OLD | NEW |
| (Empty) |
1 // Copyright 2012 the V8 project authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "src/scopes.h" | |
6 | |
7 #include "src/accessors.h" | |
8 #include "src/bootstrapper.h" | |
9 #include "src/messages.h" | |
10 #include "src/parser.h" | |
11 #include "src/scopeinfo.h" | |
12 | |
13 namespace v8 { | |
14 namespace internal { | |
15 | |
16 // ---------------------------------------------------------------------------- | |
17 // Implementation of LocalsMap | |
18 // | |
19 // Note: We are storing the handle locations as key values in the hash map. | |
20 // When inserting a new variable via Declare(), we rely on the fact that | |
21 // the handle location remains alive for the duration of that variable | |
22 // use. Because a Variable holding a handle with the same location exists | |
23 // this is ensured. | |
24 | |
25 VariableMap::VariableMap(Zone* zone) | |
26 : ZoneHashMap(ZoneHashMap::PointersMatch, 8, ZoneAllocationPolicy(zone)), | |
27 zone_(zone) {} | |
28 VariableMap::~VariableMap() {} | |
29 | |
30 | |
31 Variable* VariableMap::Declare(Scope* scope, const AstRawString* name, | |
32 VariableMode mode, Variable::Kind kind, | |
33 InitializationFlag initialization_flag, | |
34 MaybeAssignedFlag maybe_assigned_flag, | |
35 int declaration_group_start) { | |
36 // AstRawStrings are unambiguous, i.e., the same string is always represented | |
37 // by the same AstRawString*. | |
38 // FIXME(marja): fix the type of Lookup. | |
39 Entry* p = | |
40 ZoneHashMap::LookupOrInsert(const_cast<AstRawString*>(name), name->hash(), | |
41 ZoneAllocationPolicy(zone())); | |
42 if (p->value == NULL) { | |
43 // The variable has not been declared yet -> insert it. | |
44 DCHECK(p->key == name); | |
45 if (kind == Variable::CLASS) { | |
46 p->value = new (zone()) | |
47 ClassVariable(scope, name, mode, initialization_flag, | |
48 maybe_assigned_flag, declaration_group_start); | |
49 } else { | |
50 p->value = new (zone()) Variable( | |
51 scope, name, mode, kind, initialization_flag, maybe_assigned_flag); | |
52 } | |
53 } | |
54 return reinterpret_cast<Variable*>(p->value); | |
55 } | |
56 | |
57 | |
58 Variable* VariableMap::Lookup(const AstRawString* name) { | |
59 Entry* p = ZoneHashMap::Lookup(const_cast<AstRawString*>(name), name->hash()); | |
60 if (p != NULL) { | |
61 DCHECK(reinterpret_cast<const AstRawString*>(p->key) == name); | |
62 DCHECK(p->value != NULL); | |
63 return reinterpret_cast<Variable*>(p->value); | |
64 } | |
65 return NULL; | |
66 } | |
67 | |
68 | |
69 SloppyBlockFunctionMap::SloppyBlockFunctionMap(Zone* zone) | |
70 : ZoneHashMap(ZoneHashMap::PointersMatch, 8, ZoneAllocationPolicy(zone)), | |
71 zone_(zone) {} | |
72 SloppyBlockFunctionMap::~SloppyBlockFunctionMap() {} | |
73 | |
74 | |
75 void SloppyBlockFunctionMap::Declare(const AstRawString* name, | |
76 SloppyBlockFunctionStatement* stmt) { | |
77 // AstRawStrings are unambiguous, i.e., the same string is always represented | |
78 // by the same AstRawString*. | |
79 Entry* p = | |
80 ZoneHashMap::LookupOrInsert(const_cast<AstRawString*>(name), name->hash(), | |
81 ZoneAllocationPolicy(zone_)); | |
82 if (p->value == nullptr) { | |
83 p->value = new (zone_->New(sizeof(Vector))) Vector(zone_); | |
84 } | |
85 Vector* delegates = static_cast<Vector*>(p->value); | |
86 delegates->push_back(stmt); | |
87 } | |
88 | |
89 | |
90 // ---------------------------------------------------------------------------- | |
91 // Implementation of Scope | |
92 | |
93 Scope::Scope(Zone* zone, Scope* outer_scope, ScopeType scope_type, | |
94 AstValueFactory* ast_value_factory, FunctionKind function_kind) | |
95 : inner_scopes_(4, zone), | |
96 variables_(zone), | |
97 temps_(4, zone), | |
98 params_(4, zone), | |
99 unresolved_(16, zone), | |
100 decls_(4, zone), | |
101 module_descriptor_( | |
102 scope_type == MODULE_SCOPE ? ModuleDescriptor::New(zone) : NULL), | |
103 sloppy_block_function_map_(zone), | |
104 already_resolved_(false), | |
105 ast_value_factory_(ast_value_factory), | |
106 zone_(zone), | |
107 class_declaration_group_start_(-1) { | |
108 SetDefaults(scope_type, outer_scope, Handle<ScopeInfo>::null(), | |
109 function_kind); | |
110 // The outermost scope must be a script scope. | |
111 DCHECK(scope_type == SCRIPT_SCOPE || outer_scope != NULL); | |
112 DCHECK(!HasIllegalRedeclaration()); | |
113 } | |
114 | |
115 | |
116 Scope::Scope(Zone* zone, Scope* inner_scope, ScopeType scope_type, | |
117 Handle<ScopeInfo> scope_info, AstValueFactory* value_factory) | |
118 : inner_scopes_(4, zone), | |
119 variables_(zone), | |
120 temps_(4, zone), | |
121 params_(4, zone), | |
122 unresolved_(16, zone), | |
123 decls_(4, zone), | |
124 module_descriptor_(NULL), | |
125 sloppy_block_function_map_(zone), | |
126 already_resolved_(true), | |
127 ast_value_factory_(value_factory), | |
128 zone_(zone), | |
129 class_declaration_group_start_(-1) { | |
130 SetDefaults(scope_type, NULL, scope_info); | |
131 if (!scope_info.is_null()) { | |
132 num_heap_slots_ = scope_info_->ContextLength(); | |
133 } | |
134 // Ensure at least MIN_CONTEXT_SLOTS to indicate a materialized context. | |
135 num_heap_slots_ = Max(num_heap_slots_, | |
136 static_cast<int>(Context::MIN_CONTEXT_SLOTS)); | |
137 AddInnerScope(inner_scope); | |
138 } | |
139 | |
140 | |
141 Scope::Scope(Zone* zone, Scope* inner_scope, | |
142 const AstRawString* catch_variable_name, | |
143 AstValueFactory* value_factory) | |
144 : inner_scopes_(1, zone), | |
145 variables_(zone), | |
146 temps_(0, zone), | |
147 params_(0, zone), | |
148 unresolved_(0, zone), | |
149 decls_(0, zone), | |
150 module_descriptor_(NULL), | |
151 sloppy_block_function_map_(zone), | |
152 already_resolved_(true), | |
153 ast_value_factory_(value_factory), | |
154 zone_(zone), | |
155 class_declaration_group_start_(-1) { | |
156 SetDefaults(CATCH_SCOPE, NULL, Handle<ScopeInfo>::null()); | |
157 AddInnerScope(inner_scope); | |
158 ++num_var_or_const_; | |
