OLD | NEW |
(Empty) | |
| 1 // Copyright 2013 the V8 project authors. All rights reserved. |
| 2 // |
| 3 // Redistribution and use in source and binary forms, with or without |
| 4 // modification, are permitted provided that the following conditions are |
| 5 // met: |
| 6 // |
| 7 // * Redistributions of source code must retain the above copyright |
| 8 // notice, this list of conditions and the following disclaimer. |
| 9 // * Redistributions in binary form must reproduce the above |
| 10 // copyright notice, this list of conditions and the following |
| 11 // disclaimer in the documentation and/or other materials provided |
| 12 // with the distribution. |
| 13 // * Neither the name of Google Inc. nor the names of its |
| 14 // contributors may be used to endorse or promote products derived |
| 15 // from this software without specific prior written permission. |
| 16 // |
| 17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 18 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 19 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 20 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 21 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 22 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 23 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 24 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 25 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 26 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 27 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 28 |
| 29 #include "v8.h" |
| 30 |
| 31 #if V8_TARGET_ARCH_A64 |
| 32 |
| 33 #define A64_DEFINE_REG_STATICS |
| 34 |
| 35 #include "a64/assembler-a64-inl.h" |
| 36 |
| 37 namespace v8 { |
| 38 namespace internal { |
| 39 |
| 40 |
| 41 // ----------------------------------------------------------------------------- |
| 42 // CpuFeatures utilities (for V8 compatibility). |
| 43 |
| 44 ExternalReference ExternalReference::cpu_features() { |
| 45 return ExternalReference(&CpuFeatures::supported_); |
| 46 } |
| 47 |
| 48 |
| 49 // ----------------------------------------------------------------------------- |
| 50 // CPURegList utilities. |
| 51 |
| 52 CPURegister CPURegList::PopLowestIndex() { |
| 53 ASSERT(IsValid()); |
| 54 if (IsEmpty()) { |
| 55 return NoCPUReg; |
| 56 } |
| 57 int index = CountTrailingZeros(list_, kRegListSizeInBits); |
| 58 ASSERT((1 << index) & list_); |
| 59 Remove(index); |
| 60 return CPURegister::Create(index, size_, type_); |
| 61 } |
| 62 |
| 63 |
| 64 CPURegister CPURegList::PopHighestIndex() { |
| 65 ASSERT(IsValid()); |
| 66 if (IsEmpty()) { |
| 67 return NoCPUReg; |
| 68 } |
| 69 int index = CountLeadingZeros(list_, kRegListSizeInBits); |
| 70 index = kRegListSizeInBits - 1 - index; |
| 71 ASSERT((1 << index) & list_); |
| 72 Remove(index); |
| 73 return CPURegister::Create(index, size_, type_); |
| 74 } |
| 75 |
| 76 |
| 77 void CPURegList::RemoveCalleeSaved() { |
| 78 if (type() == CPURegister::kRegister) { |
| 79 Remove(GetCalleeSaved(RegisterSizeInBits())); |
| 80 } else if (type() == CPURegister::kFPRegister) { |
| 81 Remove(GetCalleeSavedFP(RegisterSizeInBits())); |
| 82 } else { |
| 83 ASSERT(type() == CPURegister::kNoRegister); |
| 84 ASSERT(IsEmpty()); |
| 85 // The list must already be empty, so do nothing. |
| 86 } |
| 87 } |
| 88 |
| 89 |
| 90 CPURegList CPURegList::GetCalleeSaved(unsigned size) { |
| 91 return CPURegList(CPURegister::kRegister, size, 19, 29); |
| 92 } |
| 93 |
| 94 |
| 95 CPURegList CPURegList::GetCalleeSavedFP(unsigned size) { |
| 96 return CPURegList(CPURegister::kFPRegister, size, 8, 15); |
| 97 } |
| 98 |
| 99 |
| 100 CPURegList CPURegList::GetCallerSaved(unsigned size) { |
| 101 // Registers x0-x18 and lr (x30) are caller-saved. |
| 102 CPURegList list = CPURegList(CPURegister::kRegister, size, 0, 18); |
| 103 list.Combine(lr); |
| 104 return list; |
| 105 } |
| 106 |
| 107 |
| 108 CPURegList CPURegList::GetCallerSavedFP(unsigned size) { |
| 109 // Registers d0-d7 and d16-d31 are caller-saved. |
| 110 CPURegList list = CPURegList(CPURegister::kFPRegister, size, 0, 7); |
| 111 list.Combine(CPURegList(CPURegister::kFPRegister, size, 16, 31)); |
| 112 return list; |
| 113 } |
| 114 |
| 115 |
| 116 // This function defines the list of registers which are associated with a |
| 117 // safepoint slot. Safepoint register slots are saved contiguously on the stack. |
| 118 // MacroAssembler::SafepointRegisterStackIndex handles mapping from register |
| 119 // code to index in the safepoint register slots. Any change here can affect |
| 120 // this mapping. |
| 121 CPURegList CPURegList::GetSafepointSavedRegisters() { |
| 122 CPURegList list = CPURegList::GetCalleeSaved(); |
| 123 list.Combine(CPURegList(CPURegister::kRegister, kXRegSize, kJSCallerSaved)); |
| 124 |
| 125 // Note that unfortunately we can't use symbolic names for registers and have |
| 126 // to directly use register codes. This is because this function is used to |
| 127 // initialize some static variables and we can't rely on register variables |
| 128 // to be initialized due to static initialization order issues in C++. |
| 129 |
| 130 // Drop ip0 and ip1 (i.e. x16 and x17), as they should not be expected to be |
| 131 // preserved outside of the macro assembler. |
| 132 list.Remove(16); |
| 133 list.Remove(17); |
| 134 |
| 135 // Add x18 to the safepoint list, as although it's not in kJSCallerSaved, it |
| 136 // is a caller-saved register according to the procedure call standard. |
| 137 list.Combine(18); |
| 138 |
| 139 // Drop jssp as the stack pointer doesn't need to be included. |
| 140 list.Remove(28); |
| 141 |
| 142 // Add the link register (x30) to the safepoint list. |
| 143 list.Combine(30); |
| 144 |
| 145 return list; |
| 146 } |
| 147 |
| 148 |
| 149 // ----------------------------------------------------------------------------- |
| 150 // Implementation of RelocInfo |
| 151 |
| 152 const int RelocInfo::kApplyMask = 0; |
| 153 |
| 154 |
| 155 bool RelocInfo::IsCodedSpecially() { |
| 156 // The deserializer needs to know whether a pointer is specially coded. Being |
| 157 // specially coded on A64 means that it is a movz/movk sequence. We don't |
| 158 // generate those for relocatable pointers. |
| 159 return false; |
| 160 } |
| 161 |
| 162 |
| 163 void RelocInfo::PatchCode(byte* instructions, int instruction_count) { |
| 164 // Patch the code at the current address with the supplied instructions. |
| 165 Instr* pc = reinterpret_cast<Instr*>(pc_); |
| 166 Instr* instr = reinterpret_cast<Instr*>(instructions); |
| 167 for (int i = 0; i < instruction_count; i++) { |
| 168 *(pc + i) = *(instr + i); |
| 169 } |
| 170 |
| 171 // Indicate that code has changed. |
| 172 CPU::FlushICache(pc_, instruction_count * kInstructionSize); |
| 173 } |
| 174 |
| 175 |
| 176 // Patch the code at the current PC with a call to the target address. |
| 177 // Additional guard instructions can be added if required. |
| 178 void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) { |
| 179 UNIMPLEMENTED(); |
| 180 } |
| 181 |
| 182 |
| 183 bool AreAliased(const CPURegister& reg1, const CPURegister& reg2, |
| 184 const CPURegister& reg3, const CPURegister& reg4, |
| 185 const CPURegister& reg5, const CPURegister& reg6, |
| 186 const CPURegister& reg7, const CPURegister& reg8) { |
| 187 int number_of_valid_regs = 0; |
| 188 int number_of_valid_fpregs = 0; |
| 189 |
| 190 RegList unique_regs = 0; |
| 191 RegList unique_fpregs = 0; |
| 192 |
| 193 const CPURegister regs[] = {reg1, reg2, reg3, reg4, reg5, reg6, reg7, reg8}; |
| 194 |
| 195 for (unsigned i = 0; i < sizeof(regs) / sizeof(regs[0]); i++) { |
| 196 if (regs[i].IsRegister()) { |
| 197 number_of_valid_regs++; |
| 198 unique_regs |= regs[i].Bit(); |
| 199 } else if (regs[i].IsFPRegister()) { |
| 200 number_of_valid_fpregs++; |
| 201 unique_fpregs |= regs[i].Bit(); |
| 202 } else { |
| 203 ASSERT(!regs[i].IsValid()); |
| 204 } |
| 205 } |
| 206 |
| 207 int number_of_unique_regs = |
| 208 CountSetBits(unique_regs, sizeof(unique_regs) * kBitsPerByte); |
| 209 int number_of_unique_fpregs = |
| 210 CountSetBits(unique_fpregs, sizeof(unique_fpregs) * kBitsPerByte); |
| 211 |
| 212 ASSERT(number_of_valid_regs >= number_of_unique_regs); |
| 213 ASSERT(number_of_valid_fpregs >= number_of_unique_fpregs); |
| 214 |
| 215 return (number_of_valid_regs != number_of_unique_regs) || |
| 216 (number_of_valid_fpregs != number_of_unique_fpregs); |
| 217 } |
| 218 |
| 219 |
| 220 bool AreSameSizeAndType(const CPURegister& reg1, const CPURegister& reg2, |
| 221 const CPURegister& reg3, const CPURegister& reg4, |
| 222 const CPURegister& reg5, const CPURegister& reg6, |
| 223 const CPURegister& reg7, const CPURegister& reg8) { |
| 224 ASSERT(reg1.IsValid()); |
| 225 bool match = true; |
| 226 match &= !reg2.IsValid() || reg2.IsSameSizeAndType(reg1); |
| 227 match &= !reg3.IsValid() || reg3.IsSameSizeAndType(reg1); |
| 228 match &= !reg4.IsValid() || reg4.IsSameSizeAndType(reg1); |
| 229 match &= !reg5.IsValid() || reg5.IsSameSizeAndType(reg1); |
| 230 match &= !reg6.IsValid() || reg6.IsSameSizeAndType(reg1); |
| 231 match &= !reg7.IsValid() || reg7.IsSameSizeAndType(reg1); |
| 232 match &= !reg8.IsValid() || reg8.IsSameSizeAndType(reg1); |
| 233 return match; |
| 234 } |
| 235 |
| 236 |
| 237 Operand::Operand(const ExternalReference& f) |
| 238 : immediate_(reinterpret_cast<intptr_t>(f.address())), |
| 239 reg_(NoReg), |
| 240 rmode_(RelocInfo::EXTERNAL_REFERENCE) {} |
| 241 |
| 242 |
| 243 Operand::Operand(Handle<Object> handle) : reg_(NoReg) { |
| 244 AllowDeferredHandleDereference using_raw_address; |
| 245 |
| 246 // Verify all Objects referred by code are NOT in new space. |
| 247 Object* obj = *handle; |
| 248 if (obj->IsHeapObject()) { |
| 249 ASSERT(!HeapObject::cast(obj)->GetHeap()->InNewSpace(obj)); |
| 250 immediate_ = reinterpret_cast<intptr_t>(handle.location()); |
| 251 rmode_ = RelocInfo::EMBEDDED_OBJECT; |
| 252 } else { |
| 253 STATIC_ASSERT(sizeof(intptr_t) == sizeof(int64_t)); |
| 254 immediate_ = reinterpret_cast<intptr_t>(obj); |
| 255 rmode_ = RelocInfo::NONE64; |
| 256 } |
| 257 } |
| 258 |
| 259 |
| 260 bool Operand::NeedsRelocation() const { |
| 261 if (rmode_ == RelocInfo::EXTERNAL_REFERENCE) { |
| 262 #ifdef DEBUG |
| 263 if (!Serializer::enabled()) { |
| 264 Serializer::TooLateToEnableNow(); |
| 265 } |
| 266 #endif |
| 267 return Serializer::enabled(); |
| 268 } |
| 269 |
| 270 return !RelocInfo::IsNone(rmode_); |
| 271 } |
| 272 |
| 273 |
| 274 // Assembler |
| 275 |
| 276 Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size) |
| 277 : AssemblerBase(isolate, buffer, buffer_size), |
| 278 recorded_ast_id_(TypeFeedbackId::None()), |
| 279 positions_recorder_(this) { |
| 280 const_pool_blocked_nesting_ = 0; |
