| OLD | NEW |
| 1 // Copyright 2012 the V8 project authors. All rights reserved. | 1 // Copyright 2013 the V8 project authors. All rights reserved. |
| 2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
| 3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
| 4 // met: | 4 // met: |
| 5 // | 5 // |
| 6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
| 7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
| 8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
| 9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
| 10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
| 11 // with the distribution. | 11 // with the distribution. |
| 12 // * Neither the name of Google Inc. nor the names of its | 12 // * Neither the name of Google Inc. nor the names of its |
| 13 // contributors may be used to endorse or promote products derived | 13 // contributors may be used to endorse or promote products derived |
| 14 // from this software without specific prior written permission. | 14 // from this software without specific prior written permission. |
| 15 // | 15 // |
| 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 | 27 |
| 28 #include "v8.h" | 28 #include "v8.h" |
| 29 | 29 |
| 30 #include "arm/lithium-gap-resolver-arm.h" | 30 #include "a64/lithium-gap-resolver-a64.h" |
| 31 #include "arm/lithium-codegen-arm.h" | 31 #include "a64/lithium-codegen-a64.h" |
| 32 | 32 |
| 33 namespace v8 { | 33 namespace v8 { |
| 34 namespace internal { | 34 namespace internal { |
| 35 | 35 |
| 36 static const Register kSavedValueRegister = { 9 }; | 36 // We use the root register to spill a value while breaking a cycle in parallel |
| 37 // moves. We don't need access to roots while resolving the move list and using |
| 38 // the root register has two advantages: |
| 39 // - It is not in crankshaft allocatable registers list, so it can't interfere |
| 40 // with any of the moves we are resolving. |
| 41 // - We don't need to push it on the stack, as we can reload it with its value |
| 42 // once we have resolved a cycle. |
| 43 #define kSavedValue root |
| 37 | 44 |
| 38 LGapResolver::LGapResolver(LCodeGen* owner) | 45 LGapResolver::LGapResolver(LCodeGen* owner) |
| 39 : cgen_(owner), moves_(32, owner->zone()), root_index_(0), in_cycle_(false), | 46 : cgen_(owner), moves_(32, owner->zone()), root_index_(0), in_cycle_(false), |
| 40 saved_destination_(NULL) { } | 47 saved_destination_(NULL), need_to_restore_root_(false) { } |
| 41 | 48 |
| 42 | 49 |
| 50 #define __ ACCESS_MASM(cgen_->masm()) |
| 51 |
| 43 void LGapResolver::Resolve(LParallelMove* parallel_move) { | 52 void LGapResolver::Resolve(LParallelMove* parallel_move) { |
| 44 ASSERT(moves_.is_empty()); | 53 ASSERT(moves_.is_empty()); |
| 54 |
| 45 // Build up a worklist of moves. | 55 // Build up a worklist of moves. |
| 46 BuildInitialMoveList(parallel_move); | 56 BuildInitialMoveList(parallel_move); |
| 47 | 57 |
| 48 for (int i = 0; i < moves_.length(); ++i) { | 58 for (int i = 0; i < moves_.length(); ++i) { |
| 49 LMoveOperands move = moves_[i]; | 59 LMoveOperands move = moves_[i]; |
| 50 // Skip constants to perform them last. They don't block other moves | 60 |
| 61 // Skip constants to perform them last. They don't block other moves |
| 51 // and skipping such moves with register destinations keeps those | 62 // and skipping such moves with register destinations keeps those |
| 52 // registers free for the whole algorithm. | 63 // registers free for the whole algorithm. |
| 53 if (!move.IsEliminated() && !move.source()->IsConstantOperand()) { | 64 if (!move.IsEliminated() && !move.source()->IsConstantOperand()) { |
