
| 1734 __ B(&wrong, gt); |
| 1735 Label ok_3; |
| 1736 __ B(&ok_3, vc); |
| 1737 __ Mov(x0, 0x0); |
| 1738 __ Bind(&ok_3); |
| 1739 |
| 1740 __ Cmp(x2, 1); |
| 1741 __ B(&wrong, eq); |
| 1742 __ B(&wrong, lo); |
| 1743 __ B(&wrong, mi); |
| 1744 __ B(&wrong, vc); |
| 1745 __ B(&wrong, ls); |
| 1746 __ B(&wrong, ge); |
| 1747 __ B(&wrong, gt); |
| 1748 Label ok_4; |
| 1749 __ B(&ok_4, le); |
| 1750 __ Mov(x0, 0x0); |
| 1751 __ Bind(&ok_4); |
| 1752 |
| 1753 Label ok_5; |
| 1754 __ b(&ok_5, al); |
| 1755 __ Mov(x0, 0x0); |
| 1756 __ Bind(&ok_5); |
| 1757 |
| 1758 Label ok_6; |
| 1759 __ b(&ok_6, nv); |
| 1760 __ Mov(x0, 0x0); |
| 1761 __ Bind(&ok_6); |
| 1762 |
| 1763 END(); |
| 1764 |
| 1765 __ Bind(&wrong); |
| 1766 __ Mov(x0, 0x0); |
| 1767 END(); |
| 1768 |
| 1769 RUN(); |
| 1770 |
| 1771 ASSERT_EQUAL_64(0x1, x0); |
| 1772 |
| 1773 TEARDOWN(); |
| 1774 } |
| 1775 |
| 1776 |
| 1777 TEST(branch_to_reg) { |
| 1778 INIT_V8(); |
| 1779 SETUP(); |
| 1780 |
| 1781 // Test br. |
| 1782 Label fn1, after_fn1; |
| 1783 |
| 1784 START(); |
| 1785 __ Mov(x29, lr); |
| 1786 |
| 1787 __ Mov(x1, 0); |
| 1788 __ B(&after_fn1); |
| 1789 |
| 1790 __ Bind(&fn1); |
| 1791 __ Mov(x0, lr); |
| 1792 __ Mov(x1, 42); |
| 1793 __ Br(x0); |
| 1794 |
| 1795 __ Bind(&after_fn1); |
| 1796 __ Bl(&fn1); |
| 1797 |
| 1798 // Test blr. |
| 1799 Label fn2, after_fn2; |
| 1800 |
| 1801 __ Mov(x2, 0); |
| 1802 __ B(&after_fn2); |
| 1803 |
| 1804 __ Bind(&fn2); |
| 1805 __ Mov(x0, lr); |
| 1806 __ Mov(x2, 84); |
| 1807 __ Blr(x0); |
| 1808 |
| 1809 __ Bind(&after_fn2); |
| 1810 __ Bl(&fn2); |
| 1811 __ Mov(x3, lr); |
| 1812 |
| 1813 __ Mov(lr, x29); |
| 1814 END(); |
| 1815 |
| 1816 RUN(); |
| 1817 |
| 1818 ASSERT_EQUAL_64(core.xreg(3) + kInstructionSize, x0); |
| 1819 ASSERT_EQUAL_64(42, x1); |
| 1820 ASSERT_EQUAL_64(84, x2); |
| 1821 |
| 1822 TEARDOWN(); |
| 1823 } |
| 1824 |
| 1825 |
| 1826 TEST(compare_branch) { |
| 1827 INIT_V8(); |
| 1828 SETUP(); |
| 1829 |
| 1830 START(); |
| 1831 __ Mov(x0, 0); |
| 1832 __ Mov(x1, 0); |
| 1833 __ Mov(x2, 0); |
| 1834 __ Mov(x3, 0); |
| 1835 __ Mov(x4, 0); |
| 1836 __ Mov(x5, 0); |
| 1837 __ Mov(x16, 0); |
| 1838 __ Mov(x17, 42); |
| 1839 |
| 1840 Label zt, zt_end; |
| 1841 __ Cbz(w16, &zt); |
| 1842 __ B(&zt_end); |
| 1843 __ Bind(&zt); |
| 1844 __ Mov(x0, 1); |
| 1845 __ Bind(&zt_end); |
| 1846 |
| 1847 Label zf, zf_end; |
| 1848 __ Cbz(x17, &zf); |
| 1849 __ B(&zf_end); |
| 1850 __ Bind(&zf); |
| 1851 __ Mov(x1, 1); |
| 1852 __ Bind(&zf_end); |
| 1853 |
| 1854 Label nzt, nzt_end; |
| 1855 __ Cbnz(w17, &nzt); |
| 1856 __ B(&nzt_end); |
| 1857 __ Bind(&nzt); |
| 1858 __ Mov(x2, 1); |
| 1859 __ Bind(&nzt_end); |
| 1860 |
| 1861 Label nzf, nzf_end; |
| 1862 __ Cbnz(x16, &nzf); |
| 1863 __ B(&nzf_end); |
| 1864 __ Bind(&nzf); |
| 1865 __ Mov(x3, 1); |
| 1866 __ Bind(&nzf_end); |
| 1867 |
| 1868 __ Mov(x18, 0xffffffff00000000UL); |
| 1869 |
| 1870 Label a, a_end; |
| 1871 __ Cbz(w18, &a); |
| 1872 __ B(&a_end); |
| 1873 __ Bind(&a); |
| 1874 __ Mov(x4, 1); |
| 1875 __ Bind(&a_end); |
| 1876 |
| 1877 Label b, b_end; |
| 1878 __ Cbnz(w18, &b); |
| 1879 __ B(&b_end); |
| 1880 __ Bind(&b); |
| 1881 __ Mov(x5, 1); |
| 1882 __ Bind(&b_end); |
| 1883 |
| 1884 END(); |
| 1885 |
| 1886 RUN(); |
| 1887 |
| 1888 ASSERT_EQUAL_64(1, x0); |
| 1889 ASSERT_EQUAL_64(0, x1); |
| 1890 ASSERT_EQUAL_64(1, x2); |
| 1891 ASSERT_EQUAL_64(0, x3); |
| 1892 ASSERT_EQUAL_64(1, x4); |
| 1893 ASSERT_EQUAL_64(0, x5); |
| 1894 |
| 1895 TEARDOWN(); |
| 1896 } |
| 1897 |
| 1898 |
| 1899 TEST(test_branch) { |
| 1900 INIT_V8(); |
| 1901 SETUP(); |
| 1902 |
| 1903 START(); |
| 1904 __ Mov(x0, 0); |
| 1905 __ Mov(x1, 0); |
| 1906 __ Mov(x2, 0); |
| 1907 __ Mov(x3, 0); |
| 1908 __ Mov(x16, 0xaaaaaaaaaaaaaaaaUL); |
| 1909 |
| 1910 Label bz, bz_end; |
| 1911 __ Tbz(w16, 0, &bz); |
| 1912 __ B(&bz_end); |
| 1913 __ Bind(&bz); |
| 1914 __ Mov(x0, 1); |
| 1915 __ Bind(&bz_end); |
| 1916 |
| 1917 Label bo, bo_end; |
| 1918 __ Tbz(x16, 63, &bo); |
| 1919 __ B(&bo_end); |
| 1920 __ Bind(&bo); |
| 1921 __ Mov(x1, 1); |
| 1922 __ Bind(&bo_end); |
| 1923 |
| 1924 Label nbz, nbz_end; |
| 1925 __ Tbnz(x16, 61, &nbz); |
| 1926 __ B(&nbz_end); |
| 1927 __ Bind(&nbz); |
| 1928 __ Mov(x2, 1); |
| 1929 __ Bind(&nbz_end); |
| 1930 |
| 1931 Label nbo, nbo_end; |
| 1932 __ Tbnz(w16, 2, &nbo); |
| 1933 __ B(&nbo_end); |
| 1934 __ Bind(&nbo); |
| 1935 __ Mov(x3, 1); |
| 1936 __ Bind(&nbo_end); |
| 1937 END(); |
| 1938 |
| 1939 RUN(); |
| 1940 |
| 1941 ASSERT_EQUAL_64(1, x0); |
| 1942 ASSERT_EQUAL_64(0, x1); |
| 1943 ASSERT_EQUAL_64(1, x2); |
| 1944 ASSERT_EQUAL_64(0, x3); |
| 1945 |
| 1946 TEARDOWN(); |
| 1947 } |
| 1948 |
| 1949 |
| 1950 TEST(ldr_str_offset) { |
| 1951 INIT_V8(); |
| 1952 SETUP(); |
| 1953 |
| 1954 uint64_t src[2] = {0xfedcba9876543210UL, 0x0123456789abcdefUL}; |
| 1955 uint64_t dst[5] = {0, 0, 0, 0, 0}; |
| 1956 uintptr_t src_base = reinterpret_cast<uintptr_t>(src); |
| 1957 uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst); |
| 1958 |
| 1959 START(); |
| 1960 __ Mov(x17, src_base); |
| 1961 __ Mov(x18, dst_base); |
| 1962 __ Ldr(w0, MemOperand(x17)); |
| 1963 __ Str(w0, MemOperand(x18)); |
| 1964 __ Ldr(w1, MemOperand(x17, 4)); |
| 1965 __ Str(w1, MemOperand(x18, 12)); |
| 1966 __ Ldr(x2, MemOperand(x17, 8)); |
| 1967 __ Str(x2, MemOperand(x18, 16)); |
| 1968 __ Ldrb(w3, MemOperand(x17, 1)); |
| 1969 __ Strb(w3, MemOperand(x18, 25)); |
| 1970 __ Ldrh(w4, MemOperand(x17, 2)); |
| 1971 __ Strh(w4, MemOperand(x18, 33)); |
| 1972 END(); |
| 1973 |
| 1974 RUN(); |
| 1975 |
| 1976 ASSERT_EQUAL_64(0x76543210, x0); |
| 1977 ASSERT_EQUAL_64(0x76543210, dst[0]); |
| 1978 ASSERT_EQUAL_64(0xfedcba98, x1); |
| 1979 ASSERT_EQUAL_64(0xfedcba9800000000UL, dst[1]); |
| 1980 ASSERT_EQUAL_64(0x0123456789abcdefUL, x2); |
| 1981 ASSERT_EQUAL_64(0x0123456789abcdefUL, dst[2]); |
| 1982 ASSERT_EQUAL_64(0x32, x3); |
| 1983 ASSERT_EQUAL_64(0x3200, dst[3]); |
| 1984 ASSERT_EQUAL_64(0x7654, x4); |
| 1985 ASSERT_EQUAL_64(0x765400, dst[4]); |
| 1986 ASSERT_EQUAL_64(src_base, x17); |
| 1987 ASSERT_EQUAL_64(dst_base, x18); |
| 1988 |
| 1989 TEARDOWN(); |
| 1990 } |
| 1991 |
| 1992 |
| 1993 TEST(ldr_str_wide) { |
| 1994 INIT_V8(); |
| 1995 SETUP(); |
| 1996 |
| 1997 uint32_t src[8192]; |
| 1998 uint32_t dst[8192]; |
| 1999 uintptr_t src_base = reinterpret_cast<uintptr_t>(src); |
| 2000 uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst); |
| 2001 memset(src, 0xaa, 8192 * sizeof(src[0])); |
| 2002 memset(dst, 0xaa, 8192 * sizeof(dst[0])); |
| 2003 src[0] = 0; |
| 2004 src[6144] = 6144; |
| 2005 src[8191] = 8191; |
| 2006 |
| 2007 START(); |
| 2008 __ Mov(x22, src_base); |
| 2009 __ Mov(x23, dst_base); |
| 2010 __ Mov(x24, src_base); |
| 2011 __ Mov(x25, dst_base); |
| 2012 __ Mov(x26, src_base); |
| 2013 __ Mov(x27, dst_base); |
| 2014 |
| 2015 __ Ldr(w0, MemOperand(x22, 8191 * sizeof(src[0]))); |
| 2016 __ Str(w0, MemOperand(x23, 8191 * sizeof(dst[0]))); |
| 2017 __ Ldr(w1, MemOperand(x24, 4096 * sizeof(src[0]), PostIndex)); |
| 2018 __ Str(w1, MemOperand(x25, 4096 * sizeof(dst[0]), PostIndex)); |
| 2019 __ Ldr(w2, MemOperand(x26, 6144 * sizeof(src[0]), PreIndex)); |
| 2020 __ Str(w2, MemOperand(x27, 6144 * sizeof(dst[0]), PreIndex)); |
| 2021 END(); |
| 2022 |
| 2023 RUN(); |
| 2024 |
| 2025 ASSERT_EQUAL_32(8191, w0); |
| 2026 ASSERT_EQUAL_32(8191, dst[8191]); |
| 2027 ASSERT_EQUAL_64(src_base, x22); |
| 2028 ASSERT_EQUAL_64(dst_base, x23); |
| 2029 ASSERT_EQUAL_32(0, w1); |
| 2030 ASSERT_EQUAL_32(0, dst[0]); |
| 2031 ASSERT_EQUAL_64(src_base + 4096 * sizeof(src[0]), x24); |
| 2032 ASSERT_EQUAL_64(dst_base + 4096 * sizeof(dst[0]), x25); |
| 2033 ASSERT_EQUAL_32(6144, w2); |
| 2034 ASSERT_EQUAL_32(6144, dst[6144]); |
| 2035 ASSERT_EQUAL_64(src_base + 6144 * sizeof(src[0]), x26); |
| 2036 ASSERT_EQUAL_64(dst_base + 6144 * sizeof(dst[0]), x27); |
| 2037 |
| 2038 TEARDOWN(); |
| 2039 } |
| 2040 |
| 2041 |
| 2042 TEST(ldr_str_preindex) { |
| 2043 INIT_V8(); |
| 2044 SETUP(); |
| 2045 |
| 2046 uint64_t src[2] = {0xfedcba9876543210UL, 0x0123456789abcdefUL}; |
| 2047 uint64_t dst[6] = {0, 0, 0, 0, 0, 0}; |
| 2048 uintptr_t src_base = reinterpret_cast<uintptr_t>(src); |
| 2049 uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst); |
| 2050 |
| 2051 START(); |
| 2052 __ Mov(x17, src_base); |
| 2053 __ Mov(x18, dst_base); |
| 2054 __ Mov(x19, src_base); |
| 2055 __ Mov(x20, dst_base); |
| 2056 __ Mov(x21, src_base + 16); |
| 2057 __ Mov(x22, dst_base + 40); |
| 2058 __ Mov(x23, src_base); |
| 2059 __ Mov(x24, dst_base); |
| 2060 __ Mov(x25, src_base); |
| 2061 __ Mov(x26, dst_base); |
| 2062 __ Ldr(w0, MemOperand(x17, 4, PreIndex)); |
| 2063 __ Str(w0, MemOperand(x18, 12, PreIndex)); |
| 2064 __ Ldr(x1, MemOperand(x19, 8, PreIndex)); |
| 2065 __ Str(x1, MemOperand(x20, 16, PreIndex)); |
| 2066 __ Ldr(w2, MemOperand(x21, -4, PreIndex)); |
| 2067 __ Str(w2, MemOperand(x22, -4, PreIndex)); |
| 2068 __ Ldrb(w3, MemOperand(x23, 1, PreIndex)); |
| 2069 __ Strb(w3, MemOperand(x24, 25, PreIndex)); |
| 2070 __ Ldrh(w4, MemOperand(x25, 3, PreIndex)); |
| 2071 __ Strh(w4, MemOperand(x26, 41, PreIndex)); |
| 2072 END(); |
| 2073 |
| 2074 RUN(); |
| 2075 |
| 2076 ASSERT_EQUAL_64(0xfedcba98, x0); |
| 2077 ASSERT_EQUAL_64(0xfedcba9800000000UL, dst[1]); |
| 2078 ASSERT_EQUAL_64(0x0123456789abcdefUL, x1); |
| 2079 ASSERT_EQUAL_64(0x0123456789abcdefUL, dst[2]); |
| 2080 ASSERT_EQUAL_64(0x01234567, x2); |
| 2081 ASSERT_EQUAL_64(0x0123456700000000UL, dst[4]); |
| 2082 ASSERT_EQUAL_64(0x32, x3); |
| 2083 ASSERT_EQUAL_64(0x3200, dst[3]); |
| 2084 ASSERT_EQUAL_64(0x9876, x4); |
| 2085 ASSERT_EQUAL_64(0x987600, dst[5]); |
| 2086 ASSERT_EQUAL_64(src_base + 4, x17); |
| 2087 ASSERT_EQUAL_64(dst_base + 12, x18); |
| 2088 ASSERT_EQUAL_64(src_base + 8, x19); |
| 2089 ASSERT_EQUAL_64(dst_base + 16, x20); |
| 2090 ASSERT_EQUAL_64(src_base + 12, x21); |
| 2091 ASSERT_EQUAL_64(dst_base + 36, x22); |
| 2092 ASSERT_EQUAL_64(src_base + 1, x23); |
| 2093 ASSERT_EQUAL_64(dst_base + 25, x24); |
| 2094 ASSERT_EQUAL_64(src_base + 3, x25); |
| 2095 ASSERT_EQUAL_64(dst_base + 41, x26); |
| 2096 |
| 2097 TEARDOWN(); |
| 2098 } |
| 2099 |
| 2100 |
| 2101 TEST(ldr_str_postindex) { |
| 2102 INIT_V8(); |
| 2103 SETUP(); |
| 2104 |
| 2105 uint64_t src[2] = {0xfedcba9876543210UL, 0x0123456789abcdefUL}; |
| 2106 uint64_t dst[6] = {0, 0, 0, 0, 0, 0}; |
| 2107 uintptr_t src_base = reinterpret_cast<uintptr_t>(src); |
| 2108 uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst); |
| 2109 |
| 2110 START(); |
| 2111 __ Mov(x17, src_base + 4); |
| 2112 __ Mov(x18, dst_base + 12); |
| 2113 __ Mov(x19, src_base + 8); |
| 2114 __ Mov(x20, dst_base + 16); |
| 2115 __ Mov(x21, src_base + 8); |
| 2116 __ Mov(x22, dst_base + 32); |
| 2117 __ Mov(x23, src_base + 1); |
| 2118 __ Mov(x24, dst_base + 25); |
| 2119 __ Mov(x25, src_base + 3); |
| 2120 __ Mov(x26, dst_base + 41); |
| 2121 __ Ldr(w0, MemOperand(x17, 4, PostIndex)); |
| 2122 __ Str(w0, MemOperand(x18, 12, PostIndex)); |
| 2123 __ Ldr(x1, MemOperand(x19, 8, PostIndex)); |
| 2124 __ Str(x1, MemOperand(x20, 16, PostIndex)); |
| 2125 __ Ldr(x2, MemOperand(x21, -8, PostIndex)); |
| 2126 __ Str(x2, MemOperand(x22, -32, PostIndex)); |
| 2127 __ Ldrb(w3, MemOperand(x23, 1, PostIndex)); |
| 2128 __ Strb(w3, MemOperand(x24, 5, PostIndex)); |
| 2129 __ Ldrh(w4, MemOperand(x25, -3, PostIndex)); |
| 2130 __ Strh(w4, MemOperand(x26, -41, PostIndex)); |
| 2131 END(); |
| 2132 |
| 2133 RUN(); |
| 2134 |
| 2135 ASSERT_EQUAL_64(0xfedcba98, x0); |
| 2136 ASSERT_EQUAL_64(0xfedcba9800000000UL, dst[1]); |
| 2137 ASSERT_EQUAL_64(0x0123456789abcdefUL, x1); |
| 2138 ASSERT_EQUAL_64(0x0123456789abcdefUL, dst[2]); |
| 2139 ASSERT_EQUAL_64(0x0123456789abcdefUL, x2); |
| 2140 ASSERT_EQUAL_64(0x0123456789abcdefUL, dst[4]); |
| 2141 ASSERT_EQUAL_64(0x32, x3); |
| 2142 ASSERT_EQUAL_64(0x3200, dst[3]); |
| 2143 ASSERT_EQUAL_64(0x9876, x4); |
| 2144 ASSERT_EQUAL_64(0x987600, dst[5]); |
| 2145 ASSERT_EQUAL_64(src_base + 8, x17); |
| 2146 ASSERT_EQUAL_64(dst_base + 24, x18); |
| 2147 ASSERT_EQUAL_64(src_base + 16, x19); |
| 2148 ASSERT_EQUAL_64(dst_base + 32, x20); |
| 2149 ASSERT_EQUAL_64(src_base, x21); |
| 2150 ASSERT_EQUAL_64(dst_base, x22); |
| 2151 ASSERT_EQUAL_64(src_base + 2, x23); |
| 2152 ASSERT_EQUAL_64(dst_base + 30, x24); |
| 2153 ASSERT_EQUAL_64(src_base, x25); |
| 2154 ASSERT_EQUAL_64(dst_base, x26); |
| 2155 |
| 2156 TEARDOWN(); |
| 2157 } |
| 2158 |
| 2159 |
| 2160 TEST(load_signed) { |
| 2161 INIT_V8(); |
| 2162 SETUP(); |
| 2163 |
| 2164 uint32_t src[2] = {0x80008080, 0x7fff7f7f}; |
| 2165 uintptr_t src_base = reinterpret_cast<uintptr_t>(src); |
| 2166 |
| 2167 START(); |
| 2168 __ Mov(x24, src_base); |
| 2169 __ Ldrsb(w0, MemOperand(x24)); |
| 2170 __ Ldrsb(w1, MemOperand(x24, 4)); |
| 2171 __ Ldrsh(w2, MemOperand(x24)); |
| 2172 __ Ldrsh(w3, MemOperand(x24, 4)); |
| 2173 __ Ldrsb(x4, MemOperand(x24)); |
| 2174 __ Ldrsb(x5, MemOperand(x24, 4)); |
| 2175 __ Ldrsh(x6, MemOperand(x24)); |
| 2176 __ Ldrsh(x7, MemOperand(x24, 4)); |
| 2177 __ Ldrsw(x8, MemOperand(x24)); |
| 2178 __ Ldrsw(x9, MemOperand(x24, 4)); |
| 2179 END(); |
| 2180 |
| 2181 RUN(); |
| 2182 |
| 2183 ASSERT_EQUAL_64(0xffffff80, x0); |
| 2184 ASSERT_EQUAL_64(0x0000007f, x1); |
| 2185 ASSERT_EQUAL_64(0xffff8080, x2); |
| 2186 ASSERT_EQUAL_64(0x00007f7f, x3); |
| 2187 ASSERT_EQUAL_64(0xffffffffffffff80UL, x4); |
| 2188 ASSERT_EQUAL_64(0x000000000000007fUL, x5); |
| 2189 ASSERT_EQUAL_64(0xffffffffffff8080UL, x6); |
| 2190 ASSERT_EQUAL_64(0x0000000000007f7fUL, x7); |
| 2191 ASSERT_EQUAL_64(0xffffffff80008080UL, x8); |
| 2192 ASSERT_EQUAL_64(0x000000007fff7f7fUL, x9); |
| 2193 |
| 2194 TEARDOWN(); |
| 2195 } |
| 2196 |
| 2197 |
| 2198 TEST(load_store_regoffset) { |
| 2199 INIT_V8(); |
| 2200 SETUP(); |
| 2201 |
| 2202 uint32_t src[3] = {1, 2, 3}; |
| 2203 uint32_t dst[4] = {0, 0, 0, 0}; |
| 2204 uintptr_t src_base = reinterpret_cast<uintptr_t>(src); |
| 2205 uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst); |
| 2206 |
| 2207 START(); |
| 2208 __ Mov(x16, src_base); |
| 2209 __ Mov(x17, dst_base); |
| 2210 __ Mov(x18, src_base + 3 * sizeof(src[0])); |
| 2211 __ Mov(x19, dst_base + 3 * sizeof(dst[0])); |
| 2212 __ Mov(x20, dst_base + 4 * sizeof(dst[0])); |
| 2213 __ Mov(x24, 0); |
| 2214 __ Mov(x25, 4); |
| 2215 __ Mov(x26, -4); |
| 2216 __ Mov(x27, 0xfffffffc); // 32-bit -4. |
| 2217 __ Mov(x28, 0xfffffffe); // 32-bit -2. |
| 2218 __ Mov(x29, 0xffffffff); // 32-bit -1. |
| 2219 |
| 2220 __ Ldr(w0, MemOperand(x16, x24)); |
| 2221 __ Ldr(x1, MemOperand(x16, x25)); |
| 2222 __ Ldr(w2, MemOperand(x18, x26)); |
| 2223 __ Ldr(w3, MemOperand(x18, x27, SXTW)); |
| 2224 __ Ldr(w4, MemOperand(x18, x28, SXTW, 2)); |
| 2225 __ Str(w0, MemOperand(x17, x24)); |
| 2226 __ Str(x1, MemOperand(x17, x25)); |
| 2227 __ Str(w2, MemOperand(x20, x29, SXTW, 2)); |
| 2228 END(); |
| 2229 |
| 2230 RUN(); |
| 2231 |
| 2232 ASSERT_EQUAL_64(1, x0); |
| 2233 ASSERT_EQUAL_64(0x0000000300000002UL, x1); |
| 2234 ASSERT_EQUAL_64(3, x2); |
| 2235 ASSERT_EQUAL_64(3, x3); |
| 2236 ASSERT_EQUAL_64(2, x4); |
| 2237 ASSERT_EQUAL_32(1, dst[0]); |
| 2238 ASSERT_EQUAL_32(2, dst[1]); |
| 2239 ASSERT_EQUAL_32(3, dst[2]); |
| 2240 ASSERT_EQUAL_32(3, dst[3]); |
| 2241 |
| 2242 TEARDOWN(); |
| 2243 } |
| 2244 |
| 2245 |
| 2246 TEST(load_store_float) { |
| 2247 INIT_V8(); |
| 2248 SETUP(); |
| 2249 |
| 2250 float src[3] = {1.0, 2.0, 3.0}; |
| 2251 float dst[3] = {0.0, 0.0, 0.0}; |
| 2252 uintptr_t src_base = reinterpret_cast<uintptr_t>(src); |
| 2253 uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst); |
| 2254 |
| 2255 START(); |
| 2256 __ Mov(x17, src_base); |
| 2257 __ Mov(x18, dst_base); |
| 2258 __ Mov(x19, src_base); |
| 2259 __ Mov(x20, dst_base); |
| 2260 __ Mov(x21, src_base); |
| 2261 __ Mov(x22, dst_base); |
| 2262 __ Ldr(s0, MemOperand(x17, sizeof(src[0]))); |
| 2263 __ Str(s0, MemOperand(x18, sizeof(dst[0]), PostIndex)); |
| 2264 __ Ldr(s1, MemOperand(x19, sizeof(src[0]), PostIndex)); |
| 2265 __ Str(s1, MemOperand(x20, 2 * sizeof(dst[0]), PreIndex)); |
| 2266 __ Ldr(s2, MemOperand(x21, 2 * sizeof(src[0]), PreIndex)); |
| 2267 __ Str(s2, MemOperand(x22, sizeof(dst[0]))); |
| 2268 END(); |
| 2269 |
| 2270 RUN(); |
| 2271 |
| 2272 ASSERT_EQUAL_FP32(2.0, s0); |
| 2273 ASSERT_EQUAL_FP32(2.0, dst[0]); |
| 2274 ASSERT_EQUAL_FP32(1.0, s1); |
| 2275 ASSERT_EQUAL_FP32(1.0, dst[2]); |
| 2276 ASSERT_EQUAL_FP32(3.0, s2); |
| 2277 ASSERT_EQUAL_FP32(3.0, dst[1]); |
| 2278 ASSERT_EQUAL_64(src_base, x17); |
| 2279 ASSERT_EQUAL_64(dst_base + sizeof(dst[0]), x18); |
| 2280 ASSERT_EQUAL_64(src_base + sizeof(src[0]), x19); |
| 2281 ASSERT_EQUAL_64(dst_base + 2 * sizeof(dst[0]), x20); |
| 2282 ASSERT_EQUAL_64(src_base + 2 * sizeof(src[0]), x21); |
| 2283 ASSERT_EQUAL_64(dst_base, x22); |
| 2284 |
| 2285 TEARDOWN(); |
| 2286 } |
| 2287 |
| 2288 |
| 2289 TEST(load_store_double) { |
| 2290 INIT_V8(); |
| 2291 SETUP(); |
| 2292 |
| 2293 double src[3] = {1.0, 2.0, 3.0}; |
| 2294 double dst[3] = {0.0, 0.0, 0.0}; |
| 2295 uintptr_t src_base = reinterpret_cast<uintptr_t>(src); |
| 2296 uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst); |
| 2297 |
| 2298 START(); |
| 2299 __ Mov(x17, src_base); |
| 2300 __ Mov(x18, dst_base); |
| 2301 __ Mov(x19, src_base); |
| 2302 __ Mov(x20, dst_base); |
| 2303 __ Mov(x21, src_base); |
| 2304 __ Mov(x22, dst_base); |
| 2305 __ Ldr(d0, MemOperand(x17, sizeof(src[0]))); |
| 2306 __ Str(d0, MemOperand(x18, sizeof(dst[0]), PostIndex)); |
| 2307 __ Ldr(d1, MemOperand(x19, sizeof(src[0]), PostIndex)); |
| 2308 __ Str(d1, MemOperand(x20, 2 * sizeof(dst[0]), PreIndex)); |
| 2309 __ Ldr(d2, MemOperand(x21, 2 * sizeof(src[0]), PreIndex)); |
| 2310 __ Str(d2, MemOperand(x22, sizeof(dst[0]))); |
| 2311 END(); |
| 2312 |
| 2313 RUN(); |
| 2314 |
| 2315 ASSERT_EQUAL_FP64(2.0, d0); |
| 2316 ASSERT_EQUAL_FP64(2.0, dst[0]); |
| 2317 ASSERT_EQUAL_FP64(1.0, d1); |
| 2318 ASSERT_EQUAL_FP64(1.0, dst[2]); |
| 2319 ASSERT_EQUAL_FP64(3.0, d2); |
| 2320 ASSERT_EQUAL_FP64(3.0, dst[1]); |
| 2321 ASSERT_EQUAL_64(src_base, x17); |
| 2322 ASSERT_EQUAL_64(dst_base + sizeof(dst[0]), x18); |
| 2323 ASSERT_EQUAL_64(src_base + sizeof(src[0]), x19); |
| 2324 ASSERT_EQUAL_64(dst_base + 2 * sizeof(dst[0]), x20); |
| 2325 ASSERT_EQUAL_64(src_base + 2 * sizeof(src[0]), x21); |
| 2326 ASSERT_EQUAL_64(dst_base, x22); |
| 2327 |
| 2328 TEARDOWN(); |
| 2329 } |
| 2330 |
| 2331 |
| 2332 TEST(ldp_stp_float) { |
| 2333 INIT_V8(); |
| 2334 SETUP(); |
| 2335 |
| 2336 float src[2] = {1.0, 2.0}; |
| 2337 float dst[3] = {0.0, 0.0, 0.0}; |
| 2338 uintptr_t src_base = reinterpret_cast<uintptr_t>(src); |
| 2339 uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst); |
| 2340 |
| 2341 START(); |
| 2342 __ Mov(x16, src_base); |
| 2343 __ Mov(x17, dst_base); |
| 2344 __ Ldp(s31, s0, MemOperand(x16, 2 * sizeof(src[0]), PostIndex)); |
| 2345 __ Stp(s0, s31, MemOperand(x17, sizeof(dst[1]), PreIndex)); |
| 2346 END(); |
| 2347 |
| 2348 RUN(); |
| 2349 |
| 2350 ASSERT_EQUAL_FP32(1.0, s31); |
| 2351 ASSERT_EQUAL_FP32(2.0, s0); |
| 2352 ASSERT_EQUAL_FP32(0.0, dst[0]); |
| 2353 ASSERT_EQUAL_FP32(2.0, dst[1]); |
| 2354 ASSERT_EQUAL_FP32(1.0, dst[2]); |
| 2355 ASSERT_EQUAL_64(src_base + 2 * sizeof(src[0]), x16); |
| 2356 ASSERT_EQUAL_64(dst_base + sizeof(dst[1]), x17); |
| 2357 |
| 2358 TEARDOWN(); |
| 2359 } |
| 2360 |
| 2361 |
| 2362 TEST(ldp_stp_double) { |
| 2363 INIT_V8(); |
| 2364 SETUP(); |
| 2365 |
| 2366 double src[2] = {1.0, 2.0}; |
| 2367 double dst[3] = {0.0, 0.0, 0.0}; |
| 2368 uintptr_t src_base = reinterpret_cast<uintptr_t>(src); |
| 2369 uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst); |
| 2370 |
| 2371 START(); |
| 2372 __ Mov(x16, src_base); |
| 2373 __ Mov(x17, dst_base); |
| 2374 __ Ldp(d31, d0, MemOperand(x16, 2 * sizeof(src[0]), PostIndex)); |
| 2375 __ Stp(d0, d31, MemOperand(x17, sizeof(dst[1]), PreIndex)); |
| 2376 END(); |
| 2377 |
| 2378 RUN(); |
| 2379 |
| 2380 ASSERT_EQUAL_FP64(1.0, d31); |
| 2381 ASSERT_EQUAL_FP64(2.0, d0); |
| 2382 ASSERT_EQUAL_FP64(0.0, dst[0]); |
| 2383 ASSERT_EQUAL_FP64(2.0, dst[1]); |
| 2384 ASSERT_EQUAL_FP64(1.0, dst[2]); |
| 2385 ASSERT_EQUAL_64(src_base + 2 * sizeof(src[0]), x16); |
| 2386 ASSERT_EQUAL_64(dst_base + sizeof(dst[1]), x17); |
| 2387 |
| 2388 TEARDOWN(); |
| 2389 } |
| 2390 |
| 2391 |
| 2392 TEST(ldp_stp_offset) { |
| 2393 INIT_V8(); |
| 2394 SETUP(); |
| 2395 |
| 2396 uint64_t src[3] = {0x0011223344556677UL, 0x8899aabbccddeeffUL, |
| 2397 0xffeeddccbbaa9988UL}; |
| 2398 uint64_t dst[7] = {0, 0, 0, 0, 0, 0, 0}; |
| 2399 uintptr_t src_base = reinterpret_cast<uintptr_t>(src); |
| 2400 uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst); |
| 2401 |
| 2402 START(); |
| 2403 __ Mov(x16, src_base); |
| 2404 __ Mov(x17, dst_base); |
| 2405 __ Mov(x18, src_base + 24); |
| 2406 __ Mov(x19, dst_base + 56); |
| 2407 __ Ldp(w0, w1, MemOperand(x16)); |
| 2408 __ Ldp(w2, w3, MemOperand(x16, 4)); |
| 2409 __ Ldp(x4, x5, MemOperand(x16, 8)); |
| 2410 __ Ldp(w6, w7, MemOperand(x18, -12)); |
| 2411 __ Ldp(x8, x9, MemOperand(x18, -16)); |
| 2412 __ Stp(w0, w1, MemOperand(x17)); |
| 2413 __ Stp(w2, w3, MemOperand(x17, 8)); |
| 2414 __ Stp(x4, x5, MemOperand(x17, 16)); |
| 2415 __ Stp(w6, w7, MemOperand(x19, -24)); |
| 2416 __ Stp(x8, x9, MemOperand(x19, -16)); |
| 2417 END(); |
| 2418 |
| 2419 RUN(); |
| 2420 |
| 2421 ASSERT_EQUAL_64(0x44556677, x0); |
| 2422 ASSERT_EQUAL_64(0x00112233, x1); |
| 2423 ASSERT_EQUAL_64(0x0011223344556677UL, dst[0]); |
| 2424 ASSERT_EQUAL_64(0x00112233, x2); |
| 2425 ASSERT_EQUAL_64(0xccddeeff, x3); |
| 2426 ASSERT_EQUAL_64(0xccddeeff00112233UL, dst[1]); |
| 2427 ASSERT_EQUAL_64(0x8899aabbccddeeffUL, x4); |
| 2428 ASSERT_EQUAL_64(0x8899aabbccddeeffUL, dst[2]); |
| 2429 ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, x5); |
| 2430 ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, dst[3]); |
| 2431 ASSERT_EQUAL_64(0x8899aabb, x6); |
| 2432 ASSERT_EQUAL_64(0xbbaa9988, x7); |
| 2433 ASSERT_EQUAL_64(0xbbaa99888899aabbUL, dst[4]); |
| 2434 ASSERT_EQUAL_64(0x8899aabbccddeeffUL, x8); |
| 2435 ASSERT_EQUAL_64(0x8899aabbccddeeffUL, dst[5]); |
| 2436 ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, x9); |
| 2437 ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, dst[6]); |
| 2438 ASSERT_EQUAL_64(src_base, x16); |
| 2439 ASSERT_EQUAL_64(dst_base, x17); |
| 2440 ASSERT_EQUAL_64(src_base + 24, x18); |
| 2441 ASSERT_EQUAL_64(dst_base + 56, x19); |
| 2442 |
| 2443 TEARDOWN(); |
| 2444 } |
| 2445 |
| 2446 |
| 2447 TEST(ldnp_stnp_offset) { |
| 2448 INIT_V8(); |
| 2449 SETUP(); |
| 2450 |
| 2451 uint64_t src[3] = {0x0011223344556677UL, 0x8899aabbccddeeffUL, |
| 2452 0xffeeddccbbaa9988UL}; |
| 2453 uint64_t dst[7] = {0, 0, 0, 0, 0, 0, 0}; |
| 2454 uintptr_t src_base = reinterpret_cast<uintptr_t>(src); |
| 2455 uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst); |
| 2456 |
| 2457 START(); |
| 2458 __ Mov(x16, src_base); |
| 2459 __ Mov(x17, dst_base); |
| 2460 __ Mov(x18, src_base + 24); |
| 2461 __ Mov(x19, dst_base + 56); |
| 2462 __ Ldnp(w0, w1, MemOperand(x16)); |
| 2463 __ Ldnp(w2, w3, MemOperand(x16, 4)); |
| 2464 __ Ldnp(x4, x5, MemOperand(x16, 8)); |
| 2465 __ Ldnp(w6, w7, MemOperand(x18, -12)); |
| 2466 __ Ldnp(x8, x9, MemOperand(x18, -16)); |
| 2467 __ Stnp(w0, w1, MemOperand(x17)); |
| 2468 __ Stnp(w2, w3, MemOperand(x17, 8)); |
| 2469 __ Stnp(x4, x5, MemOperand(x17, 16)); |
| 2470 __ Stnp(w6, w7, MemOperand(x19, -24)); |
| 2471 __ Stnp(x8, x9, MemOperand(x19, -16)); |
| 2472 END(); |
| 2473 |
| 2474 RUN(); |
| 2475 |
| 2476 ASSERT_EQUAL_64(0x44556677, x0); |
| 2477 ASSERT_EQUAL_64(0x00112233, x1); |
| 2478 ASSERT_EQUAL_64(0x0011223344556677UL, dst[0]); |
| 2479 ASSERT_EQUAL_64(0x00112233, x2); |
| 2480 ASSERT_EQUAL_64(0xccddeeff, x3); |
| 2481 ASSERT_EQUAL_64(0xccddeeff00112233UL, dst[1]); |
| 2482 ASSERT_EQUAL_64(0x8899aabbccddeeffUL, x4); |
| 2483 ASSERT_EQUAL_64(0x8899aabbccddeeffUL, dst[2]); |
| 2484 ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, x5); |
| 2485 ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, dst[3]); |
| 2486 ASSERT_EQUAL_64(0x8899aabb, x6); |
| 2487 ASSERT_EQUAL_64(0xbbaa9988, x7); |
| 2488 ASSERT_EQUAL_64(0xbbaa99888899aabbUL, dst[4]); |
| 2489 ASSERT_EQUAL_64(0x8899aabbccddeeffUL, x8); |
| 2490 ASSERT_EQUAL_64(0x8899aabbccddeeffUL, dst[5]); |
| 2491 ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, x9); |
| 2492 ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, dst[6]); |
| 2493 ASSERT_EQUAL_64(src_base, x16); |
| 2494 ASSERT_EQUAL_64(dst_base, x17); |
| 2495 ASSERT_EQUAL_64(src_base + 24, x18); |
| 2496 ASSERT_EQUAL_64(dst_base + 56, x19); |
| 2497 |
| 2498 TEARDOWN(); |
| 2499 } |
| 2500 |
| 2501 |
| 2502 TEST(ldp_stp_preindex) { |
| 2503 INIT_V8(); |
| 2504 SETUP(); |
| 2505 |
| 2506 uint64_t src[3] = {0x0011223344556677UL, 0x8899aabbccddeeffUL, |
| 2507 0xffeeddccbbaa9988UL}; |
| 2508 uint64_t dst[5] = {0, 0, 0, 0, 0}; |
| 2509 uintptr_t src_base = reinterpret_cast<uintptr_t>(src); |
| 2510 uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst); |
| 2511 |
| 2512 START(); |
| 2513 __ Mov(x16, src_base); |
| 2514 __ Mov(x17, dst_base); |
| 2515 __ Mov(x18, dst_base + 16); |
| 2516 __ Ldp(w0, w1, MemOperand(x16, 4, PreIndex)); |
| 2517 __ Mov(x19, x16); |
| 2518 __ Ldp(w2, w3, MemOperand(x16, -4, PreIndex)); |
| 2519 __ Stp(w2, w3, MemOperand(x17, 4, PreIndex)); |
| 2520 __ Mov(x20, x17); |
| 2521 __ Stp(w0, w1, MemOperand(x17, -4, PreIndex)); |
| 2522 __ Ldp(x4, x5, MemOperand(x16, 8, PreIndex)); |
| 2523 __ Mov(x21, x16); |
| 2524 __ Ldp(x6, x7, MemOperand(x16, -8, PreIndex)); |
| 2525 __ Stp(x7, x6, MemOperand(x18, 8, PreIndex)); |
| 2526 __ Mov(x22, x18); |
| 2527 __ Stp(x5, x4, MemOperand(x18, -8, PreIndex)); |
| 2528 END(); |
| 2529 |
| 2530 RUN(); |
| 2531 |
| 2532 ASSERT_EQUAL_64(0x00112233, x0); |
| 2533 ASSERT_EQUAL_64(0xccddeeff, x1); |
| 2534 ASSERT_EQUAL_64(0x44556677, x2); |
| 2535 ASSERT_EQUAL_64(0x00112233, x3); |
| 2536 ASSERT_EQUAL_64(0xccddeeff00112233UL, dst[0]); |
| 2537 ASSERT_EQUAL_64(0x0000000000112233UL, dst[1]); |
| 2538 ASSERT_EQUAL_64(0x8899aabbccddeeffUL, x4); |
| 2539 ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, x5); |
| 2540 ASSERT_EQUAL_64(0x0011223344556677UL, x6); |
| 2541 ASSERT_EQUAL_64(0x8899aabbccddeeffUL, x7); |
| 2542 ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, dst[2]); |
| 2543 ASSERT_EQUAL_64(0x8899aabbccddeeffUL, dst[3]); |
| 2544 ASSERT_EQUAL_64(0x0011223344556677UL, dst[4]); |
| 2545 ASSERT_EQUAL_64(src_base, x16); |
| 2546 ASSERT_EQUAL_64(dst_base, x17); |
| 2547 ASSERT_EQUAL_64(dst_base + 16, x18); |
| 2548 ASSERT_EQUAL_64(src_base + 4, x19); |
| 2549 ASSERT_EQUAL_64(dst_base + 4, x20); |
| 2550 ASSERT_EQUAL_64(src_base + 8, x21); |
| 2551 ASSERT_EQUAL_64(dst_base + 24, x22); |
| 2552 |
| 2553 TEARDOWN(); |
| 2554 } |
| 2555 |
| 2556 |
| 2557 TEST(ldp_stp_postindex) { |
| 2558 INIT_V8(); |
| 2559 SETUP(); |
| 2560 |
| 2561 uint64_t src[4] = {0x0011223344556677UL, 0x8899aabbccddeeffUL, |
| 2562 0xffeeddccbbaa9988UL, 0x7766554433221100UL}; |
| 2563 uint64_t dst[5] = {0, 0, 0, 0, 0}; |
| 2564 uintptr_t src_base = reinterpret_cast<uintptr_t>(src); |
| 2565 uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst); |
| 2566 |
| 2567 START(); |
| 2568 __ Mov(x16, src_base); |
| 2569 __ Mov(x17, dst_base); |
| 2570 __ Mov(x18, dst_base + 16); |
| 2571 __ Ldp(w0, w1, MemOperand(x16, 4, PostIndex)); |
| 2572 __ Mov(x19, x16); |
| 2573 __ Ldp(w2, w3, MemOperand(x16, -4, PostIndex)); |
| 2574 __ Stp(w2, w3, MemOperand(x17, 4, PostIndex)); |
| 2575 __ Mov(x20, x17); |
| 2576 __ Stp(w0, w1, MemOperand(x17, -4, PostIndex)); |
| 2577 __ Ldp(x4, x5, MemOperand(x16, 8, PostIndex)); |
| 2578 __ Mov(x21, x16); |
| 2579 __ Ldp(x6, x7, MemOperand(x16, -8, PostIndex)); |
| 2580 __ Stp(x7, x6, MemOperand(x18, 8, PostIndex)); |
| 2581 __ Mov(x22, x18); |
| 2582 __ Stp(x5, x4, MemOperand(x18, -8, PostIndex)); |
| 2583 END(); |
| 2584 |
| 2585 RUN(); |
| 2586 |
| 2587 ASSERT_EQUAL_64(0x44556677, x0); |
| 2588 ASSERT_EQUAL_64(0x00112233, x1); |
| 2589 ASSERT_EQUAL_64(0x00112233, x2); |
| 2590 ASSERT_EQUAL_64(0xccddeeff, x3); |
| 2591 ASSERT_EQUAL_64(0x4455667700112233UL, dst[0]); |
| 2592 ASSERT_EQUAL_64(0x0000000000112233UL, dst[1]); |
| 2593 ASSERT_EQUAL_64(0x0011223344556677UL, x4); |
| 2594 ASSERT_EQUAL_64(0x8899aabbccddeeffUL, x5); |
| 2595 ASSERT_EQUAL_64(0x8899aabbccddeeffUL, x6); |
| 2596 ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, x7); |
| 2597 ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, dst[2]); |
| 2598 ASSERT_EQUAL_64(0x8899aabbccddeeffUL, dst[3]); |
| 2599 ASSERT_EQUAL_64(0x0011223344556677UL, dst[4]); |
| 2600 ASSERT_EQUAL_64(src_base, x16); |
| 2601 ASSERT_EQUAL_64(dst_base, x17); |
| 2602 ASSERT_EQUAL_64(dst_base + 16, x18); |
| 2603 ASSERT_EQUAL_64(src_base + 4, x19); |
| 2604 ASSERT_EQUAL_64(dst_base + 4, x20); |
| 2605 ASSERT_EQUAL_64(src_base + 8, x21); |
| 2606 ASSERT_EQUAL_64(dst_base + 24, x22); |
| 2607 |
| 2608 TEARDOWN(); |
| 2609 } |
| 2610 |
| 2611 |
| 2612 TEST(ldp_sign_extend) { |
| 2613 INIT_V8(); |
| 2614 SETUP(); |
| 2615 |
| 2616 uint32_t src[2] = {0x80000000, 0x7fffffff}; |
| 2617 uintptr_t src_base = reinterpret_cast<uintptr_t>(src); |
| 2618 |
| 2619 START(); |
| 2620 __ Mov(x24, src_base); |
| 2621 __ Ldpsw(x0, x1, MemOperand(x24)); |
| 2622 END(); |
| 2623 |
| 2624 RUN(); |
| 2625 |
| 2626 ASSERT_EQUAL_64(0xffffffff80000000UL, x0); |
| 2627 ASSERT_EQUAL_64(0x000000007fffffffUL, x1); |
| 2628 |
| 2629 TEARDOWN(); |
| 2630 } |
| 2631 |
| 2632 |
| 2633 TEST(ldur_stur) { |
| 2634 INIT_V8(); |
| 2635 SETUP(); |
| 2636 |
| 2637 int64_t src[2] = {0x0123456789abcdefUL, 0x0123456789abcdefUL}; |
| 2638 int64_t dst[5] = {0, 0, 0, 0, 0}; |
| 2639 uintptr_t src_base = reinterpret_cast<uintptr_t>(src); |
| 2640 uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst); |
| 2641 |
| 2642 START(); |
| 2643 __ Mov(x17, src_base); |
| 2644 __ Mov(x18, dst_base); |
| 2645 __ Mov(x19, src_base + 16); |
| 2646 __ Mov(x20, dst_base + 32); |
| 2647 __ Mov(x21, dst_base + 40); |
| 2648 __ Ldr(w0, MemOperand(x17, 1)); |
| 2649 __ Str(w0, MemOperand(x18, 2)); |
| 2650 __ Ldr(x1, MemOperand(x17, 3)); |
| 2651 __ Str(x1, MemOperand(x18, 9)); |
| 2652 __ Ldr(w2, MemOperand(x19, -9)); |
| 2653 __ Str(w2, MemOperand(x20, -5)); |
| 2654 __ Ldrb(w3, MemOperand(x19, -1)); |
| 2655 __ Strb(w3, MemOperand(x21, -1)); |
| 2656 END(); |
| 2657 |
| 2658 RUN(); |
| 2659 |
| 2660 ASSERT_EQUAL_64(0x6789abcd, x0); |
| 2661 ASSERT_EQUAL_64(0x6789abcd0000L, dst[0]); |
| 2662 ASSERT_EQUAL_64(0xabcdef0123456789L, x1); |
| 2663 ASSERT_EQUAL_64(0xcdef012345678900L, dst[1]); |
| 2664 ASSERT_EQUAL_64(0x000000ab, dst[2]); |
| 2665 ASSERT_EQUAL_64(0xabcdef01, x2); |
| 2666 ASSERT_EQUAL_64(0x00abcdef01000000L, dst[3]); |
| 2667 ASSERT_EQUAL_64(0x00000001, x3); |
| 2668 ASSERT_EQUAL_64(0x0100000000000000L, dst[4]); |
| 2669 ASSERT_EQUAL_64(src_base, x17); |
| 2670 ASSERT_EQUAL_64(dst_base, x18); |
| 2671 ASSERT_EQUAL_64(src_base + 16, x19); |
| 2672 ASSERT_EQUAL_64(dst_base + 32, x20); |
| 2673 |
| 2674 TEARDOWN(); |
| 2675 } |
| 2676 |
| 2677 |
| 2678 #if 0 // TODO(all) enable. |
| 2679 // TODO(rodolph): Adapt w16 Literal tests for RelocInfo. |
| 2680 TEST(ldr_literal) { |
| 2681 INIT_V8(); |
| 2682 SETUP(); |
| 2683 |
| 2684 START(); |
| 2685 __ Ldr(x2, 0x1234567890abcdefUL); |
| 2686 __ Ldr(w3, 0xfedcba09); |
| 2687 __ Ldr(d13, 1.234); |
| 2688 __ Ldr(s25, 2.5); |
| 2689 END(); |
| 2690 |
| 2691 RUN(); |
| 2692 |
| 2693 ASSERT_EQUAL_64(0x1234567890abcdefUL, x2); |
| 2694 ASSERT_EQUAL_64(0xfedcba09, x3); |
| 2695 ASSERT_EQUAL_FP64(1.234, d13); |
| 2696 ASSERT_EQUAL_FP32(2.5, s25); |
| 2697 |
| 2698 TEARDOWN(); |
| 2699 } |
| 2700 |
| 2701 |
| 2702 static void LdrLiteralRangeHelper(ptrdiff_t range_, |
| 2703 LiteralPoolEmitOption option, |
| 2704 bool expect_dump) { |
| 2705 ASSERT(range_ > 0); |
| 2706 SETUP_SIZE(range_ + 1024); |
| 2707 |
| 2708 Label label_1, label_2; |
| 2709 |
| 2710 size_t range = static_cast<size_t>(range_); |
| 2711 size_t code_size = 0; |
| 2712 size_t pool_guard_size; |
| 2713 |
| 2714 if (option == NoJumpRequired) { |
| 2715 // Space for an explicit branch. |
| 2716 pool_guard_size = sizeof(Instr); |
| 2717 } else { |
| 2718 pool_guard_size = 0; |
| 2719 } |
| 2720 |
| 2721 START(); |
| 2722 // Force a pool dump so the pool starts off empty. |
| 2723 __ EmitLiteralPool(JumpRequired); |
| 2724 ASSERT_LITERAL_POOL_SIZE(0); |
| 2725 |
| 2726 __ Ldr(x0, 0x1234567890abcdefUL); |