159 num_heap_slots_ = Context::MIN_CONTEXT_SLOTS; | |
160 Variable* variable = variables_.Declare(this, | |
161 catch_variable_name, | |
162 VAR, | |
163 Variable::NORMAL, | |
164 kCreatedInitialized); | |
165 AllocateHeapSlot(variable); | |
166 } | |
167 | |
168 | |
169 void Scope::SetDefaults(ScopeType scope_type, Scope* outer_scope, | |
170 Handle<ScopeInfo> scope_info, | |
171 FunctionKind function_kind) { | |
172 outer_scope_ = outer_scope; | |
173 scope_type_ = scope_type; | |
174 is_declaration_scope_ = | |
175 is_eval_scope() || is_function_scope() || | |
176 is_module_scope() || is_script_scope(); | |
177 function_kind_ = function_kind; | |
178 scope_name_ = ast_value_factory_->empty_string(); | |
179 dynamics_ = nullptr; | |
180 receiver_ = nullptr; | |
181 new_target_ = nullptr; | |
182 function_ = nullptr; | |
183 arguments_ = nullptr; | |
184 this_function_ = nullptr; | |
185 illegal_redecl_ = nullptr; | |
186 scope_inside_with_ = false; | |
187 scope_contains_with_ = false; | |
188 scope_calls_eval_ = false; | |
189 scope_uses_arguments_ = false; | |
190 scope_uses_super_property_ = false; | |
191 asm_module_ = false; | |
192 asm_function_ = outer_scope != NULL && outer_scope->asm_module_; | |
193 // Inherit the language mode from the parent scope. | |
194 language_mode_ = outer_scope != NULL ? outer_scope->language_mode_ : SLOPPY; | |
195 outer_scope_calls_sloppy_eval_ = false; | |
196 inner_scope_calls_eval_ = false; | |
197 scope_nonlinear_ = false; | |
198 force_eager_compilation_ = false; | |
199 force_context_allocation_ = (outer_scope != NULL && !is_function_scope()) | |
200 ? outer_scope->has_forced_context_allocation() : false; | |
201 num_var_or_const_ = 0; | |
202 num_stack_slots_ = 0; | |
203 num_heap_slots_ = 0; | |
204 num_global_slots_ = 0; | |
205 num_modules_ = 0; | |
206 module_var_ = NULL; | |
207 arity_ = 0; | |
208 has_simple_parameters_ = true; | |
209 rest_parameter_ = NULL; | |
210 rest_index_ = -1; | |
211 scope_info_ = scope_info; | |
212 start_position_ = RelocInfo::kNoPosition; | |
213 end_position_ = RelocInfo::kNoPosition; | |
214 if (!scope_info.is_null()) { | |
215 scope_calls_eval_ = scope_info->CallsEval(); | |
216 language_mode_ = scope_info->language_mode(); | |
217 is_declaration_scope_ = scope_info->is_declaration_scope(); | |
218 function_kind_ = scope_info->function_kind(); | |
219 } | |
220 } | |
221 | |
222 | |
223 Scope* Scope::DeserializeScopeChain(Isolate* isolate, Zone* zone, | |
224 Context* context, Scope* script_scope) { | |
225 // Reconstruct the outer scope chain from a closure's context chain. | |
226 Scope* current_scope = NULL; | |
227 Scope* innermost_scope = NULL; | |
228 bool contains_with = false; | |
229 while (!context->IsNativeContext()) { | |
230 if (context->IsWithContext()) { | |
231 Scope* with_scope = new (zone) | |
232 Scope(zone, current_scope, WITH_SCOPE, Handle<ScopeInfo>::null(), | |
233 script_scope->ast_value_factory_); | |
234 current_scope = with_scope; | |
235 // All the inner scopes are inside a with. | |
236 contains_with = true; | |
237 for (Scope* s = innermost_scope; s != NULL; s = s->outer_scope()) { | |
238 s->scope_inside_with_ = true; | |
239 } | |
240 } else if (context->IsScriptContext()) { | |
241 ScopeInfo* scope_info = context->scope_info(); | |
242 current_scope = new (zone) Scope(zone, current_scope, SCRIPT_SCOPE, | |
243 Handle<ScopeInfo>(scope_info), | |
244 script_scope->ast_value_factory_); | |
245 } else if (context->IsModuleContext()) { | |
246 ScopeInfo* scope_info = context->module()->scope_info(); | |
247 current_scope = new (zone) Scope(zone, current_scope, MODULE_SCOPE, | |
248 Handle<ScopeInfo>(scope_info), | |
249 script_scope->ast_value_factory_); | |
250 } else if (context->IsFunctionContext()) { | |
251 ScopeInfo* scope_info = context->closure()->shared()->scope_info(); | |
252 current_scope = new (zone) Scope(zone, current_scope, FUNCTION_SCOPE, | |
253 Handle<ScopeInfo>(scope_info), | |
254 script_scope->ast_value_factory_); | |
255 if (scope_info->IsAsmFunction()) current_scope->asm_function_ = true; | |
256 if (scope_info->IsAsmModule()) current_scope->asm_module_ = true; | |
257 } else if (context->IsBlockContext()) { | |
258 ScopeInfo* scope_info = context->scope_info(); | |
259 current_scope = new (zone) | |
260 Scope(zone, current_scope, BLOCK_SCOPE, Handle<ScopeInfo>(scope_info), | |
261 script_scope->ast_value_factory_); | |
262 } else { | |
263 DCHECK(context->IsCatchContext()); | |
264 String* name = context->catch_name(); | |
265 current_scope = new (zone) Scope( | |
266 zone, current_scope, | |
267 script_scope->ast_value_factory_->GetString(Handle<String>(name)), | |
268 script_scope->ast_value_factory_); | |
269 } | |
270 if (contains_with) current_scope->RecordWithStatement(); | |
271 if (innermost_scope == NULL) innermost_scope = current_scope; | |
272 | |
273 // Forget about a with when we move to a context for a different function. | |
274 if (context->previous()->closure() != context->closure()) { | |
275 contains_with = false; | |
276 } | |
277 context = context->previous(); | |
278 } | |
279 | |
280 script_scope->AddInnerScope(current_scope); | |
281 script_scope->PropagateScopeInfo(false); | |
282 return (innermost_scope == NULL) ? script_scope : innermost_scope; | |
283 } | |
284 | |
285 | |
286 bool Scope::Analyze(ParseInfo* info) { | |
287 DCHECK(info->literal() != NULL); | |
288 DCHECK(info->scope() == NULL); | |
289 Scope* scope = info->literal()->scope(); | |
290 Scope* top = scope; | |
291 | |
292 // Traverse the scope tree up to the first unresolved scope or the global | |
293 // scope and start scope resolution and variable allocation from that scope. | |
294 while (!top->is_script_scope() && | |
295 !top->outer_scope()->already_resolved()) { | |
296 top = top->outer_scope(); | |
297 } | |
298 | |
299 // Allocate the variables. | |
300 { | |
301 AstNodeFactory ast_node_factory(info->ast_value_factory()); | |
302 if (!top->AllocateVariables(info, &ast_node_factory)) { | |