| 54 root_index_ = i; // Any cycle is found when by reaching this move again. | 65 root_index_ = i; // Any cycle is found when we reach this move again. |
| 55 PerformMove(i); | 66 PerformMove(i); |
| 56 if (in_cycle_) { | 67 if (in_cycle_) RestoreValue(); |
| 57 RestoreValue(); | |
| 58 } | |
| 59 } | 68 } |
| 60 } | 69 } |
| 61 | 70 |
| 62 // Perform the moves with constant sources. | 71 // Perform the moves with constant sources. |
| 63 for (int i = 0; i < moves_.length(); ++i) { | 72 for (int i = 0; i < moves_.length(); ++i) { |
| 64 if (!moves_[i].IsEliminated()) { | 73 LMoveOperands move = moves_[i]; |
| 65 ASSERT(moves_[i].source()->IsConstantOperand()); | 74 |
| 75 if (!move.IsEliminated()) { |
| 76 ASSERT(move.source()->IsConstantOperand()); |
| 66 EmitMove(i); | 77 EmitMove(i); |
| 67 } | 78 } |
| 68 } | 79 } |
| 69 | 80 |
| 81 if (need_to_restore_root_) { |
| 82 ASSERT(kSavedValue.Is(root)); |
| 83 __ InitializeRootRegister(); |
| 84 } |
| 85 |
| 70 moves_.Rewind(0); | 86 moves_.Rewind(0); |
| 71 } | 87 } |
| 72 | 88 |
| 73 | 89 |
| 74 void LGapResolver::BuildInitialMoveList(LParallelMove* parallel_move) { | 90 void LGapResolver::BuildInitialMoveList(LParallelMove* parallel_move) { |
| 75 // Perform a linear sweep of the moves to add them to the initial list of | 91 // Perform a linear sweep of the moves to add them to the initial list of |
| 76 // moves to perform, ignoring any move that is redundant (the source is | 92 // moves to perform, ignoring any move that is redundant (the source is |
| 77 // the same as the destination, the destination is ignored and | 93 // the same as the destination, the destination is ignored and |
| 78 // unallocated, or the move was already eliminated). | 94 // unallocated, or the move was already eliminated). |
| 79 const ZoneList<LMoveOperands>* moves = parallel_move->move_operands(); | 95 const ZoneList<LMoveOperands>* moves = parallel_move->move_operands(); |
| 80 for (int i = 0; i < moves->length(); ++i) { | 96 for (int i = 0; i < moves->length(); ++i) { |
| 81 LMoveOperands move = moves->at(i); | 97 LMoveOperands move = moves->at(i); |
| 82 if (!move.IsRedundant()) moves_.Add(move, cgen_->zone()); | 98 if (!move.IsRedundant()) moves_.Add(move, cgen_->zone()); |
| 83 } | 99 } |
| 84 Verify(); | 100 Verify(); |
| 85 } | 101 } |
| 86 | 102 |
| 87 | 103 |
| 88 void LGapResolver::PerformMove(int index) { | 104 void LGapResolver::PerformMove(int index) { |
| 89 // Each call to this function performs a move and deletes it from the move | 105 // Each call to this function performs a move and deletes it from the move |
| 90 // graph. We first recursively perform any move blocking this one. We | 106 // graph. We first recursively perform any move blocking this one. We |
| 91 // mark a move as "pending" on entry to PerformMove in order to detect | 107 // mark a move as "pending" on entry to PerformMove in order to detect |
| 92 // cycles in the move graph. | 108 // cycles in the move graph. |
| 109 LMoveOperands& current_move = moves_[index]; |
| 93 | 110 |
| 94 // We can only find a cycle, when doing a depth-first traversal of moves, | 111 ASSERT(!current_move.IsPending()); |
| 95 // be encountering the starting move again. So by spilling the source of | 112 ASSERT(!current_move.IsRedundant()); |
| 96 // the starting move, we break the cycle. All moves are then unblocked, | |
| 97 // and the starting move is completed by writing the spilled value to | |
| 98 // its destination. All other moves from the spilled source have been | |