| 281 Reset(); |
| 282 } |
| 283 |
| 284 |
| 285 Assembler::~Assembler() { |
| 286 ASSERT(num_pending_reloc_info_ == 0); |
| 287 ASSERT(const_pool_blocked_nesting_ == 0); |
| 288 } |
| 289 |
| 290 |
| 291 void Assembler::Reset() { |
| 292 #ifdef DEBUG |
| 293 ASSERT((pc_ >= buffer_) && (pc_ < buffer_ + buffer_size_)); |
| 294 ASSERT(const_pool_blocked_nesting_ == 0); |
| 295 memset(buffer_, 0, pc_ - buffer_); |
| 296 #endif |
| 297 pc_ = buffer_; |
| 298 reloc_info_writer.Reposition(reinterpret_cast<byte*>(buffer_ + buffer_size_), |
| 299 reinterpret_cast<byte*>(pc_)); |
| 300 num_pending_reloc_info_ = 0; |
| 301 next_buffer_check_ = 0; |
| 302 no_const_pool_before_ = 0; |
| 303 first_const_pool_use_ = -1; |
| 304 ClearRecordedAstId(); |
| 305 } |
| 306 |
| 307 |
| 308 void Assembler::GetCode(CodeDesc* desc) { |
| 309 // Emit constant pool if necessary. |
| 310 CheckConstPool(true, false); |
| 311 ASSERT(num_pending_reloc_info_ == 0); |
| 312 |
| 313 // Set up code descriptor. |
| 314 if (desc) { |
| 315 desc->buffer = reinterpret_cast<byte*>(buffer_); |
| 316 desc->buffer_size = buffer_size_; |
| 317 desc->instr_size = pc_offset(); |
| 318 desc->reloc_size = (reinterpret_cast<byte*>(buffer_) + buffer_size_) - |
| 319 reloc_info_writer.pos(); |
| 320 desc->origin = this; |
| 321 } |
| 322 } |
| 323 |
| 324 |
| 325 void Assembler::Align(int m) { |
| 326 ASSERT(m >= 4 && IsPowerOf2(m)); |
| 327 while ((pc_offset() & (m - 1)) != 0) { |
| 328 nop(); |
| 329 } |
| 330 } |
| 331 |
| 332 |
| 333 void Assembler::CheckLabelLinkChain(Label const * label) { |
| 334 #ifdef DEBUG |
| 335 if (label->is_linked()) { |
| 336 int linkoffset = label->pos(); |
| 337 bool start_of_chain = false; |
| 338 while (!start_of_chain) { |
| 339 Instruction * link = InstructionAt(linkoffset); |
| 340 int linkpcoffset = link->ImmPCOffset(); |
| 341 int prevlinkoffset = linkoffset + linkpcoffset; |
| 342 |
| 343 start_of_chain = (linkoffset == prevlinkoffset); |
| 344 linkoffset = linkoffset + linkpcoffset; |
| 345 } |
| 346 } |
| 347 #endif |
| 348 } |
| 349 |
| 350 |
| 351 void Assembler::bind(Label* label) { |
| 352 // Bind label to the address at pc_. All instructions (most likely branches) |
| 353 // that are linked to this label will be updated to point to the newly-bound |
| 354 // label. |
| 355 |
| 356 ASSERT(!label->is_near_linked()); |
| 357 ASSERT(!label->is_bound()); |
| 358 |
| 359 // If the label is linked, the link chain looks something like this: |
| 360 // |
| 361 // |--I----I-------I-------L |
| 362 // |---------------------->| pc_offset |
| 363 // |-------------->| linkoffset = label->pos() |
| 364 // |<------| link->ImmPCOffset() |
| 365 // |------>| prevlinkoffset = linkoffset + link->ImmPCOffset() |
| 366 // |
| 367 // On each iteration, the last link is updated and then removed from the |
| 368 // chain until only one remains. At that point, the label is bound. |
| 369 // |
| 370 // If the label is not linked, no preparation is required before binding. |
| 371 while (label->is_linked()) { |
| 372 int linkoffset = label->pos(); |
| 373 Instruction* link = InstructionAt(linkoffset); |
| 374 int prevlinkoffset = linkoffset + link->ImmPCOffset(); |
| 375 |
| 376 CheckLabelLinkChain(label); |
| 377 |
| 378 ASSERT(linkoffset >= 0); |
| 379 ASSERT(linkoffset < pc_offset()); |
| 380 ASSERT((linkoffset > prevlinkoffset) || |
| 381 (linkoffset - prevlinkoffset == kStartOfLabelLinkChain)); |
| 382 ASSERT(prevlinkoffset >= 0); |
| 383 |
| 384 // Update the link to point to the label. |
| 385 link->SetImmPCOffsetTarget(reinterpret_cast<Instruction*>(pc_)); |
| 386 |
| 387 // Link the label to the previous link in the chain. |
| 388 if (linkoffset - prevlinkoffset == kStartOfLabelLinkChain) { |
| 389 // We hit kStartOfLabelLinkChain, so the chain is fully processed. |
| 390 label->Unuse(); |
| 391 } else { |
| 392 // Update the label for the next iteration. |
| 393 label->link_to(prevlinkoffset); |
| 394 } |
| 395 } |
| 396 label->bind_to(pc_offset()); |
| 397 |
| 398 ASSERT(label->is_bound()); |
| 399 ASSERT(!label->is_linked()); |
| 400 } |
| 401 |
| 402 |
| 403 int Assembler::LinkAndGetByteOffsetTo(Label* label) { |
| 404 ASSERT(sizeof(*pc_) == 1); |
| 405 CheckLabelLinkChain(label); |
| 406 |
| 407 int offset; |
| 408 if (label->is_bound()) { |
| 409 // The label is bound, so it does not need to be updated. Referring |
| 410 // instructions must link directly to the label as they will not be |
| 411 // updated. |
| 412 // |
| 413 // In this case, label->pos() returns the offset of the label from the |
| 414 // start of the buffer. |
| 415 // |
| 416 // Note that offset can be zero for self-referential instructions. (This |
| 417 // could be useful for ADR, for example.) |
| 418 offset = label->pos() - pc_offset(); |
| 419 ASSERT(offset <= 0); |
| 420 } else { |
| 421 if (label->is_linked()) { |
| 422 // The label is linked, so the referring instruction should be added onto |
| 423 // the end of the label's link chain. |
| 424 // |
| 425 // In this case, label->pos() returns the offset of the last linked |
| 426 // instruction from the start of the buffer. |
| 427 offset = label->pos() - pc_offset(); |
| 428 ASSERT(offset != kStartOfLabelLinkChain); |
| 429 // Note that the offset here needs to be PC-relative only so that the |
| 430 // first instruction in a buffer can link to an unbound label. Otherwise, |
| 431 // the offset would be 0 for this case, and 0 is reserved for |
| 432 // kStartOfLabelLinkChain. |
| 433 } else { |
| 434 // The label is unused, so it now becomes linked and the referring |
| 435 // instruction is at the start of the new link chain. |
| 436 offset = kStartOfLabelLinkChain; |
| 437 } |
| 438 // The instruction at pc is now the last link in the label's chain. |
| 439 label->link_to(pc_offset()); |
| 440 } |
| 441 |
| 442 return offset; |
| 443 } |
| 444 |
| 445 |
| 446 void Assembler::StartBlockConstPool() { |
| 447 if (const_pool_blocked_nesting_++ == 0) { |
| 448 // Prevent constant pool checks happening by setting the next check to |
| 449 // the biggest possible offset. |
| 450 next_buffer_check_ = kMaxInt; |
| 451 } |
| 452 } |
| 453 |
| 454 |
| 455 void Assembler::EndBlockConstPool() { |
| 456 if (--const_pool_blocked_nesting_ == 0) { |
| 457 // Check the constant pool hasn't been blocked for too long. |
| 458 ASSERT((num_pending_reloc_info_ == 0) || |
| 459 (pc_offset() < (first_const_pool_use_ + kMaxDistToPool))); |
| 460 // Two cases: |
| 461 // * no_const_pool_before_ >= next_buffer_check_ and the emission is |
| 462 // still blocked |
| 463 // * no_const_pool_before_ < next_buffer_check_ and the next emit will |
| 464 // trigger a check. |
| 465 next_buffer_check_ = no_const_pool_before_; |
| 466 } |
| 467 } |
| 468 |
| 469 |
| 470 bool Assembler::is_const_pool_blocked() const { |
| 471 return (const_pool_blocked_nesting_ > 0) || |
| 472 (pc_offset() < no_const_pool_before_); |
| 473 } |
| 474 |
| 475 |
| 476 bool Assembler::IsConstantPoolAt(Instruction* instr) { |
| 477 // The constant pool marker is made of two instructions. These instructions |
| 478 // will never be emitted by the JIT, so checking for the first one is enough: |
| 479 // 0: ldr xzr, #<size of pool> |
| 480 bool result = instr->IsLdrLiteralX() && (instr->Rt() == xzr.code()); |
| 481 |
| 482 // It is still worth asserting the marker is complete. |
| 483 // 4: blr xzr |
| 484 ASSERT(!result || (instr->following()->IsBranchAndLinkToRegister() && |
| 485 instr->following()->Rn() == xzr.code())); |
| 486 |
| 487 return result; |
| 488 } |
| 489 |
| 490 |
| 491 int Assembler::ConstantPoolSizeAt(Instruction* instr) { |
| 492 if (IsConstantPoolAt(instr)) { |
| 493 return instr->ImmLLiteral(); |
| 494 } else { |
| 495 return -1; |
| 496 } |
| 497 } |
| 498 |
| 499 |
| 500 void Assembler::ConstantPoolMarker(uint32_t size) { |
| 501 ASSERT(is_const_pool_blocked()); |
| 502 // + 1 is for the crash guard. |
| 503 Emit(LDR_x_lit | ImmLLiteral(2 * size + 1) | Rt(xzr)); |
| 504 } |
| 505 |
| 506 |
| 507 void Assembler::ConstantPoolGuard() { |
| 508 #ifdef DEBUG |
| 509 // Currently this is only used after a constant pool marker. |
| 510 ASSERT(is_const_pool_blocked()); |
| 511 Instruction* instr = reinterpret_cast<Instruction*>(pc_); |
| 512 ASSERT(instr->preceding()->IsLdrLiteralX() && |
| 513 instr->preceding()->Rt() == xzr.code()); |
| 514 #endif |
| 515 |
| 516 // Crash by branching to 0. lr now points near the fault. |
| 517 // TODO(all): update the simulator to trap this pattern. |
| 518 Emit(BLR | Rn(xzr)); |
| 519 } |
| 520 |
| 521 |
| 522 void Assembler::br(const Register& xn) { |
| 523 positions_recorder()->WriteRecordedPositions(); |
| 524 ASSERT(xn.Is64Bits()); |
| 525 Emit(BR | Rn(xn)); |
| 526 } |
| 527 |
| 528 |
| 529 void Assembler::blr(const Register& xn) { |
| 530 positions_recorder()->WriteRecordedPositions(); |
| 531 ASSERT(xn.Is64Bits()); |
| 532 // The pattern 'blr xzr' is used as a guard to detect when execution falls |
| 533 // through the constant pool. It should not be emitted. |
| 534 ASSERT(!xn.Is(xzr)); |
| 535 Emit(BLR | Rn(xn)); |
| 536 } |
| 537 |
| 538 |
| 539 void Assembler::ret(const Register& xn) { |
| 540 positions_recorder()->WriteRecordedPositions(); |
| 541 ASSERT(xn.Is64Bits()); |
| 542 Emit(RET | Rn(xn)); |
| 543 } |
| 544 |
| 545 |
| 546 void Assembler::b(int imm26) { |
| 547 Emit(B | ImmUncondBranch(imm26)); |
| 548 } |
| 549 |
| 550 |
| 551 void Assembler::b(Label* label) { |
| 552 positions_recorder()->WriteRecordedPositions(); |
| 553 b(LinkAndGetInstructionOffsetTo(label)); |
| 554 } |
| 555 |
| 556 |
| 557 void Assembler::b(int imm19, Condition cond) { |
| 558 Emit(B_cond | ImmCondBranch(imm19) | cond); |
| 559 } |
| 560 |
| 561 |
| 562 void Assembler::b(Label* label, Condition cond) { |
| 563 positions_recorder()->WriteRecordedPositions(); |
| 564 b(LinkAndGetInstructionOffsetTo(label), cond); |
| 565 } |
| 566 |
| 567 |
| 568 void Assembler::bl(int imm26) { |
| 569 positions_recorder()->WriteRecordedPositions(); |
| 570 Emit(BL | ImmUncondBranch(imm26)); |
| 571 } |
| 572 |
| 573 |
| 574 void Assembler::bl(Label* label) { |
| 575 positions_recorder()->WriteRecordedPositions(); |
| 576 bl(LinkAndGetInstructionOffsetTo(label)); |
| 577 } |
| 578 |
| 579 |
| 580 void Assembler::cbz(const Register& rt, |
| 581 int imm19) { |
| 582 positions_recorder()->WriteRecordedPositions(); |
| 583 Emit(SF(rt) | CBZ | ImmCmpBranch(imm19) | Rt(rt)); |
| 584 } |
| 585 |
| 586 |
| 587 void Assembler::cbz(const Register& rt, |
| 588 Label* label) { |
| 589 positions_recorder()->WriteRecordedPositions(); |
| 590 cbz(rt, LinkAndGetInstructionOffsetTo(label)); |
| 591 } |
| 592 |
| 593 |
| 594 void Assembler::cbnz(const Register& rt, |
| 595 int imm19) { |