303 DCHECK(top->pending_error_handler_.has_pending_error()); | |
304 top->pending_error_handler_.ThrowPendingError(info->isolate(), | |
305 info->script()); | |
306 return false; | |
307 } | |
308 } | |
309 | |
310 #ifdef DEBUG | |
311 bool native = info->isolate()->bootstrapper()->IsActive(); | |
312 if (!info->shared_info().is_null()) { | |
313 Object* script = info->shared_info()->script(); | |
314 native = script->IsScript() && | |
315 Script::cast(script)->type() == Script::TYPE_NATIVE; | |
316 } | |
317 | |
318 if (native ? FLAG_print_builtin_scopes : FLAG_print_scopes) scope->Print(); | |
319 #endif | |
320 | |
321 info->set_scope(scope); | |
322 return true; | |
323 } | |
324 | |
325 | |
326 void Scope::Initialize() { | |
327 DCHECK(!already_resolved()); | |
328 | |
329 // Add this scope as a new inner scope of the outer scope. | |
330 if (outer_scope_ != NULL) { | |
331 outer_scope_->inner_scopes_.Add(this, zone()); | |
332 scope_inside_with_ = outer_scope_->scope_inside_with_ || is_with_scope(); | |
333 } else { | |
334 scope_inside_with_ = is_with_scope(); | |
335 } | |
336 | |
337 // Declare convenience variables and the receiver. | |
338 if (is_declaration_scope() && has_this_declaration()) { | |
339 bool subclass_constructor = IsSubclassConstructor(function_kind_); | |
340 Variable* var = variables_.Declare( | |
341 this, ast_value_factory_->this_string(), | |
342 subclass_constructor ? CONST : VAR, Variable::THIS, | |
343 subclass_constructor ? kNeedsInitialization : kCreatedInitialized); | |
344 receiver_ = var; | |
345 } | |
346 | |
347 if (is_function_scope() && !is_arrow_scope()) { | |
348 // Declare 'arguments' variable which exists in all non arrow functions. | |
349 // Note that it might never be accessed, in which case it won't be | |
350 // allocated during variable allocation. | |
351 variables_.Declare(this, ast_value_factory_->arguments_string(), VAR, | |
352 Variable::ARGUMENTS, kCreatedInitialized); | |
353 | |
354 variables_.Declare(this, ast_value_factory_->new_target_string(), CONST, | |
355 Variable::NORMAL, kCreatedInitialized); | |
356 | |
357 if (IsConciseMethod(function_kind_) || IsClassConstructor(function_kind_) || | |
358 IsAccessorFunction(function_kind_)) { | |
359 variables_.Declare(this, ast_value_factory_->this_function_string(), | |
360 CONST, Variable::NORMAL, kCreatedInitialized); | |
361 } | |
362 } | |
363 } | |
364 | |
365 | |
366 Scope* Scope::FinalizeBlockScope() { | |
367 DCHECK(is_block_scope()); | |
368 DCHECK(temps_.is_empty()); | |
369 DCHECK(params_.is_empty()); | |
370 | |
371 if (num_var_or_const() > 0 || | |
372 (is_declaration_scope() && calls_sloppy_eval())) { | |
373 return this; | |
374 } | |
375 | |
376 // Remove this scope from outer scope. | |
377 outer_scope()->RemoveInnerScope(this); | |
378 | |
379 // Reparent inner scopes. | |
380 for (int i = 0; i < inner_scopes_.length(); i++) { | |
381 outer_scope()->AddInnerScope(inner_scopes_[i]); | |
382 } | |
383 | |
384 // Move unresolved variables | |
385 for (int i = 0; i < unresolved_.length(); i++) { | |
386 outer_scope()->unresolved_.Add(unresolved_[i], zone()); | |
387 } | |
388 | |
389 PropagateUsageFlagsToScope(outer_scope_); | |
390 | |
391 return NULL; | |
392 } | |
393 | |
394 | |
395 void Scope::ReplaceOuterScope(Scope* outer) { | |
396 DCHECK_NOT_NULL(outer); | |
397 DCHECK_NOT_NULL(outer_scope_); | |
398 DCHECK(!already_resolved()); | |
399 DCHECK(!outer->already_resolved()); | |
400 DCHECK(!outer_scope_->already_resolved()); | |
401 outer_scope_->RemoveInnerScope(this); | |
402 outer->AddInnerScope(this); | |
403 outer_scope_ = outer; | |
404 } | |
405 | |
406 | |
407 void Scope::PropagateUsageFlagsToScope(Scope* other) { | |
408 DCHECK_NOT_NULL(other); | |
409 DCHECK(!already_resolved()); | |
410 DCHECK(!other->already_resolved()); | |
411 if (uses_arguments()) other->RecordArgumentsUsage(); | |
412 if (uses_super_property()) other->RecordSuperPropertyUsage(); | |
413 if (calls_eval()) other->RecordEvalCall(); | |
414 if (scope_contains_with_) other->RecordWithStatement(); | |
415 } | |
416 | |
417 | |
418 Variable* Scope::LookupLocal(const AstRawString* name) { | |
419 Variable* result = variables_.Lookup(name); | |
420 if (result != NULL || scope_info_.is_null()) { | |
421 return result; | |
422 } | |
423 Handle<String> name_handle = name->string(); | |
424 // The Scope is backed up by ScopeInfo. This means it cannot operate in a | |
425 // heap-independent mode, and all strings must be internalized immediately. So | |
426 // it's ok to get the Handle<String> here. | |
427 // If we have a serialized scope info, we might find the variable there. | |
428 // There should be no local slot with the given name. | |
429 DCHECK(scope_info_->StackSlotIndex(*name_handle) < 0 || is_block_scope()); | |
430 | |
431 // Check context slot lookup. | |
432 VariableMode mode; | |
433 VariableLocation location = VariableLocation::CONTEXT; | |
434 InitializationFlag init_flag; | |
435 MaybeAssignedFlag maybe_assigned_flag; | |
436 int index = ScopeInfo::ContextSlotIndex(scope_info_, name_handle, &mode, | |
437 &init_flag, &maybe_assigned_flag); | |
438 if (index < 0) { | |
439 location = VariableLocation::GLOBAL; | |
440 index = ScopeInfo::ContextGlobalSlotIndex(scope_info_, name_handle, &mode, | |
441 &init_flag, &maybe_assigned_flag); | |
442 } | |
443 if (index < 0) { | |
444 // Check parameters. | |
445 index = scope_info_->ParameterIndex(*name_handle); | |
446 if (index < 0) return NULL; | |
447 | |
448 mode = DYNAMIC; | |
449 location = VariableLocation::LOOKUP; | |
450 init_flag = kCreatedInitialized; | |
451 // Be conservative and flag parameters as maybe assigned. Better information | |
452 // would require ScopeInfo to serialize the maybe_assigned bit also for | |
453 // parameters. | |
454 maybe_assigned_flag = kMaybeAssigned; | |
455 } else { | |
456 DCHECK(location != VariableLocation::GLOBAL || | |
457 (is_script_scope() && IsDeclaredVariableMode(mode) && | |