| 99 // completed prior to breaking the cycle. | |
| 100 // An additional complication is that moves to MemOperands with large | |
| 101 // offsets (more than 1K or 4K) require us to spill this spilled value to | |
| 102 // the stack, to free up the register. | |
| 103 ASSERT(!moves_[index].IsPending()); | |
| 104 ASSERT(!moves_[index].IsRedundant()); | |
| 105 | 113 |
| 106 // Clear this move's destination to indicate a pending move. The actual | 114 // Clear this move's destination to indicate a pending move. The actual |
| 107 // destination is saved in a stack allocated local. Multiple moves can | 115 // destination is saved in a stack allocated local. Multiple moves can |
| 108 // be pending because this function is recursive. | 116 // be pending because this function is recursive. |
| 109 ASSERT(moves_[index].source() != NULL); // Or else it will look eliminated. | 117 ASSERT(current_move.source() != NULL); // Otherwise it will look eliminated. |
| 110 LOperand* destination = moves_[index].destination(); | 118 LOperand* destination = current_move.destination(); |
| 111 moves_[index].set_destination(NULL); | 119 current_move.set_destination(NULL); |
| 112 | 120 |
| 113 // Perform a depth-first traversal of the move graph to resolve | 121 // Perform a depth-first traversal of the move graph to resolve |
| 114 // dependencies. Any unperformed, unpending move with a source the same | 122 // dependencies. Any unperformed, unpending move with a source the same |
| 115 // as this one's destination blocks this one so recursively perform all | 123 // as this one's destination blocks this one so recursively perform all |
| 116 // such moves. | 124 // such moves. |
| 117 for (int i = 0; i < moves_.length(); ++i) { | 125 for (int i = 0; i < moves_.length(); ++i) { |
| 118 LMoveOperands other_move = moves_[i]; | 126 LMoveOperands other_move = moves_[i]; |
| 119 if (other_move.Blocks(destination) && !other_move.IsPending()) { | 127 if (other_move.Blocks(destination) && !other_move.IsPending()) { |
| 120 PerformMove(i); | 128 PerformMove(i); |
| 121 // If there is a blocking, pending move it must be moves_[root_index_] | 129 // If there is a blocking, pending move it must be moves_[root_index_] |
| 122 // and all other moves with the same source as moves_[root_index_] are | 130 // and all other moves with the same source as moves_[root_index_] are |
| 123 // sucessfully executed (because they are cycle-free) by this loop. | 131 // sucessfully executed (because they are cycle-free) by this loop. |
| 124 } | 132 } |
| 125 } | 133 } |
| 126 | 134 |
| 127 // We are about to resolve this move and don't need it marked as | 135 // We are about to resolve this move and don't need it marked as |
| 128 // pending, so restore its destination. | 136 // pending, so restore its destination. |
| 129 moves_[index].set_destination(destination); | 137 current_move.set_destination(destination); |
| 130 | 138 |
| 131 // The move may be blocked on a pending move, which must be the starting move. | 139 // The move may be blocked on a pending move, which must be the starting move. |
| 132 // In this case, we have a cycle, and we save the source of this move to | 140 // In this case, we have a cycle, and we save the source of this move to |
| 133 // a scratch register to break it. | 141 // a scratch register to break it. |
| 134 LMoveOperands other_move = moves_[root_index_]; | 142 LMoveOperands other_move = moves_[root_index_]; |
| 135 if (other_move.Blocks(destination)) { | 143 if (other_move.Blocks(destination)) { |