| 596 positions_recorder()->WriteRecordedPositions(); |
| 597 Emit(SF(rt) | CBNZ | ImmCmpBranch(imm19) | Rt(rt)); |
| 598 } |
| 599 |
| 600 |
| 601 void Assembler::cbnz(const Register& rt, |
| 602 Label* label) { |
| 603 positions_recorder()->WriteRecordedPositions(); |
| 604 cbnz(rt, LinkAndGetInstructionOffsetTo(label)); |
| 605 } |
| 606 |
| 607 |
| 608 void Assembler::tbz(const Register& rt, |
| 609 unsigned bit_pos, |
| 610 int imm14) { |
| 611 positions_recorder()->WriteRecordedPositions(); |
| 612 ASSERT(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSize))); |
| 613 Emit(TBZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt)); |
| 614 } |
| 615 |
| 616 |
| 617 void Assembler::tbz(const Register& rt, |
| 618 unsigned bit_pos, |
| 619 Label* label) { |
| 620 positions_recorder()->WriteRecordedPositions(); |
| 621 tbz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label)); |
| 622 } |
| 623 |
| 624 |
| 625 void Assembler::tbnz(const Register& rt, |
| 626 unsigned bit_pos, |
| 627 int imm14) { |
| 628 positions_recorder()->WriteRecordedPositions(); |
| 629 ASSERT(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSize))); |
| 630 Emit(TBNZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt)); |
| 631 } |
| 632 |
| 633 |
| 634 void Assembler::tbnz(const Register& rt, |
| 635 unsigned bit_pos, |
| 636 Label* label) { |
| 637 positions_recorder()->WriteRecordedPositions(); |
| 638 tbnz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label)); |
| 639 } |
| 640 |
| 641 |
| 642 void Assembler::adr(const Register& rd, int imm21) { |
| 643 ASSERT(rd.Is64Bits()); |
| 644 Emit(ADR | ImmPCRelAddress(imm21) | Rd(rd)); |
| 645 } |
| 646 |
| 647 |
| 648 void Assembler::adr(const Register& rd, Label* label) { |
| 649 adr(rd, LinkAndGetByteOffsetTo(label)); |
| 650 } |
| 651 |
| 652 |
| 653 void Assembler::add(const Register& rd, |
| 654 const Register& rn, |
| 655 const Operand& operand) { |
| 656 AddSub(rd, rn, operand, LeaveFlags, ADD); |
| 657 } |
| 658 |
| 659 |
| 660 void Assembler::adds(const Register& rd, |
| 661 const Register& rn, |
| 662 const Operand& operand) { |
| 663 AddSub(rd, rn, operand, SetFlags, ADD); |
| 664 } |
| 665 |
| 666 |
| 667 void Assembler::cmn(const Register& rn, |
| 668 const Operand& operand) { |
| 669 Register zr = AppropriateZeroRegFor(rn); |
| 670 adds(zr, rn, operand); |
| 671 } |
| 672 |
| 673 |
| 674 void Assembler::sub(const Register& rd, |
| 675 const Register& rn, |
| 676 const Operand& operand) { |
| 677 AddSub(rd, rn, operand, LeaveFlags, SUB); |
| 678 } |
| 679 |
| 680 |
| 681 void Assembler::subs(const Register& rd, |
| 682 const Register& rn, |
| 683 const Operand& operand) { |
| 684 AddSub(rd, rn, operand, SetFlags, SUB); |
| 685 } |
| 686 |
| 687 |
| 688 void Assembler::cmp(const Register& rn, const Operand& operand) { |
| 689 Register zr = AppropriateZeroRegFor(rn); |
| 690 subs(zr, rn, operand); |
| 691 } |
| 692 |
| 693 |
| 694 void Assembler::neg(const Register& rd, const Operand& operand) { |
| 695 Register zr = AppropriateZeroRegFor(rd); |
| 696 sub(rd, zr, operand); |
| 697 } |
| 698 |
| 699 |
| 700 void Assembler::negs(const Register& rd, const Operand& operand) { |
| 701 Register zr = AppropriateZeroRegFor(rd); |
| 702 subs(rd, zr, operand); |
| 703 } |
| 704 |
| 705 |
| 706 void Assembler::adc(const Register& rd, |
| 707 const Register& rn, |
| 708 const Operand& operand) { |
| 709 AddSubWithCarry(rd, rn, operand, LeaveFlags, ADC); |
| 710 } |
| 711 |
| 712 |
| 713 void Assembler::adcs(const Register& rd, |
| 714 const Register& rn, |
| 715 const Operand& operand) { |
| 716 AddSubWithCarry(rd, rn, operand, SetFlags, ADC); |
| 717 } |
| 718 |
| 719 |
| 720 void Assembler::sbc(const Register& rd, |
| 721 const Register& rn, |
| 722 const Operand& operand) { |
| 723 AddSubWithCarry(rd, rn, operand, LeaveFlags, SBC); |
| 724 } |
| 725 |
| 726 |
| 727 void Assembler::sbcs(const Register& rd, |
| 728 const Register& rn, |
| 729 const Operand& operand) { |
| 730 AddSubWithCarry(rd, rn, operand, SetFlags, SBC); |
| 731 } |
| 732 |
| 733 |
| 734 void Assembler::ngc(const Register& rd, const Operand& operand) { |
| 735 Register zr = AppropriateZeroRegFor(rd); |
| 736 sbc(rd, zr, operand); |
| 737 } |
| 738 |
| 739 |
| 740 void Assembler::ngcs(const Register& rd, const Operand& operand) { |
| 741 Register zr = AppropriateZeroRegFor(rd); |
| 742 sbcs(rd, zr, operand); |
| 743 } |
| 744 |
| 745 |
| 746 // Logical instructions. |
| 747 void Assembler::and_(const Register& rd, |
| 748 const Register& rn, |
| 749 const Operand& operand) { |
| 750 Logical(rd, rn, operand, AND); |
| 751 } |
| 752 |
| 753 |
| 754 void Assembler::ands(const Register& rd, |
| 755 const Register& rn, |
| 756 const Operand& operand) { |
| 757 Logical(rd, rn, operand, ANDS); |
| 758 } |
| 759 |
| 760 |
| 761 void Assembler::tst(const Register& rn, |
| 762 const Operand& operand) { |
| 763 ands(AppropriateZeroRegFor(rn), rn, operand); |
| 764 } |
| 765 |
| 766 |
| 767 void Assembler::bic(const Register& rd, |
| 768 const Register& rn, |
| 769 const Operand& operand) { |
| 770 Logical(rd, rn, operand, BIC); |
| 771 } |
| 772 |
| 773 |
| 774 void Assembler::bics(const Register& rd, |
| 775 const Register& rn, |
| 776 const Operand& operand) { |
| 777 Logical(rd, rn, operand, BICS); |
| 778 } |
| 779 |
| 780 |
| 781 void Assembler::orr(const Register& rd, |
| 782 const Register& rn, |
| 783 const Operand& operand) { |
| 784 Logical(rd, rn, operand, ORR); |
| 785 } |
| 786 |
| 787 |
| 788 void Assembler::orn(const Register& rd, |
| 789 const Register& rn, |
| 790 const Operand& operand) { |
| 791 Logical(rd, rn, operand, ORN); |
| 792 } |
| 793 |
| 794 |
| 795 void Assembler::eor(const Register& rd, |
| 796 const Register& rn, |
| 797 const Operand& operand) { |
| 798 Logical(rd, rn, operand, EOR); |
| 799 } |
| 800 |
| 801 |
| 802 void Assembler::eon(const Register& rd, |
| 803 const Register& rn, |
| 804 const Operand& operand) { |
| 805 Logical(rd, rn, operand, EON); |
| 806 } |
| 807 |
| 808 |
| 809 void Assembler::lslv(const Register& rd, |
| 810 const Register& rn, |
| 811 const Register& rm) { |
| 812 ASSERT(rd.SizeInBits() == rn.SizeInBits()); |
| 813 ASSERT(rd.SizeInBits() == rm.SizeInBits()); |
| 814 Emit(SF(rd) | LSLV | Rm(rm) | Rn(rn) | Rd(rd)); |
| 815 } |
| 816 |
| 817 |
| 818 void Assembler::lsrv(const Register& rd, |
| 819 const Register& rn, |
| 820 const Register& rm) { |
| 821 ASSERT(rd.SizeInBits() == rn.SizeInBits()); |
| 822 ASSERT(rd.SizeInBits() == rm.SizeInBits()); |
| 823 Emit(SF(rd) | LSRV | Rm(rm) | Rn(rn) | Rd(rd)); |
| 824 } |
| 825 |
| 826 |
| 827 void Assembler::asrv(const Register& rd, |
| 828 const Register& rn, |
| 829 const Register& rm) { |
| 830 ASSERT(rd.SizeInBits() == rn.SizeInBits()); |
| 831 ASSERT(rd.SizeInBits() == rm.SizeInBits()); |
| 832 Emit(SF(rd) | ASRV | Rm(rm) | Rn(rn) | Rd(rd)); |
| 833 } |
| 834 |
| 835 |
| 836 void Assembler::rorv(const Register& rd, |
| 837 const Register& rn, |
| 838 const Register& rm) { |
| 839 ASSERT(rd.SizeInBits() == rn.SizeInBits()); |
| 840 ASSERT(rd.SizeInBits() == rm.SizeInBits()); |
| 841 Emit(SF(rd) | RORV | Rm(rm) | Rn(rn) | Rd(rd)); |
| 842 } |
| 843 |
| 844 |
| 845 // Bitfield operations. |
| 846 void Assembler::bfm(const Register& rd, |
| 847 const Register& rn, |
| 848 unsigned immr, |
| 849 unsigned imms) { |
| 850 ASSERT(rd.SizeInBits() == rn.SizeInBits()); |
| 851 Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset); |
| 852 Emit(SF(rd) | BFM | N | |
| 853 ImmR(immr, rd.SizeInBits()) | |
| 854 ImmS(imms, rn.SizeInBits()) | |
| 855 Rn(rn) | Rd(rd)); |
| 856 } |
| 857 |
| 858 |
| 859 void Assembler::sbfm(const Register& rd, |
| 860 const Register& rn, |
| 861 unsigned immr, |
| 862 unsigned imms) { |
| 863 ASSERT(rd.Is64Bits() || rn.Is32Bits()); |
| 864 Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset); |
| 865 Emit(SF(rd) | SBFM | N | |
| 866 ImmR(immr, rd.SizeInBits()) | |
| 867 ImmS(imms, rn.SizeInBits()) | |
| 868 Rn(rn) | Rd(rd)); |
| 869 } |
| 870 |
| 871 |
| 872 void Assembler::ubfm(const Register& rd, |
| 873 const Register& rn, |
| 874 unsigned immr, |
| 875 unsigned imms) { |
| 876 ASSERT(rd.SizeInBits() == rn.SizeInBits()); |
| 877 Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset); |
| 878 Emit(SF(rd) | UBFM | N | |
| 879 ImmR(immr, rd.SizeInBits()) | |
| 880 ImmS(imms, rn.SizeInBits()) | |
| 881 Rn(rn) | Rd(rd)); |
| 882 } |
| 883 |
| 884 |
| 885 void Assembler::extr(const Register& rd, |
| 886 const Register& rn, |
| 887 const Register& rm, |
| 888 unsigned lsb) { |
| 889 ASSERT(rd.SizeInBits() == rn.SizeInBits()); |
| 890 ASSERT(rd.SizeInBits() == rm.SizeInBits()); |
| 891 Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset); |
| 892 Emit(SF(rd) | EXTR | N | Rm(rm) | |
| 893 ImmS(lsb, rn.SizeInBits()) | Rn(rn) | Rd(rd)); |
| 894 } |
| 895 |
| 896 |
| 897 void Assembler::csel(const Register& rd, |
| 898 const Register& rn, |
| 899 const Register& rm, |
| 900 Condition cond) { |
| 901 ConditionalSelect(rd, rn, rm, cond, CSEL); |
| 902 } |
| 903 |
| 904 |
| 905 void Assembler::csinc(const Register& rd, |
| 906 const Register& rn, |
| 907 const Register& rm, |
| 908 Condition cond) { |
| 909 ConditionalSelect(rd, rn, rm, cond, CSINC); |
| 910 } |
| 911 |
| 912 |
| 913 void Assembler::csinv(const Register& rd, |
| 914 const Register& rn, |
| 915 const Register& rm, |
| 916 Condition cond) { |
| 917 ConditionalSelect(rd, rn, rm, cond, CSINV); |
| 918 } |
| 919 |
| 920 |
| 921 void Assembler::csneg(const Register& rd, |
| 922 const Register& rn, |
| 923 const Register& rm, |
| 924 Condition cond) { |
| 925 ConditionalSelect(rd, rn, rm, cond, CSNEG); |
| 926 } |
| 927 |
| 928 |
| 929 void Assembler::cset(const Register &rd, Condition cond) { |
| 930 ASSERT((cond != al) && (cond != nv)); |
| 931 Register zr = AppropriateZeroRegFor(rd); |
| 932 csinc(rd, zr, zr, InvertCondition(cond)); |
| 933 } |
| 934 |
| 935 |
| 936 void Assembler::csetm(const Register &rd, Condition cond) { |
| 937 ASSERT((cond != al) && (cond != nv)); |
| 938 Register zr = AppropriateZeroRegFor(rd); |
| 939 csinv(rd, zr, zr, InvertCondition(cond)); |
| 940 } |
| 941 |
| 942 |
| 943 void Assembler::cinc(const Register &rd, const Register &rn, Condition cond) { |
| 944 ASSERT((cond != al) && (cond != nv)); |
| 945 csinc(rd, rn, rn, InvertCondition(cond)); |
| 946 } |
| 947 |
| 948 |
| 949 void Assembler::cinv(const Register &rd, const Register &rn, Condition cond) { |
| 950 ASSERT((cond != al) && (cond != nv)); |
| 951 csinv(rd, rn, rn, InvertCondition(cond)); |
| 952 } |
| 953 |
| 954 |
| 955 void Assembler::cneg(const Register &rd, const Register &rn, Condition cond) { |
| 956 ASSERT((cond != al) && (cond != nv)); |
| 957 csneg(rd, rn, rn, InvertCondition(cond)); |
| 958 } |
| 959 |
| 960 |