458 !IsLexicalVariableMode(mode))); | |
459 } | |
460 | |
461 Variable::Kind kind = Variable::NORMAL; | |
462 if (location == VariableLocation::CONTEXT && | |
463 index == scope_info_->ReceiverContextSlotIndex()) { | |
464 kind = Variable::THIS; | |
465 } | |
466 // TODO(marja, rossberg): Correctly declare FUNCTION, CLASS, NEW_TARGET, and | |
467 // ARGUMENTS bindings as their corresponding Variable::Kind. | |
468 | |
469 Variable* var = variables_.Declare(this, name, mode, kind, init_flag, | |
470 maybe_assigned_flag); | |
471 var->AllocateTo(location, index); | |
472 return var; | |
473 } | |
474 | |
475 | |
476 Variable* Scope::LookupFunctionVar(const AstRawString* name, | |
477 AstNodeFactory* factory) { | |
478 if (function_ != NULL && function_->proxy()->raw_name() == name) { | |
479 return function_->proxy()->var(); | |
480 } else if (!scope_info_.is_null()) { | |
481 // If we are backed by a scope info, try to lookup the variable there. | |
482 VariableMode mode; | |
483 int index = scope_info_->FunctionContextSlotIndex(*(name->string()), &mode); | |
484 if (index < 0) return NULL; | |
485 Variable* var = new (zone()) | |
486 Variable(this, name, mode, Variable::NORMAL, kCreatedInitialized); | |
487 VariableProxy* proxy = factory->NewVariableProxy(var); | |
488 VariableDeclaration* declaration = factory->NewVariableDeclaration( | |
489 proxy, mode, this, RelocInfo::kNoPosition); | |
490 DeclareFunctionVar(declaration); | |
491 var->AllocateTo(VariableLocation::CONTEXT, index); | |
492 return var; | |
493 } else { | |
494 return NULL; | |
495 } | |
496 } | |
497 | |
498 | |
499 Variable* Scope::Lookup(const AstRawString* name) { | |
500 for (Scope* scope = this; | |
501 scope != NULL; | |
502 scope = scope->outer_scope()) { | |
503 Variable* var = scope->LookupLocal(name); | |
504 if (var != NULL) return var; | |
505 } | |
506 return NULL; | |
507 } | |
508 | |
509 | |
510 Variable* Scope::DeclareParameter( | |
511 const AstRawString* name, VariableMode mode, | |
512 bool is_optional, bool is_rest, bool* is_duplicate) { | |
513 DCHECK(!already_resolved()); | |
514 DCHECK(is_function_scope()); | |
515 DCHECK(!is_optional || !is_rest); | |
516 Variable* var; | |
517 if (mode == TEMPORARY) { | |
518 var = NewTemporary(name); | |
519 } else { | |
520 var = variables_.Declare(this, name, mode, Variable::NORMAL, | |
521 kCreatedInitialized); | |
522 // TODO(wingo): Avoid O(n^2) check. | |
523 *is_duplicate = IsDeclaredParameter(name); | |
524 } | |
525 if (!is_optional && !is_rest && arity_ == params_.length()) { | |
526 ++arity_; | |
527 } | |
528 if (is_rest) { | |
529 DCHECK_NULL(rest_parameter_); | |
530 rest_parameter_ = var; | |
531 rest_index_ = num_parameters(); | |
532 } | |
533 params_.Add(var, zone()); | |
534 return var; | |
535 } | |
536 | |
537 | |
538 Variable* Scope::DeclareLocal(const AstRawString* name, VariableMode mode, | |
539 InitializationFlag init_flag, Variable::Kind kind, | |
540 MaybeAssignedFlag maybe_assigned_flag, | |
541 int declaration_group_start) { | |
542 DCHECK(!already_resolved()); | |
543 // This function handles VAR, LET, and CONST modes. DYNAMIC variables are | |
544 // introduces during variable allocation, and TEMPORARY variables are | |
545 // allocated via NewTemporary(). | |
546 DCHECK(IsDeclaredVariableMode(mode)); | |
547 ++num_var_or_const_; | |
548 return variables_.Declare(this, name, mode, kind, init_flag, | |
549 maybe_assigned_flag, declaration_group_start); | |
550 } | |
551 | |
552 | |
553 Variable* Scope::DeclareDynamicGlobal(const AstRawString* name) { | |
554 DCHECK(is_script_scope()); | |
555 return variables_.Declare(this, | |
556 name, | |
557 DYNAMIC_GLOBAL, | |
558 Variable::NORMAL, | |
559 kCreatedInitialized); | |
560 } | |
561 | |
562 | |
563 bool Scope::RemoveUnresolved(VariableProxy* var) { | |
564 // Most likely (always?) any variable we want to remove | |
565 // was just added before, so we search backwards. | |
566 for (int i = unresolved_.length(); i-- > 0;) { | |
567 if (unresolved_[i] == var) { | |
568 unresolved_.Remove(i); | |
569 return true; | |
570 } | |
571 } | |
572 return false; | |
573 } | |
574 | |
575 | |
576 Variable* Scope::NewTemporary(const AstRawString* name) { | |
577 DCHECK(!already_resolved()); | |
578 Scope* scope = this->ClosureScope(); | |
579 Variable* var = new(zone()) Variable(scope, | |
580 name, | |
581 TEMPORARY, | |
582 Variable::NORMAL, | |
583 kCreatedInitialized); | |
584 scope->temps_.Add(var, zone()); | |
585 return var; | |
586 } | |
587 | |
588 | |
589 void Scope::AddDeclaration(Declaration* declaration) { | |
590 decls_.Add(declaration, zone()); | |
591 } | |
592 | |
593 | |
594 void Scope::SetIllegalRedeclaration(Expression* expression) { | |
595 // Record only the first illegal redeclaration. | |
596 if (!HasIllegalRedeclaration()) { | |
597 illegal_redecl_ = expression; | |
598 } | |
599 DCHECK(HasIllegalRedeclaration()); | |
600 } | |
601 | |
602 | |
603 Expression* Scope::GetIllegalRedeclaration() { | |
604 DCHECK(HasIllegalRedeclaration()); | |
605 return illegal_redecl_; | |
606 } | |
607 | |
608 | |
609 Declaration* Scope::CheckConflictingVarDeclarations() { | |
610 int length = decls_.length(); | |
611 for (int i = 0; i < length; i++) { | |
612 Declaration* decl = decls_[i]; | |
613 // We don't create a separate scope to hold the function name of a function | |
614 // expression, so we have to make sure not to consider it when checking for | |
615 // conflicts (since it's conceptually "outside" the declaration scope). | |
616 if (is_function_scope() && decl == function()) continue; | |
617 if (IsLexicalVariableMode(decl->mode()) && !is_block_scope()) continue; | |
618 const AstRawString* name = decl->proxy()->raw_name(); | |
619 | |
620 // Iterate through all scopes until and including the declaration scope. | |
621 Scope* previous = NULL; | |
622 Scope* current = decl->scope(); | |
623 // Lexical vs lexical conflicts within the same scope have already been | |