| 2727 __ Ldr(w1, 0xfedcba09); |
| 2728 __ Ldr(d0, 1.234); |
| 2729 __ Ldr(s1, 2.5); |
| 2730 ASSERT_LITERAL_POOL_SIZE(4); |
| 2731 |
| 2732 code_size += 4 * sizeof(Instr); |
| 2733 |
| 2734 // Check that the requested range (allowing space for a branch over the pool) |
| 2735 // can be handled by this test. |
| 2736 ASSERT((code_size + pool_guard_size) <= range); |
| 2737 |
| 2738 // Emit NOPs up to 'range', leaving space for the pool guard. |
| 2739 while ((code_size + pool_guard_size) < range) { |
| 2740 __ Nop(); |
| 2741 code_size += sizeof(Instr); |
| 2742 } |
| 2743 |
| 2744 // Emit the guard sequence before the literal pool. |
| 2745 if (option == NoJumpRequired) { |
| 2746 __ B(&label_1); |
| 2747 code_size += sizeof(Instr); |
| 2748 } |
| 2749 |
| 2750 ASSERT(code_size == range); |
| 2751 ASSERT_LITERAL_POOL_SIZE(4); |
| 2752 |
| 2753 // Possibly generate a literal pool. |
| 2754 __ CheckLiteralPool(option); |
| 2755 __ Bind(&label_1); |
| 2756 if (expect_dump) { |
| 2757 ASSERT_LITERAL_POOL_SIZE(0); |
| 2758 } else { |
| 2759 ASSERT_LITERAL_POOL_SIZE(4); |
| 2760 } |
| 2761 |
| 2762 // Force a pool flush to check that a second pool functions correctly. |
| 2763 __ EmitLiteralPool(JumpRequired); |
| 2764 ASSERT_LITERAL_POOL_SIZE(0); |
| 2765 |
| 2766 // These loads should be after the pool (and will require a new one). |
| 2767 __ Ldr(x4, 0x34567890abcdef12UL); |
| 2768 __ Ldr(w5, 0xdcba09fe); |
| 2769 __ Ldr(d4, 123.4); |
| 2770 __ Ldr(s5, 250.0); |
| 2771 ASSERT_LITERAL_POOL_SIZE(4); |
| 2772 END(); |
| 2773 |
| 2774 RUN(); |
| 2775 |
| 2776 // Check that the literals loaded correctly. |
| 2777 ASSERT_EQUAL_64(0x1234567890abcdefUL, x0); |
| 2778 ASSERT_EQUAL_64(0xfedcba09, x1); |
| 2779 ASSERT_EQUAL_FP64(1.234, d0); |
| 2780 ASSERT_EQUAL_FP32(2.5, s1); |
| 2781 ASSERT_EQUAL_64(0x34567890abcdef12UL, x4); |
| 2782 ASSERT_EQUAL_64(0xdcba09fe, x5); |
| 2783 ASSERT_EQUAL_FP64(123.4, d4); |
| 2784 ASSERT_EQUAL_FP32(250.0, s5); |
| 2785 |
| 2786 TEARDOWN(); |
| 2787 } |
| 2788 |
| 2789 |
| 2790 TEST(ldr_literal_range_1) { |
| 2791 INIT_V8(); |
| 2792 LdrLiteralRangeHelper(kRecommendedLiteralPoolRange, |
| 2793 NoJumpRequired, |
| 2794 true); |
| 2795 } |
| 2796 |
| 2797 |
| 2798 TEST(ldr_literal_range_2) { |
| 2799 INIT_V8(); |
| 2800 LdrLiteralRangeHelper(kRecommendedLiteralPoolRange-sizeof(Instr), |
| 2801 NoJumpRequired, |
| 2802 false); |
| 2803 } |
| 2804 |
| 2805 |
| 2806 TEST(ldr_literal_range_3) { |
| 2807 INIT_V8(); |
| 2808 LdrLiteralRangeHelper(2 * kRecommendedLiteralPoolRange, |
| 2809 JumpRequired, |
| 2810 true); |
| 2811 } |
| 2812 |
| 2813 |
| 2814 TEST(ldr_literal_range_4) { |
| 2815 INIT_V8(); |
| 2816 LdrLiteralRangeHelper(2 * kRecommendedLiteralPoolRange-sizeof(Instr), |
| 2817 JumpRequired, |
| 2818 false); |
| 2819 } |
| 2820 |
| 2821 |
| 2822 TEST(ldr_literal_range_5) { |
| 2823 INIT_V8(); |
| 2824 LdrLiteralRangeHelper(kLiteralPoolCheckInterval, |
| 2825 JumpRequired, |
| 2826 false); |
| 2827 } |
| 2828 |
| 2829 |
| 2830 TEST(ldr_literal_range_6) { |
| 2831 INIT_V8(); |
| 2832 LdrLiteralRangeHelper(kLiteralPoolCheckInterval-sizeof(Instr), |
| 2833 JumpRequired, |
| 2834 false); |
| 2835 } |
| 2836 #endif |
| 2837 |
| 2838 TEST(add_sub_imm) { |
| 2839 INIT_V8(); |
| 2840 SETUP(); |
| 2841 |
| 2842 START(); |
| 2843 __ Mov(x0, 0x0); |
| 2844 __ Mov(x1, 0x1111); |
| 2845 __ Mov(x2, 0xffffffffffffffffL); |
| 2846 __ Mov(x3, 0x8000000000000000L); |
| 2847 |
| 2848 __ Add(x10, x0, Operand(0x123)); |
| 2849 __ Add(x11, x1, Operand(0x122000)); |
| 2850 __ Add(x12, x0, Operand(0xabc << 12)); |
| 2851 __ Add(x13, x2, Operand(1)); |
| 2852 |
| 2853 __ Add(w14, w0, Operand(0x123)); |
| 2854 __ Add(w15, w1, Operand(0x122000)); |
| 2855 __ Add(w16, w0, Operand(0xabc << 12)); |
| 2856 __ Add(w17, w2, Operand(1)); |
| 2857 |
| 2858 __ Sub(x20, x0, Operand(0x1)); |
| 2859 __ Sub(x21, x1, Operand(0x111)); |
| 2860 __ Sub(x22, x1, Operand(0x1 << 12)); |
| 2861 __ Sub(x23, x3, Operand(1)); |
| 2862 |
| 2863 __ Sub(w24, w0, Operand(0x1)); |
| 2864 __ Sub(w25, w1, Operand(0x111)); |
| 2865 __ Sub(w26, w1, Operand(0x1 << 12)); |
| 2866 __ Sub(w27, w3, Operand(1)); |
| 2867 END(); |
| 2868 |
| 2869 RUN(); |
| 2870 |
| 2871 ASSERT_EQUAL_64(0x123, x10); |
| 2872 ASSERT_EQUAL_64(0x123111, x11); |
| 2873 ASSERT_EQUAL_64(0xabc000, x12); |
| 2874 ASSERT_EQUAL_64(0x0, x13); |
| 2875 |
| 2876 ASSERT_EQUAL_32(0x123, w14); |
| 2877 ASSERT_EQUAL_32(0x123111, w15); |
| 2878 ASSERT_EQUAL_32(0xabc000, w16); |
| 2879 ASSERT_EQUAL_32(0x0, w17); |
| 2880 |
| 2881 ASSERT_EQUAL_64(0xffffffffffffffffL, x20); |
| 2882 ASSERT_EQUAL_64(0x1000, x21); |
| 2883 ASSERT_EQUAL_64(0x111, x22); |
| 2884 ASSERT_EQUAL_64(0x7fffffffffffffffL, x23); |
| 2885 |
| 2886 ASSERT_EQUAL_32(0xffffffff, w24); |
| 2887 ASSERT_EQUAL_32(0x1000, w25); |
| 2888 ASSERT_EQUAL_32(0x111, w26); |
| 2889 ASSERT_EQUAL_32(0xffffffff, w27); |
| 2890 |
| 2891 TEARDOWN(); |
| 2892 } |
| 2893 |
| 2894 |
| 2895 TEST(add_sub_wide_imm) { |
| 2896 INIT_V8(); |
| 2897 SETUP(); |
| 2898 |
| 2899 START(); |
| 2900 __ Mov(x0, 0x0); |
| 2901 __ Mov(x1, 0x1); |
| 2902 |
| 2903 __ Add(x10, x0, Operand(0x1234567890abcdefUL)); |
| 2904 __ Add(x11, x1, Operand(0xffffffff)); |
| 2905 |
| 2906 __ Add(w12, w0, Operand(0x12345678)); |
| 2907 __ Add(w13, w1, Operand(0xffffffff)); |
| 2908 |
| 2909 __ Sub(x20, x0, Operand(0x1234567890abcdefUL)); |
| 2910 |
| 2911 __ Sub(w21, w0, Operand(0x12345678)); |
| 2912 END(); |
| 2913 |
| 2914 RUN(); |
| 2915 |
| 2916 ASSERT_EQUAL_64(0x1234567890abcdefUL, x10); |
| 2917 ASSERT_EQUAL_64(0x100000000UL, x11); |
| 2918 |
| 2919 ASSERT_EQUAL_32(0x12345678, w12); |
| 2920 ASSERT_EQUAL_64(0x0, x13); |
| 2921 |
| 2922 ASSERT_EQUAL_64(-0x1234567890abcdefUL, x20); |
| 2923 |
| 2924 ASSERT_EQUAL_32(-0x12345678, w21); |
| 2925 |
| 2926 TEARDOWN(); |
| 2927 } |
| 2928 |
| 2929 |
| 2930 TEST(add_sub_shifted) { |
| 2931 INIT_V8(); |
| 2932 SETUP(); |
| 2933 |
| 2934 START(); |
| 2935 __ Mov(x0, 0); |
| 2936 __ Mov(x1, 0x0123456789abcdefL); |
| 2937 __ Mov(x2, 0xfedcba9876543210L); |
| 2938 __ Mov(x3, 0xffffffffffffffffL); |
| 2939 |
| 2940 __ Add(x10, x1, Operand(x2)); |
| 2941 __ Add(x11, x0, Operand(x1, LSL, 8)); |
| 2942 __ Add(x12, x0, Operand(x1, LSR, 8)); |
| 2943 __ Add(x13, x0, Operand(x1, ASR, 8)); |
| 2944 __ Add(x14, x0, Operand(x2, ASR, 8)); |
| 2945 __ Add(w15, w0, Operand(w1, ASR, 8)); |
| 2946 __ Add(w18, w3, Operand(w1, ROR, 8)); |
| 2947 __ Add(x19, x3, Operand(x1, ROR, 8)); |
| 2948 |
| 2949 __ Sub(x20, x3, Operand(x2)); |
| 2950 __ Sub(x21, x3, Operand(x1, LSL, 8)); |
| 2951 __ Sub(x22, x3, Operand(x1, LSR, 8)); |
| 2952 __ Sub(x23, x3, Operand(x1, ASR, 8)); |
| 2953 __ Sub(x24, x3, Operand(x2, ASR, 8)); |
| 2954 __ Sub(w25, w3, Operand(w1, ASR, 8)); |
| 2955 __ Sub(w26, w3, Operand(w1, ROR, 8)); |
| 2956 __ Sub(x27, x3, Operand(x1, ROR, 8)); |
| 2957 END(); |
| 2958 |
| 2959 RUN(); |
| 2960 |
| 2961 ASSERT_EQUAL_64(0xffffffffffffffffL, x10); |
| 2962 ASSERT_EQUAL_64(0x23456789abcdef00L, x11); |
| 2963 ASSERT_EQUAL_64(0x000123456789abcdL, x12); |
| 2964 ASSERT_EQUAL_64(0x000123456789abcdL, x13); |
| 2965 ASSERT_EQUAL_64(0xfffedcba98765432L, x14); |
| 2966 ASSERT_EQUAL_64(0xff89abcd, x15); |
| 2967 ASSERT_EQUAL_64(0xef89abcc, x18); |
| 2968 ASSERT_EQUAL_64(0xef0123456789abccL, x19); |
| 2969 |
| 2970 ASSERT_EQUAL_64(0x0123456789abcdefL, x20); |
| 2971 ASSERT_EQUAL_64(0xdcba9876543210ffL, x21); |
| 2972 ASSERT_EQUAL_64(0xfffedcba98765432L, x22); |
| 2973 ASSERT_EQUAL_64(0xfffedcba98765432L, x23); |
| 2974 ASSERT_EQUAL_64(0x000123456789abcdL, x24); |
| 2975 ASSERT_EQUAL_64(0x00765432, x25); |
| 2976 ASSERT_EQUAL_64(0x10765432, x26); |
| 2977 ASSERT_EQUAL_64(0x10fedcba98765432L, x27); |
| 2978 |
| 2979 TEARDOWN(); |
| 2980 } |
| 2981 |
| 2982 |
| 2983 TEST(add_sub_extended) { |
| 2984 INIT_V8(); |
| 2985 SETUP(); |
| 2986 |
| 2987 START(); |
| 2988 __ Mov(x0, 0); |
| 2989 __ Mov(x1, 0x0123456789abcdefL); |
| 2990 __ Mov(x2, 0xfedcba9876543210L); |
| 2991 __ Mov(w3, 0x80); |
| 2992 |
| 2993 __ Add(x10, x0, Operand(x1, UXTB, 0)); |
| 2994 __ Add(x11, x0, Operand(x1, UXTB, 1)); |
| 2995 __ Add(x12, x0, Operand(x1, UXTH, 2)); |
| 2996 __ Add(x13, x0, Operand(x1, UXTW, 4)); |
| 2997 |
| 2998 __ Add(x14, x0, Operand(x1, SXTB, 0)); |
| 2999 __ Add(x15, x0, Operand(x1, SXTB, 1)); |
| 3000 __ Add(x16, x0, Operand(x1, SXTH, 2)); |
| 3001 __ Add(x17, x0, Operand(x1, SXTW, 3)); |
| 3002 __ Add(x18, x0, Operand(x2, SXTB, 0)); |
| 3003 __ Add(x19, x0, Operand(x2, SXTB, 1)); |
| 3004 __ Add(x20, x0, Operand(x2, SXTH, 2)); |
| 3005 __ Add(x21, x0, Operand(x2, SXTW, 3)); |
| 3006 |
| 3007 __ Add(x22, x1, Operand(x2, SXTB, 1)); |
| 3008 __ Sub(x23, x1, Operand(x2, SXTB, 1)); |
| 3009 |
| 3010 __ Add(w24, w1, Operand(w2, UXTB, 2)); |
| 3011 __ Add(w25, w0, Operand(w1, SXTB, 0)); |
| 3012 __ Add(w26, w0, Operand(w1, SXTB, 1)); |
| 3013 __ Add(w27, w2, Operand(w1, SXTW, 3)); |
| 3014 |
| 3015 __ Add(w28, w0, Operand(w1, SXTW, 3)); |
| 3016 __ Add(x29, x0, Operand(w1, SXTW, 3)); |
| 3017 |
| 3018 __ Sub(x30, x0, Operand(w3, SXTB, 1)); |
| 3019 END(); |
| 3020 |
| 3021 RUN(); |
| 3022 |
| 3023 ASSERT_EQUAL_64(0xefL, x10); |
| 3024 ASSERT_EQUAL_64(0x1deL, x11); |
| 3025 ASSERT_EQUAL_64(0x337bcL, x12); |
| 3026 ASSERT_EQUAL_64(0x89abcdef0L, x13); |
| 3027 |
| 3028 ASSERT_EQUAL_64(0xffffffffffffffefL, x14); |
| 3029 ASSERT_EQUAL_64(0xffffffffffffffdeL, x15); |
| 3030 ASSERT_EQUAL_64(0xffffffffffff37bcL, x16); |
| 3031 ASSERT_EQUAL_64(0xfffffffc4d5e6f78L, x17); |
| 3032 ASSERT_EQUAL_64(0x10L, x18); |
| 3033 ASSERT_EQUAL_64(0x20L, x19); |
| 3034 ASSERT_EQUAL_64(0xc840L, x20); |
| 3035 ASSERT_EQUAL_64(0x3b2a19080L, x21); |
| 3036 |
| 3037 ASSERT_EQUAL_64(0x0123456789abce0fL, x22); |
| 3038 ASSERT_EQUAL_64(0x0123456789abcdcfL, x23); |
| 3039 |
| 3040 ASSERT_EQUAL_32(0x89abce2f, w24); |
| 3041 ASSERT_EQUAL_32(0xffffffef, w25); |
| 3042 ASSERT_EQUAL_32(0xffffffde, w26); |
| 3043 ASSERT_EQUAL_32(0xc3b2a188, w27); |
| 3044 |
| 3045 ASSERT_EQUAL_32(0x4d5e6f78, w28); |
| 3046 ASSERT_EQUAL_64(0xfffffffc4d5e6f78L, x29); |
| 3047 |
| 3048 ASSERT_EQUAL_64(256, x30); |
| 3049 |
| 3050 TEARDOWN(); |
| 3051 } |
| 3052 |
| 3053 |
| 3054 TEST(add_sub_negative) { |
| 3055 INIT_V8(); |
| 3056 SETUP(); |
| 3057 |
| 3058 START(); |
| 3059 __ Mov(x0, 0); |
| 3060 __ Mov(x1, 4687); |
| 3061 __ Mov(x2, 0x1122334455667788); |
| 3062 __ Mov(w3, 0x11223344); |
| 3063 __ Mov(w4, 400000); |
| 3064 |
| 3065 __ Add(x10, x0, -42); |
| 3066 __ Add(x11, x1, -687); |
| 3067 __ Add(x12, x2, -0x88); |
| 3068 |
| 3069 __ Sub(x13, x0, -600); |
| 3070 __ Sub(x14, x1, -313); |
| 3071 __ Sub(x15, x2, -0x555); |
| 3072 |
| 3073 __ Add(w19, w3, -0x344); |
| 3074 __ Add(w20, w4, -2000); |
| 3075 |
| 3076 __ Sub(w21, w3, -0xbc); |
| 3077 __ Sub(w22, w4, -2000); |
| 3078 END(); |
| 3079 |
| 3080 RUN(); |
| 3081 |
| 3082 ASSERT_EQUAL_64(-42, x10); |
| 3083 ASSERT_EQUAL_64(4000, x11); |
| 3084 ASSERT_EQUAL_64(0x1122334455667700, x12); |
| 3085 |
| 3086 ASSERT_EQUAL_64(600, x13); |
| 3087 ASSERT_EQUAL_64(5000, x14); |
| 3088 ASSERT_EQUAL_64(0x1122334455667cdd, x15); |
| 3089 |
| 3090 ASSERT_EQUAL_32(0x11223000, w19); |
| 3091 ASSERT_EQUAL_32(398000, w20); |
| 3092 |
| 3093 ASSERT_EQUAL_32(0x11223400, w21); |
| 3094 ASSERT_EQUAL_32(402000, w22); |
| 3095 |
| 3096 TEARDOWN(); |
| 3097 } |
| 3098 |
| 3099 |
| 3100 TEST(add_sub_zero) { |
| 3101 INIT_V8(); |
| 3102 SETUP(); |
| 3103 |
| 3104 START(); |
| 3105 __ Mov(x0, 0); |
| 3106 __ Mov(x1, 0); |
| 3107 __ Mov(x2, 0); |
| 3108 |
| 3109 Label blob1; |
| 3110 __ Bind(&blob1); |
| 3111 __ Add(x0, x0, 0); |
| 3112 __ Sub(x1, x1, 0); |
| 3113 __ Sub(x2, x2, xzr); |
| 3114 CHECK_EQ(0, __ SizeOfCodeGeneratedSince(&blob1)); |
| 3115 |
| 3116 Label blob2; |
| 3117 __ Bind(&blob2); |
| 3118 __ Add(w3, w3, 0); |
| 3119 CHECK_NE(0, __ SizeOfCodeGeneratedSince(&blob2)); |
| 3120 |
| 3121 Label blob3; |
| 3122 __ Bind(&blob3); |
| 3123 __ Sub(w3, w3, wzr); |
| 3124 CHECK_NE(0, __ SizeOfCodeGeneratedSince(&blob3)); |
| 3125 |
| 3126 END(); |
| 3127 |
| 3128 RUN(); |
| 3129 |
| 3130 ASSERT_EQUAL_64(0, x0); |
| 3131 ASSERT_EQUAL_64(0, x1); |
| 3132 ASSERT_EQUAL_64(0, x2); |
| 3133 |
| 3134 TEARDOWN(); |
| 3135 } |
| 3136 |
| 3137 |
| 3138 TEST(claim_drop_zero) { |
| 3139 INIT_V8(); |
| 3140 SETUP(); |
| 3141 |
| 3142 START(); |
| 3143 |
| 3144 Label start; |
| 3145 __ Bind(&start); |
| 3146 __ Claim(0); |
| 3147 __ Drop(0); |
| 3148 __ Claim(xzr, 8); |
| 3149 __ Drop(xzr, 8); |
| 3150 __ Claim(xzr, 0); |
| 3151 __ Drop(xzr, 0); |
| 3152 __ Claim(x7, 0); |
| 3153 __ Drop(x7, 0); |
| 3154 __ ClaimBySMI(xzr, 8); |
| 3155 __ DropBySMI(xzr, 8); |
| 3156 __ ClaimBySMI(xzr, 0); |
| 3157 __ DropBySMI(xzr, 0); |
| 3158 CHECK_EQ(0, __ SizeOfCodeGeneratedSince(&start)); |
| 3159 |
| 3160 END(); |
| 3161 |
| 3162 RUN(); |
| 3163 |
| 3164 TEARDOWN(); |
| 3165 } |
| 3166 |
| 3167 |
| 3168 TEST(neg) { |
| 3169 INIT_V8(); |
| 3170 SETUP(); |
| 3171 |
| 3172 START(); |
| 3173 __ Mov(x0, 0xf123456789abcdefL); |
| 3174 |
| 3175 // Immediate. |
| 3176 __ Neg(x1, 0x123); |
| 3177 __ Neg(w2, 0x123); |
| 3178 |
| 3179 // Shifted. |
| 3180 __ Neg(x3, Operand(x0, LSL, 1)); |
| 3181 __ Neg(w4, Operand(w0, LSL, 2)); |
| 3182 __ Neg(x5, Operand(x0, LSR, 3)); |
| 3183 __ Neg(w6, Operand(w0, LSR, 4)); |
| 3184 __ Neg(x7, Operand(x0, ASR, 5)); |
| 3185 __ Neg(w8, Operand(w0, ASR, 6)); |
| 3186 |
| 3187 // Extended. |
| 3188 __ Neg(w9, Operand(w0, UXTB)); |
| 3189 __ Neg(x10, Operand(x0, SXTB, 1)); |
| 3190 __ Neg(w11, Operand(w0, UXTH, 2)); |
| 3191 __ Neg(x12, Operand(x0, SXTH, 3)); |
| 3192 __ Neg(w13, Operand(w0, UXTW, 4)); |
| 3193 __ Neg(x14, Operand(x0, SXTW, 4)); |
| 3194 END(); |
| 3195 |
| 3196 RUN(); |
| 3197 |
| 3198 ASSERT_EQUAL_64(0xfffffffffffffeddUL, x1); |
| 3199 ASSERT_EQUAL_64(0xfffffedd, x2); |
| 3200 ASSERT_EQUAL_64(0x1db97530eca86422UL, x3); |
| 3201 ASSERT_EQUAL_64(0xd950c844, x4); |
| 3202 ASSERT_EQUAL_64(0xe1db97530eca8643UL, x5); |
| 3203 ASSERT_EQUAL_64(0xf7654322, x6); |
| 3204 ASSERT_EQUAL_64(0x0076e5d4c3b2a191UL, x7); |
| 3205 ASSERT_EQUAL_64(0x01d950c9, x8); |
| 3206 ASSERT_EQUAL_64(0xffffff11, x9); |
| 3207 ASSERT_EQUAL_64(0x0000000000000022UL, x10); |
| 3208 ASSERT_EQUAL_64(0xfffcc844, x11); |
| 3209 ASSERT_EQUAL_64(0x0000000000019088UL, x12); |
| 3210 ASSERT_EQUAL_64(0x65432110, x13); |
| 3211 ASSERT_EQUAL_64(0x0000000765432110UL, x14); |
| 3212 |
| 3213 TEARDOWN(); |
| 3214 } |
| 3215 |
| 3216 |
| 3217 TEST(adc_sbc_shift) { |
| 3218 INIT_V8(); |
| 3219 SETUP(); |
| 3220 |
| 3221 START(); |
| 3222 __ Mov(x0, 0); |
| 3223 __ Mov(x1, 1); |
| 3224 __ Mov(x2, 0x0123456789abcdefL); |
| 3225 __ Mov(x3, 0xfedcba9876543210L); |
| 3226 __ Mov(x4, 0xffffffffffffffffL); |
| 3227 |
| 3228 // Clear the C flag. |
| 3229 __ Adds(x0, x0, Operand(0)); |
| 3230 |
| 3231 __ Adc(x5, x2, Operand(x3)); |
| 3232 __ Adc(x6, x0, Operand(x1, LSL, 60)); |
| 3233 __ Sbc(x7, x4, Operand(x3, LSR, 4)); |
| 3234 __ Adc(x8, x2, Operand(x3, ASR, 4)); |
| 3235 __ Adc(x9, x2, Operand(x3, ROR, 8)); |
| 3236 |
| 3237 __ Adc(w10, w2, Operand(w3)); |
| 3238 __ Adc(w11, w0, Operand(w1, LSL, 30)); |
| 3239 __ Sbc(w12, w4, Operand(w3, LSR, 4)); |
| 3240 __ Adc(w13, w2, Operand(w3, ASR, 4)); |
| 3241 __ Adc(w14, w2, Operand(w3, ROR, 8)); |
| 3242 |
| 3243 // Set the C flag. |
| 3244 __ Cmp(w0, Operand(w0)); |
| 3245 |
| 3246 __ Adc(x18, x2, Operand(x3)); |
| 3247 __ Adc(x19, x0, Operand(x1, LSL, 60)); |
| 3248 __ Sbc(x20, x4, Operand(x3, LSR, 4)); |
| 3249 __ Adc(x21, x2, Operand(x3, ASR, 4)); |
| 3250 __ Adc(x22, x2, Operand(x3, ROR, 8)); |
| 3251 |
| 3252 __ Adc(w23, w2, Operand(w3)); |
| 3253 __ Adc(w24, w0, Operand(w1, LSL, 30)); |
| 3254 __ Sbc(w25, w4, Operand(w3, LSR, 4)); |
| 3255 __ Adc(w26, w2, Operand(w3, ASR, 4)); |
| 3256 __ Adc(w27, w2, Operand(w3, ROR, 8)); |
| 3257 END(); |
| 3258 |
| 3259 RUN(); |
| 3260 |
| 3261 ASSERT_EQUAL_64(0xffffffffffffffffL, x5); |
| 3262 ASSERT_EQUAL_64(1L << 60, x6); |
| 3263 ASSERT_EQUAL_64(0xf0123456789abcddL, x7); |
| 3264 ASSERT_EQUAL_64(0x0111111111111110L, x8); |
| 3265 ASSERT_EQUAL_64(0x1222222222222221L, x9); |
| 3266 |
| 3267 ASSERT_EQUAL_32(0xffffffff, w10); |
| 3268 ASSERT_EQUAL_32(1 << 30, w11); |
| 3269 ASSERT_EQUAL_32(0xf89abcdd, w12); |
| 3270 ASSERT_EQUAL_32(0x91111110, w13); |
| 3271 ASSERT_EQUAL_32(0x9a222221, w14); |
| 3272 |
| 3273 ASSERT_EQUAL_64(0xffffffffffffffffL + 1, x18); |
| 3274 ASSERT_EQUAL_64((1L << 60) + 1, x19); |
| 3275 ASSERT_EQUAL_64(0xf0123456789abcddL + 1, x20); |
| 3276 ASSERT_EQUAL_64(0x0111111111111110L + 1, x21); |
| 3277 ASSERT_EQUAL_64(0x1222222222222221L + 1, x22); |
| 3278 |
| 3279 ASSERT_EQUAL_32(0xffffffff + 1, w23); |
| 3280 ASSERT_EQUAL_32((1 << 30) + 1, w24); |
| 3281 ASSERT_EQUAL_32(0xf89abcdd + 1, w25); |
| 3282 ASSERT_EQUAL_32(0x91111110 + 1, w26); |
| 3283 ASSERT_EQUAL_32(0x9a222221 + 1, w27); |
| 3284 |
| 3285 // Check that adc correctly sets the condition flags. |
| 3286 START(); |
| 3287 __ Mov(x0, 1); |
| 3288 __ Mov(x1, 0xffffffffffffffffL); |
| 3289 // Clear the C flag. |
| 3290 __ Adds(x0, x0, Operand(0)); |
| 3291 __ Adcs(x10, x0, Operand(x1)); |
| 3292 END(); |
| 3293 |
| 3294 RUN(); |
| 3295 |
| 3296 ASSERT_EQUAL_NZCV(ZCFlag); |
| 3297 ASSERT_EQUAL_64(0, x10); |
| 3298 |
| 3299 START(); |
| 3300 __ Mov(x0, 1); |
| 3301 __ Mov(x1, 0x8000000000000000L); |
| 3302 // Clear the C flag. |
| 3303 __ Adds(x0, x0, Operand(0)); |
| 3304 __ Adcs(x10, x0, Operand(x1, ASR, 63)); |
| 3305 END(); |
| 3306 |
| 3307 RUN(); |
| 3308 |
| 3309 ASSERT_EQUAL_NZCV(ZCFlag); |
| 3310 ASSERT_EQUAL_64(0, x10); |
| 3311 |
| 3312 START(); |
| 3313 __ Mov(x0, 0x10); |
| 3314 __ Mov(x1, 0x07ffffffffffffffL); |
| 3315 // Clear the C flag. |
| 3316 __ Adds(x0, x0, Operand(0)); |
| 3317 __ Adcs(x10, x0, Operand(x1, LSL, 4)); |
| 3318 END(); |
| 3319 |
| 3320 RUN(); |
| 3321 |
| 3322 ASSERT_EQUAL_NZCV(NVFlag); |
| 3323 ASSERT_EQUAL_64(0x8000000000000000L, x10); |
| 3324 |
| 3325 // Check that sbc correctly sets the condition flags. |
| 3326 START(); |
| 3327 __ Mov(x0, 0); |
| 3328 __ Mov(x1, 0xffffffffffffffffL); |
| 3329 // Clear the C flag. |
| 3330 __ Adds(x0, x0, Operand(0)); |
| 3331 __ Sbcs(x10, x0, Operand(x1)); |
| 3332 END(); |
| 3333 |
| 3334 RUN(); |
| 3335 |
| 3336 ASSERT_EQUAL_NZCV(ZFlag); |
| 3337 ASSERT_EQUAL_64(0, x10); |
| 3338 |
| 3339 START(); |
| 3340 __ Mov(x0, 1); |
| 3341 __ Mov(x1, 0xffffffffffffffffL); |
| 3342 // Clear the C flag. |
| 3343 __ Adds(x0, x0, Operand(0)); |
| 3344 __ Sbcs(x10, x0, Operand(x1, LSR, 1)); |
| 3345 END(); |
| 3346 |
| 3347 RUN(); |
| 3348 |
| 3349 ASSERT_EQUAL_NZCV(NFlag); |
| 3350 ASSERT_EQUAL_64(0x8000000000000001L, x10); |
| 3351 |
| 3352 START(); |
| 3353 __ Mov(x0, 0); |
| 3354 // Clear the C flag. |
| 3355 __ Adds(x0, x0, Operand(0)); |
| 3356 __ Sbcs(x10, x0, Operand(0xffffffffffffffffL)); |
| 3357 END(); |
| 3358 |
| 3359 RUN(); |
| 3360 |
| 3361 ASSERT_EQUAL_NZCV(ZFlag); |
| 3362 ASSERT_EQUAL_64(0, x10); |
| 3363 |
| 3364 START() |
| 3365 __ Mov(w0, 0x7fffffff); |
| 3366 // Clear the C flag. |
| 3367 __ Adds(x0, x0, Operand(0)); |
| 3368 __ Ngcs(w10, w0); |
| 3369 END(); |
| 3370 |
| 3371 RUN(); |
| 3372 |
| 3373 ASSERT_EQUAL_NZCV(NFlag); |
| 3374 ASSERT_EQUAL_64(0x80000000, x10); |
| 3375 |
| 3376 START(); |
| 3377 // Clear the C flag. |
| 3378 __ Adds(x0, x0, Operand(0)); |
| 3379 __ Ngcs(x10, 0x7fffffffffffffffL); |
| 3380 END(); |
| 3381 |
| 3382 RUN(); |
| 3383 |
| 3384 ASSERT_EQUAL_NZCV(NFlag); |
| 3385 ASSERT_EQUAL_64(0x8000000000000000L, x10); |
| 3386 |
| 3387 START() |
| 3388 __ Mov(x0, 0); |
| 3389 // Set the C flag. |
| 3390 __ Cmp(x0, Operand(x0)); |
| 3391 __ Sbcs(x10, x0, Operand(1)); |
| 3392 END(); |
| 3393 |
| 3394 RUN(); |
| 3395 |
| 3396 ASSERT_EQUAL_NZCV(NFlag); |
| 3397 ASSERT_EQUAL_64(0xffffffffffffffffL, x10); |
| 3398 |
| 3399 START() |
| 3400 __ Mov(x0, 0); |
| 3401 // Set the C flag. |
| 3402 __ Cmp(x0, Operand(x0)); |
| 3403 __ Ngcs(x10, 0x7fffffffffffffffL); |
| 3404 END(); |
| 3405 |
| 3406 RUN(); |
| 3407 |
| 3408 ASSERT_EQUAL_NZCV(NFlag); |
| 3409 ASSERT_EQUAL_64(0x8000000000000001L, x10); |
| 3410 |
| 3411 TEARDOWN(); |
| 3412 } |
| 3413 |
| 3414 |
| 3415 TEST(adc_sbc_extend) { |
| 3416 INIT_V8(); |
| 3417 SETUP(); |
| 3418 |
| 3419 START(); |
| 3420 // Clear the C flag. |
| 3421 __ Adds(x0, x0, Operand(0)); |
| 3422 |
| 3423 __ Mov(x0, 0); |
| 3424 __ Mov(x1, 1); |
| 3425 __ Mov(x2, 0x0123456789abcdefL); |
| 3426 |
| 3427 __ Adc(x10, x1, Operand(w2, UXTB, 1)); |
| 3428 __ Adc(x11, x1, Operand(x2, SXTH, 2)); |
| 3429 __ Sbc(x12, x1, Operand(w2, UXTW, 4)); |
| 3430 __ Adc(x13, x1, Operand(x2, UXTX, 4)); |
| 3431 |
| 3432 __ Adc(w14, w1, Operand(w2, UXTB, 1)); |
| 3433 __ Adc(w15, w1, Operand(w2, SXTH, 2)); |
| 3434 __ Adc(w9, w1, Operand(w2, UXTW, 4)); |
| 3435 |
| 3436 // Set the C flag. |
| 3437 __ Cmp(w0, Operand(w0)); |
| 3438 |
| 3439 __ Adc(x20, x1, Operand(w2, UXTB, 1)); |
| 3440 __ Adc(x21, x1, Operand(x2, SXTH, 2)); |
| 3441 __ Sbc(x22, x1, Operand(w2, UXTW, 4)); |
| 3442 __ Adc(x23, x1, Operand(x2, UXTX, 4)); |
| 3443 |
| 3444 __ Adc(w24, w1, Operand(w2, UXTB, 1)); |
| 3445 __ Adc(w25, w1, Operand(w2, SXTH, 2)); |
| 3446 __ Adc(w26, w1, Operand(w2, UXTW, 4)); |
| 3447 END(); |
| 3448 |
| 3449 RUN(); |
| 3450 |
| 3451 ASSERT_EQUAL_64(0x1df, x10); |
| 3452 ASSERT_EQUAL_64(0xffffffffffff37bdL, x11); |
| 3453 ASSERT_EQUAL_64(0xfffffff765432110L, x12); |
| 3454 ASSERT_EQUAL_64(0x123456789abcdef1L, x13); |
| 3455 |
| 3456 ASSERT_EQUAL_32(0x1df, w14); |
| 3457 ASSERT_EQUAL_32(0xffff37bd, w15); |
| 3458 ASSERT_EQUAL_32(0x9abcdef1, w9); |
| 3459 |
| 3460 ASSERT_EQUAL_64(0x1df + 1, x20); |
| 3461 ASSERT_EQUAL_64(0xffffffffffff37bdL + 1, x21); |
| 3462 ASSERT_EQUAL_64(0xfffffff765432110L + 1, x22); |
| 3463 ASSERT_EQUAL_64(0x123456789abcdef1L + 1, x23); |
| 3464 |
| 3465 ASSERT_EQUAL_32(0x1df + 1, w24); |
| 3466 ASSERT_EQUAL_32(0xffff37bd + 1, w25); |
| 3467 ASSERT_EQUAL_32(0x9abcdef1 + 1, w26); |
| 3468 |
| 3469 // Check that adc correctly sets the condition flags. |
| 3470 START(); |
| 3471 __ Mov(x0, 0xff); |
| 3472 __ Mov(x1, 0xffffffffffffffffL); |
| 3473 // Clear the C flag. |
| 3474 __ Adds(x0, x0, Operand(0)); |
| 3475 __ Adcs(x10, x0, Operand(x1, SXTX, 1)); |
| 3476 END(); |
| 3477 |
| 3478 RUN(); |
| 3479 |
| 3480 ASSERT_EQUAL_NZCV(CFlag); |
| 3481 |
| 3482 START(); |
| 3483 __ Mov(x0, 0x7fffffffffffffffL); |
| 3484 __ Mov(x1, 1); |
| 3485 // Clear the C flag. |
| 3486 __ Adds(x0, x0, Operand(0)); |
| 3487 __ Adcs(x10, x0, Operand(x1, UXTB, 2)); |
| 3488 END(); |
| 3489 |
| 3490 RUN(); |
| 3491 |
| 3492 ASSERT_EQUAL_NZCV(NVFlag); |
| 3493 |
| 3494 START(); |
| 3495 __ Mov(x0, 0x7fffffffffffffffL); |
| 3496 // Clear the C flag. |
| 3497 __ Adds(x0, x0, Operand(0)); |
| 3498 __ Adcs(x10, x0, Operand(1)); |
| 3499 END(); |
| 3500 |
| 3501 RUN(); |
| 3502 |
| 3503 ASSERT_EQUAL_NZCV(NVFlag); |
| 3504 |
| 3505 TEARDOWN(); |
| 3506 } |
| 3507 |
| 3508 |
| 3509 TEST(adc_sbc_wide_imm) { |
| 3510 INIT_V8(); |
| 3511 SETUP(); |
| 3512 |
| 3513 START(); |
| 3514 __ Mov(x0, 0); |
| 3515 |
| 3516 // Clear the C flag. |
| 3517 __ Adds(x0, x0, Operand(0)); |
| 3518 |
| 3519 __ Adc(x7, x0, Operand(0x1234567890abcdefUL)); |
| 3520 __ Adc(w8, w0, Operand(0xffffffff)); |
| 3521 __ Sbc(x9, x0, Operand(0x1234567890abcdefUL)); |
| 3522 __ Sbc(w10, w0, Operand(0xffffffff)); |
| 3523 __ Ngc(x11, Operand(0xffffffff00000000UL)); |
| 3524 __ Ngc(w12, Operand(0xffff0000)); |
| 3525 |
| 3526 // Set the C flag. |
| 3527 __ Cmp(w0, Operand(w0)); |
| 3528 |
| 3529 __ Adc(x18, x0, Operand(0x1234567890abcdefUL)); |
| 3530 __ Adc(w19, w0, Operand(0xffffffff)); |
| 3531 __ Sbc(x20, x0, Operand(0x1234567890abcdefUL)); |
| 3532 __ Sbc(w21, w0, Operand(0xffffffff)); |
| 3533 __ Ngc(x22, Operand(0xffffffff00000000UL)); |
| 3534 __ Ngc(w23, Operand(0xffff0000)); |
| 3535 END(); |
| 3536 |
| 3537 RUN(); |
| 3538 |
| 3539 ASSERT_EQUAL_64(0x1234567890abcdefUL, x7); |
| 3540 ASSERT_EQUAL_64(0xffffffff, x8); |
| 3541 ASSERT_EQUAL_64(0xedcba9876f543210UL, x9); |
| 3542 ASSERT_EQUAL_64(0, x10); |
| 3543 ASSERT_EQUAL_64(0xffffffff, x11); |
| 3544 ASSERT_EQUAL_64(0xffff, x12); |
| 3545 |
| 3546 ASSERT_EQUAL_64(0x1234567890abcdefUL + 1, x18); |
| 3547 ASSERT_EQUAL_64(0, x19); |
| 3548 ASSERT_EQUAL_64(0xedcba9876f543211UL, x20); |
| 3549 ASSERT_EQUAL_64(1, x21); |
| 3550 ASSERT_EQUAL_64(0x100000000UL, x22); |
| 3551 ASSERT_EQUAL_64(0x10000, x23); |
| 3552 |
| 3553 TEARDOWN(); |
| 3554 } |
| 3555 |
| 3556 |
| 3557 TEST(flags) { |
| 3558 INIT_V8(); |
| 3559 SETUP(); |
| 3560 |
| 3561 START(); |
| 3562 __ Mov(x0, 0); |
| 3563 __ Mov(x1, 0x1111111111111111L); |
| 3564 __ Neg(x10, Operand(x0)); |
| 3565 __ Neg(x11, Operand(x1)); |
| 3566 __ Neg(w12, Operand(w1)); |
| 3567 // Clear the C flag. |
| 3568 __ Adds(x0, x0, Operand(0)); |
| 3569 __ Ngc(x13, Operand(x0)); |
| 3570 // Set the C flag. |
| 3571 __ Cmp(x0, Operand(x0)); |
| 3572 __ Ngc(w14, Operand(w0)); |
| 3573 END(); |
| 3574 |
| 3575 RUN(); |
| 3576 |
| 3577 ASSERT_EQUAL_64(0, x10); |
| 3578 ASSERT_EQUAL_64(-0x1111111111111111L, x11); |
| 3579 ASSERT_EQUAL_32(-0x11111111, w12); |
| 3580 ASSERT_EQUAL_64(-1L, x13); |
| 3581 ASSERT_EQUAL_32(0, w14); |
| 3582 |
| 3583 START(); |
| 3584 __ Mov(x0, 0); |
| 3585 __ Cmp(x0, Operand(x0)); |
| 3586 END(); |
| 3587 |
| 3588 RUN(); |
| 3589 |
| 3590 ASSERT_EQUAL_NZCV(ZCFlag); |
| 3591 |
| 3592 START(); |
| 3593 __ Mov(w0, 0); |
| 3594 __ Cmp(w0, Operand(w0)); |
| 3595 END(); |
| 3596 |
| 3597 RUN(); |
| 3598 |
| 3599 ASSERT_EQUAL_NZCV(ZCFlag); |
| 3600 |
| 3601 START(); |
| 3602 __ Mov(x0, 0); |
| 3603 __ Mov(x1, 0x1111111111111111L); |
| 3604 __ Cmp(x0, Operand(x1)); |
| 3605 END(); |
| 3606 |
| 3607 RUN(); |
| 3608 |
| 3609 ASSERT_EQUAL_NZCV(NFlag); |
| 3610 |
| 3611 START(); |
| 3612 __ Mov(w0, 0); |
| 3613 __ Mov(w1, 0x11111111); |
| 3614 __ Cmp(w0, Operand(w1)); |
| 3615 END(); |
| 3616 |
| 3617 RUN(); |
| 3618 |
| 3619 ASSERT_EQUAL_NZCV(NFlag); |
| 3620 |
| 3621 START(); |
| 3622 __ Mov(x1, 0x1111111111111111L); |
| 3623 __ Cmp(x1, Operand(0)); |
| 3624 END(); |
| 3625 |
| 3626 RUN(); |
| 3627 |
| 3628 ASSERT_EQUAL_NZCV(CFlag); |
| 3629 |
| 3630 START(); |
| 3631 __ Mov(w1, 0x11111111); |
| 3632 __ Cmp(w1, Operand(0)); |
| 3633 END(); |
| 3634 |
| 3635 RUN(); |
| 3636 |
| 3637 ASSERT_EQUAL_NZCV(CFlag); |
| 3638 |
| 3639 START(); |
| 3640 __ Mov(x0, 1); |
| 3641 __ Mov(x1, 0x7fffffffffffffffL); |
| 3642 __ Cmn(x1, Operand(x0)); |
| 3643 END(); |
| 3644 |
| 3645 RUN(); |
| 3646 |
| 3647 ASSERT_EQUAL_NZCV(NVFlag); |
| 3648 |
| 3649 START(); |
| 3650 __ Mov(w0, 1); |
| 3651 __ Mov(w1, 0x7fffffff); |
| 3652 __ Cmn(w1, Operand(w0)); |
| 3653 END(); |
| 3654 |
| 3655 RUN(); |
| 3656 |
| 3657 ASSERT_EQUAL_NZCV(NVFlag); |
| 3658 |
| 3659 START(); |
| 3660 __ Mov(x0, 1); |
| 3661 __ Mov(x1, 0xffffffffffffffffL); |
| 3662 __ Cmn(x1, Operand(x0)); |
| 3663 END(); |
| 3664 |
| 3665 RUN(); |
| 3666 |
| 3667 ASSERT_EQUAL_NZCV(ZCFlag); |
| 3668 |
| 3669 START(); |
| 3670 __ Mov(w0, 1); |
| 3671 __ Mov(w1, 0xffffffff); |
| 3672 __ Cmn(w1, Operand(w0)); |
| 3673 END(); |
| 3674 |
| 3675 RUN(); |
| 3676 |
| 3677 ASSERT_EQUAL_NZCV(ZCFlag); |
| 3678 |
| 3679 START(); |
| 3680 __ Mov(w0, 0); |
| 3681 __ Mov(w1, 1); |
| 3682 // Clear the C flag. |
| 3683 __ Adds(w0, w0, Operand(0)); |
| 3684 __ Ngcs(w0, Operand(w1)); |
| 3685 END(); |
| 3686 |
| 3687 RUN(); |
| 3688 |
| 3689 ASSERT_EQUAL_NZCV(NFlag); |
| 3690 |
| 3691 START(); |
| 3692 __ Mov(w0, 0); |
| 3693 __ Mov(w1, 0); |
| 3694 // Set the C flag. |
| 3695 __ Cmp(w0, Operand(w0)); |
| 3696 __ Ngcs(w0, Operand(w1)); |
| 3697 END(); |
| 3698 |
| 3699 RUN(); |
| 3700 |
| 3701 ASSERT_EQUAL_NZCV(ZCFlag); |
| 3702 |
| 3703 TEARDOWN(); |
| 3704 } |
| 3705 |
| 3706 |
| 3707 TEST(cmp_shift) { |
| 3708 INIT_V8(); |
| 3709 SETUP(); |
| 3710 |
| 3711 START(); |
| 3712 __ Mov(x18, 0xf0000000); |
| 3713 __ Mov(x19, 0xf000000010000000UL); |
| 3714 __ Mov(x20, 0xf0000000f0000000UL); |
| 3715 __ Mov(x21, 0x7800000078000000UL); |
| 3716 __ Mov(x22, 0x3c0000003c000000UL); |
| 3717 __ Mov(x23, 0x8000000780000000UL); |
| 3718 __ Mov(x24, 0x0000000f00000000UL); |
| 3719 __ Mov(x25, 0x00000003c0000000UL); |
| 3720 __ Mov(x26, 0x8000000780000000UL); |
| 3721 __ Mov(x27, 0xc0000003); |
| 3722 |
| 3723 __ Cmp(w20, Operand(w21, LSL, 1)); |
| 3724 __ Mrs(x0, NZCV); |
| 3725 |
| 3726 __ Cmp(x20, Operand(x22, LSL, 2)); |
| 3727 __ Mrs(x1, NZCV); |
| 3728 |
| 3729 __ Cmp(w19, Operand(w23, LSR, 3)); |
| 3730 __ Mrs(x2, NZCV); |
| 3731 |
| 3732 __ Cmp(x18, Operand(x24, LSR, 4)); |
| 3733 __ Mrs(x3, NZCV); |
| 3734 |
| 3735 __ Cmp(w20, Operand(w25, ASR, 2)); |
| 3736 __ Mrs(x4, NZCV); |
| 3737 |
| 3738 __ Cmp(x20, Operand(x26, ASR, 3)); |
| 3739 __ Mrs(x5, NZCV); |
| 3740 |
| 3741 __ Cmp(w27, Operand(w22, ROR, 28)); |
| 3742 __ Mrs(x6, NZCV); |
| 3743 |
| 3744 __ Cmp(x20, Operand(x21, ROR, 31)); |
| 3745 __ Mrs(x7, NZCV); |
| 3746 END(); |
| 3747 |
| 3748 RUN(); |
| 3749 |
| 3750 ASSERT_EQUAL_32(ZCFlag, w0); |
| 3751 ASSERT_EQUAL_32(ZCFlag, w1); |
| 3752 ASSERT_EQUAL_32(ZCFlag, w2); |
| 3753 ASSERT_EQUAL_32(ZCFlag, w3); |
| 3754 ASSERT_EQUAL_32(ZCFlag, w4); |
| 3755 ASSERT_EQUAL_32(ZCFlag, w5); |
| 3756 ASSERT_EQUAL_32(ZCFlag, w6); |
| 3757 ASSERT_EQUAL_32(ZCFlag, w7); |
| 3758 |
| 3759 TEARDOWN(); |
| 3760 } |
| 3761 |
| 3762 |
| 3763 TEST(cmp_extend) { |
| 3764 INIT_V8(); |
| 3765 SETUP(); |
| 3766 |
| 3767 START(); |
| 3768 __ Mov(w20, 0x2); |
| 3769 __ Mov(w21, 0x1); |
| 3770 __ Mov(x22, 0xffffffffffffffffUL); |
| 3771 __ Mov(x23, 0xff); |
| 3772 __ Mov(x24, 0xfffffffffffffffeUL); |
| 3773 __ Mov(x25, 0xffff); |
| 3774 __ Mov(x26, 0xffffffff); |
| 3775 |
| 3776 __ Cmp(w20, Operand(w21, LSL, 1)); |
| 3777 __ Mrs(x0, NZCV); |
| 3778 |
| 3779 __ Cmp(x22, Operand(x23, SXTB, 0)); |
| 3780 __ Mrs(x1, NZCV); |
| 3781 |
| 3782 __ Cmp(x24, Operand(x23, SXTB, 1)); |
| 3783 __ Mrs(x2, NZCV); |
| 3784 |
| 3785 __ Cmp(x24, Operand(x23, UXTB, 1)); |
| 3786 __ Mrs(x3, NZCV); |
| 3787 |
| 3788 __ Cmp(w22, Operand(w25, UXTH)); |
| 3789 __ Mrs(x4, NZCV); |
| 3790 |
| 3791 __ Cmp(x22, Operand(x25, SXTH)); |
| 3792 __ Mrs(x5, NZCV); |
| 3793 |
| 3794 __ Cmp(x22, Operand(x26, UXTW)); |
| 3795 __ Mrs(x6, NZCV); |
| 3796 |
| 3797 __ Cmp(x24, Operand(x26, SXTW, 1)); |
| 3798 __ Mrs(x7, NZCV); |
| 3799 END(); |
| 3800 |
| 3801 RUN(); |
| 3802 |
| 3803 ASSERT_EQUAL_32(ZCFlag, w0); |
| 3804 ASSERT_EQUAL_32(ZCFlag, w1); |
| 3805 ASSERT_EQUAL_32(ZCFlag, w2); |
| 3806 ASSERT_EQUAL_32(NCFlag, w3); |
| 3807 ASSERT_EQUAL_32(NCFlag, w4); |
| 3808 ASSERT_EQUAL_32(ZCFlag, w5); |
| 3809 ASSERT_EQUAL_32(NCFlag, w6); |
| 3810 ASSERT_EQUAL_32(ZCFlag, w7); |
| 3811 |
| 3812 TEARDOWN(); |
| 3813 } |
| 3814 |
| 3815 |
| 3816 TEST(ccmp) { |
| 3817 INIT_V8(); |
| 3818 SETUP(); |
| 3819 |
| 3820 START(); |
| 3821 __ Mov(w16, 0); |
| 3822 __ Mov(w17, 1); |
| 3823 __ Cmp(w16, w16); |
| 3824 __ Ccmp(w16, w17, NCFlag, eq); |
| 3825 __ Mrs(x0, NZCV); |
| 3826 |
| 3827 __ Cmp(w16, w16); |
| 3828 __ Ccmp(w16, w17, NCFlag, ne); |
| 3829 __ Mrs(x1, NZCV); |
| 3830 |
| 3831 __ Cmp(x16, x16); |
| 3832 __ Ccmn(x16, 2, NZCVFlag, eq); |
| 3833 __ Mrs(x2, NZCV); |
| 3834 |
| 3835 __ Cmp(x16, x16); |
| 3836 __ Ccmn(x16, 2, NZCVFlag, ne); |
| 3837 __ Mrs(x3, NZCV); |
| 3838 |
| 3839 __ ccmp(x16, x16, NZCVFlag, al); |
| 3840 __ Mrs(x4, NZCV); |
| 3841 |
| 3842 __ ccmp(x16, x16, NZCVFlag, nv); |
| 3843 __ Mrs(x5, NZCV); |
| 3844 |
| 3845 END(); |
| 3846 |
| 3847 RUN(); |
| 3848 |
| 3849 ASSERT_EQUAL_32(NFlag, w0); |
| 3850 ASSERT_EQUAL_32(NCFlag, w1); |
| 3851 ASSERT_EQUAL_32(NoFlag, w2); |
| 3852 ASSERT_EQUAL_32(NZCVFlag, w3); |
| 3853 ASSERT_EQUAL_32(ZCFlag, w4); |
| 3854 ASSERT_EQUAL_32(ZCFlag, w5); |
| 3855 |
| 3856 TEARDOWN(); |
| 3857 } |
| 3858 |
| 3859 |
| 3860 TEST(ccmp_wide_imm) { |
| 3861 INIT_V8(); |
| 3862 SETUP(); |
| 3863 |
| 3864 START(); |
| 3865 __ Mov(w20, 0); |
| 3866 |
| 3867 __ Cmp(w20, Operand(w20)); |
| 3868 __ Ccmp(w20, Operand(0x12345678), NZCVFlag, eq); |
| 3869 __ Mrs(x0, NZCV); |
| 3870 |
| 3871 __ Cmp(w20, Operand(w20)); |
| 3872 __ Ccmp(x20, Operand(0xffffffffffffffffUL), NZCVFlag, eq); |
| 3873 __ Mrs(x1, NZCV); |
| 3874 END(); |
| 3875 |
| 3876 RUN(); |
| 3877 |
| 3878 ASSERT_EQUAL_32(NFlag, w0); |
| 3879 ASSERT_EQUAL_32(NoFlag, w1); |
| 3880 |
| 3881 TEARDOWN(); |
| 3882 } |
| 3883 |
| 3884 |
| 3885 TEST(ccmp_shift_extend) { |
| 3886 INIT_V8(); |
| 3887 SETUP(); |
| 3888 |
| 3889 START(); |
| 3890 __ Mov(w20, 0x2); |
| 3891 __ Mov(w21, 0x1); |
| 3892 __ Mov(x22, 0xffffffffffffffffUL); |
| 3893 __ Mov(x23, 0xff); |