| 136 ASSERT(other_move.IsPending()); | 144 ASSERT(other_move.IsPending()); |
| 137 BreakCycle(index); | 145 BreakCycle(index); |
| 138 return; | 146 return; |
| 139 } | 147 } |
| 140 | 148 |
| 141 // This move is no longer blocked. | 149 // This move is no longer blocked. |
| 142 EmitMove(index); | 150 EmitMove(index); |
| 143 } | 151 } |
| 144 | 152 |
| 145 | 153 |
| 146 void LGapResolver::Verify() { | 154 void LGapResolver::Verify() { |
| 147 #ifdef ENABLE_SLOW_ASSERTS | 155 #ifdef ENABLE_SLOW_ASSERTS |
| 148 // No operand should be the destination for more than one move. | 156 // No operand should be the destination for more than one move. |
| 149 for (int i = 0; i < moves_.length(); ++i) { | 157 for (int i = 0; i < moves_.length(); ++i) { |
| 150 LOperand* destination = moves_[i].destination(); | 158 LOperand* destination = moves_[i].destination(); |
| 151 for (int j = i + 1; j < moves_.length(); ++j) { | 159 for (int j = i + 1; j < moves_.length(); ++j) { |
| 152 SLOW_ASSERT(!destination->Equals(moves_[j].destination())); | 160 SLOW_ASSERT(!destination->Equals(moves_[j].destination())); |
| 153 } | 161 } |
| 154 } | 162 } |
| 155 #endif | 163 #endif |
| 156 } | 164 } |
| 157 | 165 |
| 158 #define __ ACCESS_MASM(cgen_->masm()) | |
| 159 | 166 |
| 160 void LGapResolver::BreakCycle(int index) { | 167 void LGapResolver::BreakCycle(int index) { |
| 161 // We save in a register the value that should end up in the source of | |
| 162 // moves_[root_index]. After performing all moves in the tree rooted | |
| 163 // in that move, we save the value to that source. | |
| 164 ASSERT(moves_[index].destination()->Equals(moves_[root_index_].source())); | 168 ASSERT(moves_[index].destination()->Equals(moves_[root_index_].source())); |
| 165 ASSERT(!in_cycle_); | 169 ASSERT(!in_cycle_); |
| 170 |
| 171 // We use a register which is not allocatable by crankshaft to break the cycle |
| 172 // to be sure it doesn't interfere with the moves we are resolving. |
| 173 ASSERT(!kSavedValue.IsAllocatable()); |
| 174 need_to_restore_root_ = true; |
| 175 |
| 176 // We save in a register the source of that move and we remember its |
| 177 // destination. Then we mark this move as resolved so the cycle is |
| 178 // broken and we can perform the other moves. |
| 166 in_cycle_ = true; | 179 in_cycle_ = true; |
| 167 LOperand* source = moves_[index].source(); | 180 LOperand* source = moves_[index].source(); |
| 168 saved_destination_ = moves_[index].destination(); | 181 saved_destination_ = moves_[index].destination(); |
| 182 |
| 169 if (source->IsRegister()) { | 183 if (source->IsRegister()) { |
| 170 __ mov(kSavedValueRegister, cgen_->ToRegister(source)); | 184 __ Mov(kSavedValue, cgen_->ToRegister(source)); |
| 171 } else if (source->IsStackSlot()) { | 185 } else if (source->IsStackSlot()) { |
| 172 __ ldr(kSavedValueRegister, cgen_->ToMemOperand(source)); | 186 __ Ldr(kSavedValue, cgen_->ToMemOperand(source)); |
| 173 } else if (source->IsDoubleRegister()) { | 187 } else if (source->IsDoubleRegister()) { |
| 174 __ vmov(kScratchDoubleReg, cgen_->ToDoubleRegister(source)); | 188 // TODO(all): We should use a double register to store the value to avoid |
| 189 // the penalty of the mov across register banks. We are going to reserve |
| 190 // d31 to hold 0.0 value. We could clobber this register while breaking the |
| 191 // cycle and restore it after like we do with the root register. |
| 192 // LGapResolver::RestoreValue() will need to be updated as well when we'll |
| 193 // do that. |
| 194 __ Fmov(kSavedValue, cgen_->ToDoubleRegister(source)); |