624 // captured in Parser::Declare. The only conflicts we still need to check | |
625 // are lexical vs VAR, or any declarations within a declaration block scope | |
626 // vs lexical declarations in its surrounding (function) scope. | |
627 if (IsLexicalVariableMode(decl->mode())) current = current->outer_scope_; | |
628 do { | |
629 // There is a conflict if there exists a non-VAR binding. | |
630 Variable* other_var = current->variables_.Lookup(name); | |
631 if (other_var != NULL && IsLexicalVariableMode(other_var->mode())) { | |
632 return decl; | |
633 } | |
634 previous = current; | |
635 current = current->outer_scope_; | |
636 } while (!previous->is_declaration_scope()); | |
637 } | |
638 return NULL; | |
639 } | |
640 | |
641 | |
642 class VarAndOrder { | |
643 public: | |
644 VarAndOrder(Variable* var, int order) : var_(var), order_(order) { } | |
645 Variable* var() const { return var_; } | |
646 int order() const { return order_; } | |
647 static int Compare(const VarAndOrder* a, const VarAndOrder* b) { | |
648 return a->order_ - b->order_; | |
649 } | |
650 | |
651 private: | |
652 Variable* var_; | |
653 int order_; | |
654 }; | |
655 | |
656 | |
657 void Scope::CollectStackAndContextLocals( | |
658 ZoneList<Variable*>* stack_locals, ZoneList<Variable*>* context_locals, | |
659 ZoneList<Variable*>* context_globals, | |
660 ZoneList<Variable*>* strong_mode_free_variables) { | |
661 DCHECK(stack_locals != NULL); | |
662 DCHECK(context_locals != NULL); | |
663 DCHECK(context_globals != NULL); | |
664 | |
665 // Collect temporaries which are always allocated on the stack, unless the | |
666 // context as a whole has forced context allocation. | |
667 for (int i = 0; i < temps_.length(); i++) { | |
668 Variable* var = temps_[i]; | |
669 if (var->is_used()) { | |
670 if (var->IsContextSlot()) { | |
671 DCHECK(has_forced_context_allocation()); | |
672 context_locals->Add(var, zone()); | |
673 } else if (var->IsStackLocal()) { | |
674 stack_locals->Add(var, zone()); | |
675 } else { | |
676 DCHECK(var->IsParameter()); | |
677 } | |
678 } | |
679 } | |
680 | |
681 // Collect declared local variables. | |
682 ZoneList<VarAndOrder> vars(variables_.occupancy(), zone()); | |
683 for (VariableMap::Entry* p = variables_.Start(); | |
684 p != NULL; | |
685 p = variables_.Next(p)) { | |
686 Variable* var = reinterpret_cast<Variable*>(p->value); | |
687 if (strong_mode_free_variables && var->has_strong_mode_reference() && | |
688 var->mode() == DYNAMIC_GLOBAL) { | |
689 strong_mode_free_variables->Add(var, zone()); | |
690 } | |
691 | |
692 if (var->is_used()) { | |
693 vars.Add(VarAndOrder(var, p->order), zone()); | |
694 } | |
695 } | |
696 vars.Sort(VarAndOrder::Compare); | |
697 int var_count = vars.length(); | |
698 for (int i = 0; i < var_count; i++) { | |
699 Variable* var = vars[i].var(); | |
700 if (var->IsStackLocal()) { | |
701 stack_locals->Add(var, zone()); | |
702 } else if (var->IsContextSlot()) { | |
703 context_locals->Add(var, zone()); | |
704 } else if (var->IsGlobalSlot()) { | |
705 context_globals->Add(var, zone()); | |
706 } | |
707 } | |
708 } | |
709 | |
710 | |
711 bool Scope::AllocateVariables(ParseInfo* info, AstNodeFactory* factory) { | |
712 // 1) Propagate scope information. | |
713 bool outer_scope_calls_sloppy_eval = false; | |
714 if (outer_scope_ != NULL) { | |
715 outer_scope_calls_sloppy_eval = | |
716 outer_scope_->outer_scope_calls_sloppy_eval() | | |
717 outer_scope_->calls_sloppy_eval(); | |
718 } | |
719 PropagateScopeInfo(outer_scope_calls_sloppy_eval); | |
720 | |
721 // 2) Allocate module instances. | |
722 if (FLAG_harmony_modules && is_script_scope()) { | |
723 DCHECK(num_modules_ == 0); | |
724 AllocateModules(); | |
725 } | |
726 | |
727 // 3) Resolve variables. | |
728 if (!ResolveVariablesRecursively(info, factory)) return false; | |
729 | |
730 // 4) Allocate variables. | |
731 AllocateVariablesRecursively(info->isolate()); | |
732 | |
733 return true; | |
734 } | |
735 | |
736 | |
737 bool Scope::HasTrivialContext() const { | |
738 // A function scope has a trivial context if it always is the global | |
739 // context. We iteratively scan out the context chain to see if | |
740 // there is anything that makes this scope non-trivial; otherwise we | |
741 // return true. | |
742 for (const Scope* scope = this; scope != NULL; scope = scope->outer_scope_) { | |
743 if (scope->is_eval_scope()) return false; | |
744 if (scope->scope_inside_with_) return false; | |
745 if (scope->ContextLocalCount() > 0) return false; | |
746 if (scope->ContextGlobalCount() > 0) return false; | |
747 } | |
748 return true; | |
749 } | |
750 | |
751 | |
752 bool Scope::HasTrivialOuterContext() const { | |
753 Scope* outer = outer_scope_; | |
754 if (outer == NULL) return true; | |
755 // Note that the outer context may be trivial in general, but the current | |
756 // scope may be inside a 'with' statement in which case the outer context | |
757 // for this scope is not trivial. | |
758 return !scope_inside_with_ && outer->HasTrivialContext(); | |
759 } | |
760 | |
761 | |
762 bool Scope::AllowsLazyParsing() const { | |
763 // If we are inside a block scope, we must parse eagerly to find out how | |
764 // to allocate variables on the block scope. At this point, declarations may | |
765 // not have yet been parsed. | |
766 for (const Scope* scope = this; scope != NULL; scope = scope->outer_scope_) { | |
767 if (scope->is_block_scope()) return false; | |
768 } | |
769 return AllowsLazyCompilation(); | |
770 } | |
771 | |
772 | |
773 bool Scope::AllowsLazyCompilation() const { return !force_eager_compilation_; } | |
774 | |
775 | |
776 bool Scope::AllowsLazyCompilationWithoutContext() const { | |
777 return !force_eager_compilation_ && HasTrivialOuterContext(); | |
778 } | |
779 | |
780 | |
781 int Scope::ContextChainLength(Scope* scope) { | |
782 int n = 0; | |
783 for (Scope* s = this; s != scope; s = s->outer_scope_) { | |
784 DCHECK(s != NULL); // scope must be in the scope chain | |