| 3894 __ Mov(x24, 0xfffffffffffffffeUL); |
| 3895 |
| 3896 __ Cmp(w20, Operand(w20)); |
| 3897 __ Ccmp(w20, Operand(w21, LSL, 1), NZCVFlag, eq); |
| 3898 __ Mrs(x0, NZCV); |
| 3899 |
| 3900 __ Cmp(w20, Operand(w20)); |
| 3901 __ Ccmp(x22, Operand(x23, SXTB, 0), NZCVFlag, eq); |
| 3902 __ Mrs(x1, NZCV); |
| 3903 |
| 3904 __ Cmp(w20, Operand(w20)); |
| 3905 __ Ccmp(x24, Operand(x23, SXTB, 1), NZCVFlag, eq); |
| 3906 __ Mrs(x2, NZCV); |
| 3907 |
| 3908 __ Cmp(w20, Operand(w20)); |
| 3909 __ Ccmp(x24, Operand(x23, UXTB, 1), NZCVFlag, eq); |
| 3910 __ Mrs(x3, NZCV); |
| 3911 |
| 3912 __ Cmp(w20, Operand(w20)); |
| 3913 __ Ccmp(x24, Operand(x23, UXTB, 1), NZCVFlag, ne); |
| 3914 __ Mrs(x4, NZCV); |
| 3915 END(); |
| 3916 |
| 3917 RUN(); |
| 3918 |
| 3919 ASSERT_EQUAL_32(ZCFlag, w0); |
| 3920 ASSERT_EQUAL_32(ZCFlag, w1); |
| 3921 ASSERT_EQUAL_32(ZCFlag, w2); |
| 3922 ASSERT_EQUAL_32(NCFlag, w3); |
| 3923 ASSERT_EQUAL_32(NZCVFlag, w4); |
| 3924 |
| 3925 TEARDOWN(); |
| 3926 } |
| 3927 |
| 3928 |
| 3929 TEST(csel) { |
| 3930 INIT_V8(); |
| 3931 SETUP(); |
| 3932 |
| 3933 START(); |
| 3934 __ Mov(x16, 0); |
| 3935 __ Mov(x24, 0x0000000f0000000fUL); |
| 3936 __ Mov(x25, 0x0000001f0000001fUL); |
| 3937 __ Mov(x26, 0); |
| 3938 __ Mov(x27, 0); |
| 3939 |
| 3940 __ Cmp(w16, 0); |
| 3941 __ Csel(w0, w24, w25, eq); |
| 3942 __ Csel(w1, w24, w25, ne); |
| 3943 __ Csinc(w2, w24, w25, mi); |
| 3944 __ Csinc(w3, w24, w25, pl); |
| 3945 |
| 3946 __ csel(w13, w24, w25, al); |
| 3947 __ csel(x14, x24, x25, nv); |
| 3948 |
| 3949 __ Cmp(x16, 1); |
| 3950 __ Csinv(x4, x24, x25, gt); |
| 3951 __ Csinv(x5, x24, x25, le); |
| 3952 __ Csneg(x6, x24, x25, hs); |
| 3953 __ Csneg(x7, x24, x25, lo); |
| 3954 |
| 3955 __ Cset(w8, ne); |
| 3956 __ Csetm(w9, ne); |
| 3957 __ Cinc(x10, x25, ne); |
| 3958 __ Cinv(x11, x24, ne); |
| 3959 __ Cneg(x12, x24, ne); |
| 3960 |
| 3961 __ csel(w15, w24, w25, al); |
| 3962 __ csel(x18, x24, x25, nv); |
| 3963 |
| 3964 __ CzeroX(x24, ne); |
| 3965 __ CzeroX(x25, eq); |
| 3966 |
| 3967 __ CmovX(x26, x25, ne); |
| 3968 __ CmovX(x27, x25, eq); |
| 3969 END(); |
| 3970 |
| 3971 RUN(); |
| 3972 |
| 3973 ASSERT_EQUAL_64(0x0000000f, x0); |
| 3974 ASSERT_EQUAL_64(0x0000001f, x1); |
| 3975 ASSERT_EQUAL_64(0x00000020, x2); |
| 3976 ASSERT_EQUAL_64(0x0000000f, x3); |
| 3977 ASSERT_EQUAL_64(0xffffffe0ffffffe0UL, x4); |
| 3978 ASSERT_EQUAL_64(0x0000000f0000000fUL, x5); |
| 3979 ASSERT_EQUAL_64(0xffffffe0ffffffe1UL, x6); |
| 3980 ASSERT_EQUAL_64(0x0000000f0000000fUL, x7); |
| 3981 ASSERT_EQUAL_64(0x00000001, x8); |
| 3982 ASSERT_EQUAL_64(0xffffffff, x9); |
| 3983 ASSERT_EQUAL_64(0x0000001f00000020UL, x10); |
| 3984 ASSERT_EQUAL_64(0xfffffff0fffffff0UL, x11); |
| 3985 ASSERT_EQUAL_64(0xfffffff0fffffff1UL, x12); |
| 3986 ASSERT_EQUAL_64(0x0000000f, x13); |
| 3987 ASSERT_EQUAL_64(0x0000000f0000000fUL, x14); |
| 3988 ASSERT_EQUAL_64(0x0000000f, x15); |
| 3989 ASSERT_EQUAL_64(0x0000000f0000000fUL, x18); |
| 3990 ASSERT_EQUAL_64(0, x24); |
| 3991 ASSERT_EQUAL_64(0x0000001f0000001fUL, x25); |
| 3992 ASSERT_EQUAL_64(0x0000001f0000001fUL, x26); |
| 3993 ASSERT_EQUAL_64(0, x27); |
| 3994 |
| 3995 TEARDOWN(); |
| 3996 } |
| 3997 |
| 3998 |
| 3999 TEST(csel_imm) { |
| 4000 INIT_V8(); |
| 4001 SETUP(); |
| 4002 |
| 4003 START(); |
| 4004 __ Mov(x18, 0); |
| 4005 __ Mov(x19, 0x80000000); |
| 4006 __ Mov(x20, 0x8000000000000000UL); |
| 4007 |
| 4008 __ Cmp(x18, Operand(0)); |
| 4009 __ Csel(w0, w19, -2, ne); |
| 4010 __ Csel(w1, w19, -1, ne); |
| 4011 __ Csel(w2, w19, 0, ne); |
| 4012 __ Csel(w3, w19, 1, ne); |
| 4013 __ Csel(w4, w19, 2, ne); |
| 4014 __ Csel(w5, w19, Operand(w19, ASR, 31), ne); |
| 4015 __ Csel(w6, w19, Operand(w19, ROR, 1), ne); |
| 4016 __ Csel(w7, w19, 3, eq); |
| 4017 |
| 4018 __ Csel(x8, x20, -2, ne); |
| 4019 __ Csel(x9, x20, -1, ne); |
| 4020 __ Csel(x10, x20, 0, ne); |
| 4021 __ Csel(x11, x20, 1, ne); |
| 4022 __ Csel(x12, x20, 2, ne); |
| 4023 __ Csel(x13, x20, Operand(x20, ASR, 63), ne); |
| 4024 __ Csel(x14, x20, Operand(x20, ROR, 1), ne); |
| 4025 __ Csel(x15, x20, 3, eq); |
| 4026 |
| 4027 END(); |
| 4028 |
| 4029 RUN(); |
| 4030 |
| 4031 ASSERT_EQUAL_32(-2, w0); |
| 4032 ASSERT_EQUAL_32(-1, w1); |
| 4033 ASSERT_EQUAL_32(0, w2); |
| 4034 ASSERT_EQUAL_32(1, w3); |
| 4035 ASSERT_EQUAL_32(2, w4); |
| 4036 ASSERT_EQUAL_32(-1, w5); |
| 4037 ASSERT_EQUAL_32(0x40000000, w6); |
| 4038 ASSERT_EQUAL_32(0x80000000, w7); |
| 4039 |
| 4040 ASSERT_EQUAL_64(-2, x8); |
| 4041 ASSERT_EQUAL_64(-1, x9); |
| 4042 ASSERT_EQUAL_64(0, x10); |
| 4043 ASSERT_EQUAL_64(1, x11); |
| 4044 ASSERT_EQUAL_64(2, x12); |
| 4045 ASSERT_EQUAL_64(-1, x13); |
| 4046 ASSERT_EQUAL_64(0x4000000000000000UL, x14); |
| 4047 ASSERT_EQUAL_64(0x8000000000000000UL, x15); |
| 4048 |
| 4049 TEARDOWN(); |
| 4050 } |
| 4051 |
| 4052 |
| 4053 TEST(lslv) { |
| 4054 INIT_V8(); |
| 4055 SETUP(); |
| 4056 |
| 4057 uint64_t value = 0x0123456789abcdefUL; |
| 4058 int shift[] = {1, 3, 5, 9, 17, 33}; |
| 4059 |
| 4060 START(); |
| 4061 __ Mov(x0, value); |
| 4062 __ Mov(w1, shift[0]); |
| 4063 __ Mov(w2, shift[1]); |
| 4064 __ Mov(w3, shift[2]); |
| 4065 __ Mov(w4, shift[3]); |
| 4066 __ Mov(w5, shift[4]); |
| 4067 __ Mov(w6, shift[5]); |
| 4068 |
| 4069 __ lslv(x0, x0, xzr); |
| 4070 |
| 4071 __ Lsl(x16, x0, x1); |
| 4072 __ Lsl(x17, x0, x2); |
| 4073 __ Lsl(x18, x0, x3); |
| 4074 __ Lsl(x19, x0, x4); |
| 4075 __ Lsl(x20, x0, x5); |
| 4076 __ Lsl(x21, x0, x6); |
| 4077 |
| 4078 __ Lsl(w22, w0, w1); |
| 4079 __ Lsl(w23, w0, w2); |
| 4080 __ Lsl(w24, w0, w3); |
| 4081 __ Lsl(w25, w0, w4); |
| 4082 __ Lsl(w26, w0, w5); |
| 4083 __ Lsl(w27, w0, w6); |
| 4084 END(); |
| 4085 |
| 4086 RUN(); |
| 4087 |
| 4088 ASSERT_EQUAL_64(value, x0); |
| 4089 ASSERT_EQUAL_64(value << (shift[0] & 63), x16); |
| 4090 ASSERT_EQUAL_64(value << (shift[1] & 63), x17); |
| 4091 ASSERT_EQUAL_64(value << (shift[2] & 63), x18); |
| 4092 ASSERT_EQUAL_64(value << (shift[3] & 63), x19); |
| 4093 ASSERT_EQUAL_64(value << (shift[4] & 63), x20); |
| 4094 ASSERT_EQUAL_64(value << (shift[5] & 63), x21); |
| 4095 ASSERT_EQUAL_32(value << (shift[0] & 31), w22); |
| 4096 ASSERT_EQUAL_32(value << (shift[1] & 31), w23); |
| 4097 ASSERT_EQUAL_32(value << (shift[2] & 31), w24); |
| 4098 ASSERT_EQUAL_32(value << (shift[3] & 31), w25); |
| 4099 ASSERT_EQUAL_32(value << (shift[4] & 31), w26); |
| 4100 ASSERT_EQUAL_32(value << (shift[5] & 31), w27); |
| 4101 |
| 4102 TEARDOWN(); |
| 4103 } |
| 4104 |
| 4105 |
| 4106 TEST(lsrv) { |
| 4107 INIT_V8(); |
| 4108 SETUP(); |
| 4109 |
| 4110 uint64_t value = 0x0123456789abcdefUL; |
| 4111 int shift[] = {1, 3, 5, 9, 17, 33}; |
| 4112 |
| 4113 START(); |
| 4114 __ Mov(x0, value); |
| 4115 __ Mov(w1, shift[0]); |
| 4116 __ Mov(w2, shift[1]); |
| 4117 __ Mov(w3, shift[2]); |
| 4118 __ Mov(w4, shift[3]); |
| 4119 __ Mov(w5, shift[4]); |
| 4120 __ Mov(w6, shift[5]); |
| 4121 |
| 4122 __ lsrv(x0, x0, xzr); |
| 4123 |
| 4124 __ Lsr(x16, x0, x1); |
| 4125 __ Lsr(x17, x0, x2); |
| 4126 __ Lsr(x18, x0, x3); |
| 4127 __ Lsr(x19, x0, x4); |
| 4128 __ Lsr(x20, x0, x5); |
| 4129 __ Lsr(x21, x0, x6); |
| 4130 |
| 4131 __ Lsr(w22, w0, w1); |
| 4132 __ Lsr(w23, w0, w2); |
| 4133 __ Lsr(w24, w0, w3); |
| 4134 __ Lsr(w25, w0, w4); |
| 4135 __ Lsr(w26, w0, w5); |
| 4136 __ Lsr(w27, w0, w6); |
| 4137 END(); |
| 4138 |
| 4139 RUN(); |
| 4140 |
| 4141 ASSERT_EQUAL_64(value, x0); |
| 4142 ASSERT_EQUAL_64(value >> (shift[0] & 63), x16); |
| 4143 ASSERT_EQUAL_64(value >> (shift[1] & 63), x17); |
| 4144 ASSERT_EQUAL_64(value >> (shift[2] & 63), x18); |
| 4145 ASSERT_EQUAL_64(value >> (shift[3] & 63), x19); |
| 4146 ASSERT_EQUAL_64(value >> (shift[4] & 63), x20); |
| 4147 ASSERT_EQUAL_64(value >> (shift[5] & 63), x21); |
| 4148 |
| 4149 value &= 0xffffffffUL; |
| 4150 ASSERT_EQUAL_32(value >> (shift[0] & 31), w22); |
| 4151 ASSERT_EQUAL_32(value >> (shift[1] & 31), w23); |
| 4152 ASSERT_EQUAL_32(value >> (shift[2] & 31), w24); |
| 4153 ASSERT_EQUAL_32(value >> (shift[3] & 31), w25); |
| 4154 ASSERT_EQUAL_32(value >> (shift[4] & 31), w26); |
| 4155 ASSERT_EQUAL_32(value >> (shift[5] & 31), w27); |
| 4156 |
| 4157 TEARDOWN(); |
| 4158 } |
| 4159 |
| 4160 |
| 4161 TEST(asrv) { |
| 4162 INIT_V8(); |
| 4163 SETUP(); |
| 4164 |
| 4165 int64_t value = 0xfedcba98fedcba98UL; |
| 4166 int shift[] = {1, 3, 5, 9, 17, 33}; |
| 4167 |
| 4168 START(); |
| 4169 __ Mov(x0, value); |
| 4170 __ Mov(w1, shift[0]); |
| 4171 __ Mov(w2, shift[1]); |
| 4172 __ Mov(w3, shift[2]); |
| 4173 __ Mov(w4, shift[3]); |
| 4174 __ Mov(w5, shift[4]); |
| 4175 __ Mov(w6, shift[5]); |
| 4176 |
| 4177 __ asrv(x0, x0, xzr); |
| 4178 |
| 4179 __ Asr(x16, x0, x1); |
| 4180 __ Asr(x17, x0, x2); |
| 4181 __ Asr(x18, x0, x3); |
| 4182 __ Asr(x19, x0, x4); |
| 4183 __ Asr(x20, x0, x5); |
| 4184 __ Asr(x21, x0, x6); |
| 4185 |
| 4186 __ Asr(w22, w0, w1); |
| 4187 __ Asr(w23, w0, w2); |
| 4188 __ Asr(w24, w0, w3); |
| 4189 __ Asr(w25, w0, w4); |
| 4190 __ Asr(w26, w0, w5); |
| 4191 __ Asr(w27, w0, w6); |
| 4192 END(); |
| 4193 |
| 4194 RUN(); |
| 4195 |
| 4196 ASSERT_EQUAL_64(value, x0); |
| 4197 ASSERT_EQUAL_64(value >> (shift[0] & 63), x16); |
| 4198 ASSERT_EQUAL_64(value >> (shift[1] & 63), x17); |
| 4199 ASSERT_EQUAL_64(value >> (shift[2] & 63), x18); |
| 4200 ASSERT_EQUAL_64(value >> (shift[3] & 63), x19); |
| 4201 ASSERT_EQUAL_64(value >> (shift[4] & 63), x20); |
| 4202 ASSERT_EQUAL_64(value >> (shift[5] & 63), x21); |
| 4203 |
| 4204 int32_t value32 = static_cast<int32_t>(value & 0xffffffffUL); |
| 4205 ASSERT_EQUAL_32(value32 >> (shift[0] & 31), w22); |
| 4206 ASSERT_EQUAL_32(value32 >> (shift[1] & 31), w23); |
| 4207 ASSERT_EQUAL_32(value32 >> (shift[2] & 31), w24); |
| 4208 ASSERT_EQUAL_32(value32 >> (shift[3] & 31), w25); |
| 4209 ASSERT_EQUAL_32(value32 >> (shift[4] & 31), w26); |
| 4210 ASSERT_EQUAL_32(value32 >> (shift[5] & 31), w27); |
| 4211 |
| 4212 TEARDOWN(); |
| 4213 } |
| 4214 |
| 4215 |
| 4216 TEST(rorv) { |
| 4217 INIT_V8(); |
| 4218 SETUP(); |
| 4219 |
| 4220 uint64_t value = 0x0123456789abcdefUL; |
| 4221 int shift[] = {4, 8, 12, 16, 24, 36}; |
| 4222 |
| 4223 START(); |
| 4224 __ Mov(x0, value); |
| 4225 __ Mov(w1, shift[0]); |
| 4226 __ Mov(w2, shift[1]); |
| 4227 __ Mov(w3, shift[2]); |
| 4228 __ Mov(w4, shift[3]); |
| 4229 __ Mov(w5, shift[4]); |
| 4230 __ Mov(w6, shift[5]); |
| 4231 |
| 4232 __ rorv(x0, x0, xzr); |
| 4233 |
| 4234 __ Ror(x16, x0, x1); |
| 4235 __ Ror(x17, x0, x2); |
| 4236 __ Ror(x18, x0, x3); |
| 4237 __ Ror(x19, x0, x4); |
| 4238 __ Ror(x20, x0, x5); |
| 4239 __ Ror(x21, x0, x6); |
| 4240 |
| 4241 __ Ror(w22, w0, w1); |
| 4242 __ Ror(w23, w0, w2); |
| 4243 __ Ror(w24, w0, w3); |
| 4244 __ Ror(w25, w0, w4); |
| 4245 __ Ror(w26, w0, w5); |
| 4246 __ Ror(w27, w0, w6); |
| 4247 END(); |
| 4248 |
| 4249 RUN(); |
| 4250 |
| 4251 ASSERT_EQUAL_64(value, x0); |
| 4252 ASSERT_EQUAL_64(0xf0123456789abcdeUL, x16); |
| 4253 ASSERT_EQUAL_64(0xef0123456789abcdUL, x17); |
| 4254 ASSERT_EQUAL_64(0xdef0123456789abcUL, x18); |
| 4255 ASSERT_EQUAL_64(0xcdef0123456789abUL, x19); |
| 4256 ASSERT_EQUAL_64(0xabcdef0123456789UL, x20); |
| 4257 ASSERT_EQUAL_64(0x789abcdef0123456UL, x21); |
| 4258 ASSERT_EQUAL_32(0xf89abcde, w22); |
| 4259 ASSERT_EQUAL_32(0xef89abcd, w23); |
| 4260 ASSERT_EQUAL_32(0xdef89abc, w24); |
| 4261 ASSERT_EQUAL_32(0xcdef89ab, w25); |
| 4262 ASSERT_EQUAL_32(0xabcdef89, w26); |
| 4263 ASSERT_EQUAL_32(0xf89abcde, w27); |
| 4264 |
| 4265 TEARDOWN(); |
| 4266 } |
| 4267 |
| 4268 |
| 4269 TEST(bfm) { |
| 4270 INIT_V8(); |
| 4271 SETUP(); |
| 4272 |
| 4273 START(); |
| 4274 __ Mov(x1, 0x0123456789abcdefL); |
| 4275 |
| 4276 __ Mov(x10, 0x8888888888888888L); |
| 4277 __ Mov(x11, 0x8888888888888888L); |
| 4278 __ Mov(x12, 0x8888888888888888L); |
| 4279 __ Mov(x13, 0x8888888888888888L); |
| 4280 __ Mov(w20, 0x88888888); |
| 4281 __ Mov(w21, 0x88888888); |
| 4282 |
| 4283 __ bfm(x10, x1, 16, 31); |
| 4284 __ bfm(x11, x1, 32, 15); |
| 4285 |
| 4286 __ bfm(w20, w1, 16, 23); |
| 4287 __ bfm(w21, w1, 24, 15); |
| 4288 |
| 4289 // Aliases. |
| 4290 __ Bfi(x12, x1, 16, 8); |
| 4291 __ Bfxil(x13, x1, 16, 8); |
| 4292 END(); |
| 4293 |
| 4294 RUN(); |
| 4295 |
| 4296 |
| 4297 ASSERT_EQUAL_64(0x88888888888889abL, x10); |
| 4298 ASSERT_EQUAL_64(0x8888cdef88888888L, x11); |
| 4299 |
| 4300 ASSERT_EQUAL_32(0x888888ab, w20); |
| 4301 ASSERT_EQUAL_32(0x88cdef88, w21); |
| 4302 |
| 4303 ASSERT_EQUAL_64(0x8888888888ef8888L, x12); |
| 4304 ASSERT_EQUAL_64(0x88888888888888abL, x13); |
| 4305 |
| 4306 TEARDOWN(); |
| 4307 } |
| 4308 |
| 4309 |
| 4310 TEST(sbfm) { |
| 4311 INIT_V8(); |
| 4312 SETUP(); |
| 4313 |
| 4314 START(); |
| 4315 __ Mov(x1, 0x0123456789abcdefL); |
| 4316 __ Mov(x2, 0xfedcba9876543210L); |
| 4317 |
| 4318 __ sbfm(x10, x1, 16, 31); |
| 4319 __ sbfm(x11, x1, 32, 15); |
| 4320 __ sbfm(x12, x1, 32, 47); |
| 4321 __ sbfm(x13, x1, 48, 35); |
| 4322 |
| 4323 __ sbfm(w14, w1, 16, 23); |
| 4324 __ sbfm(w15, w1, 24, 15); |
| 4325 __ sbfm(w16, w2, 16, 23); |
| 4326 __ sbfm(w17, w2, 24, 15); |
| 4327 |
| 4328 // Aliases. |
| 4329 __ Asr(x18, x1, 32); |
| 4330 __ Asr(x19, x2, 32); |
| 4331 __ Sbfiz(x20, x1, 8, 16); |
| 4332 __ Sbfiz(x21, x2, 8, 16); |
| 4333 __ Sbfx(x22, x1, 8, 16); |
| 4334 __ Sbfx(x23, x2, 8, 16); |
| 4335 __ Sxtb(x24, w1); |
| 4336 __ Sxtb(x25, x2); |
| 4337 __ Sxth(x26, w1); |
| 4338 __ Sxth(x27, x2); |
| 4339 __ Sxtw(x28, w1); |
| 4340 __ Sxtw(x29, x2); |
| 4341 END(); |
| 4342 |
| 4343 RUN(); |
| 4344 |
| 4345 |
| 4346 ASSERT_EQUAL_64(0xffffffffffff89abL, x10); |
| 4347 ASSERT_EQUAL_64(0xffffcdef00000000L, x11); |
| 4348 ASSERT_EQUAL_64(0x4567L, x12); |
| 4349 ASSERT_EQUAL_64(0x789abcdef0000L, x13); |
| 4350 |
| 4351 ASSERT_EQUAL_32(0xffffffab, w14); |
| 4352 ASSERT_EQUAL_32(0xffcdef00, w15); |
| 4353 ASSERT_EQUAL_32(0x54, w16); |
| 4354 ASSERT_EQUAL_32(0x00321000, w17); |
| 4355 |
| 4356 ASSERT_EQUAL_64(0x01234567L, x18); |
| 4357 ASSERT_EQUAL_64(0xfffffffffedcba98L, x19); |
| 4358 ASSERT_EQUAL_64(0xffffffffffcdef00L, x20); |
| 4359 ASSERT_EQUAL_64(0x321000L, x21); |
| 4360 ASSERT_EQUAL_64(0xffffffffffffabcdL, x22); |
| 4361 ASSERT_EQUAL_64(0x5432L, x23); |
| 4362 ASSERT_EQUAL_64(0xffffffffffffffefL, x24); |
| 4363 ASSERT_EQUAL_64(0x10, x25); |
| 4364 ASSERT_EQUAL_64(0xffffffffffffcdefL, x26); |
| 4365 ASSERT_EQUAL_64(0x3210, x27); |
| 4366 ASSERT_EQUAL_64(0xffffffff89abcdefL, x28); |
| 4367 ASSERT_EQUAL_64(0x76543210, x29); |
| 4368 |
| 4369 TEARDOWN(); |
| 4370 } |
| 4371 |
| 4372 |
| 4373 TEST(ubfm) { |
| 4374 INIT_V8(); |
| 4375 SETUP(); |
| 4376 |
| 4377 START(); |
| 4378 __ Mov(x1, 0x0123456789abcdefL); |
| 4379 __ Mov(x2, 0xfedcba9876543210L); |
| 4380 |
| 4381 __ Mov(x10, 0x8888888888888888L); |
| 4382 __ Mov(x11, 0x8888888888888888L); |
| 4383 |
| 4384 __ ubfm(x10, x1, 16, 31); |
| 4385 __ ubfm(x11, x1, 32, 15); |
| 4386 __ ubfm(x12, x1, 32, 47); |
| 4387 __ ubfm(x13, x1, 48, 35); |
| 4388 |
| 4389 __ ubfm(w25, w1, 16, 23); |
| 4390 __ ubfm(w26, w1, 24, 15); |
| 4391 __ ubfm(w27, w2, 16, 23); |
| 4392 __ ubfm(w28, w2, 24, 15); |
| 4393 |
| 4394 // Aliases |
| 4395 __ Lsl(x15, x1, 63); |
| 4396 __ Lsl(x16, x1, 0); |
| 4397 __ Lsr(x17, x1, 32); |
| 4398 __ Ubfiz(x18, x1, 8, 16); |
| 4399 __ Ubfx(x19, x1, 8, 16); |
| 4400 __ Uxtb(x20, x1); |
| 4401 __ Uxth(x21, x1); |
| 4402 __ Uxtw(x22, x1); |
| 4403 END(); |
| 4404 |
| 4405 RUN(); |
| 4406 |
| 4407 ASSERT_EQUAL_64(0x00000000000089abL, x10); |
| 4408 ASSERT_EQUAL_64(0x0000cdef00000000L, x11); |
| 4409 ASSERT_EQUAL_64(0x4567L, x12); |
| 4410 ASSERT_EQUAL_64(0x789abcdef0000L, x13); |
| 4411 |
| 4412 ASSERT_EQUAL_32(0x000000ab, w25); |
| 4413 ASSERT_EQUAL_32(0x00cdef00, w26); |
| 4414 ASSERT_EQUAL_32(0x54, w27); |
| 4415 ASSERT_EQUAL_32(0x00321000, w28); |
| 4416 |
| 4417 ASSERT_EQUAL_64(0x8000000000000000L, x15); |
| 4418 ASSERT_EQUAL_64(0x0123456789abcdefL, x16); |
| 4419 ASSERT_EQUAL_64(0x01234567L, x17); |
| 4420 ASSERT_EQUAL_64(0xcdef00L, x18); |
| 4421 ASSERT_EQUAL_64(0xabcdL, x19); |
| 4422 ASSERT_EQUAL_64(0xefL, x20); |
| 4423 ASSERT_EQUAL_64(0xcdefL, x21); |
| 4424 ASSERT_EQUAL_64(0x89abcdefL, x22); |
| 4425 |
| 4426 TEARDOWN(); |
| 4427 } |
| 4428 |
| 4429 |
| 4430 TEST(extr) { |
| 4431 INIT_V8(); |
| 4432 SETUP(); |
| 4433 |
| 4434 START(); |
| 4435 __ Mov(x1, 0x0123456789abcdefL); |
| 4436 __ Mov(x2, 0xfedcba9876543210L); |
| 4437 |
| 4438 __ Extr(w10, w1, w2, 0); |
| 4439 __ Extr(w11, w1, w2, 1); |
| 4440 __ Extr(x12, x2, x1, 2); |
| 4441 |
| 4442 __ Ror(w13, w1, 0); |
| 4443 __ Ror(w14, w2, 17); |
| 4444 __ Ror(w15, w1, 31); |
| 4445 __ Ror(x18, x2, 1); |
| 4446 __ Ror(x19, x1, 63); |
| 4447 END(); |
| 4448 |
| 4449 RUN(); |
| 4450 |
| 4451 ASSERT_EQUAL_64(0x76543210, x10); |
| 4452 ASSERT_EQUAL_64(0xbb2a1908, x11); |
| 4453 ASSERT_EQUAL_64(0x0048d159e26af37bUL, x12); |
| 4454 ASSERT_EQUAL_64(0x89abcdef, x13); |
| 4455 ASSERT_EQUAL_64(0x19083b2a, x14); |
| 4456 ASSERT_EQUAL_64(0x13579bdf, x15); |
| 4457 ASSERT_EQUAL_64(0x7f6e5d4c3b2a1908UL, x18); |
| 4458 ASSERT_EQUAL_64(0x02468acf13579bdeUL, x19); |
| 4459 |
| 4460 TEARDOWN(); |
| 4461 } |
| 4462 |
| 4463 |
| 4464 TEST(fmov_imm) { |
| 4465 INIT_V8(); |
| 4466 SETUP(); |
| 4467 |
| 4468 START(); |
| 4469 __ Fmov(s11, 1.0); |
| 4470 __ Fmov(d22, -13.0); |
| 4471 __ Fmov(s1, 255.0); |
| 4472 __ Fmov(d2, 12.34567); |
| 4473 __ Fmov(s3, 0.0); |
| 4474 __ Fmov(d4, 0.0); |
| 4475 __ Fmov(s5, kFP32PositiveInfinity); |
| 4476 __ Fmov(d6, kFP64NegativeInfinity); |
| 4477 END(); |
| 4478 |
| 4479 RUN(); |
| 4480 |
| 4481 ASSERT_EQUAL_FP32(1.0, s11); |
| 4482 ASSERT_EQUAL_FP64(-13.0, d22); |
| 4483 ASSERT_EQUAL_FP32(255.0, s1); |
| 4484 ASSERT_EQUAL_FP64(12.34567, d2); |
| 4485 ASSERT_EQUAL_FP32(0.0, s3); |
| 4486 ASSERT_EQUAL_FP64(0.0, d4); |
| 4487 ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s5); |
| 4488 ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d6); |
| 4489 |
| 4490 TEARDOWN(); |
| 4491 } |
| 4492 |
| 4493 |
| 4494 TEST(fmov_reg) { |
| 4495 INIT_V8(); |
| 4496 SETUP(); |
| 4497 |
| 4498 START(); |
| 4499 __ Fmov(s20, 1.0); |
| 4500 __ Fmov(w10, s20); |
| 4501 __ Fmov(s30, w10); |
| 4502 __ Fmov(s5, s20); |
| 4503 __ Fmov(d1, -13.0); |
| 4504 __ Fmov(x1, d1); |
| 4505 __ Fmov(d2, x1); |
| 4506 __ Fmov(d4, d1); |
| 4507 __ Fmov(d6, rawbits_to_double(0x0123456789abcdefL)); |
| 4508 __ Fmov(s6, s6); |
| 4509 END(); |
| 4510 |
| 4511 RUN(); |
| 4512 |
| 4513 ASSERT_EQUAL_32(float_to_rawbits(1.0), w10); |
| 4514 ASSERT_EQUAL_FP32(1.0, s30); |
| 4515 ASSERT_EQUAL_FP32(1.0, s5); |
| 4516 ASSERT_EQUAL_64(double_to_rawbits(-13.0), x1); |
| 4517 ASSERT_EQUAL_FP64(-13.0, d2); |
| 4518 ASSERT_EQUAL_FP64(-13.0, d4); |
| 4519 ASSERT_EQUAL_FP32(rawbits_to_float(0x89abcdef), s6); |
| 4520 |
| 4521 TEARDOWN(); |
| 4522 } |
| 4523 |
| 4524 |
| 4525 TEST(fadd) { |
| 4526 INIT_V8(); |
| 4527 SETUP(); |
| 4528 |
| 4529 START(); |
| 4530 __ Fmov(s13, -0.0); |
| 4531 __ Fmov(s14, kFP32PositiveInfinity); |
| 4532 __ Fmov(s15, kFP32NegativeInfinity); |
| 4533 __ Fmov(s16, 3.25); |
| 4534 __ Fmov(s17, 1.0); |
| 4535 __ Fmov(s18, 0); |
| 4536 |
| 4537 __ Fmov(d26, -0.0); |
| 4538 __ Fmov(d27, kFP64PositiveInfinity); |
| 4539 __ Fmov(d28, kFP64NegativeInfinity); |
| 4540 __ Fmov(d29, 0); |
| 4541 __ Fmov(d30, -2.0); |
| 4542 __ Fmov(d31, 2.25); |
| 4543 |
| 4544 __ Fadd(s0, s16, s17); |
| 4545 __ Fadd(s1, s17, s18); |
| 4546 __ Fadd(s2, s13, s17); |
| 4547 __ Fadd(s3, s14, s17); |
| 4548 __ Fadd(s4, s15, s17); |
| 4549 |
| 4550 __ Fadd(d5, d30, d31); |
| 4551 __ Fadd(d6, d29, d31); |
| 4552 __ Fadd(d7, d26, d31); |
| 4553 __ Fadd(d8, d27, d31); |
| 4554 __ Fadd(d9, d28, d31); |
| 4555 END(); |
| 4556 |
| 4557 RUN(); |
| 4558 |
| 4559 ASSERT_EQUAL_FP32(4.25, s0); |
| 4560 ASSERT_EQUAL_FP32(1.0, s1); |
| 4561 ASSERT_EQUAL_FP32(1.0, s2); |
| 4562 ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s3); |
| 4563 ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s4); |
| 4564 ASSERT_EQUAL_FP64(0.25, d5); |
| 4565 ASSERT_EQUAL_FP64(2.25, d6); |
| 4566 ASSERT_EQUAL_FP64(2.25, d7); |
| 4567 ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d8); |
| 4568 ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d9); |
| 4569 |
| 4570 TEARDOWN(); |
| 4571 } |
| 4572 |
| 4573 |
| 4574 TEST(fsub) { |
| 4575 INIT_V8(); |
| 4576 SETUP(); |
| 4577 |
| 4578 START(); |
| 4579 __ Fmov(s13, -0.0); |
| 4580 __ Fmov(s14, kFP32PositiveInfinity); |
| 4581 __ Fmov(s15, kFP32NegativeInfinity); |
| 4582 __ Fmov(s16, 3.25); |
| 4583 __ Fmov(s17, 1.0); |
| 4584 __ Fmov(s18, 0); |
| 4585 |
| 4586 __ Fmov(d26, -0.0); |
| 4587 __ Fmov(d27, kFP64PositiveInfinity); |
| 4588 __ Fmov(d28, kFP64NegativeInfinity); |
| 4589 __ Fmov(d29, 0); |
| 4590 __ Fmov(d30, -2.0); |
| 4591 __ Fmov(d31, 2.25); |
| 4592 |
| 4593 __ Fsub(s0, s16, s17); |
| 4594 __ Fsub(s1, s17, s18); |
| 4595 __ Fsub(s2, s13, s17); |
| 4596 __ Fsub(s3, s17, s14); |
| 4597 __ Fsub(s4, s17, s15); |
| 4598 |
| 4599 __ Fsub(d5, d30, d31); |
| 4600 __ Fsub(d6, d29, d31); |
| 4601 __ Fsub(d7, d26, d31); |
| 4602 __ Fsub(d8, d31, d27); |
| 4603 __ Fsub(d9, d31, d28); |
| 4604 END(); |
| 4605 |
| 4606 RUN(); |
| 4607 |
| 4608 ASSERT_EQUAL_FP32(2.25, s0); |
| 4609 ASSERT_EQUAL_FP32(1.0, s1); |
| 4610 ASSERT_EQUAL_FP32(-1.0, s2); |
| 4611 ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s3); |
| 4612 ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s4); |
| 4613 ASSERT_EQUAL_FP64(-4.25, d5); |
| 4614 ASSERT_EQUAL_FP64(-2.25, d6); |
| 4615 ASSERT_EQUAL_FP64(-2.25, d7); |
| 4616 ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d8); |
| 4617 ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d9); |
| 4618 |
| 4619 TEARDOWN(); |
| 4620 } |
| 4621 |
| 4622 |
| 4623 TEST(fmul) { |
| 4624 INIT_V8(); |
| 4625 SETUP(); |
| 4626 |
| 4627 START(); |
| 4628 __ Fmov(s13, -0.0); |
| 4629 __ Fmov(s14, kFP32PositiveInfinity); |
| 4630 __ Fmov(s15, kFP32NegativeInfinity); |
| 4631 __ Fmov(s16, 3.25); |
| 4632 __ Fmov(s17, 2.0); |
| 4633 __ Fmov(s18, 0); |
| 4634 __ Fmov(s19, -2.0); |
| 4635 |
| 4636 __ Fmov(d26, -0.0); |
| 4637 __ Fmov(d27, kFP64PositiveInfinity); |
| 4638 __ Fmov(d28, kFP64NegativeInfinity); |
| 4639 __ Fmov(d29, 0); |
| 4640 __ Fmov(d30, -2.0); |
| 4641 __ Fmov(d31, 2.25); |
| 4642 |
| 4643 __ Fmul(s0, s16, s17); |
| 4644 __ Fmul(s1, s17, s18); |
| 4645 __ Fmul(s2, s13, s13); |
| 4646 __ Fmul(s3, s14, s19); |
| 4647 __ Fmul(s4, s15, s19); |
| 4648 |
| 4649 __ Fmul(d5, d30, d31); |
| 4650 __ Fmul(d6, d29, d31); |
| 4651 __ Fmul(d7, d26, d26); |
| 4652 __ Fmul(d8, d27, d30); |
| 4653 __ Fmul(d9, d28, d30); |
| 4654 END(); |
| 4655 |
| 4656 RUN(); |
| 4657 |
| 4658 ASSERT_EQUAL_FP32(6.5, s0); |
| 4659 ASSERT_EQUAL_FP32(0.0, s1); |
| 4660 ASSERT_EQUAL_FP32(0.0, s2); |
| 4661 ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s3); |
| 4662 ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s4); |
| 4663 ASSERT_EQUAL_FP64(-4.5, d5); |
| 4664 ASSERT_EQUAL_FP64(0.0, d6); |
| 4665 ASSERT_EQUAL_FP64(0.0, d7); |
| 4666 ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d8); |
| 4667 ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d9); |
| 4668 |
| 4669 TEARDOWN(); |
| 4670 } |
| 4671 |
| 4672 |
| 4673 static void FmaddFmsubDoubleHelper(double n, double m, double a, |
| 4674 double fmadd, double fmsub) { |
| 4675 SETUP(); |
| 4676 START(); |
| 4677 |
| 4678 __ Fmov(d0, n); |
| 4679 __ Fmov(d1, m); |
| 4680 __ Fmov(d2, a); |
| 4681 __ Fmadd(d28, d0, d1, d2); |
| 4682 __ Fmsub(d29, d0, d1, d2); |
| 4683 __ Fnmadd(d30, d0, d1, d2); |
| 4684 __ Fnmsub(d31, d0, d1, d2); |
| 4685 |
| 4686 END(); |
| 4687 RUN(); |
| 4688 |
| 4689 ASSERT_EQUAL_FP64(fmadd, d28); |
| 4690 ASSERT_EQUAL_FP64(fmsub, d29); |
| 4691 ASSERT_EQUAL_FP64(-fmadd, d30); |
| 4692 ASSERT_EQUAL_FP64(-fmsub, d31); |
| 4693 |
| 4694 TEARDOWN(); |
| 4695 } |
| 4696 |
| 4697 |
| 4698 TEST(fmadd_fmsub_double) { |
| 4699 INIT_V8(); |
| 4700 double inputs[] = { |
| 4701 // Normal numbers, including -0.0. |
| 4702 DBL_MAX, DBL_MIN, 3.25, 2.0, 0.0, |
| 4703 -DBL_MAX, -DBL_MIN, -3.25, -2.0, -0.0, |
| 4704 // Infinities. |
| 4705 kFP64NegativeInfinity, kFP64PositiveInfinity, |
| 4706 // Subnormal numbers. |
| 4707 rawbits_to_double(0x000fffffffffffff), |
| 4708 rawbits_to_double(0x0000000000000001), |
| 4709 rawbits_to_double(0x000123456789abcd), |
| 4710 -rawbits_to_double(0x000fffffffffffff), |
| 4711 -rawbits_to_double(0x0000000000000001), |
| 4712 -rawbits_to_double(0x000123456789abcd), |
| 4713 // NaN. |
| 4714 kFP64QuietNaN, |
| 4715 -kFP64QuietNaN, |
| 4716 }; |
| 4717 const int count = sizeof(inputs) / sizeof(inputs[0]); |
| 4718 |
| 4719 for (int in = 0; in < count; in++) { |
| 4720 double n = inputs[in]; |
| 4721 for (int im = 0; im < count; im++) { |
| 4722 double m = inputs[im]; |
| 4723 for (int ia = 0; ia < count; ia++) { |
| 4724 double a = inputs[ia]; |
| 4725 double fmadd = fma(n, m, a); |
| 4726 double fmsub = fma(-n, m, a); |
| 4727 |
| 4728 FmaddFmsubDoubleHelper(n, m, a, fmadd, fmsub); |
| 4729 } |
| 4730 } |
| 4731 } |
| 4732 } |
| 4733 |
| 4734 |
| 4735 TEST(fmadd_fmsub_double_rounding) { |
| 4736 INIT_V8(); |
| 4737 // Make sure we run plenty of tests where an intermediate rounding stage would |
| 4738 // produce an incorrect result. |
| 4739 const int limit = 1000; |
| 4740 int count_fmadd = 0; |
| 4741 int count_fmsub = 0; |
| 4742 |
| 4743 uint16_t seed[3] = {42, 43, 44}; |
| 4744 seed48(seed); |
| 4745 |
| 4746 while ((count_fmadd < limit) || (count_fmsub < limit)) { |
| 4747 double n, m, a; |
| 4748 uint32_t r[2]; |
| 4749 ASSERT(sizeof(r) == sizeof(n)); |
| 4750 |
| 4751 r[0] = mrand48(); |
| 4752 r[1] = mrand48(); |
| 4753 memcpy(&n, r, sizeof(r)); |
| 4754 r[0] = mrand48(); |
| 4755 r[1] = mrand48(); |
| 4756 memcpy(&m, r, sizeof(r)); |
| 4757 r[0] = mrand48(); |
| 4758 r[1] = mrand48(); |
| 4759 memcpy(&a, r, sizeof(r)); |
| 4760 |
| 4761 if (!std::isfinite(a) || !std::isfinite(n) || !std::isfinite(m)) { |
| 4762 continue; |
| 4763 } |
| 4764 |
| 4765 // Calculate the expected results. |
| 4766 double fmadd = fma(n, m, a); |
| 4767 double fmsub = fma(-n, m, a); |
| 4768 |
| 4769 bool test_fmadd = (fmadd != (a + n * m)); |
| 4770 bool test_fmsub = (fmsub != (a - n * m)); |
| 4771 |
| 4772 // If rounding would produce a different result, increment the test count. |
| 4773 count_fmadd += test_fmadd; |
| 4774 count_fmsub += test_fmsub; |
| 4775 |
| 4776 if (test_fmadd || test_fmsub) { |
| 4777 FmaddFmsubDoubleHelper(n, m, a, fmadd, fmsub); |
| 4778 } |
| 4779 } |
| 4780 } |
| 4781 |
| 4782 |
| 4783 static void FmaddFmsubFloatHelper(float n, float m, float a, |
| 4784 float fmadd, float fmsub) { |
| 4785 SETUP(); |
| 4786 START(); |
| 4787 |
| 4788 __ Fmov(s0, n); |
| 4789 __ Fmov(s1, m); |
| 4790 __ Fmov(s2, a); |
| 4791 __ Fmadd(s30, s0, s1, s2); |
| 4792 __ Fmsub(s31, s0, s1, s2); |
| 4793 |
| 4794 END(); |
| 4795 RUN(); |
| 4796 |
| 4797 ASSERT_EQUAL_FP32(fmadd, s30); |
| 4798 ASSERT_EQUAL_FP32(fmsub, s31); |
| 4799 |
| 4800 TEARDOWN(); |
| 4801 } |
| 4802 |
| 4803 |
| 4804 TEST(fmadd_fmsub_float) { |
| 4805 INIT_V8(); |
| 4806 float inputs[] = { |
| 4807 // Normal numbers, including -0.0f. |
| 4808 FLT_MAX, FLT_MIN, 3.25f, 2.0f, 0.0f, |
| 4809 -FLT_MAX, -FLT_MIN, -3.25f, -2.0f, -0.0f, |
| 4810 // Infinities. |
| 4811 kFP32NegativeInfinity, kFP32PositiveInfinity, |
| 4812 // Subnormal numbers. |
| 4813 rawbits_to_float(0x07ffffff), |
| 4814 rawbits_to_float(0x00000001), |
| 4815 rawbits_to_float(0x01234567), |
| 4816 -rawbits_to_float(0x07ffffff), |
| 4817 -rawbits_to_float(0x00000001), |
| 4818 -rawbits_to_float(0x01234567), |
| 4819 // NaN. |
| 4820 kFP32QuietNaN, |
| 4821 -kFP32QuietNaN, |
| 4822 }; |
| 4823 const int count = sizeof(inputs) / sizeof(inputs[0]); |
| 4824 |
| 4825 for (int in = 0; in < count; in++) { |
| 4826 float n = inputs[in]; |
| 4827 for (int im = 0; im < count; im++) { |
| 4828 float m = inputs[im]; |
| 4829 for (int ia = 0; ia < count; ia++) { |
| 4830 float a = inputs[ia]; |
| 4831 float fmadd = fmaf(n, m, a); |
| 4832 float fmsub = fmaf(-n, m, a); |
| 4833 |
| 4834 FmaddFmsubFloatHelper(n, m, a, fmadd, fmsub); |
| 4835 } |
| 4836 } |
| 4837 } |
| 4838 } |
| 4839 |
| 4840 |
| 4841 TEST(fmadd_fmsub_float_rounding) { |
| 4842 INIT_V8(); |
| 4843 // Make sure we run plenty of tests where an intermediate rounding stage would |
| 4844 // produce an incorrect result. |
| 4845 const int limit = 1000; |
| 4846 int count_fmadd = 0; |
| 4847 int count_fmsub = 0; |
| 4848 |
| 4849 uint16_t seed[3] = {42, 43, 44}; |
| 4850 seed48(seed); |
| 4851 |
| 4852 while ((count_fmadd < limit) || (count_fmsub < limit)) { |
| 4853 float n, m, a; |
| 4854 uint32_t r; |
| 4855 ASSERT(sizeof(r) == sizeof(n)); |
| 4856 |
| 4857 r = mrand48(); |
| 4858 memcpy(&n, &r, sizeof(r)); |
| 4859 r = mrand48(); |
| 4860 memcpy(&m, &r, sizeof(r)); |
| 4861 r = mrand48(); |
| 4862 memcpy(&a, &r, sizeof(r)); |
| 4863 |
| 4864 if (!std::isfinite(a) || !std::isfinite(n) || !std::isfinite(m)) { |
| 4865 continue; |
| 4866 } |
| 4867 |
| 4868 // Calculate the expected results. |
| 4869 float fmadd = fmaf(n, m, a); |
| 4870 float fmsub = fmaf(-n, m, a); |
| 4871 |
| 4872 bool test_fmadd = (fmadd != (a + n * m)); |
| 4873 bool test_fmsub = (fmsub != (a - n * m)); |
| 4874 |
| 4875 // If rounding would produce a different result, increment the test count. |
| 4876 count_fmadd += test_fmadd; |
| 4877 count_fmsub += test_fmsub; |
| 4878 |
| 4879 if (test_fmadd || test_fmsub) { |
| 4880 FmaddFmsubFloatHelper(n, m, a, fmadd, fmsub); |
| 4881 } |
| 4882 } |
| 4883 } |
| 4884 |
| 4885 |
| 4886 TEST(fdiv) { |
| 4887 INIT_V8(); |
| 4888 SETUP(); |
| 4889 |
| 4890 START(); |
| 4891 __ Fmov(s13, -0.0); |
| 4892 __ Fmov(s14, kFP32PositiveInfinity); |
| 4893 __ Fmov(s15, kFP32NegativeInfinity); |
| 4894 __ Fmov(s16, 3.25); |
| 4895 __ Fmov(s17, 2.0); |
| 4896 __ Fmov(s18, 2.0); |
| 4897 __ Fmov(s19, -2.0); |
| 4898 |
| 4899 __ Fmov(d26, -0.0); |
| 4900 __ Fmov(d27, kFP64PositiveInfinity); |
| 4901 __ Fmov(d28, kFP64NegativeInfinity); |
| 4902 __ Fmov(d29, 0); |
| 4903 __ Fmov(d30, -2.0); |
| 4904 __ Fmov(d31, 2.25); |
| 4905 |
| 4906 __ Fdiv(s0, s16, s17); |
| 4907 __ Fdiv(s1, s17, s18); |
| 4908 __ Fdiv(s2, s13, s17); |
| 4909 __ Fdiv(s3, s17, s14); |
| 4910 __ Fdiv(s4, s17, s15); |
| 4911 __ Fdiv(d5, d31, d30); |
| 4912 __ Fdiv(d6, d29, d31); |
| 4913 __ Fdiv(d7, d26, d31); |
| 4914 __ Fdiv(d8, d31, d27); |
| 4915 __ Fdiv(d9, d31, d28); |
| 4916 END(); |
| 4917 |
| 4918 RUN(); |
| 4919 |
| 4920 ASSERT_EQUAL_FP32(1.625, s0); |
| 4921 ASSERT_EQUAL_FP32(1.0, s1); |
| 4922 ASSERT_EQUAL_FP32(-0.0, s2); |
| 4923 ASSERT_EQUAL_FP32(0.0, s3); |
| 4924 ASSERT_EQUAL_FP32(-0.0, s4); |
| 4925 ASSERT_EQUAL_FP64(-1.125, d5); |
| 4926 ASSERT_EQUAL_FP64(0.0, d6); |
| 4927 ASSERT_EQUAL_FP64(-0.0, d7); |
| 4928 ASSERT_EQUAL_FP64(0.0, d8); |
| 4929 ASSERT_EQUAL_FP64(-0.0, d9); |
| 4930 |
| 4931 TEARDOWN(); |
| 4932 } |
| 4933 |
| 4934 |
| 4935 static float MinMaxHelper(float n, |
| 4936 float m, |
| 4937 bool min, |
| 4938 float quiet_nan_substitute = 0.0) { |
| 4939 const uint64_t kFP32QuietNaNMask = 0x00400000UL; |
| 4940 uint32_t raw_n = float_to_rawbits(n); |
| 4941 uint32_t raw_m = float_to_rawbits(m); |
| 4942 |
| 4943 if (isnan(n) && ((raw_n & kFP32QuietNaNMask) == 0)) { |
| 4944 // n is signalling NaN. |
| 4945 return n; |
| 4946 } else if (isnan(m) && ((raw_m & kFP32QuietNaNMask) == 0)) { |
| 4947 // m is signalling NaN. |
| 4948 return m; |
| 4949 } else if (quiet_nan_substitute == 0.0) { |
| 4950 if (isnan(n)) { |
| 4951 // n is quiet NaN. |
| 4952 return n; |
| 4953 } else if (isnan(m)) { |
| 4954 // m is quiet NaN. |
| 4955 return m; |
| 4956 } |
| 4957 } else { |
| 4958 // Substitute n or m if one is quiet, but not both. |
| 4959 if (isnan(n) && !isnan(m)) { |
| 4960 // n is quiet NaN: replace with substitute. |
| 4961 n = quiet_nan_substitute; |
| 4962 } else if (!isnan(n) && isnan(m)) { |
| 4963 // m is quiet NaN: replace with substitute. |
| 4964 m = quiet_nan_substitute; |
| 4965 } |
| 4966 } |
| 4967 |
| 4968 if ((n == 0.0) && (m == 0.0) && |
| 4969 (copysign(1.0, n) != copysign(1.0, m))) { |
| 4970 return min ? -0.0 : 0.0; |
| 4971 } |
| 4972 |
| 4973 return min ? fminf(n, m) : fmaxf(n, m); |
| 4974 } |
| 4975 |
| 4976 |
| 4977 static double MinMaxHelper(double n, |
| 4978 double m, |
| 4979 bool min, |
| 4980 double quiet_nan_substitute = 0.0) { |
| 4981 const uint64_t kFP64QuietNaNMask = 0x0008000000000000UL; |
| 4982 uint64_t raw_n = double_to_rawbits(n); |
| 4983 uint64_t raw_m = double_to_rawbits(m); |
| 4984 |
| 4985 if (isnan(n) && ((raw_n & kFP64QuietNaNMask) == 0)) { |
| 4986 // n is signalling NaN. |