| 961 void Assembler::ConditionalSelect(const Register& rd, |
| 962 const Register& rn, |
| 963 const Register& rm, |
| 964 Condition cond, |
| 965 ConditionalSelectOp op) { |
| 966 ASSERT(rd.SizeInBits() == rn.SizeInBits()); |
| 967 ASSERT(rd.SizeInBits() == rm.SizeInBits()); |
| 968 Emit(SF(rd) | op | Rm(rm) | Cond(cond) | Rn(rn) | Rd(rd)); |
| 969 } |
| 970 |
| 971 |
| 972 void Assembler::ccmn(const Register& rn, |
| 973 const Operand& operand, |
| 974 StatusFlags nzcv, |
| 975 Condition cond) { |
| 976 ConditionalCompare(rn, operand, nzcv, cond, CCMN); |
| 977 } |
| 978 |
| 979 |
| 980 void Assembler::ccmp(const Register& rn, |
| 981 const Operand& operand, |
| 982 StatusFlags nzcv, |
| 983 Condition cond) { |
| 984 ConditionalCompare(rn, operand, nzcv, cond, CCMP); |
| 985 } |
| 986 |
| 987 |
| 988 void Assembler::DataProcessing3Source(const Register& rd, |
| 989 const Register& rn, |
| 990 const Register& rm, |
| 991 const Register& ra, |
| 992 DataProcessing3SourceOp op) { |
| 993 Emit(SF(rd) | op | Rm(rm) | Ra(ra) | Rn(rn) | Rd(rd)); |
| 994 } |
| 995 |
| 996 |
| 997 void Assembler::mul(const Register& rd, |
| 998 const Register& rn, |
| 999 const Register& rm) { |
| 1000 ASSERT(AreSameSizeAndType(rd, rn, rm)); |
| 1001 Register zr = AppropriateZeroRegFor(rn); |
| 1002 DataProcessing3Source(rd, rn, rm, zr, MADD); |
| 1003 } |
| 1004 |
| 1005 |
| 1006 void Assembler::madd(const Register& rd, |
| 1007 const Register& rn, |
| 1008 const Register& rm, |
| 1009 const Register& ra) { |
| 1010 ASSERT(AreSameSizeAndType(rd, rn, rm, ra)); |
| 1011 DataProcessing3Source(rd, rn, rm, ra, MADD); |
| 1012 } |
| 1013 |
| 1014 |
| 1015 void Assembler::mneg(const Register& rd, |
| 1016 const Register& rn, |
| 1017 const Register& rm) { |
| 1018 ASSERT(AreSameSizeAndType(rd, rn, rm)); |
| 1019 Register zr = AppropriateZeroRegFor(rn); |
| 1020 DataProcessing3Source(rd, rn, rm, zr, MSUB); |
| 1021 } |
| 1022 |
| 1023 |
| 1024 void Assembler::msub(const Register& rd, |
| 1025 const Register& rn, |
| 1026 const Register& rm, |
| 1027 const Register& ra) { |
| 1028 ASSERT(AreSameSizeAndType(rd, rn, rm, ra)); |
| 1029 DataProcessing3Source(rd, rn, rm, ra, MSUB); |
| 1030 } |
| 1031 |
| 1032 |
| 1033 void Assembler::smaddl(const Register& rd, |
| 1034 const Register& rn, |
| 1035 const Register& rm, |
| 1036 const Register& ra) { |
| 1037 ASSERT(rd.Is64Bits() && ra.Is64Bits()); |
| 1038 ASSERT(rn.Is32Bits() && rm.Is32Bits()); |
| 1039 DataProcessing3Source(rd, rn, rm, ra, SMADDL_x); |
| 1040 } |
| 1041 |
| 1042 |
| 1043 void Assembler::smsubl(const Register& rd, |
| 1044 const Register& rn, |
| 1045 const Register& rm, |
| 1046 const Register& ra) { |
| 1047 ASSERT(rd.Is64Bits() && ra.Is64Bits()); |
| 1048 ASSERT(rn.Is32Bits() && rm.Is32Bits()); |
| 1049 DataProcessing3Source(rd, rn, rm, ra, SMSUBL_x); |
| 1050 } |
| 1051 |
| 1052 |
| 1053 void Assembler::umaddl(const Register& rd, |
| 1054 const Register& rn, |
| 1055 const Register& rm, |
| 1056 const Register& ra) { |
| 1057 ASSERT(rd.Is64Bits() && ra.Is64Bits()); |
| 1058 ASSERT(rn.Is32Bits() && rm.Is32Bits()); |
| 1059 DataProcessing3Source(rd, rn, rm, ra, UMADDL_x); |
| 1060 } |
| 1061 |
| 1062 |
| 1063 void Assembler::umsubl(const Register& rd, |
| 1064 const Register& rn, |
| 1065 const Register& rm, |
| 1066 const Register& ra) { |
| 1067 ASSERT(rd.Is64Bits() && ra.Is64Bits()); |
| 1068 ASSERT(rn.Is32Bits() && rm.Is32Bits()); |
| 1069 DataProcessing3Source(rd, rn, rm, ra, UMSUBL_x); |
| 1070 } |
| 1071 |
| 1072 |
| 1073 void Assembler::smull(const Register& rd, |
| 1074 const Register& rn, |
| 1075 const Register& rm) { |
| 1076 ASSERT(rd.Is64Bits()); |
| 1077 ASSERT(rn.Is32Bits() && rm.Is32Bits()); |
| 1078 DataProcessing3Source(rd, rn, rm, xzr, SMADDL_x); |
| 1079 } |
| 1080 |
| 1081 |
| 1082 void Assembler::smulh(const Register& rd, |
| 1083 const Register& rn, |
| 1084 const Register& rm) { |
| 1085 ASSERT(AreSameSizeAndType(rd, rn, rm)); |
| 1086 DataProcessing3Source(rd, rn, rm, xzr, SMULH_x); |
| 1087 } |
| 1088 |
| 1089 |
| 1090 void Assembler::sdiv(const Register& rd, |
| 1091 const Register& rn, |
| 1092 const Register& rm) { |
| 1093 ASSERT(rd.SizeInBits() == rn.SizeInBits()); |
| 1094 ASSERT(rd.SizeInBits() == rm.SizeInBits()); |
| 1095 Emit(SF(rd) | SDIV | Rm(rm) | Rn(rn) | Rd(rd)); |
| 1096 } |
| 1097 |
| 1098 |
| 1099 void Assembler::udiv(const Register& rd, |
| 1100 const Register& rn, |
| 1101 const Register& rm) { |
| 1102 ASSERT(rd.SizeInBits() == rn.SizeInBits()); |
| 1103 ASSERT(rd.SizeInBits() == rm.SizeInBits()); |
| 1104 Emit(SF(rd) | UDIV | Rm(rm) | Rn(rn) | Rd(rd)); |
| 1105 } |
| 1106 |
| 1107 |
| 1108 void Assembler::rbit(const Register& rd, |
| 1109 const Register& rn) { |
| 1110 DataProcessing1Source(rd, rn, RBIT); |
| 1111 } |
| 1112 |
| 1113 |
| 1114 void Assembler::rev16(const Register& rd, |
| 1115 const Register& rn) { |
| 1116 DataProcessing1Source(rd, rn, REV16); |
| 1117 } |
| 1118 |
| 1119 |
| 1120 void Assembler::rev32(const Register& rd, |
| 1121 const Register& rn) { |
| 1122 ASSERT(rd.Is64Bits()); |
| 1123 DataProcessing1Source(rd, rn, REV); |
| 1124 } |
| 1125 |
| 1126 |
| 1127 void Assembler::rev(const Register& rd, |
| 1128 const Register& rn) { |
| 1129 DataProcessing1Source(rd, rn, rd.Is64Bits() ? REV_x : REV_w); |
| 1130 } |
| 1131 |
| 1132 |
| 1133 void Assembler::clz(const Register& rd, |
| 1134 const Register& rn) { |
| 1135 DataProcessing1Source(rd, rn, CLZ); |
| 1136 } |
| 1137 |
| 1138 |
| 1139 void Assembler::cls(const Register& rd, |
| 1140 const Register& rn) { |
| 1141 DataProcessing1Source(rd, rn, CLS); |
| 1142 } |
| 1143 |
| 1144 |
| 1145 void Assembler::ldp(const CPURegister& rt, |
| 1146 const CPURegister& rt2, |
| 1147 const MemOperand& src) { |
| 1148 LoadStorePair(rt, rt2, src, LoadPairOpFor(rt, rt2)); |
| 1149 } |
| 1150 |
| 1151 |
| 1152 void Assembler::stp(const CPURegister& rt, |
| 1153 const CPURegister& rt2, |
| 1154 const MemOperand& dst) { |
| 1155 LoadStorePair(rt, rt2, dst, StorePairOpFor(rt, rt2)); |
| 1156 } |
| 1157 |
| 1158 |
| 1159 void Assembler::ldpsw(const Register& rt, |
| 1160 const Register& rt2, |
| 1161 const MemOperand& src) { |
| 1162 ASSERT(rt.Is64Bits()); |
| 1163 LoadStorePair(rt, rt2, src, LDPSW_x); |
| 1164 } |
| 1165 |
| 1166 |
| 1167 void Assembler::LoadStorePair(const CPURegister& rt, |
| 1168 const CPURegister& rt2, |
| 1169 const MemOperand& addr, |
| 1170 LoadStorePairOp op) { |
| 1171 // 'rt' and 'rt2' can only be aliased for stores. |
| 1172 ASSERT(((op & LoadStorePairLBit) == 0) || !rt.Is(rt2)); |
| 1173 ASSERT(AreSameSizeAndType(rt, rt2)); |
| 1174 |
| 1175 Instr memop = op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) | |
| 1176 ImmLSPair(addr.offset(), CalcLSPairDataSize(op)); |
| 1177 |
| 1178 Instr addrmodeop; |
| 1179 if (addr.IsImmediateOffset()) { |
| 1180 addrmodeop = LoadStorePairOffsetFixed; |
| 1181 } else { |
| 1182 // Pre-index and post-index modes. |
| 1183 ASSERT(!rt.Is(addr.base())); |
| 1184 ASSERT(!rt2.Is(addr.base())); |
| 1185 ASSERT(addr.offset() != 0); |
| 1186 if (addr.IsPreIndex()) { |
| 1187 addrmodeop = LoadStorePairPreIndexFixed; |
| 1188 } else { |
| 1189 ASSERT(addr.IsPostIndex()); |
| 1190 addrmodeop = LoadStorePairPostIndexFixed; |
| 1191 } |
| 1192 } |
| 1193 Emit(addrmodeop | memop); |
| 1194 } |
| 1195 |
| 1196 |
| 1197 void Assembler::ldnp(const CPURegister& rt, |
| 1198 const CPURegister& rt2, |
| 1199 const MemOperand& src) { |
| 1200 LoadStorePairNonTemporal(rt, rt2, src, |
| 1201 LoadPairNonTemporalOpFor(rt, rt2)); |
| 1202 } |
| 1203 |
| 1204 |
| 1205 void Assembler::stnp(const CPURegister& rt, |
| 1206 const CPURegister& rt2, |
| 1207 const MemOperand& dst) { |
| 1208 LoadStorePairNonTemporal(rt, rt2, dst, |
| 1209 StorePairNonTemporalOpFor(rt, rt2)); |
| 1210 } |
| 1211 |
| 1212 |
| 1213 void Assembler::LoadStorePairNonTemporal(const CPURegister& rt, |
| 1214 const CPURegister& rt2, |
| 1215 const MemOperand& addr, |
| 1216 LoadStorePairNonTemporalOp op) { |
| 1217 ASSERT(!rt.Is(rt2)); |
| 1218 ASSERT(AreSameSizeAndType(rt, rt2)); |
| 1219 ASSERT(addr.IsImmediateOffset()); |
| 1220 |
| 1221 LSDataSize size = CalcLSPairDataSize( |
| 1222 static_cast<LoadStorePairOp>(op & LoadStorePairMask)); |
| 1223 Emit(op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) | |
| 1224 ImmLSPair(addr.offset(), size)); |
| 1225 } |
| 1226 |
| 1227 |
| 1228 // Memory instructions. |
| 1229 void Assembler::ldrb(const Register& rt, const MemOperand& src) { |
| 1230 LoadStore(rt, src, LDRB_w); |
| 1231 } |
| 1232 |
| 1233 |
| 1234 void Assembler::strb(const Register& rt, const MemOperand& dst) { |
| 1235 LoadStore(rt, dst, STRB_w); |
| 1236 } |
| 1237 |
| 1238 |
| 1239 void Assembler::ldrsb(const Register& rt, const MemOperand& src) { |
| 1240 LoadStore(rt, src, rt.Is64Bits() ? LDRSB_x : LDRSB_w); |
| 1241 } |
| 1242 |
| 1243 |
| 1244 void Assembler::ldrh(const Register& rt, const MemOperand& src) { |
| 1245 LoadStore(rt, src, LDRH_w); |
| 1246 } |
| 1247 |
| 1248 |
| 1249 void Assembler::strh(const Register& rt, const MemOperand& dst) { |
| 1250 LoadStore(rt, dst, STRH_w); |
| 1251 } |
| 1252 |
| 1253 |
| 1254 void Assembler::ldrsh(const Register& rt, const MemOperand& src) { |
| 1255 LoadStore(rt, src, rt.Is64Bits() ? LDRSH_x : LDRSH_w); |
| 1256 } |
| 1257 |
| 1258 |
| 1259 void Assembler::ldr(const CPURegister& rt, const MemOperand& src) { |
| 1260 LoadStore(rt, src, LoadOpFor(rt)); |
| 1261 } |
| 1262 |
| 1263 |
| 1264 void Assembler::str(const CPURegister& rt, const MemOperand& src) { |
| 1265 LoadStore(rt, src, StoreOpFor(rt)); |
| 1266 } |
| 1267 |
| 1268 |
| 1269 void Assembler::ldrsw(const Register& rt, const MemOperand& src) { |
| 1270 ASSERT(rt.Is64Bits()); |
| 1271 LoadStore(rt, src, LDRSW_x); |
| 1272 } |
| 1273 |
| 1274 |
| 1275 void Assembler::ldr(const Register& rt, uint64_t imm) { |
| 1276 // TODO(all): Constant pool may be garbage collected. Hence we cannot store |
| 1277 // TODO(all): arbitrary values in them. Manually move it for now. |
| 1278 // TODO(all): Fix MacroAssembler::Fmov when this is implemented. |
| 1279 UNIMPLEMENTED(); |
| 1280 } |
| 1281 |
| 1282 |
| 1283 void Assembler::ldr(const FPRegister& ft, double imm) { |
| 1284 // TODO(all): Constant pool may be garbage collected. Hence we cannot store |
| 1285 // TODO(all): arbitrary values in them. Manually move it for now. |
| 1286 // TODO(all): Fix MacroAssembler::Fmov when this is implemented. |
| 1287 UNIMPLEMENTED(); |
| 1288 } |
| 1289 |
| 1290 |
| 1291 void Assembler::mov(const Register& rd, const Register& rm) { |
| 1292 // Moves involving the stack pointer are encoded as add immediate with |
| 1293 // second operand of zero. Otherwise, orr with first operand zr is |
| 1294 // used. |
| 1295 if (rd.IsSP() || rm.IsSP()) { |