785 if (s->NeedsContext()) n++; | |
786 } | |
787 return n; | |
788 } | |
789 | |
790 | |
791 int Scope::MaxNestedContextChainLength() { | |
792 int max_context_chain_length = 0; | |
793 for (int i = 0; i < inner_scopes_.length(); i++) { | |
794 Scope* scope = inner_scopes_[i]; | |
795 max_context_chain_length = std::max(scope->MaxNestedContextChainLength(), | |
796 max_context_chain_length); | |
797 } | |
798 if (NeedsContext()) { | |
799 max_context_chain_length += 1; | |
800 } | |
801 return max_context_chain_length; | |
802 } | |
803 | |
804 | |
805 Scope* Scope::DeclarationScope() { | |
806 Scope* scope = this; | |
807 while (!scope->is_declaration_scope()) { | |
808 scope = scope->outer_scope(); | |
809 } | |
810 return scope; | |
811 } | |
812 | |
813 | |
814 Scope* Scope::ClosureScope() { | |
815 Scope* scope = this; | |
816 while (!scope->is_declaration_scope() || scope->is_block_scope()) { | |
817 scope = scope->outer_scope(); | |
818 } | |
819 return scope; | |
820 } | |
821 | |
822 | |
823 Scope* Scope::ReceiverScope() { | |
824 Scope* scope = this; | |
825 while (!scope->is_script_scope() && | |
826 (!scope->is_function_scope() || scope->is_arrow_scope())) { | |
827 scope = scope->outer_scope(); | |
828 } | |
829 return scope; | |
830 } | |
831 | |
832 | |
833 | |
834 Handle<ScopeInfo> Scope::GetScopeInfo(Isolate* isolate) { | |
835 if (scope_info_.is_null()) { | |
836 scope_info_ = ScopeInfo::Create(isolate, zone(), this); | |
837 } | |
838 return scope_info_; | |
839 } | |
840 | |
841 | |
842 void Scope::GetNestedScopeChain(Isolate* isolate, | |
843 List<Handle<ScopeInfo> >* chain, int position) { | |
844 if (!is_eval_scope()) chain->Add(Handle<ScopeInfo>(GetScopeInfo(isolate))); | |
845 | |
846 for (int i = 0; i < inner_scopes_.length(); i++) { | |
847 Scope* scope = inner_scopes_[i]; | |
848 int beg_pos = scope->start_position(); | |
849 int end_pos = scope->end_position(); | |
850 DCHECK(beg_pos >= 0 && end_pos >= 0); | |
851 if (beg_pos <= position && position < end_pos) { | |
852 scope->GetNestedScopeChain(isolate, chain, position); | |
853 return; | |
854 } | |
855 } | |
856 } | |
857 | |
858 | |
859 void Scope::ReportMessage(int start_position, int end_position, | |
860 MessageTemplate::Template message, | |
861 const AstRawString* arg) { | |
862 // Propagate the error to the topmost scope targeted by this scope analysis | |
863 // phase. | |
864 Scope* top = this; | |
865 while (!top->is_script_scope() && !top->outer_scope()->already_resolved()) { | |
866 top = top->outer_scope(); | |
867 } | |
868 | |
869 top->pending_error_handler_.ReportMessageAt(start_position, end_position, | |
870 message, arg, kReferenceError); | |
871 } | |
872 | |
873 | |
874 #ifdef DEBUG | |
875 static const char* Header(ScopeType scope_type, FunctionKind function_kind, | |
876 bool is_declaration_scope) { | |
877 switch (scope_type) { | |
878 case EVAL_SCOPE: return "eval"; | |
879 // TODO(adamk): Should we print concise method scopes specially? | |
880 case FUNCTION_SCOPE: | |
881 return IsArrowFunction(function_kind) ? "arrow" : "function"; | |
882 case MODULE_SCOPE: return "module"; | |
883 case SCRIPT_SCOPE: return "global"; | |
884 case CATCH_SCOPE: return "catch"; | |
885 case BLOCK_SCOPE: return is_declaration_scope ? "varblock" : "block"; | |
886 case WITH_SCOPE: return "with"; | |
887 } | |
888 UNREACHABLE(); | |
889 return NULL; | |
890 } | |
891 | |
892 | |
893 static void Indent(int n, const char* str) { | |
894 PrintF("%*s%s", n, "", str); | |
895 } | |
896 | |
897 | |
898 static void PrintName(const AstRawString* name) { | |
899 PrintF("%.*s", name->length(), name->raw_data()); | |
900 } | |
901 | |
902 | |
903 static void PrintLocation(Variable* var) { | |
904 switch (var->location()) { | |
905 case VariableLocation::UNALLOCATED: | |
906 break; | |
907 case VariableLocation::PARAMETER: | |
908 PrintF("parameter[%d]", var->index()); | |
909 break; | |
910 case VariableLocation::LOCAL: | |
911 PrintF("local[%d]", var->index()); | |
912 break; | |
913 case VariableLocation::CONTEXT: | |
914 PrintF("context[%d]", var->index()); | |
915 break; | |
916 case VariableLocation::GLOBAL: | |
917 PrintF("global[%d]", var->index()); | |
918 break; | |
919 case VariableLocation::LOOKUP: | |
920 PrintF("lookup"); | |
921 break; | |
922 } | |
923 } | |
924 | |
925 | |
926 static void PrintVar(int indent, Variable* var) { | |
927 if (var->is_used() || !var->IsUnallocated()) { | |
928 Indent(indent, Variable::Mode2String(var->mode())); | |
929 PrintF(" "); | |
930 if (var->raw_name()->IsEmpty()) | |
931 PrintF(".%p", reinterpret_cast<void*>(var)); | |
932 else | |
933 PrintName(var->raw_name()); | |
934 PrintF("; // "); | |
935 PrintLocation(var); | |
936 bool comma = !var->IsUnallocated(); | |
937 if (var->has_forced_context_allocation()) { | |
938 if (comma) PrintF(", "); | |
939 PrintF("forced context allocation"); | |
940 comma = true; | |
941 } | |
942 if (var->maybe_assigned() == kMaybeAssigned) { | |
943 if (comma) PrintF(", "); | |
944 PrintF("maybe assigned"); | |
945 } | |
946 PrintF("\n"); | |
947 } | |
948 } | |
949 | |
950 | |
951 static void PrintMap(int indent, VariableMap* map) { | |
952 for (VariableMap::Entry* p = map->Start(); p != NULL; p = map->Next(p)) { | |
953 Variable* var = reinterpret_cast<Variable*>(p->value); | |
954 if (var == NULL) { | |
955 Indent(indent, "<?>\n"); | |
956 } else { | |
957 PrintVar(indent, var); | |
958 } | |
959 } | |
960 } | |
961 | |
962 | |
963 void Scope::Print(int n) { | |
964 int n0 = (n > 0 ? n : 0); | |
965 int n1 = n0 + 2; // indentation | |
966 | |
967 // Print header. | |
968 Indent(n0, Header(scope_type_, function_kind_, is_declaration_scope())); | |
969 if (scope_name_ != nullptr && !scope_name_->IsEmpty()) { | |
970 PrintF(" "); | |
971 PrintName(scope_name_); | |
972 } | |
973 | |
974 // Print parameters, if any. | |
975 if (is_function_scope()) { | |
976 PrintF(" ("); | |
977 for (int i = 0; i < params_.length(); i++) { | |
978 if (i > 0) PrintF(", "); | |