| 4987 return n; |
| 4988 } else if (isnan(m) && ((raw_m & kFP64QuietNaNMask) == 0)) { |
| 4989 // m is signalling NaN. |
| 4990 return m; |
| 4991 } else if (quiet_nan_substitute == 0.0) { |
| 4992 if (isnan(n)) { |
| 4993 // n is quiet NaN. |
| 4994 return n; |
| 4995 } else if (isnan(m)) { |
| 4996 // m is quiet NaN. |
| 4997 return m; |
| 4998 } |
| 4999 } else { |
| 5000 // Substitute n or m if one is quiet, but not both. |
| 5001 if (isnan(n) && !isnan(m)) { |
| 5002 // n is quiet NaN: replace with substitute. |
| 5003 n = quiet_nan_substitute; |
| 5004 } else if (!isnan(n) && isnan(m)) { |
| 5005 // m is quiet NaN: replace with substitute. |
| 5006 m = quiet_nan_substitute; |
| 5007 } |
| 5008 } |
| 5009 |
| 5010 if ((n == 0.0) && (m == 0.0) && |
| 5011 (copysign(1.0, n) != copysign(1.0, m))) { |
| 5012 return min ? -0.0 : 0.0; |
| 5013 } |
| 5014 |
| 5015 return min ? fmin(n, m) : fmax(n, m); |
| 5016 } |
| 5017 |
| 5018 |
| 5019 static void FminFmaxDoubleHelper(double n, double m, double min, double max, |
| 5020 double minnm, double maxnm) { |
| 5021 SETUP(); |
| 5022 |
| 5023 START(); |
| 5024 __ Fmov(d0, n); |
| 5025 __ Fmov(d1, m); |
| 5026 __ Fmin(d28, d0, d1); |
| 5027 __ Fmax(d29, d0, d1); |
| 5028 __ Fminnm(d30, d0, d1); |
| 5029 __ Fmaxnm(d31, d0, d1); |
| 5030 END(); |
| 5031 |
| 5032 RUN(); |
| 5033 |
| 5034 ASSERT_EQUAL_FP64(min, d28); |
| 5035 ASSERT_EQUAL_FP64(max, d29); |
| 5036 ASSERT_EQUAL_FP64(minnm, d30); |
| 5037 ASSERT_EQUAL_FP64(maxnm, d31); |
| 5038 |
| 5039 TEARDOWN(); |
| 5040 } |
| 5041 |
| 5042 |
| 5043 TEST(fmax_fmin_d) { |
| 5044 INIT_V8(); |
| 5045 // Bootstrap tests. |
| 5046 FminFmaxDoubleHelper(0, 0, 0, 0, 0, 0); |
| 5047 FminFmaxDoubleHelper(0, 1, 0, 1, 0, 1); |
| 5048 FminFmaxDoubleHelper(kFP64PositiveInfinity, kFP64NegativeInfinity, |
| 5049 kFP64NegativeInfinity, kFP64PositiveInfinity, |
| 5050 kFP64NegativeInfinity, kFP64PositiveInfinity); |
| 5051 FminFmaxDoubleHelper(kFP64SignallingNaN, 0, |
| 5052 kFP64SignallingNaN, kFP64SignallingNaN, |
| 5053 kFP64SignallingNaN, kFP64SignallingNaN); |
| 5054 FminFmaxDoubleHelper(kFP64QuietNaN, 0, |
| 5055 kFP64QuietNaN, kFP64QuietNaN, |
| 5056 0, 0); |
| 5057 FminFmaxDoubleHelper(kFP64QuietNaN, kFP64SignallingNaN, |
| 5058 kFP64SignallingNaN, kFP64SignallingNaN, |
| 5059 kFP64SignallingNaN, kFP64SignallingNaN); |
| 5060 |
| 5061 // Iterate over all combinations of inputs. |
| 5062 double inputs[] = { DBL_MAX, DBL_MIN, 1.0, 0.0, |
| 5063 -DBL_MAX, -DBL_MIN, -1.0, -0.0, |
| 5064 kFP64PositiveInfinity, kFP64NegativeInfinity, |
| 5065 kFP64QuietNaN, kFP64SignallingNaN }; |
| 5066 |
| 5067 const int count = sizeof(inputs) / sizeof(inputs[0]); |
| 5068 |
| 5069 for (int in = 0; in < count; in++) { |
| 5070 double n = inputs[in]; |
| 5071 for (int im = 0; im < count; im++) { |
| 5072 double m = inputs[im]; |
| 5073 FminFmaxDoubleHelper(n, m, |
| 5074 MinMaxHelper(n, m, true), |
| 5075 MinMaxHelper(n, m, false), |
| 5076 MinMaxHelper(n, m, true, kFP64PositiveInfinity), |
| 5077 MinMaxHelper(n, m, false, kFP64NegativeInfinity)); |
| 5078 } |
| 5079 } |
| 5080 } |
| 5081 |
| 5082 |
| 5083 static void FminFmaxFloatHelper(float n, float m, float min, float max, |
| 5084 float minnm, float maxnm) { |
| 5085 SETUP(); |
| 5086 |
| 5087 START(); |
| 5088 // TODO(all): Signalling NaNs are sometimes converted by the C compiler to |
| 5089 // quiet NaNs on implicit casts from float to double. Here, we move the raw |
| 5090 // bits into a W register first, so we get the correct value. Fix Fmov so this |
| 5091 // additional step is no longer needed. |
| 5092 __ Mov(w0, float_to_rawbits(n)); |
| 5093 __ Fmov(s0, w0); |
| 5094 __ Mov(w0, float_to_rawbits(m)); |
| 5095 __ Fmov(s1, w0); |
| 5096 __ Fmin(s28, s0, s1); |
| 5097 __ Fmax(s29, s0, s1); |
| 5098 __ Fminnm(s30, s0, s1); |
| 5099 __ Fmaxnm(s31, s0, s1); |
| 5100 END(); |
| 5101 |
| 5102 RUN(); |
| 5103 |
| 5104 ASSERT_EQUAL_FP32(min, s28); |
| 5105 ASSERT_EQUAL_FP32(max, s29); |
| 5106 ASSERT_EQUAL_FP32(minnm, s30); |
| 5107 ASSERT_EQUAL_FP32(maxnm, s31); |
| 5108 |
| 5109 TEARDOWN(); |
| 5110 } |
| 5111 |
| 5112 |
| 5113 TEST(fmax_fmin_s) { |
| 5114 INIT_V8(); |
| 5115 // Bootstrap tests. |
| 5116 FminFmaxFloatHelper(0, 0, 0, 0, 0, 0); |
| 5117 FminFmaxFloatHelper(0, 1, 0, 1, 0, 1); |
| 5118 FminFmaxFloatHelper(kFP32PositiveInfinity, kFP32NegativeInfinity, |
| 5119 kFP32NegativeInfinity, kFP32PositiveInfinity, |
| 5120 kFP32NegativeInfinity, kFP32PositiveInfinity); |
| 5121 FminFmaxFloatHelper(kFP32SignallingNaN, 0, |
| 5122 kFP32SignallingNaN, kFP32SignallingNaN, |
| 5123 kFP32SignallingNaN, kFP32SignallingNaN); |
| 5124 FminFmaxFloatHelper(kFP32QuietNaN, 0, |
| 5125 kFP32QuietNaN, kFP32QuietNaN, |
| 5126 0, 0); |
| 5127 FminFmaxFloatHelper(kFP32QuietNaN, kFP32SignallingNaN, |
| 5128 kFP32SignallingNaN, kFP32SignallingNaN, |
| 5129 kFP32SignallingNaN, kFP32SignallingNaN); |
| 5130 |
| 5131 // Iterate over all combinations of inputs. |
| 5132 float inputs[] = { FLT_MAX, FLT_MIN, 1.0, 0.0, |
| 5133 -FLT_MAX, -FLT_MIN, -1.0, -0.0, |
| 5134 kFP32PositiveInfinity, kFP32NegativeInfinity, |
| 5135 kFP32QuietNaN, kFP32SignallingNaN }; |
| 5136 |
| 5137 const int count = sizeof(inputs) / sizeof(inputs[0]); |
| 5138 |
| 5139 for (int in = 0; in < count; in++) { |
| 5140 float n = inputs[in]; |
| 5141 for (int im = 0; im < count; im++) { |
| 5142 float m = inputs[im]; |
| 5143 FminFmaxFloatHelper(n, m, |
| 5144 MinMaxHelper(n, m, true), |
| 5145 MinMaxHelper(n, m, false), |
| 5146 MinMaxHelper(n, m, true, kFP32PositiveInfinity), |
| 5147 MinMaxHelper(n, m, false, kFP32NegativeInfinity)); |
| 5148 } |
| 5149 } |
| 5150 } |
| 5151 |
| 5152 |
| 5153 TEST(fccmp) { |
| 5154 INIT_V8(); |
| 5155 SETUP(); |
| 5156 |
| 5157 START(); |
| 5158 __ Fmov(s16, 0.0); |
| 5159 __ Fmov(s17, 0.5); |
| 5160 __ Fmov(d18, -0.5); |
| 5161 __ Fmov(d19, -1.0); |
| 5162 __ Mov(x20, 0); |
| 5163 |
| 5164 __ Cmp(x20, 0); |
| 5165 __ Fccmp(s16, s16, NoFlag, eq); |
| 5166 __ Mrs(x0, NZCV); |
| 5167 |
| 5168 __ Cmp(x20, 0); |
| 5169 __ Fccmp(s16, s16, VFlag, ne); |
| 5170 __ Mrs(x1, NZCV); |
| 5171 |
| 5172 __ Cmp(x20, 0); |
| 5173 __ Fccmp(s16, s17, CFlag, ge); |
| 5174 __ Mrs(x2, NZCV); |
| 5175 |
| 5176 __ Cmp(x20, 0); |
| 5177 __ Fccmp(s16, s17, CVFlag, lt); |
| 5178 __ Mrs(x3, NZCV); |
| 5179 |
| 5180 __ Cmp(x20, 0); |
| 5181 __ Fccmp(d18, d18, ZFlag, le); |
| 5182 __ Mrs(x4, NZCV); |
| 5183 |
| 5184 __ Cmp(x20, 0); |
| 5185 __ Fccmp(d18, d18, ZVFlag, gt); |
| 5186 __ Mrs(x5, NZCV); |
| 5187 |
| 5188 __ Cmp(x20, 0); |
| 5189 __ Fccmp(d18, d19, ZCVFlag, ls); |
| 5190 __ Mrs(x6, NZCV); |
| 5191 |
| 5192 __ Cmp(x20, 0); |
| 5193 __ Fccmp(d18, d19, NFlag, hi); |
| 5194 __ Mrs(x7, NZCV); |
| 5195 |
| 5196 __ fccmp(s16, s16, NFlag, al); |
| 5197 __ Mrs(x8, NZCV); |
| 5198 |
| 5199 __ fccmp(d18, d18, NFlag, nv); |
| 5200 __ Mrs(x9, NZCV); |
| 5201 |
| 5202 END(); |
| 5203 |
| 5204 RUN(); |
| 5205 |
| 5206 ASSERT_EQUAL_32(ZCFlag, w0); |
| 5207 ASSERT_EQUAL_32(VFlag, w1); |
| 5208 ASSERT_EQUAL_32(NFlag, w2); |
| 5209 ASSERT_EQUAL_32(CVFlag, w3); |
| 5210 ASSERT_EQUAL_32(ZCFlag, w4); |
| 5211 ASSERT_EQUAL_32(ZVFlag, w5); |
| 5212 ASSERT_EQUAL_32(CFlag, w6); |
| 5213 ASSERT_EQUAL_32(NFlag, w7); |
| 5214 ASSERT_EQUAL_32(ZCFlag, w8); |
| 5215 ASSERT_EQUAL_32(ZCFlag, w9); |
| 5216 |
| 5217 TEARDOWN(); |
| 5218 } |
| 5219 |
| 5220 |
| 5221 TEST(fcmp) { |
| 5222 INIT_V8(); |
| 5223 SETUP(); |
| 5224 |
| 5225 START(); |
| 5226 |
| 5227 // Some of these tests require a floating-point scratch register assigned to |
| 5228 // the macro assembler, but most do not. |
| 5229 __ SetFPScratchRegister(NoFPReg); |
| 5230 |
| 5231 __ Fmov(s8, 0.0); |
| 5232 __ Fmov(s9, 0.5); |
| 5233 __ Mov(w18, 0x7f800001); // Single precision NaN. |
| 5234 __ Fmov(s18, w18); |
| 5235 |
| 5236 __ Fcmp(s8, s8); |
| 5237 __ Mrs(x0, NZCV); |
| 5238 __ Fcmp(s8, s9); |
| 5239 __ Mrs(x1, NZCV); |
| 5240 __ Fcmp(s9, s8); |
| 5241 __ Mrs(x2, NZCV); |
| 5242 __ Fcmp(s8, s18); |
| 5243 __ Mrs(x3, NZCV); |
| 5244 __ Fcmp(s18, s18); |
| 5245 __ Mrs(x4, NZCV); |
| 5246 __ Fcmp(s8, 0.0); |
| 5247 __ Mrs(x5, NZCV); |
| 5248 __ SetFPScratchRegister(d0); |
| 5249 __ Fcmp(s8, 255.0); |
| 5250 __ SetFPScratchRegister(NoFPReg); |
| 5251 __ Mrs(x6, NZCV); |
| 5252 |
| 5253 __ Fmov(d19, 0.0); |
| 5254 __ Fmov(d20, 0.5); |
| 5255 __ Mov(x21, 0x7ff0000000000001UL); // Double precision NaN. |
| 5256 __ Fmov(d21, x21); |
| 5257 |
| 5258 __ Fcmp(d19, d19); |
| 5259 __ Mrs(x10, NZCV); |
| 5260 __ Fcmp(d19, d20); |
| 5261 __ Mrs(x11, NZCV); |
| 5262 __ Fcmp(d20, d19); |
| 5263 __ Mrs(x12, NZCV); |
| 5264 __ Fcmp(d19, d21); |
| 5265 __ Mrs(x13, NZCV); |
| 5266 __ Fcmp(d21, d21); |
| 5267 __ Mrs(x14, NZCV); |
| 5268 __ Fcmp(d19, 0.0); |
| 5269 __ Mrs(x15, NZCV); |
| 5270 __ SetFPScratchRegister(d0); |
| 5271 __ Fcmp(d19, 12.3456); |
| 5272 __ SetFPScratchRegister(NoFPReg); |
| 5273 __ Mrs(x16, NZCV); |
| 5274 END(); |
| 5275 |
| 5276 RUN(); |
| 5277 |
| 5278 ASSERT_EQUAL_32(ZCFlag, w0); |
| 5279 ASSERT_EQUAL_32(NFlag, w1); |
| 5280 ASSERT_EQUAL_32(CFlag, w2); |
| 5281 ASSERT_EQUAL_32(CVFlag, w3); |
| 5282 ASSERT_EQUAL_32(CVFlag, w4); |
| 5283 ASSERT_EQUAL_32(ZCFlag, w5); |
| 5284 ASSERT_EQUAL_32(NFlag, w6); |
| 5285 ASSERT_EQUAL_32(ZCFlag, w10); |
| 5286 ASSERT_EQUAL_32(NFlag, w11); |
| 5287 ASSERT_EQUAL_32(CFlag, w12); |
| 5288 ASSERT_EQUAL_32(CVFlag, w13); |
| 5289 ASSERT_EQUAL_32(CVFlag, w14); |
| 5290 ASSERT_EQUAL_32(ZCFlag, w15); |
| 5291 ASSERT_EQUAL_32(NFlag, w16); |
| 5292 |
| 5293 TEARDOWN(); |
| 5294 } |
| 5295 |
| 5296 |
| 5297 TEST(fcsel) { |
| 5298 INIT_V8(); |
| 5299 SETUP(); |
| 5300 |
| 5301 START(); |
| 5302 __ Mov(x16, 0); |
| 5303 __ Fmov(s16, 1.0); |
| 5304 __ Fmov(s17, 2.0); |
| 5305 __ Fmov(d18, 3.0); |
| 5306 __ Fmov(d19, 4.0); |
| 5307 |
| 5308 __ Cmp(x16, 0); |
| 5309 __ Fcsel(s0, s16, s17, eq); |
| 5310 __ Fcsel(s1, s16, s17, ne); |
| 5311 __ Fcsel(d2, d18, d19, eq); |
| 5312 __ Fcsel(d3, d18, d19, ne); |
| 5313 __ fcsel(s4, s16, s17, al); |
| 5314 __ fcsel(d5, d18, d19, nv); |
| 5315 END(); |
| 5316 |
| 5317 RUN(); |
| 5318 |
| 5319 ASSERT_EQUAL_FP32(1.0, s0); |
| 5320 ASSERT_EQUAL_FP32(2.0, s1); |
| 5321 ASSERT_EQUAL_FP64(3.0, d2); |
| 5322 ASSERT_EQUAL_FP64(4.0, d3); |
| 5323 ASSERT_EQUAL_FP32(1.0, s4); |
| 5324 ASSERT_EQUAL_FP64(3.0, d5); |
| 5325 |
| 5326 TEARDOWN(); |
| 5327 } |
| 5328 |
| 5329 |
| 5330 TEST(fneg) { |
| 5331 INIT_V8(); |
| 5332 SETUP(); |
| 5333 |
| 5334 START(); |
| 5335 __ Fmov(s16, 1.0); |
| 5336 __ Fmov(s17, 0.0); |
| 5337 __ Fmov(s18, kFP32PositiveInfinity); |
| 5338 __ Fmov(d19, 1.0); |
| 5339 __ Fmov(d20, 0.0); |
| 5340 __ Fmov(d21, kFP64PositiveInfinity); |
| 5341 |
| 5342 __ Fneg(s0, s16); |
| 5343 __ Fneg(s1, s0); |
| 5344 __ Fneg(s2, s17); |
| 5345 __ Fneg(s3, s2); |
| 5346 __ Fneg(s4, s18); |
| 5347 __ Fneg(s5, s4); |
| 5348 __ Fneg(d6, d19); |
| 5349 __ Fneg(d7, d6); |
| 5350 __ Fneg(d8, d20); |
| 5351 __ Fneg(d9, d8); |
| 5352 __ Fneg(d10, d21); |
| 5353 __ Fneg(d11, d10); |
| 5354 END(); |
| 5355 |
| 5356 RUN(); |
| 5357 |
| 5358 ASSERT_EQUAL_FP32(-1.0, s0); |
| 5359 ASSERT_EQUAL_FP32(1.0, s1); |
| 5360 ASSERT_EQUAL_FP32(-0.0, s2); |
| 5361 ASSERT_EQUAL_FP32(0.0, s3); |
| 5362 ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s4); |
| 5363 ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s5); |
| 5364 ASSERT_EQUAL_FP64(-1.0, d6); |
| 5365 ASSERT_EQUAL_FP64(1.0, d7); |
| 5366 ASSERT_EQUAL_FP64(-0.0, d8); |
| 5367 ASSERT_EQUAL_FP64(0.0, d9); |
| 5368 ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d10); |
| 5369 ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d11); |
| 5370 |
| 5371 TEARDOWN(); |
| 5372 } |
| 5373 |
| 5374 |
| 5375 TEST(fabs) { |
| 5376 INIT_V8(); |
| 5377 SETUP(); |
| 5378 |
| 5379 START(); |
| 5380 __ Fmov(s16, -1.0); |
| 5381 __ Fmov(s17, -0.0); |
| 5382 __ Fmov(s18, kFP32NegativeInfinity); |
| 5383 __ Fmov(d19, -1.0); |
| 5384 __ Fmov(d20, -0.0); |
| 5385 __ Fmov(d21, kFP64NegativeInfinity); |
| 5386 |
| 5387 __ Fabs(s0, s16); |
| 5388 __ Fabs(s1, s0); |
| 5389 __ Fabs(s2, s17); |
| 5390 __ Fabs(s3, s18); |
| 5391 __ Fabs(d4, d19); |
| 5392 __ Fabs(d5, d4); |
| 5393 __ Fabs(d6, d20); |
| 5394 __ Fabs(d7, d21); |
| 5395 END(); |
| 5396 |
| 5397 RUN(); |
| 5398 |
| 5399 ASSERT_EQUAL_FP32(1.0, s0); |
| 5400 ASSERT_EQUAL_FP32(1.0, s1); |
| 5401 ASSERT_EQUAL_FP32(0.0, s2); |
| 5402 ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s3); |
| 5403 ASSERT_EQUAL_FP64(1.0, d4); |
| 5404 ASSERT_EQUAL_FP64(1.0, d5); |
| 5405 ASSERT_EQUAL_FP64(0.0, d6); |
| 5406 ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d7); |
| 5407 |
| 5408 TEARDOWN(); |
| 5409 } |
| 5410 |
| 5411 |
| 5412 TEST(fsqrt) { |
| 5413 INIT_V8(); |
| 5414 SETUP(); |
| 5415 |
| 5416 START(); |
| 5417 __ Fmov(s16, 0.0); |
| 5418 __ Fmov(s17, 1.0); |
| 5419 __ Fmov(s18, 0.25); |
| 5420 __ Fmov(s19, 65536.0); |
| 5421 __ Fmov(s20, -0.0); |
| 5422 __ Fmov(s21, kFP32PositiveInfinity); |
| 5423 __ Fmov(d22, 0.0); |
| 5424 __ Fmov(d23, 1.0); |
| 5425 __ Fmov(d24, 0.25); |
| 5426 __ Fmov(d25, 4294967296.0); |
| 5427 __ Fmov(d26, -0.0); |
| 5428 __ Fmov(d27, kFP64PositiveInfinity); |
| 5429 |
| 5430 __ Fsqrt(s0, s16); |
| 5431 __ Fsqrt(s1, s17); |
| 5432 __ Fsqrt(s2, s18); |
| 5433 __ Fsqrt(s3, s19); |
| 5434 __ Fsqrt(s4, s20); |
| 5435 __ Fsqrt(s5, s21); |
| 5436 __ Fsqrt(d6, d22); |
| 5437 __ Fsqrt(d7, d23); |
| 5438 __ Fsqrt(d8, d24); |
| 5439 __ Fsqrt(d9, d25); |
| 5440 __ Fsqrt(d10, d26); |
| 5441 __ Fsqrt(d11, d27); |
| 5442 END(); |
| 5443 |
| 5444 RUN(); |
| 5445 |
| 5446 ASSERT_EQUAL_FP32(0.0, s0); |
| 5447 ASSERT_EQUAL_FP32(1.0, s1); |
| 5448 ASSERT_EQUAL_FP32(0.5, s2); |
| 5449 ASSERT_EQUAL_FP32(256.0, s3); |
| 5450 ASSERT_EQUAL_FP32(-0.0, s4); |
| 5451 ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s5); |
| 5452 ASSERT_EQUAL_FP64(0.0, d6); |
| 5453 ASSERT_EQUAL_FP64(1.0, d7); |
| 5454 ASSERT_EQUAL_FP64(0.5, d8); |
| 5455 ASSERT_EQUAL_FP64(65536.0, d9); |
| 5456 ASSERT_EQUAL_FP64(-0.0, d10); |
| 5457 ASSERT_EQUAL_FP64(kFP32PositiveInfinity, d11); |
| 5458 |
| 5459 TEARDOWN(); |
| 5460 } |
| 5461 |
| 5462 |
| 5463 TEST(frinta) { |
| 5464 INIT_V8(); |
| 5465 SETUP(); |
| 5466 |
| 5467 START(); |
| 5468 __ Fmov(s16, 1.0); |
| 5469 __ Fmov(s17, 1.1); |
| 5470 __ Fmov(s18, 1.5); |
| 5471 __ Fmov(s19, 1.9); |
| 5472 __ Fmov(s20, 2.5); |
| 5473 __ Fmov(s21, -1.5); |
| 5474 __ Fmov(s22, -2.5); |
| 5475 __ Fmov(s23, kFP32PositiveInfinity); |
| 5476 __ Fmov(s24, kFP32NegativeInfinity); |
| 5477 __ Fmov(s25, 0.0); |
| 5478 __ Fmov(s26, -0.0); |
| 5479 |
| 5480 __ Frinta(s0, s16); |
| 5481 __ Frinta(s1, s17); |
| 5482 __ Frinta(s2, s18); |
| 5483 __ Frinta(s3, s19); |
| 5484 __ Frinta(s4, s20); |
| 5485 __ Frinta(s5, s21); |
| 5486 __ Frinta(s6, s22); |
| 5487 __ Frinta(s7, s23); |
| 5488 __ Frinta(s8, s24); |
| 5489 __ Frinta(s9, s25); |
| 5490 __ Frinta(s10, s26); |
| 5491 |
| 5492 __ Fmov(d16, 1.0); |
| 5493 __ Fmov(d17, 1.1); |
| 5494 __ Fmov(d18, 1.5); |
| 5495 __ Fmov(d19, 1.9); |
| 5496 __ Fmov(d20, 2.5); |
| 5497 __ Fmov(d21, -1.5); |
| 5498 __ Fmov(d22, -2.5); |
| 5499 __ Fmov(d23, kFP32PositiveInfinity); |
| 5500 __ Fmov(d24, kFP32NegativeInfinity); |
| 5501 __ Fmov(d25, 0.0); |
| 5502 __ Fmov(d26, -0.0); |
| 5503 |
| 5504 __ Frinta(d11, d16); |
| 5505 __ Frinta(d12, d17); |
| 5506 __ Frinta(d13, d18); |
| 5507 __ Frinta(d14, d19); |
| 5508 __ Frinta(d15, d20); |
| 5509 __ Frinta(d16, d21); |
| 5510 __ Frinta(d17, d22); |
| 5511 __ Frinta(d18, d23); |
| 5512 __ Frinta(d19, d24); |
| 5513 __ Frinta(d20, d25); |
| 5514 __ Frinta(d21, d26); |
| 5515 END(); |
| 5516 |
| 5517 RUN(); |
| 5518 |
| 5519 ASSERT_EQUAL_FP32(1.0, s0); |
| 5520 ASSERT_EQUAL_FP32(1.0, s1); |
| 5521 ASSERT_EQUAL_FP32(2.0, s2); |
| 5522 ASSERT_EQUAL_FP32(2.0, s3); |
| 5523 ASSERT_EQUAL_FP32(3.0, s4); |
| 5524 ASSERT_EQUAL_FP32(-2.0, s5); |
| 5525 ASSERT_EQUAL_FP32(-3.0, s6); |
| 5526 ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s7); |
| 5527 ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s8); |
| 5528 ASSERT_EQUAL_FP32(0.0, s9); |
| 5529 ASSERT_EQUAL_FP32(-0.0, s10); |
| 5530 ASSERT_EQUAL_FP64(1.0, d11); |
| 5531 ASSERT_EQUAL_FP64(1.0, d12); |
| 5532 ASSERT_EQUAL_FP64(2.0, d13); |
| 5533 ASSERT_EQUAL_FP64(2.0, d14); |
| 5534 ASSERT_EQUAL_FP64(3.0, d15); |
| 5535 ASSERT_EQUAL_FP64(-2.0, d16); |
| 5536 ASSERT_EQUAL_FP64(-3.0, d17); |
| 5537 ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d18); |
| 5538 ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d19); |
| 5539 ASSERT_EQUAL_FP64(0.0, d20); |
| 5540 ASSERT_EQUAL_FP64(-0.0, d21); |
| 5541 |
| 5542 TEARDOWN(); |
| 5543 } |
| 5544 |
| 5545 |
| 5546 TEST(frintn) { |
| 5547 INIT_V8(); |
| 5548 SETUP(); |
| 5549 |
| 5550 START(); |
| 5551 __ Fmov(s16, 1.0); |
| 5552 __ Fmov(s17, 1.1); |
| 5553 __ Fmov(s18, 1.5); |
| 5554 __ Fmov(s19, 1.9); |
| 5555 __ Fmov(s20, 2.5); |
| 5556 __ Fmov(s21, -1.5); |
| 5557 __ Fmov(s22, -2.5); |
| 5558 __ Fmov(s23, kFP32PositiveInfinity); |
| 5559 __ Fmov(s24, kFP32NegativeInfinity); |
| 5560 __ Fmov(s25, 0.0); |
| 5561 __ Fmov(s26, -0.0); |
| 5562 |
| 5563 __ Frintn(s0, s16); |
| 5564 __ Frintn(s1, s17); |
| 5565 __ Frintn(s2, s18); |
| 5566 __ Frintn(s3, s19); |
| 5567 __ Frintn(s4, s20); |
| 5568 __ Frintn(s5, s21); |
| 5569 __ Frintn(s6, s22); |
| 5570 __ Frintn(s7, s23); |
| 5571 __ Frintn(s8, s24); |
| 5572 __ Frintn(s9, s25); |
| 5573 __ Frintn(s10, s26); |
| 5574 |
| 5575 __ Fmov(d16, 1.0); |
| 5576 __ Fmov(d17, 1.1); |
| 5577 __ Fmov(d18, 1.5); |
| 5578 __ Fmov(d19, 1.9); |
| 5579 __ Fmov(d20, 2.5); |
| 5580 __ Fmov(d21, -1.5); |
| 5581 __ Fmov(d22, -2.5); |
| 5582 __ Fmov(d23, kFP32PositiveInfinity); |
| 5583 __ Fmov(d24, kFP32NegativeInfinity); |
| 5584 __ Fmov(d25, 0.0); |
| 5585 __ Fmov(d26, -0.0); |
| 5586 |
| 5587 __ Frintn(d11, d16); |
| 5588 __ Frintn(d12, d17); |
| 5589 __ Frintn(d13, d18); |
| 5590 __ Frintn(d14, d19); |
| 5591 __ Frintn(d15, d20); |
| 5592 __ Frintn(d16, d21); |
| 5593 __ Frintn(d17, d22); |
| 5594 __ Frintn(d18, d23); |
| 5595 __ Frintn(d19, d24); |
| 5596 __ Frintn(d20, d25); |
| 5597 __ Frintn(d21, d26); |
| 5598 END(); |
| 5599 |
| 5600 RUN(); |
| 5601 |
| 5602 ASSERT_EQUAL_FP32(1.0, s0); |
| 5603 ASSERT_EQUAL_FP32(1.0, s1); |
| 5604 ASSERT_EQUAL_FP32(2.0, s2); |
| 5605 ASSERT_EQUAL_FP32(2.0, s3); |
| 5606 ASSERT_EQUAL_FP32(2.0, s4); |
| 5607 ASSERT_EQUAL_FP32(-2.0, s5); |
| 5608 ASSERT_EQUAL_FP32(-2.0, s6); |
| 5609 ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s7); |
| 5610 ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s8); |
| 5611 ASSERT_EQUAL_FP32(0.0, s9); |
| 5612 ASSERT_EQUAL_FP32(-0.0, s10); |
| 5613 ASSERT_EQUAL_FP64(1.0, d11); |
| 5614 ASSERT_EQUAL_FP64(1.0, d12); |
| 5615 ASSERT_EQUAL_FP64(2.0, d13); |
| 5616 ASSERT_EQUAL_FP64(2.0, d14); |
| 5617 ASSERT_EQUAL_FP64(2.0, d15); |
| 5618 ASSERT_EQUAL_FP64(-2.0, d16); |
| 5619 ASSERT_EQUAL_FP64(-2.0, d17); |
| 5620 ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d18); |
| 5621 ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d19); |
| 5622 ASSERT_EQUAL_FP64(0.0, d20); |
| 5623 ASSERT_EQUAL_FP64(-0.0, d21); |
| 5624 |
| 5625 TEARDOWN(); |
| 5626 } |
| 5627 |
| 5628 |
| 5629 TEST(frintz) { |
| 5630 INIT_V8(); |
| 5631 SETUP(); |
| 5632 |
| 5633 START(); |
| 5634 __ Fmov(s16, 1.0); |
| 5635 __ Fmov(s17, 1.1); |
| 5636 __ Fmov(s18, 1.5); |
| 5637 __ Fmov(s19, 1.9); |
| 5638 __ Fmov(s20, 2.5); |
| 5639 __ Fmov(s21, -1.5); |
| 5640 __ Fmov(s22, -2.5); |
| 5641 __ Fmov(s23, kFP32PositiveInfinity); |
| 5642 __ Fmov(s24, kFP32NegativeInfinity); |
| 5643 __ Fmov(s25, 0.0); |
| 5644 __ Fmov(s26, -0.0); |
| 5645 |
| 5646 __ Frintz(s0, s16); |
| 5647 __ Frintz(s1, s17); |
| 5648 __ Frintz(s2, s18); |
| 5649 __ Frintz(s3, s19); |
| 5650 __ Frintz(s4, s20); |
| 5651 __ Frintz(s5, s21); |
| 5652 __ Frintz(s6, s22); |
| 5653 __ Frintz(s7, s23); |
| 5654 __ Frintz(s8, s24); |
| 5655 __ Frintz(s9, s25); |
| 5656 __ Frintz(s10, s26); |
| 5657 |
| 5658 __ Fmov(d16, 1.0); |
| 5659 __ Fmov(d17, 1.1); |
| 5660 __ Fmov(d18, 1.5); |
| 5661 __ Fmov(d19, 1.9); |
| 5662 __ Fmov(d20, 2.5); |
| 5663 __ Fmov(d21, -1.5); |
| 5664 __ Fmov(d22, -2.5); |
| 5665 __ Fmov(d23, kFP32PositiveInfinity); |
| 5666 __ Fmov(d24, kFP32NegativeInfinity); |
| 5667 __ Fmov(d25, 0.0); |
| 5668 __ Fmov(d26, -0.0); |
| 5669 |
| 5670 __ Frintz(d11, d16); |
| 5671 __ Frintz(d12, d17); |
| 5672 __ Frintz(d13, d18); |
| 5673 __ Frintz(d14, d19); |
| 5674 __ Frintz(d15, d20); |
| 5675 __ Frintz(d16, d21); |
| 5676 __ Frintz(d17, d22); |
| 5677 __ Frintz(d18, d23); |
| 5678 __ Frintz(d19, d24); |
| 5679 __ Frintz(d20, d25); |
| 5680 __ Frintz(d21, d26); |
| 5681 END(); |
| 5682 |
| 5683 RUN(); |
| 5684 |
| 5685 ASSERT_EQUAL_FP32(1.0, s0); |
| 5686 ASSERT_EQUAL_FP32(1.0, s1); |
| 5687 ASSERT_EQUAL_FP32(1.0, s2); |
| 5688 ASSERT_EQUAL_FP32(1.0, s3); |
| 5689 ASSERT_EQUAL_FP32(2.0, s4); |
| 5690 ASSERT_EQUAL_FP32(-1.0, s5); |
| 5691 ASSERT_EQUAL_FP32(-2.0, s6); |
| 5692 ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s7); |
| 5693 ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s8); |
| 5694 ASSERT_EQUAL_FP32(0.0, s9); |
| 5695 ASSERT_EQUAL_FP32(-0.0, s10); |
| 5696 ASSERT_EQUAL_FP64(1.0, d11); |
| 5697 ASSERT_EQUAL_FP64(1.0, d12); |
| 5698 ASSERT_EQUAL_FP64(1.0, d13); |
| 5699 ASSERT_EQUAL_FP64(1.0, d14); |
| 5700 ASSERT_EQUAL_FP64(2.0, d15); |
| 5701 ASSERT_EQUAL_FP64(-1.0, d16); |
| 5702 ASSERT_EQUAL_FP64(-2.0, d17); |
| 5703 ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d18); |
| 5704 ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d19); |
| 5705 ASSERT_EQUAL_FP64(0.0, d20); |
| 5706 ASSERT_EQUAL_FP64(-0.0, d21); |
| 5707 |
| 5708 TEARDOWN(); |
| 5709 } |
| 5710 |
| 5711 |
| 5712 TEST(fcvt_ds) { |
| 5713 INIT_V8(); |
| 5714 SETUP(); |
| 5715 |
| 5716 START(); |
| 5717 __ Fmov(s16, 1.0); |
| 5718 __ Fmov(s17, 1.1); |
| 5719 __ Fmov(s18, 1.5); |
| 5720 __ Fmov(s19, 1.9); |
| 5721 __ Fmov(s20, 2.5); |
| 5722 __ Fmov(s21, -1.5); |
| 5723 __ Fmov(s22, -2.5); |
| 5724 __ Fmov(s23, kFP32PositiveInfinity); |
| 5725 __ Fmov(s24, kFP32NegativeInfinity); |
| 5726 __ Fmov(s25, 0.0); |
| 5727 __ Fmov(s26, -0.0); |
| 5728 __ Fmov(s27, FLT_MAX); |
| 5729 __ Fmov(s28, FLT_MIN); |
| 5730 __ Fmov(s29, rawbits_to_float(0x7fc12345)); // Quiet NaN. |
| 5731 __ Fmov(s30, rawbits_to_float(0x7f812345)); // Signalling NaN. |
| 5732 |
| 5733 __ Fcvt(d0, s16); |
| 5734 __ Fcvt(d1, s17); |
| 5735 __ Fcvt(d2, s18); |
| 5736 __ Fcvt(d3, s19); |
| 5737 __ Fcvt(d4, s20); |
| 5738 __ Fcvt(d5, s21); |
| 5739 __ Fcvt(d6, s22); |
| 5740 __ Fcvt(d7, s23); |
| 5741 __ Fcvt(d8, s24); |
| 5742 __ Fcvt(d9, s25); |
| 5743 __ Fcvt(d10, s26); |
| 5744 __ Fcvt(d11, s27); |
| 5745 __ Fcvt(d12, s28); |
| 5746 __ Fcvt(d13, s29); |
| 5747 __ Fcvt(d14, s30); |
| 5748 END(); |
| 5749 |
| 5750 RUN(); |
| 5751 |
| 5752 ASSERT_EQUAL_FP64(1.0f, d0); |
| 5753 ASSERT_EQUAL_FP64(1.1f, d1); |
| 5754 ASSERT_EQUAL_FP64(1.5f, d2); |
| 5755 ASSERT_EQUAL_FP64(1.9f, d3); |
| 5756 ASSERT_EQUAL_FP64(2.5f, d4); |
| 5757 ASSERT_EQUAL_FP64(-1.5f, d5); |
| 5758 ASSERT_EQUAL_FP64(-2.5f, d6); |
| 5759 ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d7); |
| 5760 ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d8); |
| 5761 ASSERT_EQUAL_FP64(0.0f, d9); |
| 5762 ASSERT_EQUAL_FP64(-0.0f, d10); |
| 5763 ASSERT_EQUAL_FP64(FLT_MAX, d11); |
| 5764 ASSERT_EQUAL_FP64(FLT_MIN, d12); |
| 5765 |
| 5766 // Check that the NaN payload is preserved according to A64 conversion rules: |
| 5767 // - The sign bit is preserved. |
| 5768 // - The top bit of the mantissa is forced to 1 (making it a quiet NaN). |
| 5769 // - The remaining mantissa bits are copied until they run out. |
| 5770 // - The low-order bits that haven't already been assigned are set to 0. |
| 5771 ASSERT_EQUAL_FP64(rawbits_to_double(0x7ff82468a0000000), d13); |
| 5772 ASSERT_EQUAL_FP64(rawbits_to_double(0x7ff82468a0000000), d14); |
| 5773 |
| 5774 TEARDOWN(); |
| 5775 } |
| 5776 |
| 5777 |
| 5778 TEST(fcvt_sd) { |
| 5779 INIT_V8(); |
| 5780 // There are a huge number of corner-cases to check, so this test iterates |
| 5781 // through a list. The list is then negated and checked again (since the sign |
| 5782 // is irrelevant in ties-to-even rounding), so the list shouldn't include any |
| 5783 // negative values. |
| 5784 // |
| 5785 // Note that this test only checks ties-to-even rounding, because that is all |
| 5786 // that the simulator supports. |
| 5787 struct {double in; float expected;} test[] = { |
| 5788 // Check some simple conversions. |
| 5789 {0.0, 0.0f}, |
| 5790 {1.0, 1.0f}, |
| 5791 {1.5, 1.5f}, |
| 5792 {2.0, 2.0f}, |
| 5793 {FLT_MAX, FLT_MAX}, |
| 5794 // - The smallest normalized float. |
| 5795 {pow(2.0, -126), powf(2, -126)}, |
| 5796 // - Normal floats that need (ties-to-even) rounding. |
| 5797 // For normalized numbers: |
| 5798 // bit 29 (0x0000000020000000) is the lowest-order bit which will |
| 5799 // fit in the float's mantissa. |
| 5800 {rawbits_to_double(0x3ff0000000000000), rawbits_to_float(0x3f800000)}, |
| 5801 {rawbits_to_double(0x3ff0000000000001), rawbits_to_float(0x3f800000)}, |
| 5802 {rawbits_to_double(0x3ff0000010000000), rawbits_to_float(0x3f800000)}, |
| 5803 {rawbits_to_double(0x3ff0000010000001), rawbits_to_float(0x3f800001)}, |
| 5804 {rawbits_to_double(0x3ff0000020000000), rawbits_to_float(0x3f800001)}, |
| 5805 {rawbits_to_double(0x3ff0000020000001), rawbits_to_float(0x3f800001)}, |
| 5806 {rawbits_to_double(0x3ff0000030000000), rawbits_to_float(0x3f800002)}, |
| 5807 {rawbits_to_double(0x3ff0000030000001), rawbits_to_float(0x3f800002)}, |
| 5808 {rawbits_to_double(0x3ff0000040000000), rawbits_to_float(0x3f800002)}, |
| 5809 {rawbits_to_double(0x3ff0000040000001), rawbits_to_float(0x3f800002)}, |
| 5810 {rawbits_to_double(0x3ff0000050000000), rawbits_to_float(0x3f800002)}, |
| 5811 {rawbits_to_double(0x3ff0000050000001), rawbits_to_float(0x3f800003)}, |
| 5812 {rawbits_to_double(0x3ff0000060000000), rawbits_to_float(0x3f800003)}, |
| 5813 // - A mantissa that overflows into the exponent during rounding. |
| 5814 {rawbits_to_double(0x3feffffff0000000), rawbits_to_float(0x3f800000)}, |
| 5815 // - The largest double that rounds to a normal float. |
| 5816 {rawbits_to_double(0x47efffffefffffff), rawbits_to_float(0x7f7fffff)}, |
| 5817 |
| 5818 // Doubles that are too big for a float. |
| 5819 {kFP64PositiveInfinity, kFP32PositiveInfinity}, |
| 5820 {DBL_MAX, kFP32PositiveInfinity}, |
| 5821 // - The smallest exponent that's too big for a float. |
| 5822 {pow(2.0, 128), kFP32PositiveInfinity}, |
| 5823 // - This exponent is in range, but the value rounds to infinity. |
| 5824 {rawbits_to_double(0x47effffff0000000), kFP32PositiveInfinity}, |
| 5825 |
| 5826 // Doubles that are too small for a float. |
| 5827 // - The smallest (subnormal) double. |
| 5828 {DBL_MIN, 0.0}, |
| 5829 // - The largest double which is too small for a subnormal float. |
| 5830 {rawbits_to_double(0x3690000000000000), rawbits_to_float(0x00000000)}, |
| 5831 |
| 5832 // Normal doubles that become subnormal floats. |
| 5833 // - The largest subnormal float. |
| 5834 {rawbits_to_double(0x380fffffc0000000), rawbits_to_float(0x007fffff)}, |
| 5835 // - The smallest subnormal float. |
| 5836 {rawbits_to_double(0x36a0000000000000), rawbits_to_float(0x00000001)}, |
| 5837 // - Subnormal floats that need (ties-to-even) rounding. |
| 5838 // For these subnormals: |
| 5839 // bit 34 (0x0000000400000000) is the lowest-order bit which will |
| 5840 // fit in the float's mantissa. |
| 5841 {rawbits_to_double(0x37c159e000000000), rawbits_to_float(0x00045678)}, |
| 5842 {rawbits_to_double(0x37c159e000000001), rawbits_to_float(0x00045678)}, |
| 5843 {rawbits_to_double(0x37c159e200000000), rawbits_to_float(0x00045678)}, |
| 5844 {rawbits_to_double(0x37c159e200000001), rawbits_to_float(0x00045679)}, |
| 5845 {rawbits_to_double(0x37c159e400000000), rawbits_to_float(0x00045679)}, |
| 5846 {rawbits_to_double(0x37c159e400000001), rawbits_to_float(0x00045679)}, |
| 5847 {rawbits_to_double(0x37c159e600000000), rawbits_to_float(0x0004567a)}, |
| 5848 {rawbits_to_double(0x37c159e600000001), rawbits_to_float(0x0004567a)}, |
| 5849 {rawbits_to_double(0x37c159e800000000), rawbits_to_float(0x0004567a)}, |
| 5850 {rawbits_to_double(0x37c159e800000001), rawbits_to_float(0x0004567a)}, |
| 5851 {rawbits_to_double(0x37c159ea00000000), rawbits_to_float(0x0004567a)}, |
| 5852 {rawbits_to_double(0x37c159ea00000001), rawbits_to_float(0x0004567b)}, |
| 5853 {rawbits_to_double(0x37c159ec00000000), rawbits_to_float(0x0004567b)}, |
| 5854 // - The smallest double which rounds up to become a subnormal float. |
| 5855 {rawbits_to_double(0x3690000000000001), rawbits_to_float(0x00000001)}, |
| 5856 |
| 5857 // Check NaN payload preservation. |
| 5858 {rawbits_to_double(0x7ff82468a0000000), rawbits_to_float(0x7fc12345)}, |
| 5859 {rawbits_to_double(0x7ff82468bfffffff), rawbits_to_float(0x7fc12345)}, |
| 5860 // - Signalling NaNs become quiet NaNs. |
| 5861 {rawbits_to_double(0x7ff02468a0000000), rawbits_to_float(0x7fc12345)}, |
| 5862 {rawbits_to_double(0x7ff02468bfffffff), rawbits_to_float(0x7fc12345)}, |
| 5863 {rawbits_to_double(0x7ff000001fffffff), rawbits_to_float(0x7fc00000)}, |
| 5864 }; |
| 5865 int count = sizeof(test) / sizeof(test[0]); |
| 5866 |
| 5867 for (int i = 0; i < count; i++) { |
| 5868 double in = test[i].in; |
| 5869 float expected = test[i].expected; |
| 5870 |
| 5871 // We only expect positive input. |
| 5872 ASSERT(std::signbit(in) == 0); |
| 5873 ASSERT(std::signbit(expected) == 0); |
| 5874 |
| 5875 SETUP(); |
| 5876 START(); |
| 5877 |
| 5878 __ Fmov(d10, in); |
| 5879 __ Fcvt(s20, d10); |
| 5880 |
| 5881 __ Fmov(d11, -in); |
| 5882 __ Fcvt(s21, d11); |
| 5883 |
| 5884 END(); |
| 5885 RUN(); |
| 5886 ASSERT_EQUAL_FP32(expected, s20); |
| 5887 ASSERT_EQUAL_FP32(-expected, s21); |
| 5888 TEARDOWN(); |
| 5889 } |
| 5890 } |
| 5891 |
| 5892 |
| 5893 TEST(fcvtas) { |
| 5894 INIT_V8(); |
| 5895 SETUP(); |
| 5896 |
| 5897 START(); |
| 5898 __ Fmov(s0, 1.0); |
| 5899 __ Fmov(s1, 1.1); |
| 5900 __ Fmov(s2, 2.5); |
| 5901 __ Fmov(s3, -2.5); |
| 5902 __ Fmov(s4, kFP32PositiveInfinity); |
| 5903 __ Fmov(s5, kFP32NegativeInfinity); |
| 5904 __ Fmov(s6, 0x7fffff80); // Largest float < INT32_MAX. |
| 5905 __ Fneg(s7, s6); // Smallest float > INT32_MIN. |
| 5906 __ Fmov(d8, 1.0); |
| 5907 __ Fmov(d9, 1.1); |
| 5908 __ Fmov(d10, 2.5); |
| 5909 __ Fmov(d11, -2.5); |
| 5910 __ Fmov(d12, kFP64PositiveInfinity); |
| 5911 __ Fmov(d13, kFP64NegativeInfinity); |
| 5912 __ Fmov(d14, kWMaxInt - 1); |
| 5913 __ Fmov(d15, kWMinInt + 1); |
| 5914 __ Fmov(s17, 1.1); |
| 5915 __ Fmov(s18, 2.5); |
| 5916 __ Fmov(s19, -2.5); |
| 5917 __ Fmov(s20, kFP32PositiveInfinity); |
| 5918 __ Fmov(s21, kFP32NegativeInfinity); |
| 5919 __ Fmov(s22, 0x7fffff8000000000UL); // Largest float < INT64_MAX. |
| 5920 __ Fneg(s23, s22); // Smallest float > INT64_MIN. |
| 5921 __ Fmov(d24, 1.1); |
| 5922 __ Fmov(d25, 2.5); |
| 5923 __ Fmov(d26, -2.5); |
| 5924 __ Fmov(d27, kFP64PositiveInfinity); |
| 5925 __ Fmov(d28, kFP64NegativeInfinity); |
| 5926 __ Fmov(d29, 0x7ffffffffffffc00UL); // Largest double < INT64_MAX. |
| 5927 __ Fneg(d30, d29); // Smallest double > INT64_MIN. |
| 5928 |
| 5929 __ Fcvtas(w0, s0); |
| 5930 __ Fcvtas(w1, s1); |
| 5931 __ Fcvtas(w2, s2); |
| 5932 __ Fcvtas(w3, s3); |
| 5933 __ Fcvtas(w4, s4); |
| 5934 __ Fcvtas(w5, s5); |
| 5935 __ Fcvtas(w6, s6); |
| 5936 __ Fcvtas(w7, s7); |
| 5937 __ Fcvtas(w8, d8); |
| 5938 __ Fcvtas(w9, d9); |
| 5939 __ Fcvtas(w10, d10); |
| 5940 __ Fcvtas(w11, d11); |
| 5941 __ Fcvtas(w12, d12); |
| 5942 __ Fcvtas(w13, d13); |
| 5943 __ Fcvtas(w14, d14); |
| 5944 __ Fcvtas(w15, d15); |
| 5945 __ Fcvtas(x17, s17); |
| 5946 __ Fcvtas(x18, s18); |
| 5947 __ Fcvtas(x19, s19); |
| 5948 __ Fcvtas(x20, s20); |
| 5949 __ Fcvtas(x21, s21); |
| 5950 __ Fcvtas(x22, s22); |
| 5951 __ Fcvtas(x23, s23); |
| 5952 __ Fcvtas(x24, d24); |
| 5953 __ Fcvtas(x25, d25); |
| 5954 __ Fcvtas(x26, d26); |
| 5955 __ Fcvtas(x27, d27); |
| 5956 __ Fcvtas(x28, d28); |
| 5957 __ Fcvtas(x29, d29); |
| 5958 __ Fcvtas(x30, d30); |
| 5959 END(); |
| 5960 |
| 5961 RUN(); |
| 5962 |
| 5963 ASSERT_EQUAL_64(1, x0); |
| 5964 ASSERT_EQUAL_64(1, x1); |
| 5965 ASSERT_EQUAL_64(3, x2); |
| 5966 ASSERT_EQUAL_64(0xfffffffd, x3); |
| 5967 ASSERT_EQUAL_64(0x7fffffff, x4); |
| 5968 ASSERT_EQUAL_64(0x80000000, x5); |
| 5969 ASSERT_EQUAL_64(0x7fffff80, x6); |
| 5970 ASSERT_EQUAL_64(0x80000080, x7); |
| 5971 ASSERT_EQUAL_64(1, x8); |