| 175 } else if (source->IsDoubleStackSlot()) { | 195 } else if (source->IsDoubleStackSlot()) { |
| 176 __ vldr(kScratchDoubleReg, cgen_->ToMemOperand(source)); | 196 __ Ldr(kSavedValue, cgen_->ToMemOperand(source)); |
| 177 } else { | 197 } else { |
| 178 UNREACHABLE(); | 198 UNREACHABLE(); |
| 179 } | 199 } |
| 180 // This move will be done by restoring the saved value to the destination. | 200 |
| 201 // Mark this move as resolved. |
| 202 // This move will be actually performed by moving the saved value to this |
| 203 // move's destination in LGapResolver::RestoreValue(). |
| 181 moves_[index].Eliminate(); | 204 moves_[index].Eliminate(); |
| 182 } | 205 } |
| 183 | 206 |
| 184 | 207 |
| 185 void LGapResolver::RestoreValue() { | 208 void LGapResolver::RestoreValue() { |
| 186 ASSERT(in_cycle_); | 209 ASSERT(in_cycle_); |
| 187 ASSERT(saved_destination_ != NULL); | 210 ASSERT(saved_destination_ != NULL); |
| 188 | 211 |
| 189 // Spilled value is in kSavedValueRegister or kSavedDoubleValueRegister. | |
| 190 if (saved_destination_->IsRegister()) { | 212 if (saved_destination_->IsRegister()) { |
| 191 __ mov(cgen_->ToRegister(saved_destination_), kSavedValueRegister); | 213 __ Mov(cgen_->ToRegister(saved_destination_), kSavedValue); |
| 192 } else if (saved_destination_->IsStackSlot()) { | 214 } else if (saved_destination_->IsStackSlot()) { |
| 193 __ str(kSavedValueRegister, cgen_->ToMemOperand(saved_destination_)); | 215 __ Str(kSavedValue, cgen_->ToMemOperand(saved_destination_)); |
| 194 } else if (saved_destination_->IsDoubleRegister()) { | 216 } else if (saved_destination_->IsDoubleRegister()) { |
| 195 __ vmov(cgen_->ToDoubleRegister(saved_destination_), kScratchDoubleReg); | 217 __ Fmov(cgen_->ToDoubleRegister(saved_destination_), kSavedValue); |
| 196 } else if (saved_destination_->IsDoubleStackSlot()) { | 218 } else if (saved_destination_->IsDoubleStackSlot()) { |
| 197 __ vstr(kScratchDoubleReg, cgen_->ToMemOperand(saved_destination_)); | 219 __ Str(kSavedValue, cgen_->ToMemOperand(saved_destination_)); |
| 198 } else { | 220 } else { |
| 199 UNREACHABLE(); | 221 UNREACHABLE(); |
| 200 } | 222 } |
| 201 | 223 |
| 202 in_cycle_ = false; | 224 in_cycle_ = false; |
| 203 saved_destination_ = NULL; | 225 saved_destination_ = NULL; |
| 204 } | 226 } |
| 205 | 227 |
| 206 | 228 |
| 207 void LGapResolver::EmitMove(int index) { | 229 void LGapResolver::EmitMove(int index) { |
| 208 LOperand* source = moves_[index].source(); | 230 LOperand* source = moves_[index].source(); |
| 209 LOperand* destination = moves_[index].destination(); | 231 LOperand* destination = moves_[index].destination(); |
| 210 | 232 |
| 211 // Dispatch on the source and destination operand kinds. Not all | 233 // Dispatch on the source and destination operand kinds. Not all |
| 212 // combinations are possible. | 234 // combinations are possible. |
| 213 | 235 |
| 214 if (source->IsRegister()) { | 236 if (source->IsRegister()) { |
| 215 Register source_register = cgen_->ToRegister(source); | 237 Register source_register = cgen_->ToRegister(source); |
| 216 if (destination->IsRegister()) { | 238 if (destination->IsRegister()) { |
| 217 __ mov(cgen_->ToRegister(destination), source_register); | 239 __ Mov(cgen_->ToRegister(destination), source_register); |
| 218 } else { | 240 } else { |
| 219 ASSERT(destination->IsStackSlot()); | 241 ASSERT(destination->IsStackSlot()); |
| 220 __ str(source_register, cgen_->ToMemOperand(destination)); | 242 __ Str(source_register, cgen_->ToMemOperand(destination)); |
| 221 } | 243 } |
| 244 |