979 const AstRawString* name = params_[i]->raw_name(); | |
980 if (name->IsEmpty()) | |
981 PrintF(".%p", reinterpret_cast<void*>(params_[i])); | |
982 else | |
983 PrintName(name); | |
984 } | |
985 PrintF(")"); | |
986 } | |
987 | |
988 PrintF(" { // (%d, %d)\n", start_position(), end_position()); | |
989 | |
990 // Function name, if any (named function literals, only). | |
991 if (function_ != NULL) { | |
992 Indent(n1, "// (local) function name: "); | |
993 PrintName(function_->proxy()->raw_name()); | |
994 PrintF("\n"); | |
995 } | |
996 | |
997 // Scope info. | |
998 if (HasTrivialOuterContext()) { | |
999 Indent(n1, "// scope has trivial outer context\n"); | |
1000 } | |
1001 if (is_strong(language_mode())) { | |
1002 Indent(n1, "// strong mode scope\n"); | |
1003 } else if (is_strict(language_mode())) { | |
1004 Indent(n1, "// strict mode scope\n"); | |
1005 } | |
1006 if (scope_inside_with_) Indent(n1, "// scope inside 'with'\n"); | |
1007 if (scope_contains_with_) Indent(n1, "// scope contains 'with'\n"); | |
1008 if (scope_calls_eval_) Indent(n1, "// scope calls 'eval'\n"); | |
1009 if (scope_uses_arguments_) Indent(n1, "// scope uses 'arguments'\n"); | |
1010 if (scope_uses_super_property_) | |
1011 Indent(n1, "// scope uses 'super' property\n"); | |
1012 if (outer_scope_calls_sloppy_eval_) { | |
1013 Indent(n1, "// outer scope calls 'eval' in sloppy context\n"); | |
1014 } | |
1015 if (inner_scope_calls_eval_) Indent(n1, "// inner scope calls 'eval'\n"); | |
1016 if (num_stack_slots_ > 0) { | |
1017 Indent(n1, "// "); | |
1018 PrintF("%d stack slots\n", num_stack_slots_); | |
1019 } | |
1020 if (num_heap_slots_ > 0) { | |
1021 Indent(n1, "// "); | |
1022 PrintF("%d heap slots (including %d global slots)\n", num_heap_slots_, | |
1023 num_global_slots_); | |
1024 } | |
1025 | |
1026 // Print locals. | |
1027 if (function_ != NULL) { | |
1028 Indent(n1, "// function var:\n"); | |
1029 PrintVar(n1, function_->proxy()->var()); | |
1030 } | |
1031 | |
1032 if (temps_.length() > 0) { | |
1033 Indent(n1, "// temporary vars:\n"); | |
1034 for (int i = 0; i < temps_.length(); i++) { | |
1035 PrintVar(n1, temps_[i]); | |
1036 } | |
1037 } | |
1038 | |
1039 if (variables_.Start() != NULL) { | |
1040 Indent(n1, "// local vars:\n"); | |
1041 PrintMap(n1, &variables_); | |
1042 } | |
1043 | |
1044 if (dynamics_ != NULL) { | |
1045 Indent(n1, "// dynamic vars:\n"); | |
1046 PrintMap(n1, dynamics_->GetMap(DYNAMIC)); | |
1047 PrintMap(n1, dynamics_->GetMap(DYNAMIC_LOCAL)); | |
1048 PrintMap(n1, dynamics_->GetMap(DYNAMIC_GLOBAL)); | |
1049 } | |
1050 | |
1051 // Print inner scopes (disable by providing negative n). | |
1052 if (n >= 0) { | |
1053 for (int i = 0; i < inner_scopes_.length(); i++) { | |
1054 PrintF("\n"); | |
1055 inner_scopes_[i]->Print(n1); | |
1056 } | |
1057 } | |
1058 | |
1059 Indent(n0, "}\n"); | |
1060 } | |
1061 #endif // DEBUG | |
1062 | |
1063 | |
1064 Variable* Scope::NonLocal(const AstRawString* name, VariableMode mode) { | |
1065 if (dynamics_ == NULL) dynamics_ = new (zone()) DynamicScopePart(zone()); | |
1066 VariableMap* map = dynamics_->GetMap(mode); | |
1067 Variable* var = map->Lookup(name); | |
1068 if (var == NULL) { | |
1069 // Declare a new non-local. | |
1070 InitializationFlag init_flag = (mode == VAR) | |
1071 ? kCreatedInitialized : kNeedsInitialization; | |
1072 var = map->Declare(NULL, | |
1073 name, | |
1074 mode, | |
1075 Variable::NORMAL, | |
1076 init_flag); | |
1077 // Allocate it by giving it a dynamic lookup. | |
1078 var->AllocateTo(VariableLocation::LOOKUP, -1); | |
1079 } | |
1080 return var; | |
1081 } | |
1082 | |
1083 | |
1084 Variable* Scope::LookupRecursive(VariableProxy* proxy, | |
1085 BindingKind* binding_kind, | |
1086 AstNodeFactory* factory) { | |
1087 DCHECK(binding_kind != NULL); | |
1088 if (already_resolved() && is_with_scope()) { | |
1089 // Short-cut: if the scope is deserialized from a scope info, variable | |
1090 // allocation is already fixed. We can simply return with dynamic lookup. | |
1091 *binding_kind = DYNAMIC_LOOKUP; | |
1092 return NULL; | |
1093 } | |
1094 | |
1095 // Try to find the variable in this scope. | |
1096 Variable* var = LookupLocal(proxy->raw_name()); | |
1097 | |
1098 // We found a variable and we are done. (Even if there is an 'eval' in | |
1099 // this scope which introduces the same variable again, the resulting | |
1100 // variable remains the same.) | |
1101 if (var != NULL) { | |
1102 *binding_kind = BOUND; | |
1103 return var; | |
1104 } | |
1105 | |
1106 // We did not find a variable locally. Check against the function variable, | |
1107 // if any. We can do this for all scopes, since the function variable is | |
1108 // only present - if at all - for function scopes. | |
1109 *binding_kind = UNBOUND; | |
1110 var = LookupFunctionVar(proxy->raw_name(), factory); | |
1111 if (var != NULL) { | |
1112 *binding_kind = BOUND; | |
1113 } else if (outer_scope_ != NULL) { | |
1114 var = outer_scope_->LookupRecursive(proxy, binding_kind, factory); | |
1115 if (*binding_kind == BOUND && (is_function_scope() || is_with_scope())) { | |
1116 var->ForceContextAllocation(); | |
1117 } | |
1118 } else { | |
1119 DCHECK(is_script_scope()); | |
1120 } | |
1121 | |
1122 // "this" can't be shadowed by "eval"-introduced bindings or by "with" scopes. | |
1123 // TODO(wingo): There are other variables in this category; add them. | |
1124 bool name_can_be_shadowed = var == nullptr || !var->is_this(); | |
1125 | |
1126 if (is_with_scope() && name_can_be_shadowed) { | |
1127 DCHECK(!already_resolved()); | |
1128 // The current scope is a with scope, so the variable binding can not be | |
1129 // statically resolved. However, note that it was necessary to do a lookup | |
1130 // in the outer scope anyway, because if a binding exists in an outer scope, | |
1131 // the associated variable has to be marked as potentially being accessed | |
1132 // from inside of an inner with scope (the property may not be in the 'with' | |