| 5972 ASSERT_EQUAL_64(1, x9); |
| 5973 ASSERT_EQUAL_64(3, x10); |
| 5974 ASSERT_EQUAL_64(0xfffffffd, x11); |
| 5975 ASSERT_EQUAL_64(0x7fffffff, x12); |
| 5976 ASSERT_EQUAL_64(0x80000000, x13); |
| 5977 ASSERT_EQUAL_64(0x7ffffffe, x14); |
| 5978 ASSERT_EQUAL_64(0x80000001, x15); |
| 5979 ASSERT_EQUAL_64(1, x17); |
| 5980 ASSERT_EQUAL_64(3, x18); |
| 5981 ASSERT_EQUAL_64(0xfffffffffffffffdUL, x19); |
| 5982 ASSERT_EQUAL_64(0x7fffffffffffffffUL, x20); |
| 5983 ASSERT_EQUAL_64(0x8000000000000000UL, x21); |
| 5984 ASSERT_EQUAL_64(0x7fffff8000000000UL, x22); |
| 5985 ASSERT_EQUAL_64(0x8000008000000000UL, x23); |
| 5986 ASSERT_EQUAL_64(1, x24); |
| 5987 ASSERT_EQUAL_64(3, x25); |
| 5988 ASSERT_EQUAL_64(0xfffffffffffffffdUL, x26); |
| 5989 ASSERT_EQUAL_64(0x7fffffffffffffffUL, x27); |
| 5990 ASSERT_EQUAL_64(0x8000000000000000UL, x28); |
| 5991 ASSERT_EQUAL_64(0x7ffffffffffffc00UL, x29); |
| 5992 ASSERT_EQUAL_64(0x8000000000000400UL, x30); |
| 5993 |
| 5994 TEARDOWN(); |
| 5995 } |
| 5996 |
| 5997 |
| 5998 TEST(fcvtau) { |
| 5999 INIT_V8(); |
| 6000 SETUP(); |
| 6001 |
| 6002 START(); |
| 6003 __ Fmov(s0, 1.0); |
| 6004 __ Fmov(s1, 1.1); |
| 6005 __ Fmov(s2, 2.5); |
| 6006 __ Fmov(s3, -2.5); |
| 6007 __ Fmov(s4, kFP32PositiveInfinity); |
| 6008 __ Fmov(s5, kFP32NegativeInfinity); |
| 6009 __ Fmov(s6, 0xffffff00); // Largest float < UINT32_MAX. |
| 6010 __ Fmov(d8, 1.0); |
| 6011 __ Fmov(d9, 1.1); |
| 6012 __ Fmov(d10, 2.5); |
| 6013 __ Fmov(d11, -2.5); |
| 6014 __ Fmov(d12, kFP64PositiveInfinity); |
| 6015 __ Fmov(d13, kFP64NegativeInfinity); |
| 6016 __ Fmov(d14, 0xfffffffe); |
| 6017 __ Fmov(s16, 1.0); |
| 6018 __ Fmov(s17, 1.1); |
| 6019 __ Fmov(s18, 2.5); |
| 6020 __ Fmov(s19, -2.5); |
| 6021 __ Fmov(s20, kFP32PositiveInfinity); |
| 6022 __ Fmov(s21, kFP32NegativeInfinity); |
| 6023 __ Fmov(s22, 0xffffff0000000000UL); // Largest float < UINT64_MAX. |
| 6024 __ Fmov(d24, 1.1); |
| 6025 __ Fmov(d25, 2.5); |
| 6026 __ Fmov(d26, -2.5); |
| 6027 __ Fmov(d27, kFP64PositiveInfinity); |
| 6028 __ Fmov(d28, kFP64NegativeInfinity); |
| 6029 __ Fmov(d29, 0xfffffffffffff800UL); // Largest double < UINT64_MAX. |
| 6030 __ Fmov(s30, 0x100000000UL); |
| 6031 |
| 6032 __ Fcvtau(w0, s0); |
| 6033 __ Fcvtau(w1, s1); |
| 6034 __ Fcvtau(w2, s2); |
| 6035 __ Fcvtau(w3, s3); |
| 6036 __ Fcvtau(w4, s4); |
| 6037 __ Fcvtau(w5, s5); |
| 6038 __ Fcvtau(w6, s6); |
| 6039 __ Fcvtau(w8, d8); |
| 6040 __ Fcvtau(w9, d9); |
| 6041 __ Fcvtau(w10, d10); |
| 6042 __ Fcvtau(w11, d11); |
| 6043 __ Fcvtau(w12, d12); |
| 6044 __ Fcvtau(w13, d13); |
| 6045 __ Fcvtau(w14, d14); |
| 6046 __ Fcvtau(w15, d15); |
| 6047 __ Fcvtau(x16, s16); |
| 6048 __ Fcvtau(x17, s17); |
| 6049 __ Fcvtau(x18, s18); |
| 6050 __ Fcvtau(x19, s19); |
| 6051 __ Fcvtau(x20, s20); |
| 6052 __ Fcvtau(x21, s21); |
| 6053 __ Fcvtau(x22, s22); |
| 6054 __ Fcvtau(x24, d24); |
| 6055 __ Fcvtau(x25, d25); |
| 6056 __ Fcvtau(x26, d26); |
| 6057 __ Fcvtau(x27, d27); |
| 6058 __ Fcvtau(x28, d28); |
| 6059 __ Fcvtau(x29, d29); |
| 6060 __ Fcvtau(w30, s30); |
| 6061 END(); |
| 6062 |
| 6063 RUN(); |
| 6064 |
| 6065 ASSERT_EQUAL_64(1, x0); |
| 6066 ASSERT_EQUAL_64(1, x1); |
| 6067 ASSERT_EQUAL_64(3, x2); |
| 6068 ASSERT_EQUAL_64(0, x3); |
| 6069 ASSERT_EQUAL_64(0xffffffff, x4); |
| 6070 ASSERT_EQUAL_64(0, x5); |
| 6071 ASSERT_EQUAL_64(0xffffff00, x6); |
| 6072 ASSERT_EQUAL_64(1, x8); |
| 6073 ASSERT_EQUAL_64(1, x9); |
| 6074 ASSERT_EQUAL_64(3, x10); |
| 6075 ASSERT_EQUAL_64(0, x11); |
| 6076 ASSERT_EQUAL_64(0xffffffff, x12); |
| 6077 ASSERT_EQUAL_64(0, x13); |
| 6078 ASSERT_EQUAL_64(0xfffffffe, x14); |
| 6079 ASSERT_EQUAL_64(1, x16); |
| 6080 ASSERT_EQUAL_64(1, x17); |
| 6081 ASSERT_EQUAL_64(3, x18); |
| 6082 ASSERT_EQUAL_64(0, x19); |
| 6083 ASSERT_EQUAL_64(0xffffffffffffffffUL, x20); |
| 6084 ASSERT_EQUAL_64(0, x21); |
| 6085 ASSERT_EQUAL_64(0xffffff0000000000UL, x22); |
| 6086 ASSERT_EQUAL_64(1, x24); |
| 6087 ASSERT_EQUAL_64(3, x25); |
| 6088 ASSERT_EQUAL_64(0, x26); |
| 6089 ASSERT_EQUAL_64(0xffffffffffffffffUL, x27); |
| 6090 ASSERT_EQUAL_64(0, x28); |
| 6091 ASSERT_EQUAL_64(0xfffffffffffff800UL, x29); |
| 6092 ASSERT_EQUAL_64(0xffffffff, x30); |
| 6093 |
| 6094 TEARDOWN(); |
| 6095 } |
| 6096 |
| 6097 |
| 6098 TEST(fcvtms) { |
| 6099 INIT_V8(); |
| 6100 SETUP(); |
| 6101 |
| 6102 START(); |
| 6103 __ Fmov(s0, 1.0); |
| 6104 __ Fmov(s1, 1.1); |
| 6105 __ Fmov(s2, 1.5); |
| 6106 __ Fmov(s3, -1.5); |
| 6107 __ Fmov(s4, kFP32PositiveInfinity); |
| 6108 __ Fmov(s5, kFP32NegativeInfinity); |
| 6109 __ Fmov(s6, 0x7fffff80); // Largest float < INT32_MAX. |
| 6110 __ Fneg(s7, s6); // Smallest float > INT32_MIN. |
| 6111 __ Fmov(d8, 1.0); |
| 6112 __ Fmov(d9, 1.1); |
| 6113 __ Fmov(d10, 1.5); |
| 6114 __ Fmov(d11, -1.5); |
| 6115 __ Fmov(d12, kFP64PositiveInfinity); |
| 6116 __ Fmov(d13, kFP64NegativeInfinity); |
| 6117 __ Fmov(d14, kWMaxInt - 1); |
| 6118 __ Fmov(d15, kWMinInt + 1); |
| 6119 __ Fmov(s17, 1.1); |
| 6120 __ Fmov(s18, 1.5); |
| 6121 __ Fmov(s19, -1.5); |
| 6122 __ Fmov(s20, kFP32PositiveInfinity); |
| 6123 __ Fmov(s21, kFP32NegativeInfinity); |
| 6124 __ Fmov(s22, 0x7fffff8000000000UL); // Largest float < INT64_MAX. |
| 6125 __ Fneg(s23, s22); // Smallest float > INT64_MIN. |
| 6126 __ Fmov(d24, 1.1); |
| 6127 __ Fmov(d25, 1.5); |
| 6128 __ Fmov(d26, -1.5); |
| 6129 __ Fmov(d27, kFP64PositiveInfinity); |
| 6130 __ Fmov(d28, kFP64NegativeInfinity); |
| 6131 __ Fmov(d29, 0x7ffffffffffffc00UL); // Largest double < INT64_MAX. |
| 6132 __ Fneg(d30, d29); // Smallest double > INT64_MIN. |
| 6133 |
| 6134 __ Fcvtms(w0, s0); |
| 6135 __ Fcvtms(w1, s1); |
| 6136 __ Fcvtms(w2, s2); |
| 6137 __ Fcvtms(w3, s3); |
| 6138 __ Fcvtms(w4, s4); |
| 6139 __ Fcvtms(w5, s5); |
| 6140 __ Fcvtms(w6, s6); |
| 6141 __ Fcvtms(w7, s7); |
| 6142 __ Fcvtms(w8, d8); |
| 6143 __ Fcvtms(w9, d9); |
| 6144 __ Fcvtms(w10, d10); |
| 6145 __ Fcvtms(w11, d11); |
| 6146 __ Fcvtms(w12, d12); |
| 6147 __ Fcvtms(w13, d13); |
| 6148 __ Fcvtms(w14, d14); |
| 6149 __ Fcvtms(w15, d15); |
| 6150 __ Fcvtms(x17, s17); |
| 6151 __ Fcvtms(x18, s18); |
| 6152 __ Fcvtms(x19, s19); |
| 6153 __ Fcvtms(x20, s20); |
| 6154 __ Fcvtms(x21, s21); |
| 6155 __ Fcvtms(x22, s22); |
| 6156 __ Fcvtms(x23, s23); |
| 6157 __ Fcvtms(x24, d24); |
| 6158 __ Fcvtms(x25, d25); |
| 6159 __ Fcvtms(x26, d26); |
| 6160 __ Fcvtms(x27, d27); |
| 6161 __ Fcvtms(x28, d28); |
| 6162 __ Fcvtms(x29, d29); |
| 6163 __ Fcvtms(x30, d30); |
| 6164 END(); |
| 6165 |
| 6166 RUN(); |
| 6167 |
| 6168 ASSERT_EQUAL_64(1, x0); |
| 6169 ASSERT_EQUAL_64(1, x1); |
| 6170 ASSERT_EQUAL_64(1, x2); |
| 6171 ASSERT_EQUAL_64(0xfffffffe, x3); |
| 6172 ASSERT_EQUAL_64(0x7fffffff, x4); |
| 6173 ASSERT_EQUAL_64(0x80000000, x5); |
| 6174 ASSERT_EQUAL_64(0x7fffff80, x6); |
| 6175 ASSERT_EQUAL_64(0x80000080, x7); |
| 6176 ASSERT_EQUAL_64(1, x8); |
| 6177 ASSERT_EQUAL_64(1, x9); |
| 6178 ASSERT_EQUAL_64(1, x10); |
| 6179 ASSERT_EQUAL_64(0xfffffffe, x11); |
| 6180 ASSERT_EQUAL_64(0x7fffffff, x12); |
| 6181 ASSERT_EQUAL_64(0x80000000, x13); |
| 6182 ASSERT_EQUAL_64(0x7ffffffe, x14); |
| 6183 ASSERT_EQUAL_64(0x80000001, x15); |
| 6184 ASSERT_EQUAL_64(1, x17); |
| 6185 ASSERT_EQUAL_64(1, x18); |
| 6186 ASSERT_EQUAL_64(0xfffffffffffffffeUL, x19); |
| 6187 ASSERT_EQUAL_64(0x7fffffffffffffffUL, x20); |
| 6188 ASSERT_EQUAL_64(0x8000000000000000UL, x21); |
| 6189 ASSERT_EQUAL_64(0x7fffff8000000000UL, x22); |
| 6190 ASSERT_EQUAL_64(0x8000008000000000UL, x23); |
| 6191 ASSERT_EQUAL_64(1, x24); |
| 6192 ASSERT_EQUAL_64(1, x25); |
| 6193 ASSERT_EQUAL_64(0xfffffffffffffffeUL, x26); |
| 6194 ASSERT_EQUAL_64(0x7fffffffffffffffUL, x27); |
| 6195 ASSERT_EQUAL_64(0x8000000000000000UL, x28); |
| 6196 ASSERT_EQUAL_64(0x7ffffffffffffc00UL, x29); |
| 6197 ASSERT_EQUAL_64(0x8000000000000400UL, x30); |
| 6198 |
| 6199 TEARDOWN(); |
| 6200 } |
| 6201 |
| 6202 |
| 6203 TEST(fcvtmu) { |
| 6204 INIT_V8(); |
| 6205 SETUP(); |
| 6206 |
| 6207 START(); |
| 6208 __ Fmov(s0, 1.0); |
| 6209 __ Fmov(s1, 1.1); |
| 6210 __ Fmov(s2, 1.5); |
| 6211 __ Fmov(s3, -1.5); |
| 6212 __ Fmov(s4, kFP32PositiveInfinity); |
| 6213 __ Fmov(s5, kFP32NegativeInfinity); |
| 6214 __ Fmov(s6, 0x7fffff80); // Largest float < INT32_MAX. |
| 6215 __ Fneg(s7, s6); // Smallest float > INT32_MIN. |
| 6216 __ Fmov(d8, 1.0); |
| 6217 __ Fmov(d9, 1.1); |
| 6218 __ Fmov(d10, 1.5); |
| 6219 __ Fmov(d11, -1.5); |
| 6220 __ Fmov(d12, kFP64PositiveInfinity); |
| 6221 __ Fmov(d13, kFP64NegativeInfinity); |
| 6222 __ Fmov(d14, kWMaxInt - 1); |
| 6223 __ Fmov(d15, kWMinInt + 1); |
| 6224 __ Fmov(s17, 1.1); |
| 6225 __ Fmov(s18, 1.5); |
| 6226 __ Fmov(s19, -1.5); |
| 6227 __ Fmov(s20, kFP32PositiveInfinity); |
| 6228 __ Fmov(s21, kFP32NegativeInfinity); |
| 6229 __ Fmov(s22, 0x7fffff8000000000UL); // Largest float < INT64_MAX. |
| 6230 __ Fneg(s23, s22); // Smallest float > INT64_MIN. |
| 6231 __ Fmov(d24, 1.1); |
| 6232 __ Fmov(d25, 1.5); |
| 6233 __ Fmov(d26, -1.5); |
| 6234 __ Fmov(d27, kFP64PositiveInfinity); |
| 6235 __ Fmov(d28, kFP64NegativeInfinity); |
| 6236 __ Fmov(d29, 0x7ffffffffffffc00UL); // Largest double < INT64_MAX. |
| 6237 __ Fneg(d30, d29); // Smallest double > INT64_MIN. |
| 6238 |
| 6239 __ Fcvtmu(w0, s0); |
| 6240 __ Fcvtmu(w1, s1); |
| 6241 __ Fcvtmu(w2, s2); |
| 6242 __ Fcvtmu(w3, s3); |
| 6243 __ Fcvtmu(w4, s4); |
| 6244 __ Fcvtmu(w5, s5); |
| 6245 __ Fcvtmu(w6, s6); |
| 6246 __ Fcvtmu(w7, s7); |
| 6247 __ Fcvtmu(w8, d8); |
| 6248 __ Fcvtmu(w9, d9); |
| 6249 __ Fcvtmu(w10, d10); |
| 6250 __ Fcvtmu(w11, d11); |
| 6251 __ Fcvtmu(w12, d12); |
| 6252 __ Fcvtmu(w13, d13); |
| 6253 __ Fcvtmu(w14, d14); |
| 6254 __ Fcvtmu(x17, s17); |
| 6255 __ Fcvtmu(x18, s18); |
| 6256 __ Fcvtmu(x19, s19); |
| 6257 __ Fcvtmu(x20, s20); |
| 6258 __ Fcvtmu(x21, s21); |
| 6259 __ Fcvtmu(x22, s22); |
| 6260 __ Fcvtmu(x23, s23); |
| 6261 __ Fcvtmu(x24, d24); |
| 6262 __ Fcvtmu(x25, d25); |
| 6263 __ Fcvtmu(x26, d26); |
| 6264 __ Fcvtmu(x27, d27); |
| 6265 __ Fcvtmu(x28, d28); |
| 6266 __ Fcvtmu(x29, d29); |
| 6267 __ Fcvtmu(x30, d30); |
| 6268 END(); |
| 6269 |
| 6270 RUN(); |
| 6271 |
| 6272 ASSERT_EQUAL_64(1, x0); |
| 6273 ASSERT_EQUAL_64(1, x1); |
| 6274 ASSERT_EQUAL_64(1, x2); |
| 6275 ASSERT_EQUAL_64(0, x3); |
| 6276 ASSERT_EQUAL_64(0xffffffff, x4); |
| 6277 ASSERT_EQUAL_64(0, x5); |
| 6278 ASSERT_EQUAL_64(0x7fffff80, x6); |
| 6279 ASSERT_EQUAL_64(0, x7); |
| 6280 ASSERT_EQUAL_64(1, x8); |
| 6281 ASSERT_EQUAL_64(1, x9); |
| 6282 ASSERT_EQUAL_64(1, x10); |
| 6283 ASSERT_EQUAL_64(0, x11); |
| 6284 ASSERT_EQUAL_64(0xffffffff, x12); |
| 6285 ASSERT_EQUAL_64(0, x13); |
| 6286 ASSERT_EQUAL_64(0x7ffffffe, x14); |
| 6287 ASSERT_EQUAL_64(1, x17); |
| 6288 ASSERT_EQUAL_64(1, x18); |
| 6289 ASSERT_EQUAL_64(0x0UL, x19); |
| 6290 ASSERT_EQUAL_64(0xffffffffffffffffUL, x20); |
| 6291 ASSERT_EQUAL_64(0x0UL, x21); |
| 6292 ASSERT_EQUAL_64(0x7fffff8000000000UL, x22); |
| 6293 ASSERT_EQUAL_64(0x0UL, x23); |
| 6294 ASSERT_EQUAL_64(1, x24); |
| 6295 ASSERT_EQUAL_64(1, x25); |
| 6296 ASSERT_EQUAL_64(0x0UL, x26); |
| 6297 ASSERT_EQUAL_64(0xffffffffffffffffUL, x27); |
| 6298 ASSERT_EQUAL_64(0x0UL, x28); |
| 6299 ASSERT_EQUAL_64(0x7ffffffffffffc00UL, x29); |
| 6300 ASSERT_EQUAL_64(0x0UL, x30); |
| 6301 |
| 6302 TEARDOWN(); |
| 6303 } |
| 6304 |
| 6305 |
| 6306 TEST(fcvtns) { |
| 6307 INIT_V8(); |
| 6308 SETUP(); |
| 6309 |
| 6310 START(); |
| 6311 __ Fmov(s0, 1.0); |
| 6312 __ Fmov(s1, 1.1); |
| 6313 __ Fmov(s2, 1.5); |
| 6314 __ Fmov(s3, -1.5); |
| 6315 __ Fmov(s4, kFP32PositiveInfinity); |
| 6316 __ Fmov(s5, kFP32NegativeInfinity); |
| 6317 __ Fmov(s6, 0x7fffff80); // Largest float < INT32_MAX. |
| 6318 __ Fneg(s7, s6); // Smallest float > INT32_MIN. |
| 6319 __ Fmov(d8, 1.0); |
| 6320 __ Fmov(d9, 1.1); |
| 6321 __ Fmov(d10, 1.5); |
| 6322 __ Fmov(d11, -1.5); |
| 6323 __ Fmov(d12, kFP64PositiveInfinity); |
| 6324 __ Fmov(d13, kFP64NegativeInfinity); |
| 6325 __ Fmov(d14, kWMaxInt - 1); |
| 6326 __ Fmov(d15, kWMinInt + 1); |
| 6327 __ Fmov(s17, 1.1); |
| 6328 __ Fmov(s18, 1.5); |
| 6329 __ Fmov(s19, -1.5); |
| 6330 __ Fmov(s20, kFP32PositiveInfinity); |
| 6331 __ Fmov(s21, kFP32NegativeInfinity); |
| 6332 __ Fmov(s22, 0x7fffff8000000000UL); // Largest float < INT64_MAX. |
| 6333 __ Fneg(s23, s22); // Smallest float > INT64_MIN. |
| 6334 __ Fmov(d24, 1.1); |
| 6335 __ Fmov(d25, 1.5); |
| 6336 __ Fmov(d26, -1.5); |
| 6337 __ Fmov(d27, kFP64PositiveInfinity); |
| 6338 __ Fmov(d28, kFP64NegativeInfinity); |
| 6339 __ Fmov(d29, 0x7ffffffffffffc00UL); // Largest double < INT64_MAX. |
| 6340 __ Fneg(d30, d29); // Smallest double > INT64_MIN. |
| 6341 |
| 6342 __ Fcvtns(w0, s0); |
| 6343 __ Fcvtns(w1, s1); |
| 6344 __ Fcvtns(w2, s2); |
| 6345 __ Fcvtns(w3, s3); |
| 6346 __ Fcvtns(w4, s4); |
| 6347 __ Fcvtns(w5, s5); |
| 6348 __ Fcvtns(w6, s6); |
| 6349 __ Fcvtns(w7, s7); |
| 6350 __ Fcvtns(w8, d8); |
| 6351 __ Fcvtns(w9, d9); |
| 6352 __ Fcvtns(w10, d10); |
| 6353 __ Fcvtns(w11, d11); |
| 6354 __ Fcvtns(w12, d12); |
| 6355 __ Fcvtns(w13, d13); |
| 6356 __ Fcvtns(w14, d14); |
| 6357 __ Fcvtns(w15, d15); |
| 6358 __ Fcvtns(x17, s17); |
| 6359 __ Fcvtns(x18, s18); |
| 6360 __ Fcvtns(x19, s19); |
| 6361 __ Fcvtns(x20, s20); |
| 6362 __ Fcvtns(x21, s21); |
| 6363 __ Fcvtns(x22, s22); |
| 6364 __ Fcvtns(x23, s23); |
| 6365 __ Fcvtns(x24, d24); |
| 6366 __ Fcvtns(x25, d25); |
| 6367 __ Fcvtns(x26, d26); |
| 6368 __ Fcvtns(x27, d27); |
| 6369 // __ Fcvtns(x28, d28); |
| 6370 __ Fcvtns(x29, d29); |
| 6371 __ Fcvtns(x30, d30); |
| 6372 END(); |
| 6373 |
| 6374 RUN(); |
| 6375 |
| 6376 ASSERT_EQUAL_64(1, x0); |
| 6377 ASSERT_EQUAL_64(1, x1); |
| 6378 ASSERT_EQUAL_64(2, x2); |
| 6379 ASSERT_EQUAL_64(0xfffffffe, x3); |
| 6380 ASSERT_EQUAL_64(0x7fffffff, x4); |
| 6381 ASSERT_EQUAL_64(0x80000000, x5); |
| 6382 ASSERT_EQUAL_64(0x7fffff80, x6); |
| 6383 ASSERT_EQUAL_64(0x80000080, x7); |
| 6384 ASSERT_EQUAL_64(1, x8); |
| 6385 ASSERT_EQUAL_64(1, x9); |
| 6386 ASSERT_EQUAL_64(2, x10); |
| 6387 ASSERT_EQUAL_64(0xfffffffe, x11); |
| 6388 ASSERT_EQUAL_64(0x7fffffff, x12); |
| 6389 ASSERT_EQUAL_64(0x80000000, x13); |
| 6390 ASSERT_EQUAL_64(0x7ffffffe, x14); |
| 6391 ASSERT_EQUAL_64(0x80000001, x15); |
| 6392 ASSERT_EQUAL_64(1, x17); |
| 6393 ASSERT_EQUAL_64(2, x18); |
| 6394 ASSERT_EQUAL_64(0xfffffffffffffffeUL, x19); |
| 6395 ASSERT_EQUAL_64(0x7fffffffffffffffUL, x20); |
| 6396 ASSERT_EQUAL_64(0x8000000000000000UL, x21); |
| 6397 ASSERT_EQUAL_64(0x7fffff8000000000UL, x22); |
| 6398 ASSERT_EQUAL_64(0x8000008000000000UL, x23); |
| 6399 ASSERT_EQUAL_64(1, x24); |
| 6400 ASSERT_EQUAL_64(2, x25); |
| 6401 ASSERT_EQUAL_64(0xfffffffffffffffeUL, x26); |
| 6402 ASSERT_EQUAL_64(0x7fffffffffffffffUL, x27); |
| 6403 // ASSERT_EQUAL_64(0x8000000000000000UL, x28); |
| 6404 ASSERT_EQUAL_64(0x7ffffffffffffc00UL, x29); |
| 6405 ASSERT_EQUAL_64(0x8000000000000400UL, x30); |
| 6406 |
| 6407 TEARDOWN(); |
| 6408 } |
| 6409 |
| 6410 |
| 6411 TEST(fcvtnu) { |
| 6412 INIT_V8(); |
| 6413 SETUP(); |
| 6414 |
| 6415 START(); |
| 6416 __ Fmov(s0, 1.0); |
| 6417 __ Fmov(s1, 1.1); |
| 6418 __ Fmov(s2, 1.5); |
| 6419 __ Fmov(s3, -1.5); |
| 6420 __ Fmov(s4, kFP32PositiveInfinity); |
| 6421 __ Fmov(s5, kFP32NegativeInfinity); |
| 6422 __ Fmov(s6, 0xffffff00); // Largest float < UINT32_MAX. |
| 6423 __ Fmov(d8, 1.0); |
| 6424 __ Fmov(d9, 1.1); |
| 6425 __ Fmov(d10, 1.5); |
| 6426 __ Fmov(d11, -1.5); |
| 6427 __ Fmov(d12, kFP64PositiveInfinity); |
| 6428 __ Fmov(d13, kFP64NegativeInfinity); |
| 6429 __ Fmov(d14, 0xfffffffe); |
| 6430 __ Fmov(s16, 1.0); |
| 6431 __ Fmov(s17, 1.1); |
| 6432 __ Fmov(s18, 1.5); |
| 6433 __ Fmov(s19, -1.5); |
| 6434 __ Fmov(s20, kFP32PositiveInfinity); |
| 6435 __ Fmov(s21, kFP32NegativeInfinity); |
| 6436 __ Fmov(s22, 0xffffff0000000000UL); // Largest float < UINT64_MAX. |
| 6437 __ Fmov(d24, 1.1); |
| 6438 __ Fmov(d25, 1.5); |
| 6439 __ Fmov(d26, -1.5); |
| 6440 __ Fmov(d27, kFP64PositiveInfinity); |
| 6441 __ Fmov(d28, kFP64NegativeInfinity); |
| 6442 __ Fmov(d29, 0xfffffffffffff800UL); // Largest double < UINT64_MAX. |
| 6443 __ Fmov(s30, 0x100000000UL); |
| 6444 |
| 6445 __ Fcvtnu(w0, s0); |
| 6446 __ Fcvtnu(w1, s1); |
| 6447 __ Fcvtnu(w2, s2); |
| 6448 __ Fcvtnu(w3, s3); |
| 6449 __ Fcvtnu(w4, s4); |
| 6450 __ Fcvtnu(w5, s5); |
| 6451 __ Fcvtnu(w6, s6); |
| 6452 __ Fcvtnu(w8, d8); |
| 6453 __ Fcvtnu(w9, d9); |
| 6454 __ Fcvtnu(w10, d10); |
| 6455 __ Fcvtnu(w11, d11); |
| 6456 __ Fcvtnu(w12, d12); |
| 6457 __ Fcvtnu(w13, d13); |
| 6458 __ Fcvtnu(w14, d14); |
| 6459 __ Fcvtnu(w15, d15); |
| 6460 __ Fcvtnu(x16, s16); |
| 6461 __ Fcvtnu(x17, s17); |
| 6462 __ Fcvtnu(x18, s18); |
| 6463 __ Fcvtnu(x19, s19); |
| 6464 __ Fcvtnu(x20, s20); |
| 6465 __ Fcvtnu(x21, s21); |
| 6466 __ Fcvtnu(x22, s22); |
| 6467 __ Fcvtnu(x24, d24); |
| 6468 __ Fcvtnu(x25, d25); |
| 6469 __ Fcvtnu(x26, d26); |
| 6470 __ Fcvtnu(x27, d27); |
| 6471 // __ Fcvtnu(x28, d28); |
| 6472 __ Fcvtnu(x29, d29); |
| 6473 __ Fcvtnu(w30, s30); |
| 6474 END(); |
| 6475 |
| 6476 RUN(); |
| 6477 |
| 6478 ASSERT_EQUAL_64(1, x0); |
| 6479 ASSERT_EQUAL_64(1, x1); |
| 6480 ASSERT_EQUAL_64(2, x2); |
| 6481 ASSERT_EQUAL_64(0, x3); |
| 6482 ASSERT_EQUAL_64(0xffffffff, x4); |
| 6483 ASSERT_EQUAL_64(0, x5); |
| 6484 ASSERT_EQUAL_64(0xffffff00, x6); |
| 6485 ASSERT_EQUAL_64(1, x8); |
| 6486 ASSERT_EQUAL_64(1, x9); |
| 6487 ASSERT_EQUAL_64(2, x10); |
| 6488 ASSERT_EQUAL_64(0, x11); |
| 6489 ASSERT_EQUAL_64(0xffffffff, x12); |
| 6490 ASSERT_EQUAL_64(0, x13); |
| 6491 ASSERT_EQUAL_64(0xfffffffe, x14); |
| 6492 ASSERT_EQUAL_64(1, x16); |
| 6493 ASSERT_EQUAL_64(1, x17); |
| 6494 ASSERT_EQUAL_64(2, x18); |
| 6495 ASSERT_EQUAL_64(0, x19); |
| 6496 ASSERT_EQUAL_64(0xffffffffffffffffUL, x20); |
| 6497 ASSERT_EQUAL_64(0, x21); |
| 6498 ASSERT_EQUAL_64(0xffffff0000000000UL, x22); |
| 6499 ASSERT_EQUAL_64(1, x24); |
| 6500 ASSERT_EQUAL_64(2, x25); |
| 6501 ASSERT_EQUAL_64(0, x26); |
| 6502 ASSERT_EQUAL_64(0xffffffffffffffffUL, x27); |
| 6503 // ASSERT_EQUAL_64(0, x28); |
| 6504 ASSERT_EQUAL_64(0xfffffffffffff800UL, x29); |
| 6505 ASSERT_EQUAL_64(0xffffffff, x30); |
| 6506 |
| 6507 TEARDOWN(); |
| 6508 } |
| 6509 |
| 6510 |
| 6511 TEST(fcvtzs) { |
| 6512 INIT_V8(); |
| 6513 SETUP(); |
| 6514 |
| 6515 START(); |
| 6516 __ Fmov(s0, 1.0); |
| 6517 __ Fmov(s1, 1.1); |
| 6518 __ Fmov(s2, 1.5); |
| 6519 __ Fmov(s3, -1.5); |
| 6520 __ Fmov(s4, kFP32PositiveInfinity); |
| 6521 __ Fmov(s5, kFP32NegativeInfinity); |
| 6522 __ Fmov(s6, 0x7fffff80); // Largest float < INT32_MAX. |
| 6523 __ Fneg(s7, s6); // Smallest float > INT32_MIN. |
| 6524 __ Fmov(d8, 1.0); |
| 6525 __ Fmov(d9, 1.1); |
| 6526 __ Fmov(d10, 1.5); |
| 6527 __ Fmov(d11, -1.5); |
| 6528 __ Fmov(d12, kFP64PositiveInfinity); |
| 6529 __ Fmov(d13, kFP64NegativeInfinity); |
| 6530 __ Fmov(d14, kWMaxInt - 1); |
| 6531 __ Fmov(d15, kWMinInt + 1); |
| 6532 __ Fmov(s17, 1.1); |
| 6533 __ Fmov(s18, 1.5); |
| 6534 __ Fmov(s19, -1.5); |
| 6535 __ Fmov(s20, kFP32PositiveInfinity); |
| 6536 __ Fmov(s21, kFP32NegativeInfinity); |
| 6537 __ Fmov(s22, 0x7fffff8000000000UL); // Largest float < INT64_MAX. |
| 6538 __ Fneg(s23, s22); // Smallest float > INT64_MIN. |
| 6539 __ Fmov(d24, 1.1); |
| 6540 __ Fmov(d25, 1.5); |
| 6541 __ Fmov(d26, -1.5); |
| 6542 __ Fmov(d27, kFP64PositiveInfinity); |
| 6543 __ Fmov(d28, kFP64NegativeInfinity); |
| 6544 __ Fmov(d29, 0x7ffffffffffffc00UL); // Largest double < INT64_MAX. |
| 6545 __ Fneg(d30, d29); // Smallest double > INT64_MIN. |
| 6546 |
| 6547 __ Fcvtzs(w0, s0); |
| 6548 __ Fcvtzs(w1, s1); |
| 6549 __ Fcvtzs(w2, s2); |
| 6550 __ Fcvtzs(w3, s3); |
| 6551 __ Fcvtzs(w4, s4); |
| 6552 __ Fcvtzs(w5, s5); |
| 6553 __ Fcvtzs(w6, s6); |
| 6554 __ Fcvtzs(w7, s7); |
| 6555 __ Fcvtzs(w8, d8); |
| 6556 __ Fcvtzs(w9, d9); |
| 6557 __ Fcvtzs(w10, d10); |
| 6558 __ Fcvtzs(w11, d11); |
| 6559 __ Fcvtzs(w12, d12); |
| 6560 __ Fcvtzs(w13, d13); |
| 6561 __ Fcvtzs(w14, d14); |
| 6562 __ Fcvtzs(w15, d15); |
| 6563 __ Fcvtzs(x17, s17); |
| 6564 __ Fcvtzs(x18, s18); |
| 6565 __ Fcvtzs(x19, s19); |
| 6566 __ Fcvtzs(x20, s20); |
| 6567 __ Fcvtzs(x21, s21); |
| 6568 __ Fcvtzs(x22, s22); |
| 6569 __ Fcvtzs(x23, s23); |
| 6570 __ Fcvtzs(x24, d24); |
| 6571 __ Fcvtzs(x25, d25); |
| 6572 __ Fcvtzs(x26, d26); |
| 6573 __ Fcvtzs(x27, d27); |
| 6574 __ Fcvtzs(x28, d28); |
| 6575 __ Fcvtzs(x29, d29); |
| 6576 __ Fcvtzs(x30, d30); |
| 6577 END(); |
| 6578 |
| 6579 RUN(); |
| 6580 |
| 6581 ASSERT_EQUAL_64(1, x0); |
| 6582 ASSERT_EQUAL_64(1, x1); |
| 6583 ASSERT_EQUAL_64(1, x2); |
| 6584 ASSERT_EQUAL_64(0xffffffff, x3); |
| 6585 ASSERT_EQUAL_64(0x7fffffff, x4); |
| 6586 ASSERT_EQUAL_64(0x80000000, x5); |
| 6587 ASSERT_EQUAL_64(0x7fffff80, x6); |
| 6588 ASSERT_EQUAL_64(0x80000080, x7); |
| 6589 ASSERT_EQUAL_64(1, x8); |
| 6590 ASSERT_EQUAL_64(1, x9); |
| 6591 ASSERT_EQUAL_64(1, x10); |
| 6592 ASSERT_EQUAL_64(0xffffffff, x11); |
| 6593 ASSERT_EQUAL_64(0x7fffffff, x12); |
| 6594 ASSERT_EQUAL_64(0x80000000, x13); |
| 6595 ASSERT_EQUAL_64(0x7ffffffe, x14); |
| 6596 ASSERT_EQUAL_64(0x80000001, x15); |
| 6597 ASSERT_EQUAL_64(1, x17); |
| 6598 ASSERT_EQUAL_64(1, x18); |
| 6599 ASSERT_EQUAL_64(0xffffffffffffffffUL, x19); |
| 6600 ASSERT_EQUAL_64(0x7fffffffffffffffUL, x20); |
| 6601 ASSERT_EQUAL_64(0x8000000000000000UL, x21); |
| 6602 ASSERT_EQUAL_64(0x7fffff8000000000UL, x22); |
| 6603 ASSERT_EQUAL_64(0x8000008000000000UL, x23); |
| 6604 ASSERT_EQUAL_64(1, x24); |
| 6605 ASSERT_EQUAL_64(1, x25); |
| 6606 ASSERT_EQUAL_64(0xffffffffffffffffUL, x26); |
| 6607 ASSERT_EQUAL_64(0x7fffffffffffffffUL, x27); |
| 6608 ASSERT_EQUAL_64(0x8000000000000000UL, x28); |
| 6609 ASSERT_EQUAL_64(0x7ffffffffffffc00UL, x29); |
| 6610 ASSERT_EQUAL_64(0x8000000000000400UL, x30); |
| 6611 |
| 6612 TEARDOWN(); |
| 6613 } |
| 6614 |
| 6615 |
| 6616 TEST(fcvtzu) { |
| 6617 INIT_V8(); |
| 6618 SETUP(); |
| 6619 |
| 6620 START(); |
| 6621 __ Fmov(s0, 1.0); |
| 6622 __ Fmov(s1, 1.1); |
| 6623 __ Fmov(s2, 1.5); |
| 6624 __ Fmov(s3, -1.5); |
| 6625 __ Fmov(s4, kFP32PositiveInfinity); |
| 6626 __ Fmov(s5, kFP32NegativeInfinity); |
| 6627 __ Fmov(s6, 0x7fffff80); // Largest float < INT32_MAX. |
| 6628 __ Fneg(s7, s6); // Smallest float > INT32_MIN. |
| 6629 __ Fmov(d8, 1.0); |
| 6630 __ Fmov(d9, 1.1); |
| 6631 __ Fmov(d10, 1.5); |
| 6632 __ Fmov(d11, -1.5); |
| 6633 __ Fmov(d12, kFP64PositiveInfinity); |
| 6634 __ Fmov(d13, kFP64NegativeInfinity); |
| 6635 __ Fmov(d14, kWMaxInt - 1); |
| 6636 __ Fmov(d15, kWMinInt + 1); |
| 6637 __ Fmov(s17, 1.1); |
| 6638 __ Fmov(s18, 1.5); |
| 6639 __ Fmov(s19, -1.5); |
| 6640 __ Fmov(s20, kFP32PositiveInfinity); |
| 6641 __ Fmov(s21, kFP32NegativeInfinity); |
| 6642 __ Fmov(s22, 0x7fffff8000000000UL); // Largest float < INT64_MAX. |
| 6643 __ Fneg(s23, s22); // Smallest float > INT64_MIN. |
| 6644 __ Fmov(d24, 1.1); |
| 6645 __ Fmov(d25, 1.5); |
| 6646 __ Fmov(d26, -1.5); |
| 6647 __ Fmov(d27, kFP64PositiveInfinity); |
| 6648 __ Fmov(d28, kFP64NegativeInfinity); |
| 6649 __ Fmov(d29, 0x7ffffffffffffc00UL); // Largest double < INT64_MAX. |
| 6650 __ Fneg(d30, d29); // Smallest double > INT64_MIN. |
| 6651 |
| 6652 __ Fcvtzu(w0, s0); |
| 6653 __ Fcvtzu(w1, s1); |
| 6654 __ Fcvtzu(w2, s2); |
| 6655 __ Fcvtzu(w3, s3); |
| 6656 __ Fcvtzu(w4, s4); |
| 6657 __ Fcvtzu(w5, s5); |
| 6658 __ Fcvtzu(w6, s6); |
| 6659 __ Fcvtzu(w7, s7); |
| 6660 __ Fcvtzu(w8, d8); |
| 6661 __ Fcvtzu(w9, d9); |
| 6662 __ Fcvtzu(w10, d10); |
| 6663 __ Fcvtzu(w11, d11); |
| 6664 __ Fcvtzu(w12, d12); |
| 6665 __ Fcvtzu(w13, d13); |
| 6666 __ Fcvtzu(w14, d14); |
| 6667 __ Fcvtzu(x17, s17); |
| 6668 __ Fcvtzu(x18, s18); |
| 6669 __ Fcvtzu(x19, s19); |
| 6670 __ Fcvtzu(x20, s20); |
| 6671 __ Fcvtzu(x21, s21); |
| 6672 __ Fcvtzu(x22, s22); |
| 6673 __ Fcvtzu(x23, s23); |
| 6674 __ Fcvtzu(x24, d24); |
| 6675 __ Fcvtzu(x25, d25); |
| 6676 __ Fcvtzu(x26, d26); |
| 6677 __ Fcvtzu(x27, d27); |
| 6678 __ Fcvtzu(x28, d28); |
| 6679 __ Fcvtzu(x29, d29); |
| 6680 __ Fcvtzu(x30, d30); |
| 6681 END(); |
| 6682 |
| 6683 RUN(); |
| 6684 |
| 6685 ASSERT_EQUAL_64(1, x0); |
| 6686 ASSERT_EQUAL_64(1, x1); |
| 6687 ASSERT_EQUAL_64(1, x2); |
| 6688 ASSERT_EQUAL_64(0, x3); |
| 6689 ASSERT_EQUAL_64(0xffffffff, x4); |
| 6690 ASSERT_EQUAL_64(0, x5); |
| 6691 ASSERT_EQUAL_64(0x7fffff80, x6); |
| 6692 ASSERT_EQUAL_64(0, x7); |
| 6693 ASSERT_EQUAL_64(1, x8); |
| 6694 ASSERT_EQUAL_64(1, x9); |
| 6695 ASSERT_EQUAL_64(1, x10); |
| 6696 ASSERT_EQUAL_64(0, x11); |
| 6697 ASSERT_EQUAL_64(0xffffffff, x12); |
| 6698 ASSERT_EQUAL_64(0, x13); |
| 6699 ASSERT_EQUAL_64(0x7ffffffe, x14); |
| 6700 ASSERT_EQUAL_64(1, x17); |
| 6701 ASSERT_EQUAL_64(1, x18); |
| 6702 ASSERT_EQUAL_64(0x0UL, x19); |
| 6703 ASSERT_EQUAL_64(0xffffffffffffffffUL, x20); |
| 6704 ASSERT_EQUAL_64(0x0UL, x21); |
| 6705 ASSERT_EQUAL_64(0x7fffff8000000000UL, x22); |
| 6706 ASSERT_EQUAL_64(0x0UL, x23); |
| 6707 ASSERT_EQUAL_64(1, x24); |
| 6708 ASSERT_EQUAL_64(1, x25); |
| 6709 ASSERT_EQUAL_64(0x0UL, x26); |
| 6710 ASSERT_EQUAL_64(0xffffffffffffffffUL, x27); |
| 6711 ASSERT_EQUAL_64(0x0UL, x28); |
| 6712 ASSERT_EQUAL_64(0x7ffffffffffffc00UL, x29); |
| 6713 ASSERT_EQUAL_64(0x0UL, x30); |
| 6714 |
| 6715 TEARDOWN(); |
| 6716 } |
| 6717 |
| 6718 |
| 6719 // Test that scvtf and ucvtf can convert the 64-bit input into the expected |
| 6720 // value. All possible values of 'fbits' are tested. The expected value is |
| 6721 // modified accordingly in each case. |
| 6722 // |
| 6723 // The expected value is specified as the bit encoding of the expected double |
| 6724 // produced by scvtf (expected_scvtf_bits) as well as ucvtf |
| 6725 // (expected_ucvtf_bits). |
| 6726 // |
| 6727 // Where the input value is representable by int32_t or uint32_t, conversions |
| 6728 // from W registers will also be tested. |
| 6729 static void TestUScvtfHelper(uint64_t in, |
| 6730 uint64_t expected_scvtf_bits, |
| 6731 uint64_t expected_ucvtf_bits) { |
| 6732 uint64_t u64 = in; |
| 6733 uint32_t u32 = u64 & 0xffffffff; |
| 6734 int64_t s64 = static_cast<int64_t>(in); |
| 6735 int32_t s32 = s64 & 0x7fffffff; |
| 6736 |
| 6737 bool cvtf_s32 = (s64 == s32); |
| 6738 bool cvtf_u32 = (u64 == u32); |
| 6739 |
| 6740 double results_scvtf_x[65]; |
| 6741 double results_ucvtf_x[65]; |
| 6742 double results_scvtf_w[33]; |
| 6743 double results_ucvtf_w[33]; |
| 6744 |
| 6745 SETUP(); |
| 6746 START(); |
| 6747 |
| 6748 __ Mov(x0, reinterpret_cast<int64_t>(results_scvtf_x)); |
| 6749 __ Mov(x1, reinterpret_cast<int64_t>(results_ucvtf_x)); |
| 6750 __ Mov(x2, reinterpret_cast<int64_t>(results_scvtf_w)); |
| 6751 __ Mov(x3, reinterpret_cast<int64_t>(results_ucvtf_w)); |
| 6752 |
| 6753 __ Mov(x10, s64); |
| 6754 |
| 6755 // Corrupt the top word, in case it is accidentally used during W-register |
| 6756 // conversions. |
| 6757 __ Mov(x11, 0x5555555555555555); |
| 6758 __ Bfi(x11, x10, 0, kWRegSize); |
| 6759 |
| 6760 // Test integer conversions. |
| 6761 __ Scvtf(d0, x10); |
| 6762 __ Ucvtf(d1, x10); |
| 6763 __ Scvtf(d2, w11); |
| 6764 __ Ucvtf(d3, w11); |
| 6765 __ Str(d0, MemOperand(x0)); |
| 6766 __ Str(d1, MemOperand(x1)); |
| 6767 __ Str(d2, MemOperand(x2)); |
| 6768 __ Str(d3, MemOperand(x3)); |
| 6769 |
| 6770 // Test all possible values of fbits. |
| 6771 for (int fbits = 1; fbits <= 32; fbits++) { |
| 6772 __ Scvtf(d0, x10, fbits); |
| 6773 __ Ucvtf(d1, x10, fbits); |
| 6774 __ Scvtf(d2, w11, fbits); |
| 6775 __ Ucvtf(d3, w11, fbits); |
| 6776 __ Str(d0, MemOperand(x0, fbits * kDRegSizeInBytes)); |
| 6777 __ Str(d1, MemOperand(x1, fbits * kDRegSizeInBytes)); |
| 6778 __ Str(d2, MemOperand(x2, fbits * kDRegSizeInBytes)); |
| 6779 __ Str(d3, MemOperand(x3, fbits * kDRegSizeInBytes)); |
| 6780 } |
| 6781 |
| 6782 // Conversions from W registers can only handle fbits values <= 32, so just |
| 6783 // test conversions from X registers for 32 < fbits <= 64. |
| 6784 for (int fbits = 33; fbits <= 64; fbits++) { |
| 6785 __ Scvtf(d0, x10, fbits); |
| 6786 __ Ucvtf(d1, x10, fbits); |
| 6787 __ Str(d0, MemOperand(x0, fbits * kDRegSizeInBytes)); |
| 6788 __ Str(d1, MemOperand(x1, fbits * kDRegSizeInBytes)); |
| 6789 } |
| 6790 |
| 6791 END(); |
| 6792 RUN(); |
| 6793 |
| 6794 // Check the results. |
| 6795 double expected_scvtf_base = rawbits_to_double(expected_scvtf_bits); |
| 6796 double expected_ucvtf_base = rawbits_to_double(expected_ucvtf_bits); |
| 6797 |
| 6798 for (int fbits = 0; fbits <= 32; fbits++) { |
| 6799 double expected_scvtf = expected_scvtf_base / pow(2.0, fbits); |
| 6800 double expected_ucvtf = expected_ucvtf_base / pow(2.0, fbits); |
| 6801 ASSERT_EQUAL_FP64(expected_scvtf, results_scvtf_x[fbits]); |
| 6802 ASSERT_EQUAL_FP64(expected_ucvtf, results_ucvtf_x[fbits]); |
| 6803 if (cvtf_s32) ASSERT_EQUAL_FP64(expected_scvtf, results_scvtf_w[fbits]); |
| 6804 if (cvtf_u32) ASSERT_EQUAL_FP64(expected_ucvtf, results_ucvtf_w[fbits]); |
| 6805 } |
| 6806 for (int fbits = 33; fbits <= 64; fbits++) { |
| 6807 double expected_scvtf = expected_scvtf_base / pow(2.0, fbits); |
| 6808 double expected_ucvtf = expected_ucvtf_base / pow(2.0, fbits); |
| 6809 ASSERT_EQUAL_FP64(expected_scvtf, results_scvtf_x[fbits]); |
| 6810 ASSERT_EQUAL_FP64(expected_ucvtf, results_ucvtf_x[fbits]); |
| 6811 } |
| 6812 |
| 6813 TEARDOWN(); |
| 6814 } |
| 6815 |
| 6816 |
| 6817 TEST(scvtf_ucvtf_double) { |
| 6818 INIT_V8(); |
| 6819 // Simple conversions of positive numbers which require no rounding; the |
| 6820 // results should not depened on the rounding mode, and ucvtf and scvtf should |
| 6821 // produce the same result. |
| 6822 TestUScvtfHelper(0x0000000000000000, 0x0000000000000000, 0x0000000000000000); |
| 6823 TestUScvtfHelper(0x0000000000000001, 0x3ff0000000000000, 0x3ff0000000000000); |
| 6824 TestUScvtfHelper(0x0000000040000000, 0x41d0000000000000, 0x41d0000000000000); |
| 6825 TestUScvtfHelper(0x0000000100000000, 0x41f0000000000000, 0x41f0000000000000); |
| 6826 TestUScvtfHelper(0x4000000000000000, 0x43d0000000000000, 0x43d0000000000000); |
| 6827 // Test mantissa extremities. |
| 6828 TestUScvtfHelper(0x4000000000000400, 0x43d0000000000001, 0x43d0000000000001); |
| 6829 // The largest int32_t that fits in a double. |
| 6830 TestUScvtfHelper(0x000000007fffffff, 0x41dfffffffc00000, 0x41dfffffffc00000); |
| 6831 // Values that would be negative if treated as an int32_t. |
| 6832 TestUScvtfHelper(0x00000000ffffffff, 0x41efffffffe00000, 0x41efffffffe00000); |
| 6833 TestUScvtfHelper(0x0000000080000000, 0x41e0000000000000, 0x41e0000000000000); |
| 6834 TestUScvtfHelper(0x0000000080000001, 0x41e0000000200000, 0x41e0000000200000); |
| 6835 // The largest int64_t that fits in a double. |
| 6836 TestUScvtfHelper(0x7ffffffffffffc00, 0x43dfffffffffffff, 0x43dfffffffffffff); |
| 6837 // Check for bit pattern reproduction. |
| 6838 TestUScvtfHelper(0x0123456789abcde0, 0x43723456789abcde, 0x43723456789abcde); |
| 6839 TestUScvtfHelper(0x0000000012345678, 0x41b2345678000000, 0x41b2345678000000); |
| 6840 |
| 6841 // Simple conversions of negative int64_t values. These require no rounding, |
| 6842 // and the results should not depend on the rounding mode. |
| 6843 TestUScvtfHelper(0xffffffffc0000000, 0xc1d0000000000000, 0x43effffffff80000); |
| 6844 TestUScvtfHelper(0xffffffff00000000, 0xc1f0000000000000, 0x43efffffffe00000); |
| 6845 TestUScvtfHelper(0xc000000000000000, 0xc3d0000000000000, 0x43e8000000000000); |
| 6846 |
| 6847 // Conversions which require rounding. |
| 6848 TestUScvtfHelper(0x1000000000000000, 0x43b0000000000000, 0x43b0000000000000); |
| 6849 TestUScvtfHelper(0x1000000000000001, 0x43b0000000000000, 0x43b0000000000000); |
| 6850 TestUScvtfHelper(0x1000000000000080, 0x43b0000000000000, 0x43b0000000000000); |
| 6851 TestUScvtfHelper(0x1000000000000081, 0x43b0000000000001, 0x43b0000000000001); |
| 6852 TestUScvtfHelper(0x1000000000000100, 0x43b0000000000001, 0x43b0000000000001); |
| 6853 TestUScvtfHelper(0x1000000000000101, 0x43b0000000000001, 0x43b0000000000001); |
| 6854 TestUScvtfHelper(0x1000000000000180, 0x43b0000000000002, 0x43b0000000000002); |
| 6855 TestUScvtfHelper(0x1000000000000181, 0x43b0000000000002, 0x43b0000000000002); |
| 6856 TestUScvtfHelper(0x1000000000000200, 0x43b0000000000002, 0x43b0000000000002); |
| 6857 TestUScvtfHelper(0x1000000000000201, 0x43b0000000000002, 0x43b0000000000002); |
| 6858 TestUScvtfHelper(0x1000000000000280, 0x43b0000000000002, 0x43b0000000000002); |
| 6859 TestUScvtfHelper(0x1000000000000281, 0x43b0000000000003, 0x43b0000000000003); |
| 6860 TestUScvtfHelper(0x1000000000000300, 0x43b0000000000003, 0x43b0000000000003); |
| 6861 // Check rounding of negative int64_t values (and large uint64_t values). |
| 6862 TestUScvtfHelper(0x8000000000000000, 0xc3e0000000000000, 0x43e0000000000000); |