| 1296 add(rd, rm, 0); |
| 1297 } else { |
| 1298 orr(rd, AppropriateZeroRegFor(rd), rm); |
| 1299 } |
| 1300 } |
| 1301 |
| 1302 |
| 1303 void Assembler::mvn(const Register& rd, const Operand& operand) { |
| 1304 orn(rd, AppropriateZeroRegFor(rd), operand); |
| 1305 } |
| 1306 |
| 1307 |
| 1308 void Assembler::mrs(const Register& rt, SystemRegister sysreg) { |
| 1309 ASSERT(rt.Is64Bits()); |
| 1310 Emit(MRS | ImmSystemRegister(sysreg) | Rt(rt)); |
| 1311 } |
| 1312 |
| 1313 |
| 1314 void Assembler::msr(SystemRegister sysreg, const Register& rt) { |
| 1315 ASSERT(rt.Is64Bits()); |
| 1316 Emit(MSR | Rt(rt) | ImmSystemRegister(sysreg)); |
| 1317 } |
| 1318 |
| 1319 |
| 1320 void Assembler::hint(SystemHint code) { |
| 1321 Emit(HINT | ImmHint(code) | Rt(xzr)); |
| 1322 } |
| 1323 |
| 1324 |
| 1325 void Assembler::dmb(BarrierDomain domain, BarrierType type) { |
| 1326 Emit(DMB | ImmBarrierDomain(domain) | ImmBarrierType(type)); |
| 1327 } |
| 1328 |
| 1329 |
| 1330 void Assembler::dsb(BarrierDomain domain, BarrierType type) { |
| 1331 Emit(DSB | ImmBarrierDomain(domain) | ImmBarrierType(type)); |
| 1332 } |
| 1333 |
| 1334 |
| 1335 void Assembler::isb() { |
| 1336 Emit(ISB | ImmBarrierDomain(FullSystem) | ImmBarrierType(BarrierAll)); |
| 1337 } |
| 1338 |
| 1339 |
| 1340 void Assembler::fmov(FPRegister fd, double imm) { |
| 1341 if (fd.Is64Bits() && IsImmFP64(imm)) { |
| 1342 Emit(FMOV_d_imm | Rd(fd) | ImmFP64(imm)); |
| 1343 } else if (fd.Is32Bits() && IsImmFP32(imm)) { |
| 1344 Emit(FMOV_s_imm | Rd(fd) | ImmFP32(static_cast<float>(imm))); |
| 1345 } else if ((imm == 0.0) && (copysign(1.0, imm) == 1.0)) { |
| 1346 Register zr = AppropriateZeroRegFor(fd); |
| 1347 fmov(fd, zr); |
| 1348 } else { |
| 1349 ldr(fd, imm); |
| 1350 } |
| 1351 } |
| 1352 |
| 1353 |
| 1354 void Assembler::fmov(Register rd, FPRegister fn) { |
| 1355 ASSERT(rd.SizeInBits() == fn.SizeInBits()); |
| 1356 FPIntegerConvertOp op = rd.Is32Bits() ? FMOV_ws : FMOV_xd; |
| 1357 Emit(op | Rd(rd) | Rn(fn)); |
| 1358 } |
| 1359 |
| 1360 |
| 1361 void Assembler::fmov(FPRegister fd, Register rn) { |
| 1362 ASSERT(fd.SizeInBits() == rn.SizeInBits()); |
| 1363 FPIntegerConvertOp op = fd.Is32Bits() ? FMOV_sw : FMOV_dx; |
| 1364 Emit(op | Rd(fd) | Rn(rn)); |
| 1365 } |
| 1366 |
| 1367 |
| 1368 void Assembler::fmov(FPRegister fd, FPRegister fn) { |
| 1369 ASSERT(fd.SizeInBits() == fn.SizeInBits()); |
| 1370 Emit(FPType(fd) | FMOV | Rd(fd) | Rn(fn)); |
| 1371 } |
| 1372 |
| 1373 |
| 1374 void Assembler::fadd(const FPRegister& fd, |
| 1375 const FPRegister& fn, |
| 1376 const FPRegister& fm) { |
| 1377 FPDataProcessing2Source(fd, fn, fm, FADD); |
| 1378 } |
| 1379 |
| 1380 |
| 1381 void Assembler::fsub(const FPRegister& fd, |
| 1382 const FPRegister& fn, |
| 1383 const FPRegister& fm) { |
| 1384 FPDataProcessing2Source(fd, fn, fm, FSUB); |
| 1385 } |
| 1386 |
| 1387 |
| 1388 void Assembler::fmul(const FPRegister& fd, |
| 1389 const FPRegister& fn, |
| 1390 const FPRegister& fm) { |
| 1391 FPDataProcessing2Source(fd, fn, fm, FMUL); |
| 1392 } |
| 1393 |
| 1394 |
| 1395 void Assembler::fmadd(const FPRegister& fd, |
| 1396 const FPRegister& fn, |
| 1397 const FPRegister& fm, |
| 1398 const FPRegister& fa) { |
| 1399 FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMADD_s : FMADD_d); |
| 1400 } |
| 1401 |
| 1402 |
| 1403 void Assembler::fmsub(const FPRegister& fd, |
| 1404 const FPRegister& fn, |
| 1405 const FPRegister& fm, |
| 1406 const FPRegister& fa) { |
| 1407 FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMSUB_s : FMSUB_d); |
| 1408 } |
| 1409 |
| 1410 |
| 1411 void Assembler::fnmadd(const FPRegister& fd, |
| 1412 const FPRegister& fn, |
| 1413 const FPRegister& fm, |
| 1414 const FPRegister& fa) { |
| 1415 FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMADD_s : FNMADD_d); |
| 1416 } |
| 1417 |
| 1418 |
| 1419 void Assembler::fnmsub(const FPRegister& fd, |
| 1420 const FPRegister& fn, |
| 1421 const FPRegister& fm, |
| 1422 const FPRegister& fa) { |
| 1423 FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMSUB_s : FNMSUB_d); |
| 1424 } |
| 1425 |
| 1426 |
| 1427 void Assembler::fdiv(const FPRegister& fd, |
| 1428 const FPRegister& fn, |
| 1429 const FPRegister& fm) { |
| 1430 FPDataProcessing2Source(fd, fn, fm, FDIV); |
| 1431 } |
| 1432 |
| 1433 |
| 1434 void Assembler::fmax(const FPRegister& fd, |
| 1435 const FPRegister& fn, |
| 1436 const FPRegister& fm) { |
| 1437 FPDataProcessing2Source(fd, fn, fm, FMAX); |
| 1438 } |
| 1439 |
| 1440 |
| 1441 void Assembler::fmaxnm(const FPRegister& fd, |
| 1442 const FPRegister& fn, |
| 1443 const FPRegister& fm) { |
| 1444 FPDataProcessing2Source(fd, fn, fm, FMAXNM); |
| 1445 } |
| 1446 |
| 1447 |
| 1448 void Assembler::fmin(const FPRegister& fd, |
| 1449 const FPRegister& fn, |
| 1450 const FPRegister& fm) { |
| 1451 FPDataProcessing2Source(fd, fn, fm, FMIN); |
| 1452 } |
| 1453 |
| 1454 |
| 1455 void Assembler::fminnm(const FPRegister& fd, |
| 1456 const FPRegister& fn, |
| 1457 const FPRegister& fm) { |
| 1458 FPDataProcessing2Source(fd, fn, fm, FMINNM); |
| 1459 } |
| 1460 |
| 1461 |
| 1462 void Assembler::fabs(const FPRegister& fd, |
| 1463 const FPRegister& fn) { |
| 1464 ASSERT(fd.SizeInBits() == fn.SizeInBits()); |
| 1465 FPDataProcessing1Source(fd, fn, FABS); |
| 1466 } |
| 1467 |
| 1468 |
| 1469 void Assembler::fneg(const FPRegister& fd, |
| 1470 const FPRegister& fn) { |
| 1471 ASSERT(fd.SizeInBits() == fn.SizeInBits()); |
| 1472 FPDataProcessing1Source(fd, fn, FNEG); |
| 1473 } |
| 1474 |
| 1475 |
| 1476 void Assembler::fsqrt(const FPRegister& fd, |
| 1477 const FPRegister& fn) { |
| 1478 ASSERT(fd.SizeInBits() == fn.SizeInBits()); |
| 1479 FPDataProcessing1Source(fd, fn, FSQRT); |
| 1480 } |
| 1481 |
| 1482 |
| 1483 void Assembler::frinta(const FPRegister& fd, |
| 1484 const FPRegister& fn) { |
| 1485 ASSERT(fd.SizeInBits() == fn.SizeInBits()); |
| 1486 FPDataProcessing1Source(fd, fn, FRINTA); |
| 1487 } |
| 1488 |
| 1489 |
| 1490 void Assembler::frintn(const FPRegister& fd, |
| 1491 const FPRegister& fn) { |
| 1492 ASSERT(fd.SizeInBits() == fn.SizeInBits()); |
| 1493 FPDataProcessing1Source(fd, fn, FRINTN); |
| 1494 } |
| 1495 |
| 1496 |
| 1497 void Assembler::frintz(const FPRegister& fd, |
| 1498 const FPRegister& fn) { |
| 1499 ASSERT(fd.SizeInBits() == fn.SizeInBits()); |
| 1500 FPDataProcessing1Source(fd, fn, FRINTZ); |
| 1501 } |
| 1502 |
| 1503 |
| 1504 void Assembler::fcmp(const FPRegister& fn, |
| 1505 const FPRegister& fm) { |
| 1506 ASSERT(fn.SizeInBits() == fm.SizeInBits()); |
| 1507 Emit(FPType(fn) | FCMP | Rm(fm) | Rn(fn)); |
| 1508 } |
| 1509 |
| 1510 |
| 1511 void Assembler::fcmp(const FPRegister& fn, |
| 1512 double value) { |
| 1513 USE(value); |
| 1514 // Although the fcmp instruction can strictly only take an immediate value of |
| 1515 // +0.0, we don't need to check for -0.0 because the sign of 0.0 doesn't |
| 1516 // affect the result of the comparison. |
| 1517 ASSERT(value == 0.0); |
| 1518 Emit(FPType(fn) | FCMP_zero | Rn(fn)); |
| 1519 } |
| 1520 |
| 1521 |
| 1522 void Assembler::fccmp(const FPRegister& fn, |
| 1523 const FPRegister& fm, |
| 1524 StatusFlags nzcv, |
| 1525 Condition cond) { |
| 1526 ASSERT(fn.SizeInBits() == fm.SizeInBits()); |
| 1527 Emit(FPType(fn) | FCCMP | Rm(fm) | Cond(cond) | Rn(fn) | Nzcv(nzcv)); |
| 1528 } |
| 1529 |
| 1530 |
| 1531 void Assembler::fcsel(const FPRegister& fd, |
| 1532 const FPRegister& fn, |
| 1533 const FPRegister& fm, |
| 1534 Condition cond) { |
| 1535 ASSERT(fd.SizeInBits() == fn.SizeInBits()); |
| 1536 ASSERT(fd.SizeInBits() == fm.SizeInBits()); |
| 1537 Emit(FPType(fd) | FCSEL | Rm(fm) | Cond(cond) | Rn(fn) | Rd(fd)); |
| 1538 } |
| 1539 |
| 1540 |
| 1541 void Assembler::FPConvertToInt(const Register& rd, |
| 1542 const FPRegister& fn, |
| 1543 FPIntegerConvertOp op) { |
| 1544 Emit(SF(rd) | FPType(fn) | op | Rn(fn) | Rd(rd)); |
| 1545 } |
| 1546 |
| 1547 |
| 1548 void Assembler::fcvt(const FPRegister& fd, |
| 1549 const FPRegister& fn) { |
| 1550 if (fd.Is64Bits()) { |
| 1551 // Convert float to double. |
| 1552 ASSERT(fn.Is32Bits()); |
| 1553 FPDataProcessing1Source(fd, fn, FCVT_ds); |
| 1554 } else { |
| 1555 // Convert double to float. |
| 1556 ASSERT(fn.Is64Bits()); |
| 1557 FPDataProcessing1Source(fd, fn, FCVT_sd); |
| 1558 } |
| 1559 } |
| 1560 |
| 1561 |
| 1562 void Assembler::fcvtau(const Register& rd, const FPRegister& fn) { |
| 1563 FPConvertToInt(rd, fn, FCVTAU); |
| 1564 } |
| 1565 |
| 1566 |
| 1567 void Assembler::fcvtas(const Register& rd, const FPRegister& fn) { |
| 1568 FPConvertToInt(rd, fn, FCVTAS); |
| 1569 } |
| 1570 |
| 1571 |
| 1572 void Assembler::fcvtmu(const Register& rd, const FPRegister& fn) { |
| 1573 FPConvertToInt(rd, fn, FCVTMU); |
| 1574 } |
| 1575 |
| 1576 |
| 1577 void Assembler::fcvtms(const Register& rd, const FPRegister& fn) { |
| 1578 FPConvertToInt(rd, fn, FCVTMS); |
| 1579 } |
| 1580 |
| 1581 |
| 1582 void Assembler::fcvtnu(const Register& rd, const FPRegister& fn) { |
| 1583 FPConvertToInt(rd, fn, FCVTNU); |
| 1584 } |
| 1585 |
| 1586 |
| 1587 void Assembler::fcvtns(const Register& rd, const FPRegister& fn) { |
| 1588 FPConvertToInt(rd, fn, FCVTNS); |
| 1589 } |
| 1590 |
| 1591 |
| 1592 void Assembler::fcvtzu(const Register& rd, const FPRegister& fn) { |
| 1593 FPConvertToInt(rd, fn, FCVTZU); |
| 1594 } |
| 1595 |
| 1596 |
| 1597 void Assembler::fcvtzs(const Register& rd, const FPRegister& fn) { |
| 1598 FPConvertToInt(rd, fn, FCVTZS); |
| 1599 } |
| 1600 |
| 1601 |
| 1602 void Assembler::scvtf(const FPRegister& fd, |
| 1603 const Register& rn, |
| 1604 unsigned fbits) { |
| 1605 if (fbits == 0) { |
| 1606 Emit(SF(rn) | FPType(fd) | SCVTF | Rn(rn) | Rd(fd)); |
| 1607 } else { |
| 1608 Emit(SF(rn) | FPType(fd) | SCVTF_fixed | FPScale(64 - fbits) | Rn(rn) | |
| 1609 Rd(fd)); |
| 1610 } |
| 1611 } |
| 1612 |
| 1613 |
| 1614 void Assembler::ucvtf(const FPRegister& fd, |
| 1615 const Register& rn, |
| 1616 unsigned fbits) { |
| 1617 if (fbits == 0) { |
| 1618 Emit(SF(rn) | FPType(fd) | UCVTF | Rn(rn) | Rd(fd)); |
| 1619 } else { |
| 1620 Emit(SF(rn) | FPType(fd) | UCVTF_fixed | FPScale(64 - fbits) | Rn(rn) | |
| 1621 Rd(fd)); |
| 1622 } |
| 1623 } |
| 1624 |
| 1625 |
| 1626 // Note: |
| 1627 // Below, a difference in case for the same letter indicates a |
| 1628 // negated bit. |
| 1629 // If b is 1, then B is 0. |
| 1630 Instr Assembler::ImmFP32(float imm) { |
| 1631 ASSERT(IsImmFP32(imm)); |
| 1632 // bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000 |
| 1633 uint32_t bits = float_to_rawbits(imm); |
| 1634 // bit7: a000.0000 |
| 1635 uint32_t bit7 = ((bits >> 31) & 0x1) << 7; |
| 1636 // bit6: 0b00.0000 |
| 1637 uint32_t bit6 = ((bits >> 29) & 0x1) << 6; |
| 1638 // bit5_to_0: 00cd.efgh |
| 1639 uint32_t bit5_to_0 = (bits >> 19) & 0x3f; |