| 222 } else if (source->IsStackSlot()) { | 245 } else if (source->IsStackSlot()) { |
| 223 MemOperand source_operand = cgen_->ToMemOperand(source); | 246 MemOperand source_operand = cgen_->ToMemOperand(source); |
| 224 if (destination->IsRegister()) { | 247 if (destination->IsRegister()) { |
| 225 __ ldr(cgen_->ToRegister(destination), source_operand); | 248 __ Ldr(cgen_->ToRegister(destination), source_operand); |
| 226 } else { | 249 } else { |
| 227 ASSERT(destination->IsStackSlot()); | 250 ASSERT(destination->IsStackSlot()); |
| 228 MemOperand destination_operand = cgen_->ToMemOperand(destination); | 251 EmitStackSlotMove(index); |
| 229 if (in_cycle_) { | |
| 230 if (!destination_operand.OffsetIsUint12Encodable()) { | |
| 231 // ip is overwritten while saving the value to the destination. | |
| 232 // Therefore we can't use ip. It is OK if the read from the source | |
| 233 // destroys ip, since that happens before the value is read. | |
| 234 __ vldr(kScratchDoubleReg.low(), source_operand); | |
| 235 __ vstr(kScratchDoubleReg.low(), destination_operand); | |
| 236 } else { | |
| 237 __ ldr(ip, source_operand); | |
| 238 __ str(ip, destination_operand); | |
| 239 } | |
| 240 } else { | |
| 241 __ ldr(kSavedValueRegister, source_operand); | |
| 242 __ str(kSavedValueRegister, destination_operand); | |
| 243 } | |
| 244 } | 252 } |
| 245 | 253 |
| 246 } else if (source->IsConstantOperand()) { | 254 } else if (source->IsConstantOperand()) { |
| 247 LConstantOperand* constant_source = LConstantOperand::cast(source); | 255 LConstantOperand* constant_source = LConstantOperand::cast(source); |
| 248 if (destination->IsRegister()) { | 256 if (destination->IsRegister()) { |
| 249 Register dst = cgen_->ToRegister(destination); | 257 Register dst = cgen_->ToRegister(destination); |
| 250 Representation r = cgen_->IsSmi(constant_source) | 258 if (cgen_->IsSmi(constant_source)) { |
| 251 ? Representation::Smi() : Representation::Integer32(); | 259 __ Mov(dst, Operand(cgen_->ToSmi(constant_source))); |
| 252 if (cgen_->IsInteger32(constant_source)) { | 260 } else if (cgen_->IsInteger32Constant(constant_source)) { |
| 253 __ mov(dst, Operand(cgen_->ToRepresentation(constant_source, r))); | 261 __ Mov(dst, cgen_->ToInteger32(constant_source)); |
| 254 } else { | 262 } else { |
| 255 __ Move(dst, cgen_->ToHandle(constant_source)); | 263 __ LoadObject(dst, cgen_->ToHandle(constant_source)); |
| 256 } | 264 } |
| 257 } else if (destination->IsDoubleRegister()) { | 265 } else if (destination->IsDoubleRegister()) { |
| 258 DwVfpRegister result = cgen_->ToDoubleRegister(destination); | 266 DoubleRegister result = cgen_->ToDoubleRegister(destination); |
| 259 double v = cgen_->ToDouble(constant_source); | 267 __ Fmov(result, cgen_->ToDouble(constant_source)); |
| 260 __ Vmov(result, v, ip); | |
| 261 } else { | 268 } else { |
| 262 ASSERT(destination->IsStackSlot()); | 269 ASSERT(destination->IsStackSlot()); |
| 263 ASSERT(!in_cycle_); // Constant moves happen after all cycles are gone. | 270 ASSERT(!in_cycle_); // Constant moves happen after all cycles are gone. |
| 264 Representation r = cgen_->IsSmi(constant_source) | 271 need_to_restore_root_ = true; |
| 265 ? Representation::Smi() : Representation::Integer32(); | 272 if (cgen_->IsSmi(constant_source)) { |
| 266 if (cgen_->IsInteger32(constant_source)) { | 273 __ Mov(kSavedValue, Operand(cgen_->ToSmi(constant_source))); |
| 267 __ mov(kSavedValueRegister, | 274 } else if (cgen_->IsInteger32Constant(constant_source)) { |
| 268 Operand(cgen_->ToRepresentation(constant_source, r))); | 275 __ Mov(kSavedValue, cgen_->ToInteger32(constant_source)); |