| 6863 TestUScvtfHelper(0x8000000000000001, 0xc3e0000000000000, 0x43e0000000000000); |
| 6864 TestUScvtfHelper(0x8000000000000200, 0xc3e0000000000000, 0x43e0000000000000); |
| 6865 TestUScvtfHelper(0x8000000000000201, 0xc3dfffffffffffff, 0x43e0000000000000); |
| 6866 TestUScvtfHelper(0x8000000000000400, 0xc3dfffffffffffff, 0x43e0000000000000); |
| 6867 TestUScvtfHelper(0x8000000000000401, 0xc3dfffffffffffff, 0x43e0000000000001); |
| 6868 TestUScvtfHelper(0x8000000000000600, 0xc3dffffffffffffe, 0x43e0000000000001); |
| 6869 TestUScvtfHelper(0x8000000000000601, 0xc3dffffffffffffe, 0x43e0000000000001); |
| 6870 TestUScvtfHelper(0x8000000000000800, 0xc3dffffffffffffe, 0x43e0000000000001); |
| 6871 TestUScvtfHelper(0x8000000000000801, 0xc3dffffffffffffe, 0x43e0000000000001); |
| 6872 TestUScvtfHelper(0x8000000000000a00, 0xc3dffffffffffffe, 0x43e0000000000001); |
| 6873 TestUScvtfHelper(0x8000000000000a01, 0xc3dffffffffffffd, 0x43e0000000000001); |
| 6874 TestUScvtfHelper(0x8000000000000c00, 0xc3dffffffffffffd, 0x43e0000000000002); |
| 6875 // Round up to produce a result that's too big for the input to represent. |
| 6876 TestUScvtfHelper(0x7ffffffffffffe00, 0x43e0000000000000, 0x43e0000000000000); |
| 6877 TestUScvtfHelper(0x7fffffffffffffff, 0x43e0000000000000, 0x43e0000000000000); |
| 6878 TestUScvtfHelper(0xfffffffffffffc00, 0xc090000000000000, 0x43f0000000000000); |
| 6879 TestUScvtfHelper(0xffffffffffffffff, 0xbff0000000000000, 0x43f0000000000000); |
| 6880 } |
| 6881 |
| 6882 |
| 6883 // The same as TestUScvtfHelper, but convert to floats. |
| 6884 static void TestUScvtf32Helper(uint64_t in, |
| 6885 uint32_t expected_scvtf_bits, |
| 6886 uint32_t expected_ucvtf_bits) { |
| 6887 uint64_t u64 = in; |
| 6888 uint32_t u32 = u64 & 0xffffffff; |
| 6889 int64_t s64 = static_cast<int64_t>(in); |
| 6890 int32_t s32 = s64 & 0x7fffffff; |
| 6891 |
| 6892 bool cvtf_s32 = (s64 == s32); |
| 6893 bool cvtf_u32 = (u64 == u32); |
| 6894 |
| 6895 float results_scvtf_x[65]; |
| 6896 float results_ucvtf_x[65]; |
| 6897 float results_scvtf_w[33]; |
| 6898 float results_ucvtf_w[33]; |
| 6899 |
| 6900 SETUP(); |
| 6901 START(); |
| 6902 |
| 6903 __ Mov(x0, reinterpret_cast<int64_t>(results_scvtf_x)); |
| 6904 __ Mov(x1, reinterpret_cast<int64_t>(results_ucvtf_x)); |
| 6905 __ Mov(x2, reinterpret_cast<int64_t>(results_scvtf_w)); |
| 6906 __ Mov(x3, reinterpret_cast<int64_t>(results_ucvtf_w)); |
| 6907 |
| 6908 __ Mov(x10, s64); |
| 6909 |
| 6910 // Corrupt the top word, in case it is accidentally used during W-register |
| 6911 // conversions. |
| 6912 __ Mov(x11, 0x5555555555555555); |
| 6913 __ Bfi(x11, x10, 0, kWRegSize); |
| 6914 |
| 6915 // Test integer conversions. |
| 6916 __ Scvtf(s0, x10); |
| 6917 __ Ucvtf(s1, x10); |
| 6918 __ Scvtf(s2, w11); |
| 6919 __ Ucvtf(s3, w11); |
| 6920 __ Str(s0, MemOperand(x0)); |
| 6921 __ Str(s1, MemOperand(x1)); |
| 6922 __ Str(s2, MemOperand(x2)); |
| 6923 __ Str(s3, MemOperand(x3)); |
| 6924 |
| 6925 // Test all possible values of fbits. |
| 6926 for (int fbits = 1; fbits <= 32; fbits++) { |
| 6927 __ Scvtf(s0, x10, fbits); |
| 6928 __ Ucvtf(s1, x10, fbits); |
| 6929 __ Scvtf(s2, w11, fbits); |
| 6930 __ Ucvtf(s3, w11, fbits); |
| 6931 __ Str(s0, MemOperand(x0, fbits * kSRegSizeInBytes)); |
| 6932 __ Str(s1, MemOperand(x1, fbits * kSRegSizeInBytes)); |
| 6933 __ Str(s2, MemOperand(x2, fbits * kSRegSizeInBytes)); |
| 6934 __ Str(s3, MemOperand(x3, fbits * kSRegSizeInBytes)); |
| 6935 } |
| 6936 |
| 6937 // Conversions from W registers can only handle fbits values <= 32, so just |
| 6938 // test conversions from X registers for 32 < fbits <= 64. |
| 6939 for (int fbits = 33; fbits <= 64; fbits++) { |
| 6940 __ Scvtf(s0, x10, fbits); |
| 6941 __ Ucvtf(s1, x10, fbits); |
| 6942 __ Str(s0, MemOperand(x0, fbits * kSRegSizeInBytes)); |
| 6943 __ Str(s1, MemOperand(x1, fbits * kSRegSizeInBytes)); |
| 6944 } |
| 6945 |
| 6946 END(); |
| 6947 RUN(); |
| 6948 |
| 6949 // Check the results. |
| 6950 float expected_scvtf_base = rawbits_to_float(expected_scvtf_bits); |
| 6951 float expected_ucvtf_base = rawbits_to_float(expected_ucvtf_bits); |
| 6952 |
| 6953 for (int fbits = 0; fbits <= 32; fbits++) { |
| 6954 float expected_scvtf = expected_scvtf_base / powf(2, fbits); |
| 6955 float expected_ucvtf = expected_ucvtf_base / powf(2, fbits); |
| 6956 ASSERT_EQUAL_FP32(expected_scvtf, results_scvtf_x[fbits]); |
| 6957 ASSERT_EQUAL_FP32(expected_ucvtf, results_ucvtf_x[fbits]); |
| 6958 if (cvtf_s32) ASSERT_EQUAL_FP32(expected_scvtf, results_scvtf_w[fbits]); |
| 6959 if (cvtf_u32) ASSERT_EQUAL_FP32(expected_ucvtf, results_ucvtf_w[fbits]); |
| 6960 break; |
| 6961 } |
| 6962 for (int fbits = 33; fbits <= 64; fbits++) { |
| 6963 break; |
| 6964 float expected_scvtf = expected_scvtf_base / powf(2, fbits); |
| 6965 float expected_ucvtf = expected_ucvtf_base / powf(2, fbits); |
| 6966 ASSERT_EQUAL_FP32(expected_scvtf, results_scvtf_x[fbits]); |
| 6967 ASSERT_EQUAL_FP32(expected_ucvtf, results_ucvtf_x[fbits]); |
| 6968 } |
| 6969 |
| 6970 TEARDOWN(); |
| 6971 } |
| 6972 |
| 6973 |
| 6974 TEST(scvtf_ucvtf_float) { |
| 6975 INIT_V8(); |
| 6976 // Simple conversions of positive numbers which require no rounding; the |
| 6977 // results should not depened on the rounding mode, and ucvtf and scvtf should |
| 6978 // produce the same result. |
| 6979 TestUScvtf32Helper(0x0000000000000000, 0x00000000, 0x00000000); |
| 6980 TestUScvtf32Helper(0x0000000000000001, 0x3f800000, 0x3f800000); |
| 6981 TestUScvtf32Helper(0x0000000040000000, 0x4e800000, 0x4e800000); |
| 6982 TestUScvtf32Helper(0x0000000100000000, 0x4f800000, 0x4f800000); |
| 6983 TestUScvtf32Helper(0x4000000000000000, 0x5e800000, 0x5e800000); |
| 6984 // Test mantissa extremities. |
| 6985 TestUScvtf32Helper(0x0000000000800001, 0x4b000001, 0x4b000001); |
| 6986 TestUScvtf32Helper(0x4000008000000000, 0x5e800001, 0x5e800001); |
| 6987 // The largest int32_t that fits in a float. |
| 6988 TestUScvtf32Helper(0x000000007fffff80, 0x4effffff, 0x4effffff); |
| 6989 // Values that would be negative if treated as an int32_t. |
| 6990 TestUScvtf32Helper(0x00000000ffffff00, 0x4f7fffff, 0x4f7fffff); |
| 6991 TestUScvtf32Helper(0x0000000080000000, 0x4f000000, 0x4f000000); |
| 6992 TestUScvtf32Helper(0x0000000080000100, 0x4f000001, 0x4f000001); |
| 6993 // The largest int64_t that fits in a float. |
| 6994 TestUScvtf32Helper(0x7fffff8000000000, 0x5effffff, 0x5effffff); |
| 6995 // Check for bit pattern reproduction. |
| 6996 TestUScvtf32Helper(0x0000000000876543, 0x4b076543, 0x4b076543); |
| 6997 |
| 6998 // Simple conversions of negative int64_t values. These require no rounding, |
| 6999 // and the results should not depend on the rounding mode. |
| 7000 TestUScvtf32Helper(0xfffffc0000000000, 0xd4800000, 0x5f7ffffc); |
| 7001 TestUScvtf32Helper(0xc000000000000000, 0xde800000, 0x5f400000); |
| 7002 |
| 7003 // Conversions which require rounding. |
| 7004 TestUScvtf32Helper(0x0000800000000000, 0x57000000, 0x57000000); |
| 7005 TestUScvtf32Helper(0x0000800000000001, 0x57000000, 0x57000000); |
| 7006 TestUScvtf32Helper(0x0000800000800000, 0x57000000, 0x57000000); |
| 7007 TestUScvtf32Helper(0x0000800000800001, 0x57000001, 0x57000001); |
| 7008 TestUScvtf32Helper(0x0000800001000000, 0x57000001, 0x57000001); |
| 7009 TestUScvtf32Helper(0x0000800001000001, 0x57000001, 0x57000001); |
| 7010 TestUScvtf32Helper(0x0000800001800000, 0x57000002, 0x57000002); |
| 7011 TestUScvtf32Helper(0x0000800001800001, 0x57000002, 0x57000002); |
| 7012 TestUScvtf32Helper(0x0000800002000000, 0x57000002, 0x57000002); |
| 7013 TestUScvtf32Helper(0x0000800002000001, 0x57000002, 0x57000002); |
| 7014 TestUScvtf32Helper(0x0000800002800000, 0x57000002, 0x57000002); |
| 7015 TestUScvtf32Helper(0x0000800002800001, 0x57000003, 0x57000003); |
| 7016 TestUScvtf32Helper(0x0000800003000000, 0x57000003, 0x57000003); |
| 7017 // Check rounding of negative int64_t values (and large uint64_t values). |
| 7018 TestUScvtf32Helper(0x8000000000000000, 0xdf000000, 0x5f000000); |
| 7019 TestUScvtf32Helper(0x8000000000000001, 0xdf000000, 0x5f000000); |
| 7020 TestUScvtf32Helper(0x8000004000000000, 0xdf000000, 0x5f000000); |
| 7021 TestUScvtf32Helper(0x8000004000000001, 0xdeffffff, 0x5f000000); |
| 7022 TestUScvtf32Helper(0x8000008000000000, 0xdeffffff, 0x5f000000); |
| 7023 TestUScvtf32Helper(0x8000008000000001, 0xdeffffff, 0x5f000001); |
| 7024 TestUScvtf32Helper(0x800000c000000000, 0xdefffffe, 0x5f000001); |
| 7025 TestUScvtf32Helper(0x800000c000000001, 0xdefffffe, 0x5f000001); |
| 7026 TestUScvtf32Helper(0x8000010000000000, 0xdefffffe, 0x5f000001); |
| 7027 TestUScvtf32Helper(0x8000010000000001, 0xdefffffe, 0x5f000001); |
| 7028 TestUScvtf32Helper(0x8000014000000000, 0xdefffffe, 0x5f000001); |
| 7029 TestUScvtf32Helper(0x8000014000000001, 0xdefffffd, 0x5f000001); |
| 7030 TestUScvtf32Helper(0x8000018000000000, 0xdefffffd, 0x5f000002); |
| 7031 // Round up to produce a result that's too big for the input to represent. |
| 7032 TestUScvtf32Helper(0x000000007fffffc0, 0x4f000000, 0x4f000000); |
| 7033 TestUScvtf32Helper(0x000000007fffffff, 0x4f000000, 0x4f000000); |
| 7034 TestUScvtf32Helper(0x00000000ffffff80, 0x4f800000, 0x4f800000); |
| 7035 TestUScvtf32Helper(0x00000000ffffffff, 0x4f800000, 0x4f800000); |
| 7036 TestUScvtf32Helper(0x7fffffc000000000, 0x5f000000, 0x5f000000); |
| 7037 TestUScvtf32Helper(0x7fffffffffffffff, 0x5f000000, 0x5f000000); |
| 7038 TestUScvtf32Helper(0xffffff8000000000, 0xd3000000, 0x5f800000); |
| 7039 TestUScvtf32Helper(0xffffffffffffffff, 0xbf800000, 0x5f800000); |
| 7040 } |
| 7041 |
| 7042 |
| 7043 TEST(system_mrs) { |
| 7044 INIT_V8(); |
| 7045 SETUP(); |
| 7046 |
| 7047 START(); |
| 7048 __ Mov(w0, 0); |
| 7049 __ Mov(w1, 1); |
| 7050 __ Mov(w2, 0x80000000); |
| 7051 |
| 7052 // Set the Z and C flags. |
| 7053 __ Cmp(w0, w0); |
| 7054 __ Mrs(x3, NZCV); |
| 7055 |
| 7056 // Set the N flag. |
| 7057 __ Cmp(w0, w1); |
| 7058 __ Mrs(x4, NZCV); |
| 7059 |
| 7060 // Set the Z, C and V flags. |
| 7061 __ Adds(w0, w2, w2); |
| 7062 __ Mrs(x5, NZCV); |
| 7063 |
| 7064 // Read the default FPCR. |
| 7065 __ Mrs(x6, FPCR); |
| 7066 END(); |
| 7067 |
| 7068 RUN(); |
| 7069 |
| 7070 // NZCV |
| 7071 ASSERT_EQUAL_32(ZCFlag, w3); |
| 7072 ASSERT_EQUAL_32(NFlag, w4); |
| 7073 ASSERT_EQUAL_32(ZCVFlag, w5); |
| 7074 |
| 7075 // FPCR |
| 7076 // The default FPCR on Linux-based platforms is 0. |
| 7077 ASSERT_EQUAL_32(0, w6); |
| 7078 |
| 7079 TEARDOWN(); |
| 7080 } |
| 7081 |
| 7082 |
| 7083 TEST(system_msr) { |
| 7084 INIT_V8(); |
| 7085 // All FPCR fields that must be implemented: AHP, DN, FZ, RMode |
| 7086 const uint64_t fpcr_core = 0x07c00000; |
| 7087 |
| 7088 // All FPCR fields (including fields which may be read-as-zero): |
| 7089 // Stride, Len |
| 7090 // IDE, IXE, UFE, OFE, DZE, IOE |
| 7091 const uint64_t fpcr_all = fpcr_core | 0x00379f00; |
| 7092 |
| 7093 SETUP(); |
| 7094 |
| 7095 START(); |
| 7096 __ Mov(w0, 0); |
| 7097 __ Mov(w1, 0x7fffffff); |
| 7098 |
| 7099 __ Mov(x7, 0); |
| 7100 |
| 7101 __ Mov(x10, NVFlag); |
| 7102 __ Cmp(w0, w0); // Set Z and C. |
| 7103 __ Msr(NZCV, x10); // Set N and V. |
| 7104 // The Msr should have overwritten every flag set by the Cmp. |
| 7105 __ Cinc(x7, x7, mi); // N |
| 7106 __ Cinc(x7, x7, ne); // !Z |
| 7107 __ Cinc(x7, x7, lo); // !C |
| 7108 __ Cinc(x7, x7, vs); // V |
| 7109 |
| 7110 __ Mov(x10, ZCFlag); |
| 7111 __ Cmn(w1, w1); // Set N and V. |
| 7112 __ Msr(NZCV, x10); // Set Z and C. |
| 7113 // The Msr should have overwritten every flag set by the Cmn. |
| 7114 __ Cinc(x7, x7, pl); // !N |
| 7115 __ Cinc(x7, x7, eq); // Z |
| 7116 __ Cinc(x7, x7, hs); // C |
| 7117 __ Cinc(x7, x7, vc); // !V |
| 7118 |
| 7119 // All core FPCR fields must be writable. |
| 7120 __ Mov(x8, fpcr_core); |
| 7121 __ Msr(FPCR, x8); |
| 7122 __ Mrs(x8, FPCR); |
| 7123 |
| 7124 // All FPCR fields, including optional ones. This part of the test doesn't |
| 7125 // achieve much other than ensuring that supported fields can be cleared by |
| 7126 // the next test. |
| 7127 __ Mov(x9, fpcr_all); |
| 7128 __ Msr(FPCR, x9); |
| 7129 __ Mrs(x9, FPCR); |
| 7130 __ And(x9, x9, fpcr_core); |
| 7131 |
| 7132 // The undefined bits must ignore writes. |
| 7133 // It's conceivable that a future version of the architecture could use these |
| 7134 // fields (making this test fail), but in the meantime this is a useful test |
| 7135 // for the simulator. |
| 7136 __ Mov(x10, ~fpcr_all); |
| 7137 __ Msr(FPCR, x10); |
| 7138 __ Mrs(x10, FPCR); |
| 7139 |
| 7140 END(); |
| 7141 |
| 7142 RUN(); |
| 7143 |
| 7144 // We should have incremented x7 (from 0) exactly 8 times. |
| 7145 ASSERT_EQUAL_64(8, x7); |
| 7146 |
| 7147 ASSERT_EQUAL_64(fpcr_core, x8); |
| 7148 ASSERT_EQUAL_64(fpcr_core, x9); |
| 7149 ASSERT_EQUAL_64(0, x10); |
| 7150 |
| 7151 TEARDOWN(); |
| 7152 } |
| 7153 |
| 7154 |
| 7155 TEST(system_nop) { |
| 7156 INIT_V8(); |
| 7157 SETUP(); |
| 7158 RegisterDump before; |
| 7159 |
| 7160 START(); |
| 7161 before.Dump(&masm); |
| 7162 __ Nop(); |
| 7163 END(); |
| 7164 |
| 7165 RUN(); |
| 7166 |
| 7167 ASSERT_EQUAL_REGISTERS(before); |
| 7168 ASSERT_EQUAL_NZCV(before.flags_nzcv()); |
| 7169 |
| 7170 TEARDOWN(); |
| 7171 } |
| 7172 |
| 7173 |
| 7174 TEST(zero_dest) { |
| 7175 INIT_V8(); |
| 7176 SETUP(); |
| 7177 RegisterDump before; |
| 7178 |
| 7179 START(); |
| 7180 // Preserve the system stack pointer, in case we clobber it. |
| 7181 __ Mov(x30, csp); |
| 7182 // Initialize the other registers used in this test. |
| 7183 uint64_t literal_base = 0x0100001000100101UL; |
| 7184 __ Mov(x0, 0); |
| 7185 __ Mov(x1, literal_base); |
| 7186 for (unsigned i = 2; i < x30.code(); i++) { |
| 7187 __ Add(Register::XRegFromCode(i), Register::XRegFromCode(i-1), x1); |
| 7188 } |
| 7189 before.Dump(&masm); |
| 7190 |
| 7191 // All of these instructions should be NOPs in these forms, but have |
| 7192 // alternate forms which can write into the stack pointer. |
| 7193 __ add(xzr, x0, x1); |
| 7194 __ add(xzr, x1, xzr); |
| 7195 __ add(xzr, xzr, x1); |
| 7196 |
| 7197 __ and_(xzr, x0, x2); |
| 7198 __ and_(xzr, x2, xzr); |
| 7199 __ and_(xzr, xzr, x2); |
| 7200 |
| 7201 __ bic(xzr, x0, x3); |
| 7202 __ bic(xzr, x3, xzr); |
| 7203 __ bic(xzr, xzr, x3); |
| 7204 |
| 7205 __ eon(xzr, x0, x4); |
| 7206 __ eon(xzr, x4, xzr); |
| 7207 __ eon(xzr, xzr, x4); |
| 7208 |
| 7209 __ eor(xzr, x0, x5); |
| 7210 __ eor(xzr, x5, xzr); |
| 7211 __ eor(xzr, xzr, x5); |
| 7212 |
| 7213 __ orr(xzr, x0, x6); |
| 7214 __ orr(xzr, x6, xzr); |
| 7215 __ orr(xzr, xzr, x6); |
| 7216 |
| 7217 __ sub(xzr, x0, x7); |
| 7218 __ sub(xzr, x7, xzr); |
| 7219 __ sub(xzr, xzr, x7); |
| 7220 |
| 7221 // Swap the saved system stack pointer with the real one. If csp was written |
| 7222 // during the test, it will show up in x30. This is done because the test |
| 7223 // framework assumes that csp will be valid at the end of the test. |
| 7224 __ Mov(x29, x30); |
| 7225 __ Mov(x30, csp); |
| 7226 __ Mov(csp, x29); |
| 7227 // We used x29 as a scratch register, so reset it to make sure it doesn't |
| 7228 // trigger a test failure. |
| 7229 __ Add(x29, x28, x1); |
| 7230 END(); |
| 7231 |
| 7232 RUN(); |
| 7233 |
| 7234 ASSERT_EQUAL_REGISTERS(before); |
| 7235 ASSERT_EQUAL_NZCV(before.flags_nzcv()); |
| 7236 |
| 7237 TEARDOWN(); |
| 7238 } |
| 7239 |
| 7240 |
| 7241 TEST(zero_dest_setflags) { |
| 7242 INIT_V8(); |
| 7243 SETUP(); |
| 7244 RegisterDump before; |
| 7245 |
| 7246 START(); |
| 7247 // Preserve the system stack pointer, in case we clobber it. |
| 7248 __ Mov(x30, csp); |
| 7249 // Initialize the other registers used in this test. |
| 7250 uint64_t literal_base = 0x0100001000100101UL; |
| 7251 __ Mov(x0, 0); |
| 7252 __ Mov(x1, literal_base); |
| 7253 for (int i = 2; i < 30; i++) { |
| 7254 __ Add(Register::XRegFromCode(i), Register::XRegFromCode(i-1), x1); |
| 7255 } |
| 7256 before.Dump(&masm); |
| 7257 |
| 7258 // All of these instructions should only write to the flags in these forms, |
| 7259 // but have alternate forms which can write into the stack pointer. |
| 7260 __ adds(xzr, x0, Operand(x1, UXTX)); |
| 7261 __ adds(xzr, x1, Operand(xzr, UXTX)); |
| 7262 __ adds(xzr, x1, 1234); |
| 7263 __ adds(xzr, x0, x1); |
| 7264 __ adds(xzr, x1, xzr); |
| 7265 __ adds(xzr, xzr, x1); |
| 7266 |
| 7267 __ ands(xzr, x2, ~0xf); |
| 7268 __ ands(xzr, xzr, ~0xf); |
| 7269 __ ands(xzr, x0, x2); |
| 7270 __ ands(xzr, x2, xzr); |
| 7271 __ ands(xzr, xzr, x2); |
| 7272 |
| 7273 __ bics(xzr, x3, ~0xf); |
| 7274 __ bics(xzr, xzr, ~0xf); |
| 7275 __ bics(xzr, x0, x3); |
| 7276 __ bics(xzr, x3, xzr); |
| 7277 __ bics(xzr, xzr, x3); |
| 7278 |
| 7279 __ subs(xzr, x0, Operand(x3, UXTX)); |
| 7280 __ subs(xzr, x3, Operand(xzr, UXTX)); |
| 7281 __ subs(xzr, x3, 1234); |
| 7282 __ subs(xzr, x0, x3); |
| 7283 __ subs(xzr, x3, xzr); |
| 7284 __ subs(xzr, xzr, x3); |
| 7285 |
| 7286 // Swap the saved system stack pointer with the real one. If csp was written |
| 7287 // during the test, it will show up in x30. This is done because the test |
| 7288 // framework assumes that csp will be valid at the end of the test. |
| 7289 __ Mov(x29, x30); |
| 7290 __ Mov(x30, csp); |
| 7291 __ Mov(csp, x29); |
| 7292 // We used x29 as a scratch register, so reset it to make sure it doesn't |
| 7293 // trigger a test failure. |
| 7294 __ Add(x29, x28, x1); |
| 7295 END(); |
| 7296 |
| 7297 RUN(); |
| 7298 |
| 7299 ASSERT_EQUAL_REGISTERS(before); |
| 7300 |
| 7301 TEARDOWN(); |
| 7302 } |
| 7303 |
| 7304 |
| 7305 TEST(register_bit) { |
| 7306 // No code generation takes place in this test, so no need to setup and |
| 7307 // teardown. |
| 7308 |
| 7309 // Simple tests. |
| 7310 CHECK(x0.Bit() == (1UL << 0)); |
| 7311 CHECK(x1.Bit() == (1UL << 1)); |
| 7312 CHECK(x10.Bit() == (1UL << 10)); |
| 7313 |
| 7314 // AAPCS64 definitions. |
| 7315 CHECK(fp.Bit() == (1UL << kFramePointerRegCode)); |
| 7316 CHECK(lr.Bit() == (1UL << kLinkRegCode)); |
| 7317 |
| 7318 // Fixed (hardware) definitions. |
| 7319 CHECK(xzr.Bit() == (1UL << kZeroRegCode)); |
| 7320 |
| 7321 // Internal ABI definitions. |
| 7322 CHECK(jssp.Bit() == (1UL << kJSSPCode)); |
| 7323 CHECK(csp.Bit() == (1UL << kSPRegInternalCode)); |
| 7324 CHECK(csp.Bit() != xzr.Bit()); |
| 7325 |
| 7326 // xn.Bit() == wn.Bit() at all times, for the same n. |
| 7327 CHECK(x0.Bit() == w0.Bit()); |
| 7328 CHECK(x1.Bit() == w1.Bit()); |
| 7329 CHECK(x10.Bit() == w10.Bit()); |
| 7330 CHECK(jssp.Bit() == wjssp.Bit()); |
| 7331 CHECK(xzr.Bit() == wzr.Bit()); |
| 7332 CHECK(csp.Bit() == wcsp.Bit()); |
| 7333 } |
| 7334 |
| 7335 |
| 7336 TEST(stack_pointer_override) { |
| 7337 // This test generates some stack maintenance code, but the test only checks |
| 7338 // the reported state. |
| 7339 INIT_V8(); |
| 7340 SETUP(); |
| 7341 START(); |
| 7342 |
| 7343 // The default stack pointer in V8 is jssp, but for compatibility with W16, |
| 7344 // the test framework sets it to csp before calling the test. |
| 7345 CHECK(csp.Is(__ StackPointer())); |
| 7346 __ SetStackPointer(x0); |
| 7347 CHECK(x0.Is(__ StackPointer())); |
| 7348 __ SetStackPointer(jssp); |
| 7349 CHECK(jssp.Is(__ StackPointer())); |
| 7350 __ SetStackPointer(csp); |
| 7351 CHECK(csp.Is(__ StackPointer())); |
| 7352 |
| 7353 END(); |
| 7354 RUN(); |
| 7355 TEARDOWN(); |
| 7356 } |
| 7357 |
| 7358 |
| 7359 TEST(peek_poke_simple) { |
| 7360 INIT_V8(); |
| 7361 SETUP(); |
| 7362 START(); |
| 7363 |
| 7364 static const RegList x0_to_x3 = x0.Bit() | x1.Bit() | x2.Bit() | x3.Bit(); |
| 7365 static const RegList x10_to_x13 = x10.Bit() | x11.Bit() | |
| 7366 x12.Bit() | x13.Bit(); |
| 7367 |
| 7368 // The literal base is chosen to have two useful properties: |
| 7369 // * When multiplied by small values (such as a register index), this value |
| 7370 // is clearly readable in the result. |
| 7371 // * The value is not formed from repeating fixed-size smaller values, so it |
| 7372 // can be used to detect endianness-related errors. |
| 7373 uint64_t literal_base = 0x0100001000100101UL; |
| 7374 |
| 7375 // Initialize the registers. |
| 7376 __ Mov(x0, literal_base); |
| 7377 __ Add(x1, x0, x0); |
| 7378 __ Add(x2, x1, x0); |
| 7379 __ Add(x3, x2, x0); |
| 7380 |
| 7381 __ Claim(4); |
| 7382 |
| 7383 // Simple exchange. |
| 7384 // After this test: |
| 7385 // x0-x3 should be unchanged. |
| 7386 // w10-w13 should contain the lower words of x0-x3. |
| 7387 __ Poke(x0, 0); |
| 7388 __ Poke(x1, 8); |
| 7389 __ Poke(x2, 16); |
| 7390 __ Poke(x3, 24); |
| 7391 Clobber(&masm, x0_to_x3); |
| 7392 __ Peek(x0, 0); |
| 7393 __ Peek(x1, 8); |
| 7394 __ Peek(x2, 16); |
| 7395 __ Peek(x3, 24); |
| 7396 |
| 7397 __ Poke(w0, 0); |
| 7398 __ Poke(w1, 4); |
| 7399 __ Poke(w2, 8); |
| 7400 __ Poke(w3, 12); |
| 7401 Clobber(&masm, x10_to_x13); |
| 7402 __ Peek(w10, 0); |
| 7403 __ Peek(w11, 4); |
| 7404 __ Peek(w12, 8); |
| 7405 __ Peek(w13, 12); |
| 7406 |
| 7407 __ Drop(4); |
| 7408 |
| 7409 END(); |
| 7410 RUN(); |
| 7411 |
| 7412 ASSERT_EQUAL_64(literal_base * 1, x0); |
| 7413 ASSERT_EQUAL_64(literal_base * 2, x1); |
| 7414 ASSERT_EQUAL_64(literal_base * 3, x2); |
| 7415 ASSERT_EQUAL_64(literal_base * 4, x3); |
| 7416 |
| 7417 ASSERT_EQUAL_64((literal_base * 1) & 0xffffffff, x10); |
| 7418 ASSERT_EQUAL_64((literal_base * 2) & 0xffffffff, x11); |
| 7419 ASSERT_EQUAL_64((literal_base * 3) & 0xffffffff, x12); |
| 7420 ASSERT_EQUAL_64((literal_base * 4) & 0xffffffff, x13); |
| 7421 |
| 7422 TEARDOWN(); |
| 7423 } |
| 7424 |
| 7425 |
| 7426 TEST(peek_poke_unaligned) { |
| 7427 INIT_V8(); |
| 7428 SETUP(); |
| 7429 START(); |
| 7430 |
| 7431 // The literal base is chosen to have two useful properties: |
| 7432 // * When multiplied by small values (such as a register index), this value |
| 7433 // is clearly readable in the result. |
| 7434 // * The value is not formed from repeating fixed-size smaller values, so it |
| 7435 // can be used to detect endianness-related errors. |
| 7436 uint64_t literal_base = 0x0100001000100101UL; |
| 7437 |
| 7438 // Initialize the registers. |
| 7439 __ Mov(x0, literal_base); |
| 7440 __ Add(x1, x0, x0); |
| 7441 __ Add(x2, x1, x0); |
| 7442 __ Add(x3, x2, x0); |
| 7443 __ Add(x4, x3, x0); |
| 7444 __ Add(x5, x4, x0); |
| 7445 __ Add(x6, x5, x0); |
| 7446 |
| 7447 __ Claim(4); |
| 7448 |
| 7449 // Unaligned exchanges. |
| 7450 // After this test: |
| 7451 // x0-x6 should be unchanged. |
| 7452 // w10-w12 should contain the lower words of x0-x2. |
| 7453 __ Poke(x0, 1); |
| 7454 Clobber(&masm, x0.Bit()); |
| 7455 __ Peek(x0, 1); |
| 7456 __ Poke(x1, 2); |
| 7457 Clobber(&masm, x1.Bit()); |
| 7458 __ Peek(x1, 2); |
| 7459 __ Poke(x2, 3); |
| 7460 Clobber(&masm, x2.Bit()); |
| 7461 __ Peek(x2, 3); |
| 7462 __ Poke(x3, 4); |
| 7463 Clobber(&masm, x3.Bit()); |
| 7464 __ Peek(x3, 4); |
| 7465 __ Poke(x4, 5); |
| 7466 Clobber(&masm, x4.Bit()); |
| 7467 __ Peek(x4, 5); |
| 7468 __ Poke(x5, 6); |
| 7469 Clobber(&masm, x5.Bit()); |
| 7470 __ Peek(x5, 6); |
| 7471 __ Poke(x6, 7); |
| 7472 Clobber(&masm, x6.Bit()); |
| 7473 __ Peek(x6, 7); |
| 7474 |
| 7475 __ Poke(w0, 1); |
| 7476 Clobber(&masm, w10.Bit()); |
| 7477 __ Peek(w10, 1); |
| 7478 __ Poke(w1, 2); |
| 7479 Clobber(&masm, w11.Bit()); |
| 7480 __ Peek(w11, 2); |
| 7481 __ Poke(w2, 3); |
| 7482 Clobber(&masm, w12.Bit()); |
| 7483 __ Peek(w12, 3); |
| 7484 |
| 7485 __ Drop(4); |
| 7486 |
| 7487 END(); |
| 7488 RUN(); |
| 7489 |
| 7490 ASSERT_EQUAL_64(literal_base * 1, x0); |
| 7491 ASSERT_EQUAL_64(literal_base * 2, x1); |
| 7492 ASSERT_EQUAL_64(literal_base * 3, x2); |
| 7493 ASSERT_EQUAL_64(literal_base * 4, x3); |
| 7494 ASSERT_EQUAL_64(literal_base * 5, x4); |
| 7495 ASSERT_EQUAL_64(literal_base * 6, x5); |
| 7496 ASSERT_EQUAL_64(literal_base * 7, x6); |
| 7497 |
| 7498 ASSERT_EQUAL_64((literal_base * 1) & 0xffffffff, x10); |
| 7499 ASSERT_EQUAL_64((literal_base * 2) & 0xffffffff, x11); |
| 7500 ASSERT_EQUAL_64((literal_base * 3) & 0xffffffff, x12); |
| 7501 |
| 7502 TEARDOWN(); |
| 7503 } |
| 7504 |
| 7505 |
| 7506 TEST(peek_poke_endianness) { |
| 7507 INIT_V8(); |
| 7508 SETUP(); |
| 7509 START(); |
| 7510 |
| 7511 // The literal base is chosen to have two useful properties: |
| 7512 // * When multiplied by small values (such as a register index), this value |
| 7513 // is clearly readable in the result. |
| 7514 // * The value is not formed from repeating fixed-size smaller values, so it |
| 7515 // can be used to detect endianness-related errors. |
| 7516 uint64_t literal_base = 0x0100001000100101UL; |
| 7517 |
| 7518 // Initialize the registers. |
| 7519 __ Mov(x0, literal_base); |
| 7520 __ Add(x1, x0, x0); |
| 7521 |
| 7522 __ Claim(4); |
| 7523 |
| 7524 // Endianness tests. |
| 7525 // After this section: |
| 7526 // x4 should match x0[31:0]:x0[63:32] |
| 7527 // w5 should match w1[15:0]:w1[31:16] |
| 7528 __ Poke(x0, 0); |
| 7529 __ Poke(x0, 8); |
| 7530 __ Peek(x4, 4); |
| 7531 |
| 7532 __ Poke(w1, 0); |
| 7533 __ Poke(w1, 4); |
| 7534 __ Peek(w5, 2); |
| 7535 |
| 7536 __ Drop(4); |
| 7537 |
| 7538 END(); |
| 7539 RUN(); |
| 7540 |
| 7541 uint64_t x0_expected = literal_base * 1; |
| 7542 uint64_t x1_expected = literal_base * 2; |
| 7543 uint64_t x4_expected = (x0_expected << 32) | (x0_expected >> 32); |
| 7544 uint64_t x5_expected = ((x1_expected << 16) & 0xffff0000) | |
| 7545 ((x1_expected >> 16) & 0x0000ffff); |
| 7546 |
| 7547 ASSERT_EQUAL_64(x0_expected, x0); |
| 7548 ASSERT_EQUAL_64(x1_expected, x1); |
| 7549 ASSERT_EQUAL_64(x4_expected, x4); |
| 7550 ASSERT_EQUAL_64(x5_expected, x5); |
| 7551 |
| 7552 TEARDOWN(); |
| 7553 } |
| 7554 |
| 7555 |
| 7556 TEST(peek_poke_mixed) { |
| 7557 INIT_V8(); |
| 7558 SETUP(); |
| 7559 START(); |
| 7560 |
| 7561 // The literal base is chosen to have two useful properties: |
| 7562 // * When multiplied by small values (such as a register index), this value |
| 7563 // is clearly readable in the result. |
| 7564 // * The value is not formed from repeating fixed-size smaller values, so it |
| 7565 // can be used to detect endianness-related errors. |
| 7566 uint64_t literal_base = 0x0100001000100101UL; |
| 7567 |
| 7568 // Initialize the registers. |
| 7569 __ Mov(x0, literal_base); |
| 7570 __ Add(x1, x0, x0); |
| 7571 __ Add(x2, x1, x0); |
| 7572 __ Add(x3, x2, x0); |
| 7573 |
| 7574 __ Claim(4); |
| 7575 |
| 7576 // Mix with other stack operations. |
| 7577 // After this section: |
| 7578 // x0-x3 should be unchanged. |
| 7579 // x6 should match x1[31:0]:x0[63:32] |
| 7580 // w7 should match x1[15:0]:x0[63:48] |
| 7581 __ Poke(x1, 8); |
| 7582 __ Poke(x0, 0); |
| 7583 { |
| 7584 ASSERT(__ StackPointer().Is(csp)); |
| 7585 __ Mov(x4, __ StackPointer()); |
| 7586 __ SetStackPointer(x4); |
| 7587 |
| 7588 __ Poke(wzr, 0); // Clobber the space we're about to drop. |
| 7589 __ Drop(1, kWRegSizeInBytes); |
| 7590 __ Peek(x6, 0); |
| 7591 __ Claim(1); |
| 7592 __ Peek(w7, 10); |
| 7593 __ Poke(x3, 28); |
| 7594 __ Poke(xzr, 0); // Clobber the space we're about to drop. |
| 7595 __ Drop(1); |
| 7596 __ Poke(x2, 12); |
| 7597 __ Push(w0); |
| 7598 |
| 7599 __ Mov(csp, __ StackPointer()); |
| 7600 __ SetStackPointer(csp); |
| 7601 } |
| 7602 |
| 7603 __ Pop(x0, x1, x2, x3); |
| 7604 |
| 7605 END(); |
| 7606 RUN(); |
| 7607 |
| 7608 uint64_t x0_expected = literal_base * 1; |
| 7609 uint64_t x1_expected = literal_base * 2; |
| 7610 uint64_t x2_expected = literal_base * 3; |
| 7611 uint64_t x3_expected = literal_base * 4; |
| 7612 uint64_t x6_expected = (x1_expected << 32) | (x0_expected >> 32); |
| 7613 uint64_t x7_expected = ((x1_expected << 16) & 0xffff0000) | |
| 7614 ((x0_expected >> 48) & 0x0000ffff); |
| 7615 |
| 7616 ASSERT_EQUAL_64(x0_expected, x0); |
| 7617 ASSERT_EQUAL_64(x1_expected, x1); |
| 7618 ASSERT_EQUAL_64(x2_expected, x2); |
| 7619 ASSERT_EQUAL_64(x3_expected, x3); |
| 7620 ASSERT_EQUAL_64(x6_expected, x6); |
| 7621 ASSERT_EQUAL_64(x7_expected, x7); |
| 7622 |
| 7623 TEARDOWN(); |
| 7624 } |
| 7625 |
| 7626 |
| 7627 // This enum is used only as an argument to the push-pop test helpers. |
| 7628 enum PushPopMethod { |
| 7629 // Push or Pop using the Push and Pop methods, with blocks of up to four |
| 7630 // registers. (Smaller blocks will be used if necessary.) |
| 7631 PushPopByFour, |
| 7632 |
| 7633 // Use Push<Size>RegList and Pop<Size>RegList to transfer the registers. |
| 7634 PushPopRegList |
| 7635 }; |
| 7636 |
| 7637 |
| 7638 // The maximum number of registers that can be used by the PushPopJssp* tests, |
| 7639 // where a reg_count field is provided. |
| 7640 static int const kPushPopJsspMaxRegCount = -1; |
| 7641 |
| 7642 // Test a simple push-pop pattern: |
| 7643 // * Claim <claim> bytes to set the stack alignment. |
| 7644 // * Push <reg_count> registers with size <reg_size>. |
| 7645 // * Clobber the register contents. |
| 7646 // * Pop <reg_count> registers to restore the original contents. |
| 7647 // * Drop <claim> bytes to restore the original stack pointer. |
| 7648 // |
| 7649 // Different push and pop methods can be specified independently to test for |
| 7650 // proper word-endian behaviour. |
| 7651 static void PushPopJsspSimpleHelper(int reg_count, |
| 7652 int claim, |
| 7653 int reg_size, |
| 7654 PushPopMethod push_method, |
| 7655 PushPopMethod pop_method) { |
| 7656 SETUP(); |
| 7657 |
| 7658 START(); |
| 7659 |
| 7660 // Registers x8 and x9 are used by the macro assembler for debug code (for |
| 7661 // example in 'Pop'), so we can't use them here. We can't use jssp because it |
| 7662 // will be the stack pointer for this test. |
| 7663 static RegList const allowed = ~(x8.Bit() | x9.Bit() | jssp.Bit()); |
| 7664 if (reg_count == kPushPopJsspMaxRegCount) { |
| 7665 reg_count = CountSetBits(allowed, kNumberOfRegisters); |
| 7666 } |
| 7667 // Work out which registers to use, based on reg_size. |
| 7668 Register r[kNumberOfRegisters]; |
| 7669 Register x[kNumberOfRegisters]; |
| 7670 RegList list = PopulateRegisterArray(NULL, x, r, reg_size, reg_count, |
| 7671 allowed); |
| 7672 |
| 7673 // The literal base is chosen to have two useful properties: |
| 7674 // * When multiplied by small values (such as a register index), this value |
| 7675 // is clearly readable in the result. |
| 7676 // * The value is not formed from repeating fixed-size smaller values, so it |
| 7677 // can be used to detect endianness-related errors. |
| 7678 uint64_t literal_base = 0x0100001000100101UL; |
| 7679 |
| 7680 { |
| 7681 ASSERT(__ StackPointer().Is(csp)); |
| 7682 __ Mov(jssp, __ StackPointer()); |
| 7683 __ SetStackPointer(jssp); |
| 7684 |
| 7685 int i; |
| 7686 |
| 7687 // Initialize the registers. |
| 7688 for (i = 0; i < reg_count; i++) { |
| 7689 // Always write into the X register, to ensure that the upper word is |
| 7690 // properly ignored by Push when testing W registers. |
| 7691 if (!x[i].IsZero()) { |
| 7692 __ Mov(x[i], literal_base * i); |
| 7693 } |
| 7694 } |
| 7695 |
| 7696 // Claim memory first, as requested. |
| 7697 __ Claim(claim, kByteSizeInBytes); |
| 7698 |
| 7699 switch (push_method) { |
| 7700 case PushPopByFour: |
| 7701 // Push high-numbered registers first (to the highest addresses). |
| 7702 for (i = reg_count; i >= 4; i -= 4) { |
| 7703 __ Push(r[i-1], r[i-2], r[i-3], r[i-4]); |
| 7704 } |
| 7705 // Finish off the leftovers. |
| 7706 switch (i) { |
| 7707 case 3: __ Push(r[2], r[1], r[0]); break; |
| 7708 case 2: __ Push(r[1], r[0]); break; |
| 7709 case 1: __ Push(r[0]); break; |
| 7710 default: ASSERT(i == 0); break; |
| 7711 } |
| 7712 break; |
| 7713 case PushPopRegList: |
| 7714 __ PushSizeRegList(list, reg_size); |
| 7715 break; |
| 7716 } |
| 7717 |
| 7718 // Clobber all the registers, to ensure that they get repopulated by Pop. |
| 7719 Clobber(&masm, list); |
| 7720 |
| 7721 switch (pop_method) { |
| 7722 case PushPopByFour: |
| 7723 // Pop low-numbered registers first (from the lowest addresses). |
| 7724 for (i = 0; i <= (reg_count-4); i += 4) { |
| 7725 __ Pop(r[i], r[i+1], r[i+2], r[i+3]); |
| 7726 } |
| 7727 // Finish off the leftovers. |
| 7728 switch (reg_count - i) { |
| 7729 case 3: __ Pop(r[i], r[i+1], r[i+2]); break; |
| 7730 case 2: __ Pop(r[i], r[i+1]); break; |
| 7731 case 1: __ Pop(r[i]); break; |
| 7732 default: ASSERT(i == reg_count); break; |
| 7733 } |
| 7734 break; |
| 7735 case PushPopRegList: |
| 7736 __ PopSizeRegList(list, reg_size); |
| 7737 break; |
| 7738 } |
| 7739 |
| 7740 // Drop memory to restore jssp. |
| 7741 __ Drop(claim, kByteSizeInBytes); |