| 1640 |
| 1641 return (bit7 | bit6 | bit5_to_0) << ImmFP_offset; |
| 1642 } |
| 1643 |
| 1644 |
| 1645 Instr Assembler::ImmFP64(double imm) { |
| 1646 ASSERT(IsImmFP64(imm)); |
| 1647 // bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000 |
| 1648 // 0000.0000.0000.0000.0000.0000.0000.0000 |
| 1649 uint64_t bits = double_to_rawbits(imm); |
| 1650 // bit7: a000.0000 |
| 1651 uint32_t bit7 = ((bits >> 63) & 0x1) << 7; |
| 1652 // bit6: 0b00.0000 |
| 1653 uint32_t bit6 = ((bits >> 61) & 0x1) << 6; |
| 1654 // bit5_to_0: 00cd.efgh |
| 1655 uint32_t bit5_to_0 = (bits >> 48) & 0x3f; |
| 1656 |
| 1657 return (bit7 | bit6 | bit5_to_0) << ImmFP_offset; |
| 1658 } |
| 1659 |
| 1660 |
| 1661 // Code generation helpers. |
| 1662 void Assembler::MoveWide(const Register& rd, |
| 1663 uint64_t imm, |
| 1664 int shift, |
| 1665 MoveWideImmediateOp mov_op) { |
| 1666 if (shift >= 0) { |
| 1667 // Explicit shift specified. |
| 1668 ASSERT((shift == 0) || (shift == 16) || (shift == 32) || (shift == 48)); |
| 1669 ASSERT(rd.Is64Bits() || (shift == 0) || (shift == 16)); |
| 1670 shift /= 16; |
| 1671 } else { |
| 1672 // Calculate a new immediate and shift combination to encode the immediate |
| 1673 // argument. |
| 1674 shift = 0; |
| 1675 if ((imm & ~0xffffUL) == 0) { |
| 1676 // Nothing to do. |
| 1677 } else if ((imm & ~(0xffffUL << 16)) == 0) { |
| 1678 imm >>= 16; |
| 1679 shift = 1; |
| 1680 } else if ((imm & ~(0xffffUL << 32)) == 0) { |
| 1681 ASSERT(rd.Is64Bits()); |
| 1682 imm >>= 32; |
| 1683 shift = 2; |
| 1684 } else if ((imm & ~(0xffffUL << 48)) == 0) { |
| 1685 ASSERT(rd.Is64Bits()); |
| 1686 imm >>= 48; |
| 1687 shift = 3; |
| 1688 } |
| 1689 } |
| 1690 |
| 1691 ASSERT(is_uint16(imm)); |
| 1692 |
| 1693 Emit(SF(rd) | MoveWideImmediateFixed | mov_op | |
| 1694 Rd(rd) | ImmMoveWide(imm) | ShiftMoveWide(shift)); |
| 1695 } |
| 1696 |
| 1697 |
| 1698 void Assembler::AddSub(const Register& rd, |
| 1699 const Register& rn, |
| 1700 const Operand& operand, |
| 1701 FlagsUpdate S, |
| 1702 AddSubOp op) { |
| 1703 ASSERT(rd.SizeInBits() == rn.SizeInBits()); |
| 1704 ASSERT(!operand.NeedsRelocation()); |
| 1705 if (operand.IsImmediate()) { |
| 1706 int64_t immediate = operand.immediate(); |
| 1707 ASSERT(IsImmAddSub(immediate)); |
| 1708 Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd); |
| 1709 Emit(SF(rd) | AddSubImmediateFixed | op | Flags(S) | |
| 1710 ImmAddSub(immediate) | dest_reg | RnSP(rn)); |
| 1711 } else if (operand.IsShiftedRegister()) { |
| 1712 ASSERT(operand.reg().SizeInBits() == rd.SizeInBits()); |
| 1713 ASSERT(operand.shift() != ROR); |
| 1714 |
| 1715 // For instructions of the form: |
| 1716 // add/sub wsp, <Wn>, <Wm> [, LSL #0-3 ] |
| 1717 // add/sub <Wd>, wsp, <Wm> [, LSL #0-3 ] |
| 1718 // add/sub wsp, wsp, <Wm> [, LSL #0-3 ] |
| 1719 // adds/subs <Wd>, wsp, <Wm> [, LSL #0-3 ] |
| 1720 // or their 64-bit register equivalents, convert the operand from shifted to |
| 1721 // extended register mode, and emit an add/sub extended instruction. |
| 1722 if (rn.IsSP() || rd.IsSP()) { |
| 1723 ASSERT(!(rd.IsSP() && (S == SetFlags))); |
| 1724 DataProcExtendedRegister(rd, rn, operand.ToExtendedRegister(), S, |
| 1725 AddSubExtendedFixed | op); |
| 1726 } else { |
| 1727 DataProcShiftedRegister(rd, rn, operand, S, AddSubShiftedFixed | op); |
| 1728 } |
| 1729 } else { |
| 1730 ASSERT(operand.IsExtendedRegister()); |
| 1731 DataProcExtendedRegister(rd, rn, operand, S, AddSubExtendedFixed | op); |
| 1732 } |
| 1733 } |
| 1734 |
| 1735 |
| 1736 void Assembler::AddSubWithCarry(const Register& rd, |
| 1737 const Register& rn, |
| 1738 const Operand& operand, |
| 1739 FlagsUpdate S, |
| 1740 AddSubWithCarryOp op) { |
| 1741 ASSERT(rd.SizeInBits() == rn.SizeInBits()); |
| 1742 ASSERT(rd.SizeInBits() == operand.reg().SizeInBits()); |
| 1743 ASSERT(operand.IsShiftedRegister() && (operand.shift_amount() == 0)); |
| 1744 ASSERT(!operand.NeedsRelocation()); |
| 1745 Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) | Rn(rn) | Rd(rd)); |
| 1746 } |
| 1747 |
| 1748 |
| 1749 void Assembler::hlt(int code) { |
| 1750 ASSERT(is_uint16(code)); |
| 1751 Emit(HLT | ImmException(code)); |
| 1752 } |
| 1753 |
| 1754 |
| 1755 void Assembler::brk(int code) { |
| 1756 ASSERT(is_uint16(code)); |
| 1757 Emit(BRK | ImmException(code)); |
| 1758 } |
| 1759 |
| 1760 |
| 1761 void Assembler::debug(const char* message, uint32_t code, Instr params) { |
| 1762 #ifdef USE_SIMULATOR |
| 1763 // Don't generate simulator specific code if we are building a snapshot, which |
| 1764 // might be run on real hardware. |
| 1765 if (!Serializer::enabled()) { |
| 1766 #ifdef DEBUG |
| 1767 Serializer::TooLateToEnableNow(); |
| 1768 #endif |
| 1769 // The arguments to the debug marker need to be contiguous in memory, so |
| 1770 // make sure we don't try to emit a literal pool. |
| 1771 BlockConstPoolScope scope(this); |
| 1772 |
| 1773 Label start; |
| 1774 bind(&start); |
| 1775 |
| 1776 // Refer to instructions-a64.h for a description of the marker and its |
| 1777 // arguments. |
| 1778 hlt(kImmExceptionIsDebug); |
| 1779 ASSERT(SizeOfCodeGeneratedSince(&start) == kDebugCodeOffset); |
| 1780 dc32(code); |
| 1781 ASSERT(SizeOfCodeGeneratedSince(&start) == kDebugParamsOffset); |
| 1782 dc32(params); |
| 1783 ASSERT(SizeOfCodeGeneratedSince(&start) == kDebugMessageOffset); |
| 1784 EmitStringData(message); |
| 1785 hlt(kImmExceptionIsUnreachable); |
| 1786 |
| 1787 return; |
| 1788 } |
| 1789 // Fall through if Serializer is enabled. |
| 1790 #endif |
| 1791 |
| 1792 if (params & BREAK) { |
| 1793 hlt(kImmExceptionIsDebug); |
| 1794 } |
| 1795 } |
| 1796 |
| 1797 |
| 1798 void Assembler::Logical(const Register& rd, |
| 1799 const Register& rn, |
| 1800 const Operand& operand, |
| 1801 LogicalOp op) { |
| 1802 ASSERT(rd.SizeInBits() == rn.SizeInBits()); |
| 1803 ASSERT(!operand.NeedsRelocation()); |
| 1804 if (operand.IsImmediate()) { |
| 1805 int64_t immediate = operand.immediate(); |
| 1806 unsigned reg_size = rd.SizeInBits(); |
| 1807 |
| 1808 ASSERT(immediate != 0); |
| 1809 ASSERT(immediate != -1); |
| 1810 ASSERT(rd.Is64Bits() || is_uint32(immediate)); |
| 1811 |
| 1812 // If the operation is NOT, invert the operation and immediate. |
| 1813 if ((op & NOT) == NOT) { |
| 1814 op = static_cast<LogicalOp>(op & ~NOT); |
| 1815 immediate = rd.Is64Bits() ? ~immediate : (~immediate & kWRegMask); |
| 1816 } |
| 1817 |
| 1818 unsigned n, imm_s, imm_r; |
| 1819 if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) { |
| 1820 // Immediate can be encoded in the instruction. |
| 1821 LogicalImmediate(rd, rn, n, imm_s, imm_r, op); |
| 1822 } else { |
| 1823 // This case is handled in the macro assembler. |
| 1824 UNREACHABLE(); |
| 1825 } |
| 1826 } else { |
| 1827 ASSERT(operand.IsShiftedRegister()); |
| 1828 ASSERT(operand.reg().SizeInBits() == rd.SizeInBits()); |
| 1829 Instr dp_op = static_cast<Instr>(op | LogicalShiftedFixed); |
| 1830 DataProcShiftedRegister(rd, rn, operand, LeaveFlags, dp_op); |
| 1831 } |
| 1832 } |
| 1833 |
| 1834 |
| 1835 void Assembler::LogicalImmediate(const Register& rd, |
| 1836 const Register& rn, |
| 1837 unsigned n, |
| 1838 unsigned imm_s, |
| 1839 unsigned imm_r, |
| 1840 LogicalOp op) { |
| 1841 unsigned reg_size = rd.SizeInBits(); |
| 1842 Instr dest_reg = (op == ANDS) ? Rd(rd) : RdSP(rd); |
| 1843 Emit(SF(rd) | LogicalImmediateFixed | op | BitN(n, reg_size) | |
| 1844 ImmSetBits(imm_s, reg_size) | ImmRotate(imm_r, reg_size) | dest_reg | |
| 1845 Rn(rn)); |
| 1846 } |
| 1847 |
| 1848 |
| 1849 void Assembler::ConditionalCompare(const Register& rn, |
| 1850 const Operand& operand, |
| 1851 StatusFlags nzcv, |
| 1852 Condition cond, |
| 1853 ConditionalCompareOp op) { |
| 1854 Instr ccmpop; |
| 1855 ASSERT(!operand.NeedsRelocation()); |
| 1856 if (operand.IsImmediate()) { |
| 1857 int64_t immediate = operand.immediate(); |
| 1858 ASSERT(IsImmConditionalCompare(immediate)); |
| 1859 ccmpop = ConditionalCompareImmediateFixed | op | ImmCondCmp(immediate); |
| 1860 } else { |
| 1861 ASSERT(operand.IsShiftedRegister() && (operand.shift_amount() == 0)); |
| 1862 ccmpop = ConditionalCompareRegisterFixed | op | Rm(operand.reg()); |
| 1863 } |
| 1864 Emit(SF(rn) | ccmpop | Cond(cond) | Rn(rn) | Nzcv(nzcv)); |
| 1865 } |
| 1866 |
| 1867 |
| 1868 void Assembler::DataProcessing1Source(const Register& rd, |
| 1869 const Register& rn, |
| 1870 DataProcessing1SourceOp op) { |
| 1871 ASSERT(rd.SizeInBits() == rn.SizeInBits()); |
| 1872 Emit(SF(rn) | op | Rn(rn) | Rd(rd)); |
| 1873 } |
| 1874 |
| 1875 |
| 1876 void Assembler::FPDataProcessing1Source(const FPRegister& fd, |
| 1877 const FPRegister& fn, |
| 1878 FPDataProcessing1SourceOp op) { |
| 1879 Emit(FPType(fn) | op | Rn(fn) | Rd(fd)); |
| 1880 } |
| 1881 |
| 1882 |
| 1883 void Assembler::FPDataProcessing2Source(const FPRegister& fd, |
| 1884 const FPRegister& fn, |
| 1885 const FPRegister& fm, |
| 1886 FPDataProcessing2SourceOp op) { |
| 1887 ASSERT(fd.SizeInBits() == fn.SizeInBits()); |
| 1888 ASSERT(fd.SizeInBits() == fm.SizeInBits()); |
| 1889 Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd)); |
| 1890 } |
| 1891 |
| 1892 |
| 1893 void Assembler::FPDataProcessing3Source(const FPRegister& fd, |
| 1894 const FPRegister& fn, |
| 1895 const FPRegister& fm, |
| 1896 const FPRegister& fa, |
| 1897 FPDataProcessing3SourceOp op) { |
| 1898 ASSERT(AreSameSizeAndType(fd, fn, fm, fa)); |
| 1899 Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd) | Ra(fa)); |
| 1900 } |
| 1901 |
| 1902 |
| 1903 void Assembler::EmitShift(const Register& rd, |
| 1904 const Register& rn, |
| 1905 Shift shift, |
| 1906 unsigned shift_amount) { |
| 1907 switch (shift) { |
| 1908 case LSL: |
| 1909 lsl(rd, rn, shift_amount); |
| 1910 break; |
| 1911 case LSR: |
| 1912 lsr(rd, rn, shift_amount); |
| 1913 break; |
| 1914 case ASR: |
| 1915 asr(rd, rn, shift_amount); |
| 1916 break; |
| 1917 case ROR: |
| 1918 ror(rd, rn, shift_amount); |
| 1919 break; |
| 1920 default: |
| 1921 UNREACHABLE(); |
| 1922 } |
| 1923 } |
| 1924 |
| 1925 |
| 1926 void Assembler::EmitExtendShift(const Register& rd, |
| 1927 const Register& rn, |
| 1928 Extend extend, |
| 1929 unsigned left_shift) { |
| 1930 ASSERT(rd.SizeInBits() >= rn.SizeInBits()); |
| 1931 unsigned reg_size = rd.SizeInBits(); |
| 1932 // Use the correct size of register. |
| 1933 Register rn_ = Register::Create(rn.code(), rd.SizeInBits()); |
| 1934 // Bits extracted are high_bit:0. |
| 1935 unsigned high_bit = (8 << (extend & 0x3)) - 1; |
| 1936 // Number of bits left in the result that are not introduced by the shift. |
| 1937 unsigned non_shift_bits = (reg_size - left_shift) & (reg_size - 1); |
| 1938 |
| 1939 if ((non_shift_bits > high_bit) || (non_shift_bits == 0)) { |
| 1940 switch (extend) { |