| 269 } else { | 276 } else { |
| 270 __ Move(kSavedValueRegister, | 277 __ LoadObject(kSavedValue, cgen_->ToHandle(constant_source)); |
| 271 cgen_->ToHandle(constant_source)); | |
| 272 } | 278 } |
| 273 __ str(kSavedValueRegister, cgen_->ToMemOperand(destination)); | 279 __ Str(kSavedValue, cgen_->ToMemOperand(destination)); |
| 274 } | 280 } |
| 275 | 281 |
| 276 } else if (source->IsDoubleRegister()) { | 282 } else if (source->IsDoubleRegister()) { |
| 277 DwVfpRegister source_register = cgen_->ToDoubleRegister(source); | 283 DoubleRegister src = cgen_->ToDoubleRegister(source); |
| 278 if (destination->IsDoubleRegister()) { | 284 if (destination->IsDoubleRegister()) { |
| 279 __ vmov(cgen_->ToDoubleRegister(destination), source_register); | 285 __ Fmov(cgen_->ToDoubleRegister(destination), src); |
| 280 } else { | 286 } else { |
| 281 ASSERT(destination->IsDoubleStackSlot()); | 287 ASSERT(destination->IsDoubleStackSlot()); |
| 282 __ vstr(source_register, cgen_->ToMemOperand(destination)); | 288 __ Str(src, cgen_->ToMemOperand(destination)); |
| 283 } | 289 } |
| 284 | 290 |
| 285 } else if (source->IsDoubleStackSlot()) { | 291 } else if (source->IsDoubleStackSlot()) { |
| 286 MemOperand source_operand = cgen_->ToMemOperand(source); | 292 MemOperand src = cgen_->ToMemOperand(source); |
| 287 if (destination->IsDoubleRegister()) { | 293 if (destination->IsDoubleRegister()) { |
| 288 __ vldr(cgen_->ToDoubleRegister(destination), source_operand); | 294 __ Ldr(cgen_->ToDoubleRegister(destination), src); |
| 289 } else { | 295 } else { |
| 290 ASSERT(destination->IsDoubleStackSlot()); | 296 ASSERT(destination->IsDoubleStackSlot()); |
| 291 MemOperand destination_operand = cgen_->ToMemOperand(destination); | 297 EmitStackSlotMove(index); |
| 292 if (in_cycle_) { | |
| 293 // kSavedDoubleValueRegister was used to break the cycle, | |
| 294 // but kSavedValueRegister is free. | |
| 295 MemOperand source_high_operand = | |
| 296 cgen_->ToHighMemOperand(source); | |
| 297 MemOperand destination_high_operand = | |
| 298 cgen_->ToHighMemOperand(destination); | |
| 299 __ ldr(kSavedValueRegister, source_operand); | |
| 300 __ str(kSavedValueRegister, destination_operand); | |
| 301 __ ldr(kSavedValueRegister, source_high_operand); | |
| 302 __ str(kSavedValueRegister, destination_high_operand); | |
| 303 } else { | |
| 304 __ vldr(kScratchDoubleReg, source_operand); | |
| 305 __ vstr(kScratchDoubleReg, destination_operand); | |
| 306 } | |
| 307 } | 298 } |
| 299 |
| 308 } else { | 300 } else { |
| 309 UNREACHABLE(); | 301 UNREACHABLE(); |
| 310 } | 302 } |
| 311 | 303 |
| 304 // The move has been emitted, we can eliminate it. |
| 312 moves_[index].Eliminate(); | 305 moves_[index].Eliminate(); |
| 313 } | 306 } |
| 314 | 307 |
| 315 | 308 |
| 316 #undef __ | 309 void LGapResolver::EmitStackSlotMove(int index) { |
| 310 // We need a temp register to perform a stack slot to stack slot move, and |
| 311 // the register must not be involved in breaking cycles. |
| 312 |
| 313 // Use the Crankshaft double scratch register as the temporary. |
| 314 DoubleRegister temp = crankshaft_fp_scratch; |
| 315 |
| 316 LOperand* src = moves_[index].source(); |
| 317 LOperand* dst = moves_[index].destination(); |
| 318 |
| 319 ASSERT(src->IsStackSlot()); |
| 320 ASSERT(dst->IsStackSlot()); |
| 321 __ Ldr(temp, cgen_->ToMemOperand(src)); |
| 322 __ Str(temp, cgen_->ToMemOperand(dst)); |
| 323 } |
| 317 | 324 |
| 318 } } // namespace v8::internal | 325 } } // namespace v8::internal |
| OLD | NEW |