| 7742 |
| 7743 __ Mov(csp, __ StackPointer()); |
| 7744 __ SetStackPointer(csp); |
| 7745 } |
| 7746 |
| 7747 END(); |
| 7748 |
| 7749 RUN(); |
| 7750 |
| 7751 // Check that the register contents were preserved. |
| 7752 // Always use ASSERT_EQUAL_64, even when testing W registers, so we can test |
| 7753 // that the upper word was properly cleared by Pop. |
| 7754 literal_base &= (0xffffffffffffffffUL >> (64-reg_size)); |
| 7755 for (int i = 0; i < reg_count; i++) { |
| 7756 if (x[i].IsZero()) { |
| 7757 ASSERT_EQUAL_64(0, x[i]); |
| 7758 } else { |
| 7759 ASSERT_EQUAL_64(literal_base * i, x[i]); |
| 7760 } |
| 7761 } |
| 7762 |
| 7763 TEARDOWN(); |
| 7764 } |
| 7765 |
| 7766 |
| 7767 TEST(push_pop_jssp_simple_32) { |
| 7768 INIT_V8(); |
| 7769 for (int claim = 0; claim <= 8; claim++) { |
| 7770 for (int count = 0; count <= 8; count++) { |
| 7771 PushPopJsspSimpleHelper(count, claim, kWRegSize, |
| 7772 PushPopByFour, PushPopByFour); |
| 7773 PushPopJsspSimpleHelper(count, claim, kWRegSize, |
| 7774 PushPopByFour, PushPopRegList); |
| 7775 PushPopJsspSimpleHelper(count, claim, kWRegSize, |
| 7776 PushPopRegList, PushPopByFour); |
| 7777 PushPopJsspSimpleHelper(count, claim, kWRegSize, |
| 7778 PushPopRegList, PushPopRegList); |
| 7779 } |
| 7780 // Test with the maximum number of registers. |
| 7781 PushPopJsspSimpleHelper(kPushPopJsspMaxRegCount, claim, kWRegSize, |
| 7782 PushPopByFour, PushPopByFour); |
| 7783 PushPopJsspSimpleHelper(kPushPopJsspMaxRegCount, claim, kWRegSize, |
| 7784 PushPopByFour, PushPopRegList); |
| 7785 PushPopJsspSimpleHelper(kPushPopJsspMaxRegCount, claim, kWRegSize, |
| 7786 PushPopRegList, PushPopByFour); |
| 7787 PushPopJsspSimpleHelper(kPushPopJsspMaxRegCount, claim, kWRegSize, |
| 7788 PushPopRegList, PushPopRegList); |
| 7789 } |
| 7790 } |
| 7791 |
| 7792 |
| 7793 TEST(push_pop_jssp_simple_64) { |
| 7794 INIT_V8(); |
| 7795 for (int claim = 0; claim <= 8; claim++) { |
| 7796 for (int count = 0; count <= 8; count++) { |
| 7797 PushPopJsspSimpleHelper(count, claim, kXRegSize, |
| 7798 PushPopByFour, PushPopByFour); |
| 7799 PushPopJsspSimpleHelper(count, claim, kXRegSize, |
| 7800 PushPopByFour, PushPopRegList); |
| 7801 PushPopJsspSimpleHelper(count, claim, kXRegSize, |
| 7802 PushPopRegList, PushPopByFour); |
| 7803 PushPopJsspSimpleHelper(count, claim, kXRegSize, |
| 7804 PushPopRegList, PushPopRegList); |
| 7805 } |
| 7806 // Test with the maximum number of registers. |
| 7807 PushPopJsspSimpleHelper(kPushPopJsspMaxRegCount, claim, kXRegSize, |
| 7808 PushPopByFour, PushPopByFour); |
| 7809 PushPopJsspSimpleHelper(kPushPopJsspMaxRegCount, claim, kXRegSize, |
| 7810 PushPopByFour, PushPopRegList); |
| 7811 PushPopJsspSimpleHelper(kPushPopJsspMaxRegCount, claim, kXRegSize, |
| 7812 PushPopRegList, PushPopByFour); |
| 7813 PushPopJsspSimpleHelper(kPushPopJsspMaxRegCount, claim, kXRegSize, |
| 7814 PushPopRegList, PushPopRegList); |
| 7815 } |
| 7816 } |
| 7817 |
| 7818 |
| 7819 // The maximum number of registers that can be used by the PushPopFPJssp* tests, |
| 7820 // where a reg_count field is provided. |
| 7821 static int const kPushPopFPJsspMaxRegCount = -1; |
| 7822 |
| 7823 // Test a simple push-pop pattern: |
| 7824 // * Claim <claim> bytes to set the stack alignment. |
| 7825 // * Push <reg_count> FP registers with size <reg_size>. |
| 7826 // * Clobber the register contents. |
| 7827 // * Pop <reg_count> FP registers to restore the original contents. |
| 7828 // * Drop <claim> bytes to restore the original stack pointer. |
| 7829 // |
| 7830 // Different push and pop methods can be specified independently to test for |
| 7831 // proper word-endian behaviour. |
| 7832 static void PushPopFPJsspSimpleHelper(int reg_count, |
| 7833 int claim, |
| 7834 int reg_size, |
| 7835 PushPopMethod push_method, |
| 7836 PushPopMethod pop_method) { |
| 7837 SETUP(); |
| 7838 |
| 7839 START(); |
| 7840 |
| 7841 // We can use any floating-point register. None of them are reserved for |
| 7842 // debug code, for example. |
| 7843 static RegList const allowed = ~0; |
| 7844 if (reg_count == kPushPopFPJsspMaxRegCount) { |
| 7845 reg_count = CountSetBits(allowed, kNumberOfFPRegisters); |
| 7846 } |
| 7847 // Work out which registers to use, based on reg_size. |
| 7848 FPRegister v[kNumberOfRegisters]; |
| 7849 FPRegister d[kNumberOfRegisters]; |
| 7850 RegList list = PopulateFPRegisterArray(NULL, d, v, reg_size, reg_count, |
| 7851 allowed); |
| 7852 |
| 7853 // The literal base is chosen to have two useful properties: |
| 7854 // * When multiplied (using an integer) by small values (such as a register |
| 7855 // index), this value is clearly readable in the result. |
| 7856 // * The value is not formed from repeating fixed-size smaller values, so it |
| 7857 // can be used to detect endianness-related errors. |
| 7858 // * It is never a floating-point NaN, and will therefore always compare |
| 7859 // equal to itself. |
| 7860 uint64_t literal_base = 0x0100001000100101UL; |
| 7861 |
| 7862 { |
| 7863 ASSERT(__ StackPointer().Is(csp)); |
| 7864 __ Mov(jssp, __ StackPointer()); |
| 7865 __ SetStackPointer(jssp); |
| 7866 |
| 7867 int i; |
| 7868 |
| 7869 // Initialize the registers, using X registers to load the literal. |
| 7870 __ Mov(x0, 0); |
| 7871 __ Mov(x1, literal_base); |
| 7872 for (i = 0; i < reg_count; i++) { |
| 7873 // Always write into the D register, to ensure that the upper word is |
| 7874 // properly ignored by Push when testing S registers. |
| 7875 __ Fmov(d[i], x0); |
| 7876 // Calculate the next literal. |
| 7877 __ Add(x0, x0, x1); |
| 7878 } |
| 7879 |
| 7880 // Claim memory first, as requested. |
| 7881 __ Claim(claim, kByteSizeInBytes); |
| 7882 |
| 7883 switch (push_method) { |
| 7884 case PushPopByFour: |
| 7885 // Push high-numbered registers first (to the highest addresses). |
| 7886 for (i = reg_count; i >= 4; i -= 4) { |
| 7887 __ Push(v[i-1], v[i-2], v[i-3], v[i-4]); |
| 7888 } |
| 7889 // Finish off the leftovers. |
| 7890 switch (i) { |
| 7891 case 3: __ Push(v[2], v[1], v[0]); break; |
| 7892 case 2: __ Push(v[1], v[0]); break; |
| 7893 case 1: __ Push(v[0]); break; |
| 7894 default: ASSERT(i == 0); break; |
| 7895 } |
| 7896 break; |
| 7897 case PushPopRegList: |
| 7898 __ PushSizeRegList(list, reg_size, CPURegister::kFPRegister); |
| 7899 break; |
| 7900 } |
| 7901 |
| 7902 // Clobber all the registers, to ensure that they get repopulated by Pop. |
| 7903 ClobberFP(&masm, list); |
| 7904 |
| 7905 switch (pop_method) { |
| 7906 case PushPopByFour: |
| 7907 // Pop low-numbered registers first (from the lowest addresses). |
| 7908 for (i = 0; i <= (reg_count-4); i += 4) { |
| 7909 __ Pop(v[i], v[i+1], v[i+2], v[i+3]); |
| 7910 } |
| 7911 // Finish off the leftovers. |
| 7912 switch (reg_count - i) { |
| 7913 case 3: __ Pop(v[i], v[i+1], v[i+2]); break; |
| 7914 case 2: __ Pop(v[i], v[i+1]); break; |
| 7915 case 1: __ Pop(v[i]); break; |
| 7916 default: ASSERT(i == reg_count); break; |
| 7917 } |
| 7918 break; |
| 7919 case PushPopRegList: |
| 7920 __ PopSizeRegList(list, reg_size, CPURegister::kFPRegister); |
| 7921 break; |
| 7922 } |
| 7923 |
| 7924 // Drop memory to restore jssp. |
| 7925 __ Drop(claim, kByteSizeInBytes); |
| 7926 |
| 7927 __ Mov(csp, __ StackPointer()); |
| 7928 __ SetStackPointer(csp); |
| 7929 } |
| 7930 |
| 7931 END(); |
| 7932 |
| 7933 RUN(); |
| 7934 |
| 7935 // Check that the register contents were preserved. |
| 7936 // Always use ASSERT_EQUAL_FP64, even when testing S registers, so we can |
| 7937 // test that the upper word was properly cleared by Pop. |
| 7938 literal_base &= (0xffffffffffffffffUL >> (64-reg_size)); |
| 7939 for (int i = 0; i < reg_count; i++) { |
| 7940 uint64_t literal = literal_base * i; |
| 7941 double expected; |
| 7942 memcpy(&expected, &literal, sizeof(expected)); |
| 7943 ASSERT_EQUAL_FP64(expected, d[i]); |
| 7944 } |
| 7945 |
| 7946 TEARDOWN(); |
| 7947 } |
| 7948 |
| 7949 |
| 7950 TEST(push_pop_fp_jssp_simple_32) { |
| 7951 INIT_V8(); |
| 7952 for (int claim = 0; claim <= 8; claim++) { |
| 7953 for (int count = 0; count <= 8; count++) { |
| 7954 PushPopFPJsspSimpleHelper(count, claim, kSRegSize, |
| 7955 PushPopByFour, PushPopByFour); |
| 7956 PushPopFPJsspSimpleHelper(count, claim, kSRegSize, |
| 7957 PushPopByFour, PushPopRegList); |
| 7958 PushPopFPJsspSimpleHelper(count, claim, kSRegSize, |
| 7959 PushPopRegList, PushPopByFour); |
| 7960 PushPopFPJsspSimpleHelper(count, claim, kSRegSize, |
| 7961 PushPopRegList, PushPopRegList); |
| 7962 } |
| 7963 // Test with the maximum number of registers. |
| 7964 PushPopFPJsspSimpleHelper(kPushPopFPJsspMaxRegCount, claim, kSRegSize, |
| 7965 PushPopByFour, PushPopByFour); |
| 7966 PushPopFPJsspSimpleHelper(kPushPopFPJsspMaxRegCount, claim, kSRegSize, |
| 7967 PushPopByFour, PushPopRegList); |
| 7968 PushPopFPJsspSimpleHelper(kPushPopFPJsspMaxRegCount, claim, kSRegSize, |
| 7969 PushPopRegList, PushPopByFour); |
| 7970 PushPopFPJsspSimpleHelper(kPushPopFPJsspMaxRegCount, claim, kSRegSize, |
| 7971 PushPopRegList, PushPopRegList); |
| 7972 } |
| 7973 } |
| 7974 |
| 7975 |
| 7976 TEST(push_pop_fp_jssp_simple_64) { |
| 7977 INIT_V8(); |
| 7978 for (int claim = 0; claim <= 8; claim++) { |
| 7979 for (int count = 0; count <= 8; count++) { |
| 7980 PushPopFPJsspSimpleHelper(count, claim, kDRegSize, |
| 7981 PushPopByFour, PushPopByFour); |
| 7982 PushPopFPJsspSimpleHelper(count, claim, kDRegSize, |
| 7983 PushPopByFour, PushPopRegList); |
| 7984 PushPopFPJsspSimpleHelper(count, claim, kDRegSize, |
| 7985 PushPopRegList, PushPopByFour); |
| 7986 PushPopFPJsspSimpleHelper(count, claim, kDRegSize, |
| 7987 PushPopRegList, PushPopRegList); |
| 7988 } |
| 7989 // Test with the maximum number of registers. |
| 7990 PushPopFPJsspSimpleHelper(kPushPopFPJsspMaxRegCount, claim, kDRegSize, |
| 7991 PushPopByFour, PushPopByFour); |
| 7992 PushPopFPJsspSimpleHelper(kPushPopFPJsspMaxRegCount, claim, kDRegSize, |
| 7993 PushPopByFour, PushPopRegList); |
| 7994 PushPopFPJsspSimpleHelper(kPushPopFPJsspMaxRegCount, claim, kDRegSize, |
| 7995 PushPopRegList, PushPopByFour); |
| 7996 PushPopFPJsspSimpleHelper(kPushPopFPJsspMaxRegCount, claim, kDRegSize, |
| 7997 PushPopRegList, PushPopRegList); |
| 7998 } |
| 7999 } |
| 8000 |
| 8001 |
| 8002 // Push and pop data using an overlapping combination of Push/Pop and |
| 8003 // RegList-based methods. |
| 8004 static void PushPopJsspMixedMethodsHelper(int claim, int reg_size) { |
| 8005 SETUP(); |
| 8006 |
| 8007 // Registers x8 and x9 are used by the macro assembler for debug code (for |
| 8008 // example in 'Pop'), so we can't use them here. We can't use jssp because it |
| 8009 // will be the stack pointer for this test. |
| 8010 static RegList const allowed = |
| 8011 ~(x8.Bit() | x9.Bit() | jssp.Bit() | xzr.Bit()); |
| 8012 // Work out which registers to use, based on reg_size. |
| 8013 Register r[10]; |
| 8014 Register x[10]; |
| 8015 PopulateRegisterArray(NULL, x, r, reg_size, 10, allowed); |
| 8016 |
| 8017 // Calculate some handy register lists. |
| 8018 RegList r0_to_r3 = 0; |
| 8019 for (int i = 0; i <= 3; i++) { |
| 8020 r0_to_r3 |= x[i].Bit(); |
| 8021 } |
| 8022 RegList r4_to_r5 = 0; |
| 8023 for (int i = 4; i <= 5; i++) { |
| 8024 r4_to_r5 |= x[i].Bit(); |
| 8025 } |
| 8026 RegList r6_to_r9 = 0; |
| 8027 for (int i = 6; i <= 9; i++) { |
| 8028 r6_to_r9 |= x[i].Bit(); |
| 8029 } |
| 8030 |
| 8031 // The literal base is chosen to have two useful properties: |
| 8032 // * When multiplied by small values (such as a register index), this value |
| 8033 // is clearly readable in the result. |
| 8034 // * The value is not formed from repeating fixed-size smaller values, so it |
| 8035 // can be used to detect endianness-related errors. |
| 8036 uint64_t literal_base = 0x0100001000100101UL; |
| 8037 |
| 8038 START(); |
| 8039 { |
| 8040 ASSERT(__ StackPointer().Is(csp)); |
| 8041 __ Mov(jssp, __ StackPointer()); |
| 8042 __ SetStackPointer(jssp); |
| 8043 |
| 8044 // Claim memory first, as requested. |
| 8045 __ Claim(claim, kByteSizeInBytes); |
| 8046 |
| 8047 __ Mov(x[3], literal_base * 3); |
| 8048 __ Mov(x[2], literal_base * 2); |
| 8049 __ Mov(x[1], literal_base * 1); |
| 8050 __ Mov(x[0], literal_base * 0); |
| 8051 |
| 8052 __ PushSizeRegList(r0_to_r3, reg_size); |
| 8053 __ Push(r[3], r[2]); |
| 8054 |
| 8055 Clobber(&masm, r0_to_r3); |
| 8056 __ PopSizeRegList(r0_to_r3, reg_size); |
| 8057 |
| 8058 __ Push(r[2], r[1], r[3], r[0]); |
| 8059 |
| 8060 Clobber(&masm, r4_to_r5); |
| 8061 __ Pop(r[4], r[5]); |
| 8062 Clobber(&masm, r6_to_r9); |
| 8063 __ Pop(r[6], r[7], r[8], r[9]); |
| 8064 |
| 8065 // Drop memory to restore jssp. |
| 8066 __ Drop(claim, kByteSizeInBytes); |
| 8067 |
| 8068 __ Mov(csp, __ StackPointer()); |
| 8069 __ SetStackPointer(csp); |
| 8070 } |
| 8071 |
| 8072 END(); |
| 8073 |
| 8074 RUN(); |
| 8075 |
| 8076 // Always use ASSERT_EQUAL_64, even when testing W registers, so we can test |
| 8077 // that the upper word was properly cleared by Pop. |
| 8078 literal_base &= (0xffffffffffffffffUL >> (64-reg_size)); |
| 8079 |
| 8080 ASSERT_EQUAL_64(literal_base * 3, x[9]); |
| 8081 ASSERT_EQUAL_64(literal_base * 2, x[8]); |
| 8082 ASSERT_EQUAL_64(literal_base * 0, x[7]); |
| 8083 ASSERT_EQUAL_64(literal_base * 3, x[6]); |
| 8084 ASSERT_EQUAL_64(literal_base * 1, x[5]); |
| 8085 ASSERT_EQUAL_64(literal_base * 2, x[4]); |
| 8086 |
| 8087 TEARDOWN(); |
| 8088 } |
| 8089 |
| 8090 |
| 8091 TEST(push_pop_jssp_mixed_methods_64) { |
| 8092 INIT_V8(); |
| 8093 for (int claim = 0; claim <= 8; claim++) { |
| 8094 PushPopJsspMixedMethodsHelper(claim, kXRegSize); |
| 8095 } |
| 8096 } |
| 8097 |
| 8098 |
| 8099 TEST(push_pop_jssp_mixed_methods_32) { |
| 8100 INIT_V8(); |
| 8101 for (int claim = 0; claim <= 8; claim++) { |
| 8102 PushPopJsspMixedMethodsHelper(claim, kWRegSize); |
| 8103 } |
| 8104 } |
| 8105 |
| 8106 |
| 8107 // Push and pop data using overlapping X- and W-sized quantities. |
| 8108 static void PushPopJsspWXOverlapHelper(int reg_count, int claim) { |
| 8109 // This test emits rather a lot of code. |
| 8110 SETUP_SIZE(BUF_SIZE * 2); |
| 8111 |
| 8112 // Work out which registers to use, based on reg_size. |
| 8113 static RegList const allowed = ~(x8.Bit() | x9.Bit() | jssp.Bit()); |
| 8114 if (reg_count == kPushPopJsspMaxRegCount) { |
| 8115 reg_count = CountSetBits(allowed, kNumberOfRegisters); |
| 8116 } |
| 8117 Register w[kNumberOfRegisters]; |
| 8118 Register x[kNumberOfRegisters]; |
| 8119 RegList list = PopulateRegisterArray(w, x, NULL, 0, reg_count, allowed); |
| 8120 |
| 8121 // The number of W-sized slots we expect to pop. When we pop, we alternate |
| 8122 // between W and X registers, so we need reg_count*1.5 W-sized slots. |
| 8123 int const requested_w_slots = reg_count + reg_count / 2; |
| 8124 |
| 8125 // Track what _should_ be on the stack, using W-sized slots. |
| 8126 static int const kMaxWSlots = kNumberOfRegisters + kNumberOfRegisters / 2; |
| 8127 uint32_t stack[kMaxWSlots]; |
| 8128 for (int i = 0; i < kMaxWSlots; i++) { |
| 8129 stack[i] = 0xdeadbeef; |
| 8130 } |
| 8131 |
| 8132 // The literal base is chosen to have two useful properties: |
| 8133 // * When multiplied by small values (such as a register index), this value |
| 8134 // is clearly readable in the result. |
| 8135 // * The value is not formed from repeating fixed-size smaller values, so it |
| 8136 // can be used to detect endianness-related errors. |
| 8137 static uint64_t const literal_base = 0x0100001000100101UL; |
| 8138 static uint64_t const literal_base_hi = literal_base >> 32; |
| 8139 static uint64_t const literal_base_lo = literal_base & 0xffffffff; |
| 8140 static uint64_t const literal_base_w = literal_base & 0xffffffff; |
| 8141 |
| 8142 START(); |
| 8143 { |
| 8144 ASSERT(__ StackPointer().Is(csp)); |
| 8145 __ Mov(jssp, __ StackPointer()); |
| 8146 __ SetStackPointer(jssp); |
| 8147 |
| 8148 // Initialize the registers. |
| 8149 for (int i = 0; i < reg_count; i++) { |
| 8150 // Always write into the X register, to ensure that the upper word is |
| 8151 // properly ignored by Push when testing W registers. |
| 8152 if (!x[i].IsZero()) { |
| 8153 __ Mov(x[i], literal_base * i); |
| 8154 } |
| 8155 } |
| 8156 |
| 8157 // Claim memory first, as requested. |
| 8158 __ Claim(claim, kByteSizeInBytes); |
| 8159 |
| 8160 // The push-pop pattern is as follows: |
| 8161 // Push: Pop: |
| 8162 // x[0](hi) -> w[0] |
| 8163 // x[0](lo) -> x[1](hi) |
| 8164 // w[1] -> x[1](lo) |
| 8165 // w[1] -> w[2] |
| 8166 // x[2](hi) -> x[2](hi) |
| 8167 // x[2](lo) -> x[2](lo) |
| 8168 // x[2](hi) -> w[3] |
| 8169 // x[2](lo) -> x[4](hi) |
| 8170 // x[2](hi) -> x[4](lo) |
| 8171 // x[2](lo) -> w[5] |
| 8172 // w[3] -> x[5](hi) |
| 8173 // w[3] -> x[6](lo) |
| 8174 // w[3] -> w[7] |
| 8175 // w[3] -> x[8](hi) |
| 8176 // x[4](hi) -> x[8](lo) |
| 8177 // x[4](lo) -> w[9] |
| 8178 // ... pattern continues ... |
| 8179 // |
| 8180 // That is, registers are pushed starting with the lower numbers, |
| 8181 // alternating between x and w registers, and pushing i%4+1 copies of each, |
| 8182 // where i is the register number. |
| 8183 // Registers are popped starting with the higher numbers one-by-one, |
| 8184 // alternating between x and w registers, but only popping one at a time. |
| 8185 // |
| 8186 // This pattern provides a wide variety of alignment effects and overlaps. |
| 8187 |
| 8188 // ---- Push ---- |
| 8189 |
| 8190 int active_w_slots = 0; |
| 8191 for (int i = 0; active_w_slots < requested_w_slots; i++) { |
| 8192 ASSERT(i < reg_count); |
| 8193 // In order to test various arguments to PushMultipleTimes, and to try to |
| 8194 // exercise different alignment and overlap effects, we push each |
| 8195 // register a different number of times. |
| 8196 int times = i % 4 + 1; |
| 8197 if (i & 1) { |
| 8198 // Push odd-numbered registers as W registers. |
| 8199 __ PushMultipleTimes(times, w[i]); |
| 8200 // Fill in the expected stack slots. |
| 8201 for (int j = 0; j < times; j++) { |
| 8202 if (w[i].Is(wzr)) { |
| 8203 // The zero register always writes zeroes. |
| 8204 stack[active_w_slots++] = 0; |
| 8205 } else { |
| 8206 stack[active_w_slots++] = literal_base_w * i; |
| 8207 } |
| 8208 } |
| 8209 } else { |
| 8210 // Push even-numbered registers as X registers. |
| 8211 __ PushMultipleTimes(times, x[i]); |
| 8212 // Fill in the expected stack slots. |
| 8213 for (int j = 0; j < times; j++) { |
| 8214 if (x[i].IsZero()) { |
| 8215 // The zero register always writes zeroes. |
| 8216 stack[active_w_slots++] = 0; |
| 8217 stack[active_w_slots++] = 0; |
| 8218 } else { |
| 8219 stack[active_w_slots++] = literal_base_hi * i; |
| 8220 stack[active_w_slots++] = literal_base_lo * i; |
| 8221 } |
| 8222 } |
| 8223 } |
| 8224 } |
| 8225 // Because we were pushing several registers at a time, we probably pushed |
| 8226 // more than we needed to. |
| 8227 if (active_w_slots > requested_w_slots) { |
| 8228 __ Drop(active_w_slots - requested_w_slots, kWRegSizeInBytes); |
| 8229 // Bump the number of active W-sized slots back to where it should be, |
| 8230 // and fill the empty space with a dummy value. |
| 8231 do { |
| 8232 stack[active_w_slots--] = 0xdeadbeef; |
| 8233 } while (active_w_slots > requested_w_slots); |
| 8234 } |
| 8235 |
| 8236 // ---- Pop ---- |
| 8237 |
| 8238 Clobber(&masm, list); |
| 8239 |
| 8240 // If popping an even number of registers, the first one will be X-sized. |
| 8241 // Otherwise, the first one will be W-sized. |
| 8242 bool next_is_64 = !(reg_count & 1); |
| 8243 for (int i = reg_count-1; i >= 0; i--) { |
| 8244 if (next_is_64) { |
| 8245 __ Pop(x[i]); |
| 8246 active_w_slots -= 2; |
| 8247 } else { |
| 8248 __ Pop(w[i]); |
| 8249 active_w_slots -= 1; |
| 8250 } |
| 8251 next_is_64 = !next_is_64; |
| 8252 } |
| 8253 ASSERT(active_w_slots == 0); |
| 8254 |
| 8255 // Drop memory to restore jssp. |
| 8256 __ Drop(claim, kByteSizeInBytes); |
| 8257 |
| 8258 __ Mov(csp, __ StackPointer()); |
| 8259 __ SetStackPointer(csp); |
| 8260 } |
| 8261 |
| 8262 END(); |
| 8263 |
| 8264 RUN(); |
| 8265 |
| 8266 int slot = 0; |
| 8267 for (int i = 0; i < reg_count; i++) { |
| 8268 // Even-numbered registers were written as W registers. |
| 8269 // Odd-numbered registers were written as X registers. |
| 8270 bool expect_64 = (i & 1); |
| 8271 uint64_t expected; |
| 8272 |
| 8273 if (expect_64) { |
| 8274 uint64_t hi = stack[slot++]; |
| 8275 uint64_t lo = stack[slot++]; |
| 8276 expected = (hi << 32) | lo; |
| 8277 } else { |
| 8278 expected = stack[slot++]; |
| 8279 } |
| 8280 |
| 8281 // Always use ASSERT_EQUAL_64, even when testing W registers, so we can |
| 8282 // test that the upper word was properly cleared by Pop. |
| 8283 if (x[i].IsZero()) { |
| 8284 ASSERT_EQUAL_64(0, x[i]); |
| 8285 } else { |
| 8286 ASSERT_EQUAL_64(expected, x[i]); |
| 8287 } |
| 8288 } |
| 8289 ASSERT(slot == requested_w_slots); |
| 8290 |
| 8291 TEARDOWN(); |
| 8292 } |
| 8293 |
| 8294 |
| 8295 TEST(push_pop_jssp_wx_overlap) { |
| 8296 INIT_V8(); |
| 8297 for (int claim = 0; claim <= 8; claim++) { |
| 8298 for (int count = 1; count <= 8; count++) { |
| 8299 PushPopJsspWXOverlapHelper(count, claim); |
| 8300 PushPopJsspWXOverlapHelper(count, claim); |
| 8301 PushPopJsspWXOverlapHelper(count, claim); |
| 8302 PushPopJsspWXOverlapHelper(count, claim); |
| 8303 } |
| 8304 // Test with the maximum number of registers. |
| 8305 PushPopJsspWXOverlapHelper(kPushPopJsspMaxRegCount, claim); |
| 8306 PushPopJsspWXOverlapHelper(kPushPopJsspMaxRegCount, claim); |
| 8307 PushPopJsspWXOverlapHelper(kPushPopJsspMaxRegCount, claim); |
| 8308 PushPopJsspWXOverlapHelper(kPushPopJsspMaxRegCount, claim); |
| 8309 } |
| 8310 } |
| 8311 |
| 8312 |
| 8313 TEST(push_pop_csp) { |
| 8314 INIT_V8(); |
| 8315 SETUP(); |
| 8316 |
| 8317 START(); |
| 8318 |
| 8319 ASSERT(csp.Is(__ StackPointer())); |
| 8320 |
| 8321 __ Mov(x3, 0x3333333333333333UL); |
| 8322 __ Mov(x2, 0x2222222222222222UL); |
| 8323 __ Mov(x1, 0x1111111111111111UL); |
| 8324 __ Mov(x0, 0x0000000000000000UL); |
| 8325 __ Claim(2); |
| 8326 __ PushXRegList(x0.Bit() | x1.Bit() | x2.Bit() | x3.Bit()); |
| 8327 __ Push(x3, x2); |
| 8328 __ PopXRegList(x0.Bit() | x1.Bit() | x2.Bit() | x3.Bit()); |
| 8329 __ Push(x2, x1, x3, x0); |
| 8330 __ Pop(x4, x5); |
| 8331 __ Pop(x6, x7, x8, x9); |
| 8332 |
| 8333 __ Claim(2); |
| 8334 __ PushWRegList(w0.Bit() | w1.Bit() | w2.Bit() | w3.Bit()); |
| 8335 __ Push(w3, w1, w2, w0); |
| 8336 __ PopWRegList(w10.Bit() | w11.Bit() | w12.Bit() | w13.Bit()); |
| 8337 __ Pop(w14, w15, w16, w17); |
| 8338 |
| 8339 __ Claim(2); |
| 8340 __ Push(w2, w2, w1, w1); |
| 8341 __ Push(x3, x3); |
| 8342 __ Pop(w18, w19, w20, w21); |
| 8343 __ Pop(x22, x23); |
| 8344 |
| 8345 __ Claim(2); |
| 8346 __ PushXRegList(x1.Bit() | x22.Bit()); |
| 8347 __ PopXRegList(x24.Bit() | x26.Bit()); |
| 8348 |
| 8349 __ Claim(2); |
| 8350 __ PushWRegList(w1.Bit() | w2.Bit() | w4.Bit() | w22.Bit()); |
| 8351 __ PopWRegList(w25.Bit() | w27.Bit() | w28.Bit() | w29.Bit()); |
| 8352 |
| 8353 __ Claim(2); |
| 8354 __ PushXRegList(0); |
| 8355 __ PopXRegList(0); |
| 8356 __ PushXRegList(0xffffffff); |
| 8357 __ PopXRegList(0xffffffff); |
| 8358 __ Drop(12); |
| 8359 |
| 8360 END(); |
| 8361 |
| 8362 RUN(); |
| 8363 |
| 8364 ASSERT_EQUAL_64(0x1111111111111111UL, x3); |
| 8365 ASSERT_EQUAL_64(0x0000000000000000UL, x2); |
| 8366 ASSERT_EQUAL_64(0x3333333333333333UL, x1); |
| 8367 ASSERT_EQUAL_64(0x2222222222222222UL, x0); |
| 8368 ASSERT_EQUAL_64(0x3333333333333333UL, x9); |
| 8369 ASSERT_EQUAL_64(0x2222222222222222UL, x8); |
| 8370 ASSERT_EQUAL_64(0x0000000000000000UL, x7); |
| 8371 ASSERT_EQUAL_64(0x3333333333333333UL, x6); |
| 8372 ASSERT_EQUAL_64(0x1111111111111111UL, x5); |
| 8373 ASSERT_EQUAL_64(0x2222222222222222UL, x4); |
| 8374 |
| 8375 ASSERT_EQUAL_32(0x11111111U, w13); |
| 8376 ASSERT_EQUAL_32(0x33333333U, w12); |
| 8377 ASSERT_EQUAL_32(0x00000000U, w11); |
| 8378 ASSERT_EQUAL_32(0x22222222U, w10); |
| 8379 ASSERT_EQUAL_32(0x11111111U, w17); |
| 8380 ASSERT_EQUAL_32(0x00000000U, w16); |
| 8381 ASSERT_EQUAL_32(0x33333333U, w15); |
| 8382 ASSERT_EQUAL_32(0x22222222U, w14); |
| 8383 |
| 8384 ASSERT_EQUAL_32(0x11111111U, w18); |
| 8385 ASSERT_EQUAL_32(0x11111111U, w19); |
| 8386 ASSERT_EQUAL_32(0x11111111U, w20); |
| 8387 ASSERT_EQUAL_32(0x11111111U, w21); |
| 8388 ASSERT_EQUAL_64(0x3333333333333333UL, x22); |
| 8389 ASSERT_EQUAL_64(0x0000000000000000UL, x23); |
| 8390 |
| 8391 ASSERT_EQUAL_64(0x3333333333333333UL, x24); |
| 8392 ASSERT_EQUAL_64(0x3333333333333333UL, x26); |
| 8393 |
| 8394 ASSERT_EQUAL_32(0x33333333U, w25); |
| 8395 ASSERT_EQUAL_32(0x00000000U, w27); |
| 8396 ASSERT_EQUAL_32(0x22222222U, w28); |
| 8397 ASSERT_EQUAL_32(0x33333333U, w29); |
| 8398 TEARDOWN(); |
| 8399 } |
| 8400 |
| 8401 |
| 8402 TEST(jump_both_smi) { |
| 8403 INIT_V8(); |
| 8404 SETUP(); |
| 8405 |
| 8406 Label cond_pass_00, cond_pass_01, cond_pass_10, cond_pass_11; |
| 8407 Label cond_fail_00, cond_fail_01, cond_fail_10, cond_fail_11; |
| 8408 Label return1, return2, return3, done; |
| 8409 |
| 8410 START(); |
| 8411 |
| 8412 __ Mov(x0, 0x5555555500000001UL); // A pointer. |
| 8413 __ Mov(x1, 0xaaaaaaaa00000001UL); // A pointer. |
| 8414 __ Mov(x2, 0x1234567800000000UL); // A smi. |
| 8415 __ Mov(x3, 0x8765432100000000UL); // A smi. |
| 8416 __ Mov(x4, 0xdead); |
| 8417 __ Mov(x5, 0xdead); |
| 8418 __ Mov(x6, 0xdead); |
| 8419 __ Mov(x7, 0xdead); |
| 8420 |
| 8421 __ JumpIfBothSmi(x0, x1, &cond_pass_00, &cond_fail_00); |
| 8422 __ Bind(&return1); |
| 8423 __ JumpIfBothSmi(x0, x2, &cond_pass_01, &cond_fail_01); |
| 8424 __ Bind(&return2); |
| 8425 __ JumpIfBothSmi(x2, x1, &cond_pass_10, &cond_fail_10); |
| 8426 __ Bind(&return3); |
| 8427 __ JumpIfBothSmi(x2, x3, &cond_pass_11, &cond_fail_11); |
| 8428 |
| 8429 __ Bind(&cond_fail_00); |
| 8430 __ Mov(x4, 0); |
| 8431 __ B(&return1); |
| 8432 __ Bind(&cond_pass_00); |
| 8433 __ Mov(x4, 1); |
| 8434 __ B(&return1); |
| 8435 |
| 8436 __ Bind(&cond_fail_01); |
| 8437 __ Mov(x5, 0); |
| 8438 __ B(&return2); |
| 8439 __ Bind(&cond_pass_01); |
| 8440 __ Mov(x5, 1); |
| 8441 __ B(&return2); |
| 8442 |
| 8443 __ Bind(&cond_fail_10); |
| 8444 __ Mov(x6, 0); |
| 8445 __ B(&return3); |
| 8446 __ Bind(&cond_pass_10); |
| 8447 __ Mov(x6, 1); |
| 8448 __ B(&return3); |
| 8449 |
| 8450 __ Bind(&cond_fail_11); |
| 8451 __ Mov(x7, 0); |
| 8452 __ B(&done); |
| 8453 __ Bind(&cond_pass_11); |
| 8454 __ Mov(x7, 1); |
| 8455 |
| 8456 __ Bind(&done); |
| 8457 |
| 8458 END(); |
| 8459 |
| 8460 RUN(); |
| 8461 |
| 8462 ASSERT_EQUAL_64(0x5555555500000001UL, x0); |
| 8463 ASSERT_EQUAL_64(0xaaaaaaaa00000001UL, x1); |
| 8464 ASSERT_EQUAL_64(0x1234567800000000UL, x2); |
| 8465 ASSERT_EQUAL_64(0x8765432100000000UL, x3); |
| 8466 ASSERT_EQUAL_64(0, x4); |
| 8467 ASSERT_EQUAL_64(0, x5); |
| 8468 ASSERT_EQUAL_64(0, x6); |
| 8469 ASSERT_EQUAL_64(1, x7); |
| 8470 |
| 8471 TEARDOWN(); |
| 8472 } |
| 8473 |
| 8474 |
| 8475 TEST(jump_either_smi) { |
| 8476 INIT_V8(); |
| 8477 SETUP(); |
| 8478 |
| 8479 Label cond_pass_00, cond_pass_01, cond_pass_10, cond_pass_11; |
| 8480 Label cond_fail_00, cond_fail_01, cond_fail_10, cond_fail_11; |
| 8481 Label return1, return2, return3, done; |
| 8482 |
| 8483 START(); |
| 8484 |
| 8485 __ Mov(x0, 0x5555555500000001UL); // A pointer. |
| 8486 __ Mov(x1, 0xaaaaaaaa00000001UL); // A pointer. |
| 8487 __ Mov(x2, 0x1234567800000000UL); // A smi. |
| 8488 __ Mov(x3, 0x8765432100000000UL); // A smi. |
| 8489 __ Mov(x4, 0xdead); |
| 8490 __ Mov(x5, 0xdead); |
| 8491 __ Mov(x6, 0xdead); |
| 8492 __ Mov(x7, 0xdead); |
| 8493 |
| 8494 __ JumpIfEitherSmi(x0, x1, &cond_pass_00, &cond_fail_00); |
| 8495 __ Bind(&return1); |
| 8496 __ JumpIfEitherSmi(x0, x2, &cond_pass_01, &cond_fail_01); |
| 8497 __ Bind(&return2); |
| 8498 __ JumpIfEitherSmi(x2, x1, &cond_pass_10, &cond_fail_10); |
| 8499 __ Bind(&return3); |
| 8500 __ JumpIfEitherSmi(x2, x3, &cond_pass_11, &cond_fail_11); |
| 8501 |
| 8502 __ Bind(&cond_fail_00); |
| 8503 __ Mov(x4, 0); |
| 8504 __ B(&return1); |
| 8505 __ Bind(&cond_pass_00); |
| 8506 __ Mov(x4, 1); |
| 8507 __ B(&return1); |
| 8508 |
| 8509 __ Bind(&cond_fail_01); |
| 8510 __ Mov(x5, 0); |
| 8511 __ B(&return2); |
| 8512 __ Bind(&cond_pass_01); |
| 8513 __ Mov(x5, 1); |
| 8514 __ B(&return2); |
| 8515 |
| 8516 __ Bind(&cond_fail_10); |
| 8517 __ Mov(x6, 0); |
| 8518 __ B(&return3); |
| 8519 __ Bind(&cond_pass_10); |
| 8520 __ Mov(x6, 1); |
| 8521 __ B(&return3); |
| 8522 |
| 8523 __ Bind(&cond_fail_11); |
| 8524 __ Mov(x7, 0); |
| 8525 __ B(&done); |
| 8526 __ Bind(&cond_pass_11); |
| 8527 __ Mov(x7, 1); |
| 8528 |
| 8529 __ Bind(&done); |
| 8530 |
| 8531 END(); |
| 8532 |
| 8533 RUN(); |
| 8534 |
| 8535 ASSERT_EQUAL_64(0x5555555500000001UL, x0); |
| 8536 ASSERT_EQUAL_64(0xaaaaaaaa00000001UL, x1); |
| 8537 ASSERT_EQUAL_64(0x1234567800000000UL, x2); |
| 8538 ASSERT_EQUAL_64(0x8765432100000000UL, x3); |
| 8539 ASSERT_EQUAL_64(0, x4); |
| 8540 ASSERT_EQUAL_64(1, x5); |
| 8541 ASSERT_EQUAL_64(1, x6); |
| 8542 ASSERT_EQUAL_64(1, x7); |
| 8543 |
| 8544 TEARDOWN(); |
| 8545 } |
| 8546 |
| 8547 |
| 8548 TEST(noreg) { |
| 8549 // This test doesn't generate any code, but it verifies some invariants |
| 8550 // related to NoReg. |
| 8551 CHECK(NoReg.Is(NoFPReg)); |
| 8552 CHECK(NoFPReg.Is(NoReg)); |
| 8553 CHECK(NoReg.Is(NoCPUReg)); |
| 8554 CHECK(NoCPUReg.Is(NoReg)); |
| 8555 CHECK(NoFPReg.Is(NoCPUReg)); |
| 8556 CHECK(NoCPUReg.Is(NoFPReg)); |
| 8557 |
| 8558 CHECK(NoReg.IsNone()); |
| 8559 CHECK(NoFPReg.IsNone()); |
| 8560 CHECK(NoCPUReg.IsNone()); |
| 8561 } |
| 8562 |
| 8563 |
| 8564 TEST(isvalid) { |
| 8565 // This test doesn't generate any code, but it verifies some invariants |
| 8566 // related to IsValid(). |
| 8567 CHECK(!NoReg.IsValid()); |
| 8568 CHECK(!NoFPReg.IsValid()); |
| 8569 CHECK(!NoCPUReg.IsValid()); |
| 8570 |
| 8571 CHECK(x0.IsValid()); |
| 8572 CHECK(w0.IsValid()); |
| 8573 CHECK(x30.IsValid()); |
| 8574 CHECK(w30.IsValid()); |
| 8575 CHECK(xzr.IsValid()); |
| 8576 CHECK(wzr.IsValid()); |
| 8577 |
| 8578 CHECK(csp.IsValid()); |
| 8579 CHECK(wcsp.IsValid()); |
| 8580 |
| 8581 CHECK(d0.IsValid()); |
| 8582 CHECK(s0.IsValid()); |
| 8583 CHECK(d31.IsValid()); |
| 8584 CHECK(s31.IsValid()); |
| 8585 |
| 8586 CHECK(x0.IsValidRegister()); |
| 8587 CHECK(w0.IsValidRegister()); |
| 8588 CHECK(xzr.IsValidRegister()); |
| 8589 CHECK(wzr.IsValidRegister()); |
| 8590 CHECK(csp.IsValidRegister()); |
| 8591 CHECK(wcsp.IsValidRegister()); |
| 8592 CHECK(!x0.IsValidFPRegister()); |
| 8593 CHECK(!w0.IsValidFPRegister()); |
| 8594 CHECK(!xzr.IsValidFPRegister()); |
| 8595 CHECK(!wzr.IsValidFPRegister()); |
| 8596 CHECK(!csp.IsValidFPRegister()); |
| 8597 CHECK(!wcsp.IsValidFPRegister()); |
| 8598 |
| 8599 CHECK(d0.IsValidFPRegister()); |
| 8600 CHECK(s0.IsValidFPRegister()); |
| 8601 CHECK(!d0.IsValidRegister()); |
| 8602 CHECK(!s0.IsValidRegister()); |
| 8603 |
| 8604 // Test the same as before, but using CPURegister types. This shouldn't make |
| 8605 // any difference. |
| 8606 CHECK(static_cast<CPURegister>(x0).IsValid()); |
| 8607 CHECK(static_cast<CPURegister>(w0).IsValid()); |
| 8608 CHECK(static_cast<CPURegister>(x30).IsValid()); |
| 8609 CHECK(static_cast<CPURegister>(w30).IsValid()); |
| 8610 CHECK(static_cast<CPURegister>(xzr).IsValid()); |
| 8611 CHECK(static_cast<CPURegister>(wzr).IsValid()); |
| 8612 |
| 8613 CHECK(static_cast<CPURegister>(csp).IsValid()); |
| 8614 CHECK(static_cast<CPURegister>(wcsp).IsValid()); |
| 8615 |
| 8616 CHECK(static_cast<CPURegister>(d0).IsValid()); |
| 8617 CHECK(static_cast<CPURegister>(s0).IsValid()); |
| 8618 CHECK(static_cast<CPURegister>(d31).IsValid()); |
| 8619 CHECK(static_cast<CPURegister>(s31).IsValid()); |
| 8620 |
| 8621 CHECK(static_cast<CPURegister>(x0).IsValidRegister()); |
| 8622 CHECK(static_cast<CPURegister>(w0).IsValidRegister()); |
| 8623 CHECK(static_cast<CPURegister>(xzr).IsValidRegister()); |
| 8624 CHECK(static_cast<CPURegister>(wzr).IsValidRegister()); |
| 8625 CHECK(static_cast<CPURegister>(csp).IsValidRegister()); |
| 8626 CHECK(static_cast<CPURegister>(wcsp).IsValidRegister()); |
| 8627 CHECK(!static_cast<CPURegister>(x0).IsValidFPRegister()); |
| 8628 CHECK(!static_cast<CPURegister>(w0).IsValidFPRegister()); |
| 8629 CHECK(!static_cast<CPURegister>(xzr).IsValidFPRegister()); |
| 8630 CHECK(!static_cast<CPURegister>(wzr).IsValidFPRegister()); |
| 8631 CHECK(!static_cast<CPURegister>(csp).IsValidFPRegister()); |