| 1941 case UXTB: |
| 1942 case UXTH: |
| 1943 case UXTW: ubfm(rd, rn_, non_shift_bits, high_bit); break; |
| 1944 case SXTB: |
| 1945 case SXTH: |
| 1946 case SXTW: sbfm(rd, rn_, non_shift_bits, high_bit); break; |
| 1947 case UXTX: |
| 1948 case SXTX: { |
| 1949 ASSERT(rn.SizeInBits() == kXRegSize); |
| 1950 // Nothing to extend. Just shift. |
| 1951 lsl(rd, rn_, left_shift); |
| 1952 break; |
| 1953 } |
| 1954 default: UNREACHABLE(); |
| 1955 } |
| 1956 } else { |
| 1957 // No need to extend as the extended bits would be shifted away. |
| 1958 lsl(rd, rn_, left_shift); |
| 1959 } |
| 1960 } |
| 1961 |
| 1962 |
| 1963 void Assembler::DataProcShiftedRegister(const Register& rd, |
| 1964 const Register& rn, |
| 1965 const Operand& operand, |
| 1966 FlagsUpdate S, |
| 1967 Instr op) { |
| 1968 ASSERT(operand.IsShiftedRegister()); |
| 1969 ASSERT(rn.Is64Bits() || (rn.Is32Bits() && is_uint5(operand.shift_amount()))); |
| 1970 ASSERT(!operand.NeedsRelocation()); |
| 1971 Emit(SF(rd) | op | Flags(S) | |
| 1972 ShiftDP(operand.shift()) | ImmDPShift(operand.shift_amount()) | |
| 1973 Rm(operand.reg()) | Rn(rn) | Rd(rd)); |
| 1974 } |
| 1975 |
| 1976 |
| 1977 void Assembler::DataProcExtendedRegister(const Register& rd, |
| 1978 const Register& rn, |
| 1979 const Operand& operand, |
| 1980 FlagsUpdate S, |
| 1981 Instr op) { |
| 1982 ASSERT(!operand.NeedsRelocation()); |
| 1983 Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd); |
| 1984 Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) | |
| 1985 ExtendMode(operand.extend()) | ImmExtendShift(operand.shift_amount()) | |
| 1986 dest_reg | RnSP(rn)); |
| 1987 } |
| 1988 |
| 1989 |
| 1990 bool Assembler::IsImmAddSub(int64_t immediate) { |
| 1991 return is_uint12(immediate) || |
| 1992 (is_uint12(immediate >> 12) && ((immediate & 0xfff) == 0)); |
| 1993 } |
| 1994 |
| 1995 void Assembler::LoadStore(const CPURegister& rt, |
| 1996 const MemOperand& addr, |
| 1997 LoadStoreOp op) { |
| 1998 Instr memop = op | Rt(rt) | RnSP(addr.base()); |
| 1999 ptrdiff_t offset = addr.offset(); |
| 2000 |
| 2001 if (addr.IsImmediateOffset()) { |
| 2002 LSDataSize size = CalcLSDataSize(op); |
| 2003 if (IsImmLSScaled(offset, size)) { |
| 2004 // Use the scaled addressing mode. |
| 2005 Emit(LoadStoreUnsignedOffsetFixed | memop | |
| 2006 ImmLSUnsigned(offset >> size)); |
| 2007 } else if (IsImmLSUnscaled(offset)) { |
| 2008 // Use the unscaled addressing mode. |
| 2009 Emit(LoadStoreUnscaledOffsetFixed | memop | ImmLS(offset)); |
| 2010 } else { |
| 2011 // This case is handled in the macro assembler. |
| 2012 UNREACHABLE(); |
| 2013 } |
| 2014 } else if (addr.IsRegisterOffset()) { |
| 2015 Extend ext = addr.extend(); |
| 2016 Shift shift = addr.shift(); |
| 2017 unsigned shift_amount = addr.shift_amount(); |
| 2018 |
| 2019 // LSL is encoded in the option field as UXTX. |
| 2020 if (shift == LSL) { |
| 2021 ext = UXTX; |
| 2022 } |
| 2023 |
| 2024 // Shifts are encoded in one bit, indicating a left shift by the memory |
| 2025 // access size. |
| 2026 ASSERT((shift_amount == 0) || |
| 2027 (shift_amount == static_cast<unsigned>(CalcLSDataSize(op)))); |
| 2028 Emit(LoadStoreRegisterOffsetFixed | memop | Rm(addr.regoffset()) | |
| 2029 ExtendMode(ext) | ImmShiftLS((shift_amount > 0) ? 1 : 0)); |
| 2030 } else { |
| 2031 // Pre-index and post-index modes. |
| 2032 ASSERT(!rt.Is(addr.base())); |
| 2033 if (IsImmLSUnscaled(offset)) { |
| 2034 if (addr.IsPreIndex()) { |
| 2035 Emit(LoadStorePreIndexFixed | memop | ImmLS(offset)); |
| 2036 } else { |
| 2037 ASSERT(addr.IsPostIndex()); |
| 2038 Emit(LoadStorePostIndexFixed | memop | ImmLS(offset)); |
| 2039 } |
| 2040 } else { |
| 2041 // This case is handled in the macro assembler. |
| 2042 UNREACHABLE(); |
| 2043 } |
| 2044 } |
| 2045 } |
| 2046 |
| 2047 |
| 2048 bool Assembler::IsImmLSUnscaled(ptrdiff_t offset) { |
| 2049 return is_int9(offset); |
| 2050 } |
| 2051 |
| 2052 |
| 2053 bool Assembler::IsImmLSScaled(ptrdiff_t offset, LSDataSize size) { |
| 2054 bool offset_is_size_multiple = (((offset >> size) << size) == offset); |
| 2055 return offset_is_size_multiple && is_uint12(offset >> size); |
| 2056 } |
| 2057 |
| 2058 |
| 2059 void Assembler::LoadLiteral(const CPURegister& rt, int offset_from_pc) { |
| 2060 ASSERT((offset_from_pc & ((1 << kLiteralEntrySizeLog2) - 1)) == 0); |
| 2061 // The pattern 'ldr xzr, #offset' is used to indicate the beginning of a |
| 2062 // constant pool. It should not be emitted. |
| 2063 ASSERT(!rt.Is(xzr)); |
| 2064 Emit(LDR_x_lit | |
| 2065 ImmLLiteral(offset_from_pc >> kLiteralEntrySizeLog2) | |
| 2066 Rt(rt)); |
| 2067 } |
| 2068 |
| 2069 |
| 2070 void Assembler::LoadRelocatedValue(const CPURegister& rt, |
| 2071 const Operand& operand, |
| 2072 LoadLiteralOp op) { |
| 2073 int64_t imm = operand.immediate(); |
| 2074 ASSERT(is_int32(imm) || is_uint32(imm) || (rt.Is64Bits())); |
| 2075 RecordRelocInfo(operand.rmode(), imm); |
| 2076 BlockConstPoolFor(1); |
| 2077 Emit(op | ImmLLiteral(0) | Rt(rt)); |
| 2078 } |
| 2079 |
| 2080 |
| 2081 // Test if a given value can be encoded in the immediate field of a logical |
| 2082 // instruction. |
| 2083 // If it can be encoded, the function returns true, and values pointed to by n, |
| 2084 // imm_s and imm_r are updated with immediates encoded in the format required |
| 2085 // by the corresponding fields in the logical instruction. |
| 2086 // If it can not be encoded, the function returns false, and the values pointed |
| 2087 // to by n, imm_s and imm_r are undefined. |
| 2088 bool Assembler::IsImmLogical(uint64_t value, |
| 2089 unsigned width, |
| 2090 unsigned* n, |
| 2091 unsigned* imm_s, |
| 2092 unsigned* imm_r) { |
| 2093 ASSERT((n != NULL) && (imm_s != NULL) && (imm_r != NULL)); |
| 2094 ASSERT((width == kWRegSize) || (width == kXRegSize)); |
| 2095 |
| 2096 // Logical immediates are encoded using parameters n, imm_s and imm_r using |
| 2097 // the following table: |
| 2098 // |
| 2099 // N imms immr size S R |
| 2100 // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr) |
| 2101 // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr) |
| 2102 // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr) |
| 2103 // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr) |
| 2104 // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr) |
| 2105 // 0 11110s xxxxxr 2 UInt(s) UInt(r) |
| 2106 // (s bits must not be all set) |
| 2107 // |
| 2108 // A pattern is constructed of size bits, where the least significant S+1 |
| 2109 // bits are set. The pattern is rotated right by R, and repeated across a |
| 2110 // 32 or 64-bit value, depending on destination register width. |
| 2111 // |
| 2112 // To test if an arbitary immediate can be encoded using this scheme, an |
| 2113 // iterative algorithm is used. |
| 2114 // |
| 2115 // TODO(mcapewel) This code does not consider using X/W register overlap to |
| 2116 // support 64-bit immediates where the top 32-bits are zero, and the bottom |
| 2117 // 32-bits are an encodable logical immediate. |
| 2118 |
| 2119 // 1. If the value has all set or all clear bits, it can't be encoded. |
| 2120 if ((value == 0) || (value == 0xffffffffffffffffUL) || |
| 2121 ((width == kWRegSize) && (value == 0xffffffff))) { |
| 2122 return false; |
| 2123 } |
| 2124 |
| 2125 unsigned lead_zero = CountLeadingZeros(value, width); |
| 2126 unsigned lead_one = CountLeadingZeros(~value, width); |
| 2127 unsigned trail_zero = CountTrailingZeros(value, width); |
| 2128 unsigned trail_one = CountTrailingZeros(~value, width); |
| 2129 unsigned set_bits = CountSetBits(value, width); |
| 2130 |
| 2131 // The fixed bits in the immediate s field. |
| 2132 // If width == 64 (X reg), start at 0xFFFFFF80. |
| 2133 // If width == 32 (W reg), start at 0xFFFFFFC0, as the iteration for 64-bit |
| 2134 // widths won't be executed. |
| 2135 int imm_s_fixed = (width == kXRegSize) ? -128 : -64; |
| 2136 int imm_s_mask = 0x3F; |
| 2137 |
| 2138 for (;;) { |
| 2139 // 2. If the value is two bits wide, it can be encoded. |
| 2140 if (width == 2) { |
| 2141 *n = 0; |
| 2142 *imm_s = 0x3C; |
| 2143 *imm_r = (value & 3) - 1; |
| 2144 return true; |
| 2145 } |
| 2146 |
| 2147 *n = (width == 64) ? 1 : 0; |
| 2148 *imm_s = ((imm_s_fixed | (set_bits - 1)) & imm_s_mask); |
| 2149 if ((lead_zero + set_bits) == width) { |
| 2150 *imm_r = 0; |
| 2151 } else { |
| 2152 *imm_r = (lead_zero > 0) ? (width - trail_zero) : lead_one; |
| 2153 } |
| 2154 |
| 2155 // 3. If the sum of leading zeros, trailing zeros and set bits is equal to |
| 2156 // the bit width of the value, it can be encoded. |
| 2157 if (lead_zero + trail_zero + set_bits == width) { |
| 2158 return true; |
| 2159 } |
| 2160 |
| 2161 // 4. If the sum of leading ones, trailing ones and unset bits in the |
| 2162 // value is equal to the bit width of the value, it can be encoded. |
| 2163 if (lead_one + trail_one + (width - set_bits) == width) { |
| 2164 return true; |
| 2165 } |
| 2166 |
| 2167 // 5. If the most-significant half of the bitwise value is equal to the |
| 2168 // least-significant half, return to step 2 using the least-significant |
| 2169 // half of the value. |
| 2170 uint64_t mask = (1UL << (width >> 1)) - 1; |
| 2171 if ((value & mask) == ((value >> (width >> 1)) & mask)) { |
| 2172 width >>= 1; |
| 2173 set_bits >>= 1; |
| 2174 imm_s_fixed >>= 1; |
| 2175 continue; |
| 2176 } |
| 2177 |
| 2178 // 6. Otherwise, the value can't be encoded. |
| 2179 return false; |
| 2180 } |
| 2181 } |
| 2182 |
| 2183 |
| 2184 bool Assembler::IsImmConditionalCompare(int64_t immediate) { |
| 2185 return is_uint5(immediate); |
| 2186 } |
| 2187 |
| 2188 |
| 2189 bool Assembler::IsImmFP32(float imm) { |
| 2190 // Valid values will have the form: |
| 2191 // aBbb.bbbc.defg.h000.0000.0000.0000.0000 |
| 2192 uint32_t bits = float_to_rawbits(imm); |
| 2193 // bits[19..0] are cleared. |
| 2194 if ((bits & 0x7ffff) != 0) { |
| 2195 return false; |
| 2196 } |
| 2197 |
| 2198 // bits[29..25] are all set or all cleared. |
| 2199 uint32_t b_pattern = (bits >> 16) & 0x3e00; |
| 2200 if (b_pattern != 0 && b_pattern != 0x3e00) { |
| 2201 return false; |
| 2202 } |
| 2203 |
| 2204 // bit[30] and bit[29] are opposite. |
| 2205 if (((bits ^ (bits << 1)) & 0x40000000) == 0) { |
| 2206 return false; |
| 2207 } |
| 2208 |
| 2209 return true; |
| 2210 } |
| 2211 |
| 2212 |
| 2213 bool Assembler::IsImmFP64(double imm) { |
| 2214 // Valid values will have the form: |
| 2215 // aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000 |
| 2216 // 0000.0000.0000.0000.0000.0000.0000.0000 |
| 2217 uint64_t bits = double_to_rawbits(imm); |
| 2218 // bits[47..0] are cleared. |
| 2219 if ((bits & 0xffffffffffffL) != 0) { |
| 2220 return false; |
| 2221 } |
| 2222 |
| 2223 // bits[61..54] are all set or all cleared. |