| 8632 CHECK(!static_cast<CPURegister>(wcsp).IsValidFPRegister()); |
| 8633 |
| 8634 CHECK(static_cast<CPURegister>(d0).IsValidFPRegister()); |
| 8635 CHECK(static_cast<CPURegister>(s0).IsValidFPRegister()); |
| 8636 CHECK(!static_cast<CPURegister>(d0).IsValidRegister()); |
| 8637 CHECK(!static_cast<CPURegister>(s0).IsValidRegister()); |
| 8638 } |
| 8639 |
| 8640 |
| 8641 TEST(cpureglist_utils_x) { |
| 8642 // This test doesn't generate any code, but it verifies the behaviour of |
| 8643 // the CPURegList utility methods. |
| 8644 |
| 8645 // Test a list of X registers. |
| 8646 CPURegList test(x0, x1, x2, x3); |
| 8647 |
| 8648 CHECK(test.IncludesAliasOf(x0)); |
| 8649 CHECK(test.IncludesAliasOf(x1)); |
| 8650 CHECK(test.IncludesAliasOf(x2)); |
| 8651 CHECK(test.IncludesAliasOf(x3)); |
| 8652 CHECK(test.IncludesAliasOf(w0)); |
| 8653 CHECK(test.IncludesAliasOf(w1)); |
| 8654 CHECK(test.IncludesAliasOf(w2)); |
| 8655 CHECK(test.IncludesAliasOf(w3)); |
| 8656 |
| 8657 CHECK(!test.IncludesAliasOf(x4)); |
| 8658 CHECK(!test.IncludesAliasOf(x30)); |
| 8659 CHECK(!test.IncludesAliasOf(xzr)); |
| 8660 CHECK(!test.IncludesAliasOf(csp)); |
| 8661 CHECK(!test.IncludesAliasOf(w4)); |
| 8662 CHECK(!test.IncludesAliasOf(w30)); |
| 8663 CHECK(!test.IncludesAliasOf(wzr)); |
| 8664 CHECK(!test.IncludesAliasOf(wcsp)); |
| 8665 |
| 8666 CHECK(!test.IncludesAliasOf(d0)); |
| 8667 CHECK(!test.IncludesAliasOf(d1)); |
| 8668 CHECK(!test.IncludesAliasOf(d2)); |
| 8669 CHECK(!test.IncludesAliasOf(d3)); |
| 8670 CHECK(!test.IncludesAliasOf(s0)); |
| 8671 CHECK(!test.IncludesAliasOf(s1)); |
| 8672 CHECK(!test.IncludesAliasOf(s2)); |
| 8673 CHECK(!test.IncludesAliasOf(s3)); |
| 8674 |
| 8675 CHECK(!test.IsEmpty()); |
| 8676 |
| 8677 CHECK(test.type() == x0.type()); |
| 8678 |
| 8679 CHECK(test.PopHighestIndex().Is(x3)); |
| 8680 CHECK(test.PopLowestIndex().Is(x0)); |
| 8681 |
| 8682 CHECK(test.IncludesAliasOf(x1)); |
| 8683 CHECK(test.IncludesAliasOf(x2)); |
| 8684 CHECK(test.IncludesAliasOf(w1)); |
| 8685 CHECK(test.IncludesAliasOf(w2)); |
| 8686 CHECK(!test.IncludesAliasOf(x0)); |
| 8687 CHECK(!test.IncludesAliasOf(x3)); |
| 8688 CHECK(!test.IncludesAliasOf(w0)); |
| 8689 CHECK(!test.IncludesAliasOf(w3)); |
| 8690 |
| 8691 CHECK(test.PopHighestIndex().Is(x2)); |
| 8692 CHECK(test.PopLowestIndex().Is(x1)); |
| 8693 |
| 8694 CHECK(!test.IncludesAliasOf(x1)); |
| 8695 CHECK(!test.IncludesAliasOf(x2)); |
| 8696 CHECK(!test.IncludesAliasOf(w1)); |
| 8697 CHECK(!test.IncludesAliasOf(w2)); |
| 8698 |
| 8699 CHECK(test.IsEmpty()); |
| 8700 } |
| 8701 |
| 8702 |
| 8703 TEST(cpureglist_utils_w) { |
| 8704 // This test doesn't generate any code, but it verifies the behaviour of |
| 8705 // the CPURegList utility methods. |
| 8706 |
| 8707 // Test a list of W registers. |
| 8708 CPURegList test(w10, w11, w12, w13); |
| 8709 |
| 8710 CHECK(test.IncludesAliasOf(x10)); |
| 8711 CHECK(test.IncludesAliasOf(x11)); |
| 8712 CHECK(test.IncludesAliasOf(x12)); |
| 8713 CHECK(test.IncludesAliasOf(x13)); |
| 8714 CHECK(test.IncludesAliasOf(w10)); |
| 8715 CHECK(test.IncludesAliasOf(w11)); |
| 8716 CHECK(test.IncludesAliasOf(w12)); |
| 8717 CHECK(test.IncludesAliasOf(w13)); |
| 8718 |
| 8719 CHECK(!test.IncludesAliasOf(x0)); |
| 8720 CHECK(!test.IncludesAliasOf(x9)); |
| 8721 CHECK(!test.IncludesAliasOf(x14)); |
| 8722 CHECK(!test.IncludesAliasOf(x30)); |
| 8723 CHECK(!test.IncludesAliasOf(xzr)); |
| 8724 CHECK(!test.IncludesAliasOf(csp)); |
| 8725 CHECK(!test.IncludesAliasOf(w0)); |
| 8726 CHECK(!test.IncludesAliasOf(w9)); |
| 8727 CHECK(!test.IncludesAliasOf(w14)); |
| 8728 CHECK(!test.IncludesAliasOf(w30)); |
| 8729 CHECK(!test.IncludesAliasOf(wzr)); |
| 8730 CHECK(!test.IncludesAliasOf(wcsp)); |
| 8731 |
| 8732 CHECK(!test.IncludesAliasOf(d10)); |
| 8733 CHECK(!test.IncludesAliasOf(d11)); |
| 8734 CHECK(!test.IncludesAliasOf(d12)); |
| 8735 CHECK(!test.IncludesAliasOf(d13)); |
| 8736 CHECK(!test.IncludesAliasOf(s10)); |
| 8737 CHECK(!test.IncludesAliasOf(s11)); |
| 8738 CHECK(!test.IncludesAliasOf(s12)); |
| 8739 CHECK(!test.IncludesAliasOf(s13)); |
| 8740 |
| 8741 CHECK(!test.IsEmpty()); |
| 8742 |
| 8743 CHECK(test.type() == w10.type()); |
| 8744 |
| 8745 CHECK(test.PopHighestIndex().Is(w13)); |
| 8746 CHECK(test.PopLowestIndex().Is(w10)); |
| 8747 |
| 8748 CHECK(test.IncludesAliasOf(x11)); |
| 8749 CHECK(test.IncludesAliasOf(x12)); |
| 8750 CHECK(test.IncludesAliasOf(w11)); |
| 8751 CHECK(test.IncludesAliasOf(w12)); |
| 8752 CHECK(!test.IncludesAliasOf(x10)); |
| 8753 CHECK(!test.IncludesAliasOf(x13)); |
| 8754 CHECK(!test.IncludesAliasOf(w10)); |
| 8755 CHECK(!test.IncludesAliasOf(w13)); |
| 8756 |
| 8757 CHECK(test.PopHighestIndex().Is(w12)); |
| 8758 CHECK(test.PopLowestIndex().Is(w11)); |
| 8759 |
| 8760 CHECK(!test.IncludesAliasOf(x11)); |
| 8761 CHECK(!test.IncludesAliasOf(x12)); |
| 8762 CHECK(!test.IncludesAliasOf(w11)); |
| 8763 CHECK(!test.IncludesAliasOf(w12)); |
| 8764 |
| 8765 CHECK(test.IsEmpty()); |
| 8766 } |
| 8767 |
| 8768 |
| 8769 TEST(cpureglist_utils_d) { |
| 8770 // This test doesn't generate any code, but it verifies the behaviour of |
| 8771 // the CPURegList utility methods. |
| 8772 |
| 8773 // Test a list of D registers. |
| 8774 CPURegList test(d20, d21, d22, d23); |
| 8775 |
| 8776 CHECK(test.IncludesAliasOf(d20)); |
| 8777 CHECK(test.IncludesAliasOf(d21)); |
| 8778 CHECK(test.IncludesAliasOf(d22)); |
| 8779 CHECK(test.IncludesAliasOf(d23)); |
| 8780 CHECK(test.IncludesAliasOf(s20)); |
| 8781 CHECK(test.IncludesAliasOf(s21)); |
| 8782 CHECK(test.IncludesAliasOf(s22)); |
| 8783 CHECK(test.IncludesAliasOf(s23)); |
| 8784 |
| 8785 CHECK(!test.IncludesAliasOf(d0)); |
| 8786 CHECK(!test.IncludesAliasOf(d19)); |
| 8787 CHECK(!test.IncludesAliasOf(d24)); |
| 8788 CHECK(!test.IncludesAliasOf(d31)); |
| 8789 CHECK(!test.IncludesAliasOf(s0)); |
| 8790 CHECK(!test.IncludesAliasOf(s19)); |
| 8791 CHECK(!test.IncludesAliasOf(s24)); |
| 8792 CHECK(!test.IncludesAliasOf(s31)); |
| 8793 |
| 8794 CHECK(!test.IncludesAliasOf(x20)); |
| 8795 CHECK(!test.IncludesAliasOf(x21)); |
| 8796 CHECK(!test.IncludesAliasOf(x22)); |
| 8797 CHECK(!test.IncludesAliasOf(x23)); |
| 8798 CHECK(!test.IncludesAliasOf(w20)); |
| 8799 CHECK(!test.IncludesAliasOf(w21)); |
| 8800 CHECK(!test.IncludesAliasOf(w22)); |
| 8801 CHECK(!test.IncludesAliasOf(w23)); |
| 8802 |
| 8803 CHECK(!test.IncludesAliasOf(xzr)); |
| 8804 CHECK(!test.IncludesAliasOf(wzr)); |
| 8805 CHECK(!test.IncludesAliasOf(csp)); |
| 8806 CHECK(!test.IncludesAliasOf(wcsp)); |
| 8807 |
| 8808 CHECK(!test.IsEmpty()); |
| 8809 |
| 8810 CHECK(test.type() == d20.type()); |
| 8811 |
| 8812 CHECK(test.PopHighestIndex().Is(d23)); |
| 8813 CHECK(test.PopLowestIndex().Is(d20)); |
| 8814 |
| 8815 CHECK(test.IncludesAliasOf(d21)); |
| 8816 CHECK(test.IncludesAliasOf(d22)); |
| 8817 CHECK(test.IncludesAliasOf(s21)); |
| 8818 CHECK(test.IncludesAliasOf(s22)); |
| 8819 CHECK(!test.IncludesAliasOf(d20)); |
| 8820 CHECK(!test.IncludesAliasOf(d23)); |
| 8821 CHECK(!test.IncludesAliasOf(s20)); |
| 8822 CHECK(!test.IncludesAliasOf(s23)); |
| 8823 |
| 8824 CHECK(test.PopHighestIndex().Is(d22)); |
| 8825 CHECK(test.PopLowestIndex().Is(d21)); |
| 8826 |
| 8827 CHECK(!test.IncludesAliasOf(d21)); |
| 8828 CHECK(!test.IncludesAliasOf(d22)); |
| 8829 CHECK(!test.IncludesAliasOf(s21)); |
| 8830 CHECK(!test.IncludesAliasOf(s22)); |
| 8831 |
| 8832 CHECK(test.IsEmpty()); |
| 8833 } |
| 8834 |
| 8835 |
| 8836 TEST(cpureglist_utils_s) { |
| 8837 // This test doesn't generate any code, but it verifies the behaviour of |
| 8838 // the CPURegList utility methods. |
| 8839 |
| 8840 // Test a list of S registers. |
| 8841 CPURegList test(s20, s21, s22, s23); |
| 8842 |
| 8843 // The type and size mechanisms are already covered, so here we just test |
| 8844 // that lists of S registers alias individual D registers. |
| 8845 |
| 8846 CHECK(test.IncludesAliasOf(d20)); |
| 8847 CHECK(test.IncludesAliasOf(d21)); |
| 8848 CHECK(test.IncludesAliasOf(d22)); |
| 8849 CHECK(test.IncludesAliasOf(d23)); |
| 8850 CHECK(test.IncludesAliasOf(s20)); |
| 8851 CHECK(test.IncludesAliasOf(s21)); |
| 8852 CHECK(test.IncludesAliasOf(s22)); |
| 8853 CHECK(test.IncludesAliasOf(s23)); |
| 8854 } |
| 8855 |
| 8856 |
| 8857 TEST(cpureglist_utils_empty) { |
| 8858 // This test doesn't generate any code, but it verifies the behaviour of |
| 8859 // the CPURegList utility methods. |
| 8860 |
| 8861 // Test an empty list. |
| 8862 // Empty lists can have type and size properties. Check that we can create |
| 8863 // them, and that they are empty. |
| 8864 CPURegList reg32(CPURegister::kRegister, kWRegSize, 0); |
| 8865 CPURegList reg64(CPURegister::kRegister, kXRegSize, 0); |
| 8866 CPURegList fpreg32(CPURegister::kFPRegister, kSRegSize, 0); |
| 8867 CPURegList fpreg64(CPURegister::kFPRegister, kDRegSize, 0); |
| 8868 |
| 8869 CHECK(reg32.IsEmpty()); |
| 8870 CHECK(reg64.IsEmpty()); |
| 8871 CHECK(fpreg32.IsEmpty()); |
| 8872 CHECK(fpreg64.IsEmpty()); |
| 8873 |
| 8874 CHECK(reg32.PopLowestIndex().IsNone()); |
| 8875 CHECK(reg64.PopLowestIndex().IsNone()); |
| 8876 CHECK(fpreg32.PopLowestIndex().IsNone()); |
| 8877 CHECK(fpreg64.PopLowestIndex().IsNone()); |
| 8878 |
| 8879 CHECK(reg32.PopHighestIndex().IsNone()); |
| 8880 CHECK(reg64.PopHighestIndex().IsNone()); |
| 8881 CHECK(fpreg32.PopHighestIndex().IsNone()); |
| 8882 CHECK(fpreg64.PopHighestIndex().IsNone()); |
| 8883 |
| 8884 CHECK(reg32.IsEmpty()); |
| 8885 CHECK(reg64.IsEmpty()); |
| 8886 CHECK(fpreg32.IsEmpty()); |
| 8887 CHECK(fpreg64.IsEmpty()); |
| 8888 } |
| 8889 |
| 8890 |
| 8891 TEST(printf) { |
| 8892 INIT_V8(); |
| 8893 SETUP(); |
| 8894 START(); |
| 8895 |
| 8896 char const * test_plain_string = "Printf with no arguments.\n"; |
| 8897 char const * test_substring = "'This is a substring.'"; |
| 8898 RegisterDump before; |
| 8899 |
| 8900 // Initialize x29 to the value of the stack pointer. We will use x29 as a |
| 8901 // temporary stack pointer later, and initializing it in this way allows the |
| 8902 // RegisterDump check to pass. |
| 8903 __ Mov(x29, __ StackPointer()); |
| 8904 |
| 8905 // Test simple integer arguments. |
| 8906 __ Mov(x0, 1234); |
| 8907 __ Mov(x1, 0x1234); |
| 8908 |
| 8909 // Test simple floating-point arguments. |
| 8910 __ Fmov(d0, 1.234); |
| 8911 |
| 8912 // Test pointer (string) arguments. |
| 8913 __ Mov(x2, reinterpret_cast<uintptr_t>(test_substring)); |
| 8914 |
| 8915 // Test the maximum number of arguments, and sign extension. |
| 8916 __ Mov(w3, 0xffffffff); |
| 8917 __ Mov(w4, 0xffffffff); |
| 8918 __ Mov(x5, 0xffffffffffffffff); |
| 8919 __ Mov(x6, 0xffffffffffffffff); |
| 8920 __ Fmov(s1, 1.234); |
| 8921 __ Fmov(s2, 2.345); |
| 8922 __ Fmov(d3, 3.456); |
| 8923 __ Fmov(d4, 4.567); |
| 8924 |
| 8925 // Test printing callee-saved registers. |
| 8926 __ Mov(x28, 0x123456789abcdef); |
| 8927 __ Fmov(d10, 42.0); |
| 8928 |
| 8929 // Test with three arguments. |
| 8930 __ Mov(x10, 3); |
| 8931 __ Mov(x11, 40); |
| 8932 __ Mov(x12, 500); |
| 8933 |
| 8934 // x8 and x9 are used by debug code in part of the macro assembler. However, |
| 8935 // Printf guarantees to preserve them (so we can use Printf in debug code), |
| 8936 // and we need to test that they are properly preserved. The above code |
| 8937 // shouldn't need to use them, but we initialize x8 and x9 last to be on the |
| 8938 // safe side. This test still assumes that none of the code from |
| 8939 // before->Dump() to the end of the test can clobber x8 or x9, so where |
| 8940 // possible we use the Assembler directly to be safe. |
| 8941 __ orr(x8, xzr, 0x8888888888888888); |
| 8942 __ orr(x9, xzr, 0x9999999999999999); |
| 8943 |
| 8944 // Check that we don't clobber any registers, except those that we explicitly |
| 8945 // write results into. |
| 8946 before.Dump(&masm); |
| 8947 |
| 8948 __ Printf(test_plain_string); // NOLINT(runtime/printf) |
| 8949 __ Printf("x0: %" PRId64", x1: 0x%08" PRIx64 "\n", x0, x1); |
| 8950 __ Printf("d0: %f\n", d0); |
| 8951 __ Printf("Test %%s: %s\n", x2); |
| 8952 __ Printf("w3(uint32): %" PRIu32 "\nw4(int32): %" PRId32 "\n" |
| 8953 "x5(uint64): %" PRIu64 "\nx6(int64): %" PRId64 "\n", |
| 8954 w3, w4, x5, x6); |
| 8955 __ Printf("%%f: %f\n%%g: %g\n%%e: %e\n%%E: %E\n", s1, s2, d3, d4); |
| 8956 __ Printf("0x%08" PRIx32 ", 0x%016" PRIx64 "\n", x28, x28); |
| 8957 __ Printf("%g\n", d10); |
| 8958 |
| 8959 // Test with a different stack pointer. |
| 8960 const Register old_stack_pointer = __ StackPointer(); |
| 8961 __ mov(x29, old_stack_pointer); |
| 8962 __ SetStackPointer(x29); |
| 8963 __ Printf("old_stack_pointer: 0x%016" PRIx64 "\n", old_stack_pointer); |
| 8964 __ mov(old_stack_pointer, __ StackPointer()); |
| 8965 __ SetStackPointer(old_stack_pointer); |
| 8966 |
| 8967 __ Printf("3=%u, 4=%u, 5=%u\n", x10, x11, x12); |
| 8968 |
| 8969 END(); |
| 8970 RUN(); |
| 8971 |
| 8972 // We cannot easily test the output of the Printf sequences, and because |
| 8973 // Printf preserves all registers by default, we can't look at the number of |
| 8974 // bytes that were printed. However, the printf_no_preserve test should check |
| 8975 // that, and here we just test that we didn't clobber any registers. |
| 8976 ASSERT_EQUAL_REGISTERS(before); |
| 8977 |
| 8978 TEARDOWN(); |
| 8979 } |
| 8980 |
| 8981 |
| 8982 TEST(printf_no_preserve) { |
| 8983 INIT_V8(); |
| 8984 SETUP(); |
| 8985 START(); |
| 8986 |
| 8987 char const * test_plain_string = "Printf with no arguments.\n"; |
| 8988 char const * test_substring = "'This is a substring.'"; |
| 8989 |
| 8990 __ PrintfNoPreserve(test_plain_string); // NOLINT(runtime/printf) |
| 8991 __ Mov(x19, x0); |
| 8992 |
| 8993 // Test simple integer arguments. |
| 8994 __ Mov(x0, 1234); |
| 8995 __ Mov(x1, 0x1234); |
| 8996 __ PrintfNoPreserve("x0: %" PRId64", x1: 0x%08" PRIx64 "\n", x0, x1); |
| 8997 __ Mov(x20, x0); |
| 8998 |
| 8999 // Test simple floating-point arguments. |
| 9000 __ Fmov(d0, 1.234); |
| 9001 __ PrintfNoPreserve("d0: %f\n", d0); |
| 9002 __ Mov(x21, x0); |
| 9003 |
| 9004 // Test pointer (string) arguments. |
| 9005 __ Mov(x2, reinterpret_cast<uintptr_t>(test_substring)); |
| 9006 __ PrintfNoPreserve("Test %%s: %s\n", x2); |
| 9007 __ Mov(x22, x0); |
| 9008 |
| 9009 // Test the maximum number of arguments, and sign extension. |
| 9010 __ Mov(w3, 0xffffffff); |
| 9011 __ Mov(w4, 0xffffffff); |
| 9012 __ Mov(x5, 0xffffffffffffffff); |
| 9013 __ Mov(x6, 0xffffffffffffffff); |
| 9014 __ PrintfNoPreserve("w3(uint32): %" PRIu32 "\nw4(int32): %" PRId32 "\n" |
| 9015 "x5(uint64): %" PRIu64 "\nx6(int64): %" PRId64 "\n", |
| 9016 w3, w4, x5, x6); |
| 9017 __ Mov(x23, x0); |
| 9018 |
| 9019 __ Fmov(s1, 1.234); |
| 9020 __ Fmov(s2, 2.345); |
| 9021 __ Fmov(d3, 3.456); |
| 9022 __ Fmov(d4, 4.567); |
| 9023 __ PrintfNoPreserve("%%f: %f\n%%g: %g\n%%e: %e\n%%E: %E\n", s1, s2, d3, d4); |
| 9024 __ Mov(x24, x0); |
| 9025 |
| 9026 // Test printing callee-saved registers. |
| 9027 __ Mov(x28, 0x123456789abcdef); |
| 9028 __ PrintfNoPreserve("0x%08" PRIx32 ", 0x%016" PRIx64 "\n", x28, x28); |
| 9029 __ Mov(x25, x0); |
| 9030 |
| 9031 __ Fmov(d10, 42.0); |
| 9032 __ PrintfNoPreserve("%g\n", d10); |
| 9033 __ Mov(x26, x0); |
| 9034 |
| 9035 // Test with a different stack pointer. |
| 9036 const Register old_stack_pointer = __ StackPointer(); |
| 9037 __ Mov(x29, old_stack_pointer); |
| 9038 __ SetStackPointer(x29); |
| 9039 |
| 9040 __ PrintfNoPreserve("old_stack_pointer: 0x%016" PRIx64 "\n", |
| 9041 old_stack_pointer); |
| 9042 __ Mov(x27, x0); |
| 9043 |
| 9044 __ Mov(old_stack_pointer, __ StackPointer()); |
| 9045 __ SetStackPointer(old_stack_pointer); |
| 9046 |
| 9047 // Test with three arguments. |
| 9048 __ Mov(x3, 3); |
| 9049 __ Mov(x4, 40); |
| 9050 __ Mov(x5, 500); |
| 9051 __ PrintfNoPreserve("3=%u, 4=%u, 5=%u\n", x3, x4, x5); |
| 9052 __ Mov(x28, x0); |
| 9053 |
| 9054 END(); |
| 9055 RUN(); |
| 9056 |
| 9057 // We cannot easily test the exact output of the Printf sequences, but we can |
| 9058 // use the return code to check that the string length was correct. |
| 9059 |
| 9060 // Printf with no arguments. |
| 9061 ASSERT_EQUAL_64(strlen(test_plain_string), x19); |
| 9062 // x0: 1234, x1: 0x00001234 |
| 9063 ASSERT_EQUAL_64(25, x20); |
| 9064 // d0: 1.234000 |
| 9065 ASSERT_EQUAL_64(13, x21); |
| 9066 // Test %s: 'This is a substring.' |
| 9067 ASSERT_EQUAL_64(32, x22); |
| 9068 // w3(uint32): 4294967295 |
| 9069 // w4(int32): -1 |
| 9070 // x5(uint64): 18446744073709551615 |
| 9071 // x6(int64): -1 |
| 9072 ASSERT_EQUAL_64(23 + 14 + 33 + 14, x23); |
| 9073 // %f: 1.234000 |
| 9074 // %g: 2.345 |
| 9075 // %e: 3.456000e+00 |
| 9076 // %E: 4.567000E+00 |
| 9077 ASSERT_EQUAL_64(13 + 10 + 17 + 17, x24); |
| 9078 // 0x89abcdef, 0x0123456789abcdef |
| 9079 ASSERT_EQUAL_64(31, x25); |
| 9080 // 42 |
| 9081 ASSERT_EQUAL_64(3, x26); |
| 9082 // old_stack_pointer: 0x00007fb037ae2370 |
| 9083 // Note: This is an example value, but the field width is fixed here so the |
| 9084 // string length is still predictable. |
| 9085 ASSERT_EQUAL_64(38, x27); |
| 9086 // 3=3, 4=40, 5=500 |
| 9087 ASSERT_EQUAL_64(17, x28); |
| 9088 |
| 9089 TEARDOWN(); |
| 9090 } |
| 9091 |
| 9092 |
| 9093 // This is a V8-specific test. |
| 9094 static void CopyFieldsHelper(CPURegList temps) { |
| 9095 static const uint64_t kLiteralBase = 0x0100001000100101UL; |
| 9096 static const uint64_t src[] = {kLiteralBase * 1, |
| 9097 kLiteralBase * 2, |
| 9098 kLiteralBase * 3, |
| 9099 kLiteralBase * 4, |
| 9100 kLiteralBase * 5, |
| 9101 kLiteralBase * 6, |
| 9102 kLiteralBase * 7, |
| 9103 kLiteralBase * 8, |
| 9104 kLiteralBase * 9, |
| 9105 kLiteralBase * 10, |
| 9106 kLiteralBase * 11}; |
| 9107 static const uint64_t src_tagged = |
| 9108 reinterpret_cast<uint64_t>(src) + kHeapObjectTag; |
| 9109 |
| 9110 static const unsigned kTestCount = sizeof(src) / sizeof(src[0]) + 1; |
| 9111 uint64_t* dst[kTestCount]; |
| 9112 uint64_t dst_tagged[kTestCount]; |
| 9113 |
| 9114 // The first test will be to copy 0 fields. The destination (and source) |
| 9115 // should not be accessed in any way. |
| 9116 dst[0] = NULL; |
| 9117 dst_tagged[0] = kHeapObjectTag; |
| 9118 |
| 9119 // Allocate memory for each other test. Each test <n> will have <n> fields. |
| 9120 // This is intended to exercise as many paths in CopyFields as possible. |
| 9121 for (unsigned i = 1; i < kTestCount; i++) { |
| 9122 dst[i] = new uint64_t[i]; |
| 9123 memset(dst[i], 0, i * sizeof(kLiteralBase)); |
| 9124 dst_tagged[i] = reinterpret_cast<uint64_t>(dst[i]) + kHeapObjectTag; |
| 9125 } |
| 9126 |
| 9127 SETUP(); |
| 9128 START(); |
| 9129 |
| 9130 __ Mov(x0, dst_tagged[0]); |
| 9131 __ Mov(x1, 0); |
| 9132 __ CopyFields(x0, x1, temps, 0); |
| 9133 for (unsigned i = 1; i < kTestCount; i++) { |
| 9134 __ Mov(x0, dst_tagged[i]); |
| 9135 __ Mov(x1, src_tagged); |
| 9136 __ CopyFields(x0, x1, temps, i); |
| 9137 } |
| 9138 |
| 9139 END(); |
| 9140 RUN(); |
| 9141 TEARDOWN(); |
| 9142 |
| 9143 for (unsigned i = 1; i < kTestCount; i++) { |
| 9144 for (unsigned j = 0; j < i; j++) { |
| 9145 CHECK(src[j] == dst[i][j]); |
| 9146 } |
| 9147 delete [] dst[i]; |
| 9148 } |
| 9149 } |
| 9150 |
| 9151 |
| 9152 // This is a V8-specific test. |
| 9153 TEST(copyfields) { |
| 9154 INIT_V8(); |
| 9155 CopyFieldsHelper(CPURegList(x10)); |
| 9156 CopyFieldsHelper(CPURegList(x10, x11)); |
| 9157 CopyFieldsHelper(CPURegList(x10, x11, x12)); |
| 9158 CopyFieldsHelper(CPURegList(x10, x11, x12, x13)); |
| 9159 } |
| 9160 |
| 9161 |
| 9162 static void DoSmiAbsTest(int32_t value, bool must_fail = false) { |
| 9163 SETUP(); |
| 9164 |
| 9165 START(); |
| 9166 Label end, slow; |
| 9167 __ Mov(x2, 0xc001c0de); |
| 9168 __ Mov(x1, value); |
| 9169 __ SmiTag(x1); |
| 9170 __ SmiAbs(x1, &slow); |
| 9171 __ SmiUntag(x1); |
| 9172 __ B(&end); |
| 9173 |
| 9174 __ Bind(&slow); |
| 9175 __ Mov(x2, 0xbad); |
| 9176 |
| 9177 __ Bind(&end); |
| 9178 END(); |
| 9179 |
| 9180 RUN(); |
| 9181 |
| 9182 if (must_fail) { |
| 9183 // We tested an invalid conversion. The code must have jump on slow. |
| 9184 ASSERT_EQUAL_64(0xbad, x2); |
| 9185 } else { |
| 9186 // The conversion is valid, check the result. |
| 9187 int32_t result = (value >= 0) ? value : -value; |
| 9188 ASSERT_EQUAL_64(result, x1); |
| 9189 |
| 9190 // Check that we didn't jump on slow. |
| 9191 ASSERT_EQUAL_64(0xc001c0de, x2); |
| 9192 } |
| 9193 |
| 9194 TEARDOWN(); |
| 9195 } |
| 9196 |
| 9197 |
| 9198 TEST(smi_abs) { |
| 9199 INIT_V8(); |
| 9200 // Simple and edge cases. |
| 9201 DoSmiAbsTest(0); |
| 9202 DoSmiAbsTest(0x12345); |
| 9203 DoSmiAbsTest(0x40000000); |
| 9204 DoSmiAbsTest(0x7fffffff); |
| 9205 DoSmiAbsTest(-1); |
| 9206 DoSmiAbsTest(-12345); |
| 9207 DoSmiAbsTest(0x80000001); |
| 9208 |
| 9209 // Check that the most negative SMI is detected. |
| 9210 DoSmiAbsTest(0x80000000, true); |
| 9211 } |
| 9212 |
| 9213 |
| 9214 TEST(blr_lr) { |
| 9215 // A simple test to check that the simulator correcty handle "blr lr". |
| 9216 INIT_V8(); |
| 9217 SETUP(); |
| 9218 |
| 9219 START(); |
| 9220 Label target; |
| 9221 Label end; |
| 9222 |
| 9223 __ Mov(x0, 0x0); |
| 9224 __ Adr(lr, &target); |
| 9225 |
| 9226 __ Blr(lr); |
| 9227 __ Mov(x0, 0xdeadbeef); |
| 9228 __ B(&end); |
| 9229 |
| 9230 __ Bind(&target); |
| 9231 __ Mov(x0, 0xc001c0de); |
| 9232 |
| 9233 __ Bind(&end); |
| 9234 END(); |
| 9235 |
| 9236 RUN(); |
| 9237 |
| 9238 ASSERT_EQUAL_64(0xc001c0de, x0); |
| 9239 |
| 9240 TEARDOWN(); |
| 9241 } |
| 9242 |
| 9243 |
| 9244 TEST(barriers) { |
| 9245 // Generate all supported barriers, this is just a smoke test |
| 9246 INIT_V8(); |
| 9247 SETUP(); |
| 9248 |
| 9249 START(); |
| 9250 |
| 9251 // DMB |
| 9252 __ Dmb(FullSystem, BarrierAll); |
| 9253 __ Dmb(FullSystem, BarrierReads); |
| 9254 __ Dmb(FullSystem, BarrierWrites); |
| 9255 __ Dmb(FullSystem, BarrierOther); |
| 9256 |
| 9257 __ Dmb(InnerShareable, BarrierAll); |
| 9258 __ Dmb(InnerShareable, BarrierReads); |
| 9259 __ Dmb(InnerShareable, BarrierWrites); |
| 9260 __ Dmb(InnerShareable, BarrierOther); |
| 9261 |
| 9262 __ Dmb(NonShareable, BarrierAll); |
| 9263 __ Dmb(NonShareable, BarrierReads); |
| 9264 __ Dmb(NonShareable, BarrierWrites); |
| 9265 __ Dmb(NonShareable, BarrierOther); |
| 9266 |
| 9267 __ Dmb(OuterShareable, BarrierAll); |
| 9268 __ Dmb(OuterShareable, BarrierReads); |
| 9269 __ Dmb(OuterShareable, BarrierWrites); |
| 9270 __ Dmb(OuterShareable, BarrierOther); |
| 9271 |
| 9272 // DSB |
| 9273 __ Dsb(FullSystem, BarrierAll); |
| 9274 __ Dsb(FullSystem, BarrierReads); |
| 9275 __ Dsb(FullSystem, BarrierWrites); |
| 9276 __ Dsb(FullSystem, BarrierOther); |
| 9277 |
| 9278 __ Dsb(InnerShareable, BarrierAll); |
| 9279 __ Dsb(InnerShareable, BarrierReads); |
| 9280 __ Dsb(InnerShareable, BarrierWrites); |
| 9281 __ Dsb(InnerShareable, BarrierOther); |
| 9282 |
| 9283 __ Dsb(NonShareable, BarrierAll); |
| 9284 __ Dsb(NonShareable, BarrierReads); |
| 9285 __ Dsb(NonShareable, BarrierWrites); |
| 9286 __ Dsb(NonShareable, BarrierOther); |
| 9287 |
| 9288 __ Dsb(OuterShareable, BarrierAll); |
| 9289 __ Dsb(OuterShareable, BarrierReads); |
| 9290 __ Dsb(OuterShareable, BarrierWrites); |
| 9291 __ Dsb(OuterShareable, BarrierOther); |
| 9292 |
| 9293 // ISB |
| 9294 __ Isb(); |
| 9295 |
| 9296 END(); |
| 9297 |
| 9298 RUN(); |
| 9299 |
| 9300 TEARDOWN(); |
| 9301 } |
| 9302 |
| 9303 |
| 9304 TEST(call_no_relocation) { |
| 9305 Address call_start; |
| 9306 Address return_address; |
| 9307 |
| 9308 INIT_V8(); |
| 9309 SETUP(); |
| 9310 |
| 9311 START(); |
| 9312 |
| 9313 Label function; |
| 9314 Label test; |
| 9315 |
| 9316 __ B(&test); |
| 9317 |
| 9318 __ Bind(&function); |
| 9319 __ Mov(x0, 0x1); |
| 9320 __ Ret(); |
| 9321 |
| 9322 __ Bind(&test); |
| 9323 __ Mov(x0, 0x0); |
| 9324 __ Push(lr, xzr); |
| 9325 { |
| 9326 Assembler::BlockConstPoolScope scope(&masm); |
| 9327 call_start = buf + __ pc_offset(); |
| 9328 __ Call(buf + function.pos(), RelocInfo::NONE64); |
| 9329 return_address = buf + __ pc_offset(); |
| 9330 } |
| 9331 __ Pop(xzr, lr); |
| 9332 END(); |
| 9333 |
| 9334 RUN(); |
| 9335 |
| 9336 ASSERT_EQUAL_64(1, x0); |
| 9337 |
| 9338 // The return_address_from_call_start function doesn't currently encounter any |
| 9339 // non-relocatable sequences, so we check it here to make sure it works. |
| 9340 // TODO(jbramley): Once Crankshaft is complete, decide if we need to support |
| 9341 // non-relocatable calls at all. |
| 9342 CHECK(return_address == |
| 9343 Assembler::return_address_from_call_start(call_start)); |
| 9344 |
| 9345 TEARDOWN(); |
| 9346 } |
| 9347 |
| 9348 |
| 9349 static void ECMA262ToInt32Helper(int32_t expected, double input) { |
| 9350 SETUP(); |
| 9351 START(); |
| 9352 |
| 9353 __ Fmov(d0, input); |
| 9354 |
| 9355 __ ECMA262ToInt32(x0, d0, x10, x11, MacroAssembler::INT32_IN_W); |
| 9356 __ ECMA262ToInt32(x1, d0, x10, x11, MacroAssembler::INT32_IN_X); |
| 9357 __ ECMA262ToInt32(x2, d0, x10, x11, MacroAssembler::SMI); |
| 9358 |
| 9359 // The upper bits of INT32_IN_W are undefined, so make sure we don't try to |
| 9360 // test them. |
| 9361 __ Mov(w0, w0); |
| 9362 |
| 9363 END(); |
| 9364 |
| 9365 RUN(); |
| 9366 |
| 9367 int64_t expected64 = expected; |
| 9368 |
| 9369 ASSERT_EQUAL_32(expected, w0); |
| 9370 ASSERT_EQUAL_64(expected64, x1); |
| 9371 ASSERT_EQUAL_64(expected64 << kSmiShift | kSmiTag, x2); |
| 9372 |
| 9373 TEARDOWN(); |
| 9374 } |
| 9375 |
| 9376 |
| 9377 TEST(ecma_262_to_int32) { |
| 9378 INIT_V8(); |
| 9379 // ==== exponent < 64 ==== |
| 9380 |
| 9381 ECMA262ToInt32Helper(0, 0.0); |
| 9382 ECMA262ToInt32Helper(0, -0.0); |
| 9383 ECMA262ToInt32Helper(1, 1.0); |
| 9384 ECMA262ToInt32Helper(-1, -1.0); |
| 9385 |
| 9386 // The largest representable value that is less than 1. |
| 9387 ECMA262ToInt32Helper(0, 0x001fffffffffffff * pow(2.0, -53)); |
| 9388 ECMA262ToInt32Helper(0, 0x001fffffffffffff * -pow(2.0, -53)); |
| 9389 ECMA262ToInt32Helper(0, std::numeric_limits<double>::denorm_min()); |
| 9390 ECMA262ToInt32Helper(0, -std::numeric_limits<double>::denorm_min()); |
| 9391 |
| 9392 // The largest conversion which doesn't require the integer modulo-2^32 step. |
| 9393 ECMA262ToInt32Helper(0x7fffffff, 0x7fffffff); |
| 9394 ECMA262ToInt32Helper(-0x80000000, -0x80000000); |
| 9395 |
| 9396 // The largest simple conversion, requiring module-2^32, but where the fcvt |
| 9397 // does not saturate when converting to int64_t. |
| 9398 ECMA262ToInt32Helper(0xfffffc00, 0x7ffffffffffffc00); |
| 9399 ECMA262ToInt32Helper(-0xfffffc00, 0x7ffffffffffffc00 * -1.0); |
| 9400 |
| 9401 // ==== 64 <= exponent < 84 ==== |
| 9402 |
| 9403 // The smallest conversion where the fcvt saturates. |
| 9404 ECMA262ToInt32Helper(0, 0x8000000000000000); |
| 9405 ECMA262ToInt32Helper(0, 0x8000000000000000 * -1.0); |
| 9406 |
| 9407 // The smallest conversion where the fcvt saturates, and where all the |
| 9408 // mantissa bits are '1' (to check the shift logic). |
| 9409 ECMA262ToInt32Helper(0xfffff800, 0xfffffffffffff800); |
| 9410 ECMA262ToInt32Helper(-0xfffff800, 0xfffffffffffff800 * -1.0); |
| 9411 |
| 9412 // The largest conversion which doesn't produce a zero result. |
| 9413 ECMA262ToInt32Helper(0x80000000, 0x001fffffffffffff * pow(2.0, 31)); |
| 9414 ECMA262ToInt32Helper(-0x80000000, 0x001fffffffffffff * -pow(2.0, 31)); |
| 9415 |
| 9416 // Some large conversions to check the shifting function. |
| 9417 ECMA262ToInt32Helper(0x6789abcd, 0x001123456789abcd); |
| 9418 ECMA262ToInt32Helper(0x12345678, 0x001123456789abcd * pow(2.0, -20)); |
| 9419 ECMA262ToInt32Helper(0x891a2b3c, 0x001123456789abcd * pow(2.0, -21)); |
| 9420 ECMA262ToInt32Helper(0x11234567, 0x001123456789abcd * pow(2.0, -24)); |
| 9421 ECMA262ToInt32Helper(-0x6789abcd, 0x001123456789abcd * -1.0); |
| 9422 ECMA262ToInt32Helper(-0x12345678, 0x001123456789abcd * -pow(2.0, -20)); |
| 9423 ECMA262ToInt32Helper(-0x891a2b3c, 0x001123456789abcd * -pow(2.0, -21)); |
| 9424 ECMA262ToInt32Helper(-0x11234567, 0x001123456789abcd * -pow(2.0, -24)); |
| 9425 |
| 9426 // ==== 84 <= exponent ==== |
| 9427 |
| 9428 // The smallest conversion which produces a zero result by shifting the |
| 9429 // mantissa out of the int32_t range. |
| 9430 ECMA262ToInt32Helper(0, pow(2.0, 32)); |
| 9431 ECMA262ToInt32Helper(0, -pow(2.0, 32)); |
| 9432 |
| 9433 // Some very large conversions. |
| 9434 ECMA262ToInt32Helper(0, 0x001fffffffffffff * pow(2.0, 32)); |
| 9435 ECMA262ToInt32Helper(0, 0x001fffffffffffff * -pow(2.0, 32)); |
| 9436 ECMA262ToInt32Helper(0, DBL_MAX); |
| 9437 ECMA262ToInt32Helper(0, -DBL_MAX); |
| 9438 |
| 9439 // ==== Special values. ==== |
| 9440 |
| 9441 ECMA262ToInt32Helper(0, std::numeric_limits<double>::infinity()); |
| 9442 ECMA262ToInt32Helper(0, -std::numeric_limits<double>::infinity()); |
| 9443 ECMA262ToInt32Helper(0, std::numeric_limits<double>::quiet_NaN()); |
| 9444 ECMA262ToInt32Helper(0, -std::numeric_limits<double>::quiet_NaN()); |
| 9445 ECMA262ToInt32Helper(0, std::numeric_limits<double>::signaling_NaN()); |
| 9446 ECMA262ToInt32Helper(0, -std::numeric_limits<double>::signaling_NaN()); |
| 9447 } |
| 9448 |
| 9449 |
| 9450 static void AbsHelperX(int64_t value) { |
| 9451 int64_t expected; |
| 9452 |
| 9453 SETUP(); |
| 9454 START(); |
| 9455 |
| 9456 Label fail; |
| 9457 Label done; |
| 9458 |
| 9459 __ Mov(x0, 0); |
| 9460 __ Mov(x1, value); |
| 9461 |
| 9462 if (value != kXMinInt) { |
| 9463 expected = labs(value); |
| 9464 |
| 9465 Label next; |
| 9466 // The result is representable. |
| 9467 __ Abs(x10, x1); |
| 9468 __ Abs(x11, x1, &fail); |
| 9469 __ Abs(x12, x1, &fail, &next); |
| 9470 __ Bind(&next); |
| 9471 __ Abs(x13, x1, NULL, &done); |
| 9472 } else { |
| 9473 // labs is undefined for kXMinInt but our implementation in the |
| 9474 // MacroAssembler will return kXMinInt in such a case. |
| 9475 expected = kXMinInt; |
| 9476 |
| 9477 Label next; |
| 9478 // The result is not representable. |
| 9479 __ Abs(x10, x1); |
| 9480 __ Abs(x11, x1, NULL, &fail); |
| 9481 __ Abs(x12, x1, &next, &fail); |
| 9482 __ Bind(&next); |
| 9483 __ Abs(x13, x1, &done); |
| 9484 } |
| 9485 |
| 9486 __ Bind(&fail); |
| 9487 __ Mov(x0, -1); |
| 9488 |
| 9489 __ Bind(&done); |
| 9490 |
| 9491 END(); |
| 9492 RUN(); |
| 9493 |
| 9494 ASSERT_EQUAL_64(0, x0); |
| 9495 ASSERT_EQUAL_64(value, x1); |
| 9496 ASSERT_EQUAL_64(expected, x10); |
| 9497 ASSERT_EQUAL_64(expected, x11); |
| 9498 ASSERT_EQUAL_64(expected, x12); |
| 9499 ASSERT_EQUAL_64(expected, x13); |
| 9500 |
| 9501 TEARDOWN(); |
| 9502 } |
| 9503 |
| 9504 |
| 9505 static void AbsHelperW(int32_t value) { |
| 9506 int32_t expected; |
| 9507 |
| 9508 SETUP(); |
| 9509 START(); |
| 9510 |
| 9511 Label fail; |
| 9512 Label done; |
| 9513 |
| 9514 __ Mov(w0, 0); |
| 9515 // TODO(jbramley): The cast is needed to avoid a sign-extension bug in VIXL. |
| 9516 // Once it is fixed, we should remove the cast. |
| 9517 __ Mov(w1, static_cast<uint32_t>(value)); |
| 9518 |
| 9519 if (value != kWMinInt) { |
| 9520 expected = abs(value); |
| 9521 |
| 9522 Label next; |
| 9523 // The result is representable. |
| 9524 __ Abs(w10, w1); |
| 9525 __ Abs(w11, w1, &fail); |
| 9526 __ Abs(w12, w1, &fail, &next); |
| 9527 __ Bind(&next); |
| 9528 __ Abs(w13, w1, NULL, &done); |
| 9529 } else { |
| 9530 // abs is undefined for kWMinInt but our implementation in the |
| 9531 // MacroAssembler will return kWMinInt in such a case. |
| 9532 expected = kWMinInt; |
| 9533 |
| 9534 Label next; |
| 9535 // The result is not representable. |
| 9536 __ Abs(w10, w1); |
| 9537 __ Abs(w11, w1, NULL, &fail); |
| 9538 __ Abs(w12, w1, &next, &fail); |
| 9539 __ Bind(&next); |
| 9540 __ Abs(w13, w1, &done); |
| 9541 } |
| 9542 |
| 9543 __ Bind(&fail); |
| 9544 __ Mov(w0, -1); |
| 9545 |
| 9546 __ Bind(&done); |
| 9547 |
| 9548 END(); |
| 9549 RUN(); |
| 9550 |
| 9551 ASSERT_EQUAL_32(0, w0); |
| 9552 ASSERT_EQUAL_32(value, w1); |
| 9553 ASSERT_EQUAL_32(expected, w10); |
| 9554 ASSERT_EQUAL_32(expected, w11); |
| 9555 ASSERT_EQUAL_32(expected, w12); |
| 9556 ASSERT_EQUAL_32(expected, w13); |
| 9557 |
| 9558 TEARDOWN(); |
| 9559 } |
| 9560 |
| 9561 |
| 9562 TEST(abs) { |
| 9563 INIT_V8(); |
| 9564 AbsHelperX(0); |
| 9565 AbsHelperX(42); |
| 9566 AbsHelperX(-42); |
| 9567 AbsHelperX(kXMinInt); |
| 9568 AbsHelperX(kXMaxInt); |
| 9569 |
| 9570 AbsHelperW(0); |
| 9571 AbsHelperW(42); |
| 9572 AbsHelperW(-42); |
| 9573 AbsHelperW(kWMinInt); |
| 9574 AbsHelperW(kWMaxInt); |
| 9575 } |
OLD | NEW |