| 2224 uint32_t b_pattern = (bits >> 48) & 0x3fc0; |
| 2225 if (b_pattern != 0 && b_pattern != 0x3fc0) { |
| 2226 return false; |
| 2227 } |
| 2228 |
| 2229 // bit[62] and bit[61] are opposite. |
| 2230 if (((bits ^ (bits << 1)) & 0x4000000000000000L) == 0) { |
| 2231 return false; |
| 2232 } |
| 2233 |
| 2234 return true; |
| 2235 } |
| 2236 |
| 2237 |
| 2238 void Assembler::GrowBuffer() { |
| 2239 if (!own_buffer_) FATAL("external code buffer is too small"); |
| 2240 |
| 2241 // Compute new buffer size. |
| 2242 CodeDesc desc; // the new buffer |
| 2243 if (buffer_size_ < 4 * KB) { |
| 2244 desc.buffer_size = 4 * KB; |
| 2245 } else if (buffer_size_ < 1 * MB) { |
| 2246 desc.buffer_size = 2 * buffer_size_; |
| 2247 } else { |
| 2248 desc.buffer_size = buffer_size_ + 1 * MB; |
| 2249 } |
| 2250 CHECK_GT(desc.buffer_size, 0); // No overflow. |
| 2251 |
| 2252 byte* buffer = reinterpret_cast<byte*>(buffer_); |
| 2253 |
| 2254 // Set up new buffer. |
| 2255 desc.buffer = NewArray<byte>(desc.buffer_size); |
| 2256 |
| 2257 desc.instr_size = pc_offset(); |
| 2258 desc.reloc_size = (buffer + buffer_size_) - reloc_info_writer.pos(); |
| 2259 |
| 2260 // Copy the data. |
| 2261 intptr_t pc_delta = desc.buffer - buffer; |
| 2262 intptr_t rc_delta = (desc.buffer + desc.buffer_size) - |
| 2263 (buffer + buffer_size_); |
| 2264 memmove(desc.buffer, buffer, desc.instr_size); |
| 2265 memmove(reloc_info_writer.pos() + rc_delta, |
| 2266 reloc_info_writer.pos(), desc.reloc_size); |
| 2267 |
| 2268 // Switch buffers. |
| 2269 DeleteArray(buffer_); |
| 2270 buffer_ = desc.buffer; |
| 2271 buffer_size_ = desc.buffer_size; |
| 2272 pc_ = reinterpret_cast<byte*>(pc_) + pc_delta; |
| 2273 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, |
| 2274 reloc_info_writer.last_pc() + pc_delta); |
| 2275 |
| 2276 // None of our relocation types are pc relative pointing outside the code |
| 2277 // buffer nor pc absolute pointing inside the code buffer, so there is no need |
| 2278 // to relocate any emitted relocation entries. |
| 2279 |
| 2280 // Relocate pending relocation entries. |
| 2281 for (int i = 0; i < num_pending_reloc_info_; i++) { |
| 2282 RelocInfo& rinfo = pending_reloc_info_[i]; |
| 2283 ASSERT(rinfo.rmode() != RelocInfo::COMMENT && |
| 2284 rinfo.rmode() != RelocInfo::POSITION); |
| 2285 if (rinfo.rmode() != RelocInfo::JS_RETURN) { |
| 2286 rinfo.set_pc(rinfo.pc() + pc_delta); |
| 2287 } |
| 2288 } |
| 2289 } |
| 2290 |
| 2291 |
| 2292 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, int64_t data) { |
| 2293 // We do not try to reuse pool constants. |
| 2294 RelocInfo rinfo(reinterpret_cast<byte*>(pc_), rmode, data, NULL); |
| 2295 if (((rmode >= RelocInfo::JS_RETURN) && |
| 2296 (rmode <= RelocInfo::DEBUG_BREAK_SLOT)) || |
| 2297 (rmode == RelocInfo::CONST_POOL)) { |
| 2298 // Adjust code for new modes. |
| 2299 ASSERT(RelocInfo::IsDebugBreakSlot(rmode) |
| 2300 || RelocInfo::IsJSReturn(rmode) |
| 2301 || RelocInfo::IsComment(rmode) |
| 2302 || RelocInfo::IsPosition(rmode) |
| 2303 || RelocInfo::IsConstPool(rmode)); |
| 2304 // These modes do not need an entry in the constant pool. |
| 2305 } else { |
| 2306 ASSERT(num_pending_reloc_info_ < kMaxNumPendingRelocInfo); |
| 2307 if (num_pending_reloc_info_ == 0) { |
| 2308 first_const_pool_use_ = pc_offset(); |
| 2309 } |
| 2310 pending_reloc_info_[num_pending_reloc_info_++] = rinfo; |
| 2311 // Make sure the constant pool is not emitted in place of the next |
| 2312 // instruction for which we just recorded relocation info. |
| 2313 BlockConstPoolFor(1); |
| 2314 } |
| 2315 |
| 2316 if (!RelocInfo::IsNone(rmode)) { |
| 2317 // Don't record external references unless the heap will be serialized. |
| 2318 if (rmode == RelocInfo::EXTERNAL_REFERENCE) { |
| 2319 #ifdef DEBUG |
| 2320 if (!Serializer::enabled()) { |
| 2321 Serializer::TooLateToEnableNow(); |
| 2322 } |
| 2323 #endif |
| 2324 if (!Serializer::enabled() && !emit_debug_code()) { |
| 2325 return; |
| 2326 } |
| 2327 } |
| 2328 ASSERT(buffer_space() >= kMaxRelocSize); // too late to grow buffer here |
| 2329 if (rmode == RelocInfo::CODE_TARGET_WITH_ID) { |
| 2330 RelocInfo reloc_info_with_ast_id( |
| 2331 reinterpret_cast<byte*>(pc_), rmode, RecordedAstId().ToInt(), NULL); |
| 2332 ClearRecordedAstId(); |
| 2333 reloc_info_writer.Write(&reloc_info_with_ast_id); |
| 2334 } else { |
| 2335 reloc_info_writer.Write(&rinfo); |
| 2336 } |
| 2337 } |
| 2338 } |
| 2339 |
| 2340 |
| 2341 void Assembler::BlockConstPoolFor(int instructions) { |
| 2342 int pc_limit = pc_offset() + instructions * kInstructionSize; |
| 2343 if (no_const_pool_before_ < pc_limit) { |
| 2344 // If there are some pending entries, the constant pool cannot be blocked |
| 2345 // further than first_const_pool_use_ + kMaxDistToPool |
| 2346 ASSERT((num_pending_reloc_info_ == 0) || |
| 2347 (pc_limit < (first_const_pool_use_ + kMaxDistToPool))); |
| 2348 no_const_pool_before_ = pc_limit; |
| 2349 } |
| 2350 |
| 2351 if (next_buffer_check_ < no_const_pool_before_) { |
| 2352 next_buffer_check_ = no_const_pool_before_; |
| 2353 } |
| 2354 } |
| 2355 |
| 2356 |
| 2357 // TODO(all): We are never trying to emit constant pools after unconditional |
| 2358 // branches, because we only call it from Assembler::Emit() (or manually). |
| 2359 // We should try to enable that. |
| 2360 void Assembler::CheckConstPool(bool force_emit, bool require_jump) { |
| 2361 // Some short sequence of instruction mustn't be broken up by constant pool |
| 2362 // emission, such sequences are protected by calls to BlockConstPoolFor and |
| 2363 // BlockConstPoolScope. |
| 2364 if (is_const_pool_blocked()) { |
| 2365 // Something is wrong if emission is forced and blocked at the same time. |
| 2366 ASSERT(!force_emit); |
| 2367 return; |
| 2368 } |
| 2369 |
| 2370 // There is nothing to do if there are no pending constant pool entries. |
| 2371 if (num_pending_reloc_info_ == 0) { |
| 2372 // Calculate the offset of the next check. |
| 2373 next_buffer_check_ = pc_offset() + kCheckPoolInterval; |
| 2374 return; |
| 2375 } |
| 2376 |
| 2377 // We emit a constant pool when: |
| 2378 // * requested to do so by parameter force_emit (e.g. after each function). |
| 2379 // * the distance to the first instruction accessing the constant pool is |
| 2380 // kAvgDistToPool or more. |
| 2381 // * no jump is required and the distance to the first instruction accessing |
| 2382 // the constant pool is at least kMaxDistToPool / 2. |
| 2383 ASSERT(first_const_pool_use_ >= 0); |
| 2384 int dist = pc_offset() - first_const_pool_use_; |
| 2385 if (!force_emit && dist < kAvgDistToPool && |
| 2386 (require_jump || (dist < (kMaxDistToPool / 2)))) { |
| 2387 return; |
| 2388 } |
| 2389 |
| 2390 // Check that the code buffer is large enough before emitting the constant |
| 2391 // pool (include the jump over the pool and the constant pool marker and |
| 2392 // the gap to the relocation information). |
| 2393 int jump_instr = require_jump ? kInstructionSize : 0; |
| 2394 int size = jump_instr + kInstructionSize + |
| 2395 num_pending_reloc_info_ * kPointerSize; |
| 2396 int needed_space = size + kGap; |
| 2397 while (buffer_space() <= needed_space) { |
| 2398 GrowBuffer(); |
| 2399 } |
| 2400 |
| 2401 { |
| 2402 // Block recursive calls to CheckConstPool. |
| 2403 BlockConstPoolScope block_const_pool(this); |
| 2404 RecordComment("[ Constant Pool"); |
| 2405 RecordConstPool(size); |
| 2406 |
| 2407 // Emit jump over constant pool if necessary. |
| 2408 Label after_pool; |
| 2409 if (require_jump) { |
| 2410 b(&after_pool); |
| 2411 } |
| 2412 |
| 2413 // Emit a constant pool header. The header has two goals: |
| 2414 // 1) Encode the size of the constant pool, for use by the disassembler. |
| 2415 // 2) Terminate the program, to try to prevent execution from accidentally |
| 2416 // flowing into the constant pool. |
| 2417 // The header is therefore made of two a64 instructions: |
| 2418 // ldr xzr, #<size of the constant pool in 32-bit words> |
| 2419 // blr xzr |
| 2420 // If executed the code will likely segfault and lr will point to the |
| 2421 // beginning of the constant pool. |
| 2422 // TODO(all): currently each relocated constant is 64 bits, consider adding |
| 2423 // support for 32-bit entries. |
| 2424 ConstantPoolMarker(2 * num_pending_reloc_info_); |
| 2425 ConstantPoolGuard(); |
| 2426 |
| 2427 // Emit constant pool entries. |
| 2428 for (int i = 0; i < num_pending_reloc_info_; i++) { |
| 2429 RelocInfo& rinfo = pending_reloc_info_[i]; |
| 2430 ASSERT(rinfo.rmode() != RelocInfo::COMMENT && |
| 2431 rinfo.rmode() != RelocInfo::POSITION && |
| 2432 rinfo.rmode() != RelocInfo::STATEMENT_POSITION && |
| 2433 rinfo.rmode() != RelocInfo::CONST_POOL); |
| 2434 |
| 2435 Instruction* instr = reinterpret_cast<Instruction*>(rinfo.pc()); |
| 2436 // Instruction to patch must be 'ldr rd, [pc, #offset]' with offset == 0. |
| 2437 ASSERT(instr->IsLdrLiteral() && |
| 2438 instr->ImmLLiteral() == 0); |
| 2439 |
| 2440 instr->SetImmPCOffsetTarget(reinterpret_cast<Instruction*>(pc_)); |
| 2441 dc64(rinfo.data()); |
| 2442 } |
| 2443 |
| 2444 num_pending_reloc_info_ = 0; |
| 2445 first_const_pool_use_ = -1; |
| 2446 |
| 2447 RecordComment("]"); |
| 2448 |
| 2449 if (after_pool.is_linked()) { |
| 2450 bind(&after_pool); |
| 2451 } |
| 2452 } |
| 2453 |
| 2454 // Since a constant pool was just emitted, move the check offset forward by |
| 2455 // the standard interval. |
| 2456 next_buffer_check_ = pc_offset() + kCheckPoolInterval; |
| 2457 } |
| 2458 |
| 2459 |
| 2460 void Assembler::RecordComment(const char* msg) { |
| 2461 if (FLAG_code_comments) { |
| 2462 CheckBuffer(); |
| 2463 RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg)); |
| 2464 } |
| 2465 } |
| 2466 |
| 2467 |
| 2468 int Assembler::buffer_space() const { |
| 2469 return reloc_info_writer.pos() - reinterpret_cast<byte*>(pc_); |
| 2470 } |
| 2471 |
| 2472 |
| 2473 void Assembler::RecordJSReturn() { |
| 2474 positions_recorder()->WriteRecordedPositions(); |
| 2475 CheckBuffer(); |
| 2476 RecordRelocInfo(RelocInfo::JS_RETURN); |
| 2477 } |
| 2478 |
| 2479 |
| 2480 void Assembler::RecordDebugBreakSlot() { |
| 2481 positions_recorder()->WriteRecordedPositions(); |
| 2482 CheckBuffer(); |
| 2483 RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT); |
| 2484 } |
| 2485 |
| 2486 |
| 2487 void Assembler::RecordConstPool(int size) { |
| 2488 // We only need this for debugger support, to correctly compute offsets in the |
| 2489 // code. |
| 2490 #ifdef ENABLE_DEBUGGER_SUPPORT |
| 2491 RecordRelocInfo(RelocInfo::CONST_POOL, static_cast<intptr_t>(size)); |
| 2492 #endif |
| 2493 } |
| 2494 |
| 2495 |
| 2496 } } // namespace v8::internal |
| 2497 |
| 2498 #endif // V8_TARGET_ARCH_A64 |
OLD | NEW |