1133 // object). | |
1134 if (var != NULL && proxy->is_assigned()) var->set_maybe_assigned(); | |
1135 *binding_kind = DYNAMIC_LOOKUP; | |
1136 return NULL; | |
1137 } else if (calls_sloppy_eval() && !is_script_scope() && | |
1138 name_can_be_shadowed) { | |
1139 // A variable binding may have been found in an outer scope, but the current | |
1140 // scope makes a sloppy 'eval' call, so the found variable may not be | |
1141 // the correct one (the 'eval' may introduce a binding with the same name). | |
1142 // In that case, change the lookup result to reflect this situation. | |
1143 if (*binding_kind == BOUND) { | |
1144 *binding_kind = BOUND_EVAL_SHADOWED; | |
1145 } else if (*binding_kind == UNBOUND) { | |
1146 *binding_kind = UNBOUND_EVAL_SHADOWED; | |
1147 } | |
1148 } | |
1149 return var; | |
1150 } | |
1151 | |
1152 | |
1153 bool Scope::ResolveVariable(ParseInfo* info, VariableProxy* proxy, | |
1154 AstNodeFactory* factory) { | |
1155 DCHECK(info->script_scope()->is_script_scope()); | |
1156 | |
1157 // If the proxy is already resolved there's nothing to do | |
1158 // (functions and consts may be resolved by the parser). | |
1159 if (proxy->is_resolved()) return true; | |
1160 | |
1161 // Otherwise, try to resolve the variable. | |
1162 BindingKind binding_kind; | |
1163 Variable* var = LookupRecursive(proxy, &binding_kind, factory); | |
1164 switch (binding_kind) { | |
1165 case BOUND: | |
1166 // We found a variable binding. | |
1167 if (is_strong(language_mode())) { | |
1168 if (!CheckStrongModeDeclaration(proxy, var)) return false; | |
1169 } | |
1170 break; | |
1171 | |
1172 case BOUND_EVAL_SHADOWED: | |
1173 // We either found a variable binding that might be shadowed by eval or | |
1174 // gave up on it (e.g. by encountering a local with the same in the outer | |
1175 // scope which was not promoted to a context, this can happen if we use | |
1176 // debugger to evaluate arbitrary expressions at a break point). | |
1177 if (var->IsGlobalObjectProperty()) { | |
1178 var = NonLocal(proxy->raw_name(), DYNAMIC_GLOBAL); | |
1179 } else if (var->is_dynamic()) { | |
1180 var = NonLocal(proxy->raw_name(), DYNAMIC); | |
1181 } else { | |
1182 Variable* invalidated = var; | |
1183 var = NonLocal(proxy->raw_name(), DYNAMIC_LOCAL); | |
1184 var->set_local_if_not_shadowed(invalidated); | |
1185 } | |
1186 break; | |
1187 | |
1188 case UNBOUND: | |
1189 // No binding has been found. Declare a variable on the global object. | |
1190 var = info->script_scope()->DeclareDynamicGlobal(proxy->raw_name()); | |
1191 break; | |
1192 | |
1193 case UNBOUND_EVAL_SHADOWED: | |
1194 // No binding has been found. But some scope makes a sloppy 'eval' call. | |
1195 var = NonLocal(proxy->raw_name(), DYNAMIC_GLOBAL); | |
1196 break; | |
1197 | |
1198 case DYNAMIC_LOOKUP: | |
1199 // The variable could not be resolved statically. | |
1200 var = NonLocal(proxy->raw_name(), DYNAMIC); | |
1201 break; | |
1202 } | |
1203 | |
1204 DCHECK(var != NULL); | |
1205 if (proxy->is_assigned()) var->set_maybe_assigned(); | |
1206 | |
1207 if (is_strong(language_mode())) { | |
1208 // Record that the variable is referred to from strong mode. Also, record | |
1209 // the position. | |
1210 var->RecordStrongModeReference(proxy->position(), proxy->end_position()); | |
1211 } | |
1212 | |
1213 proxy->BindTo(var); | |
1214 | |
1215 return true; | |
1216 } | |
1217 | |
1218 | |
1219 bool Scope::CheckStrongModeDeclaration(VariableProxy* proxy, Variable* var) { | |
1220 // Check for declaration-after use (for variables) in strong mode. Note that | |
1221 // we can only do this in the case where we have seen the declaration. And we | |
1222 // always allow referencing functions (for now). | |
1223 | |
1224 // This might happen during lazy compilation; we don't keep track of | |
1225 // initializer positions for variables stored in ScopeInfo, so we cannot check | |
1226 // bindings against them. TODO(marja, rossberg): remove this hack. | |
1227 if (var->initializer_position() == RelocInfo::kNoPosition) return true; | |
1228 | |
1229 // Allow referencing the class name from methods of that class, even though | |
1230 // the initializer position for class names is only after the body. | |
1231 Scope* scope = this; | |
1232 while (scope) { | |
1233 if (scope->ClassVariableForMethod() == var) return true; | |
1234 scope = scope->outer_scope(); | |
1235 } | |
1236 | |
1237 // Allow references from methods to classes declared later, if we detect no | |
1238 // problematic dependency cycles. Note that we can be inside multiple methods | |
1239 // at the same time, and it's enough if we find one where the reference is | |
1240 // allowed. | |
1241 if (var->is_class() && | |
1242 var->AsClassVariable()->declaration_group_start() >= 0) { | |
1243 for (scope = this; scope && scope != var->scope(); | |
1244 scope = scope->outer_scope()) { | |
1245 ClassVariable* class_var = scope->ClassVariableForMethod(); | |
1246 // A method is referring to some other class, possibly declared | |
1247 // later. Referring to a class declared earlier is always OK and covered | |
1248 // by the code outside this if. Here we only need to allow special cases | |
1249 // for referring to a class which is declared later. | |
1250 | |
1251 // Referring to a class C declared later is OK under the following | |
1252 // circumstances: | |
1253 | |
1254 // 1. The class declarations are in a consecutive group with no other | |
1255 // declarations or statements in between, and | |
1256 | |
1257 // 2. There is no dependency cycle where the first edge is an | |
1258 // initialization time dependency (computed property name or extends | |
1259 // clause) from C to something that depends on this class directly or | |
1260 // transitively. | |
1261 if (class_var && | |
1262 class_var->declaration_group_start() == | |
1263 var->AsClassVariable()->declaration_group_start()) { | |
1264 return true; | |
1265 } | |
1266 | |
1267 // TODO(marja,rossberg): implement the dependency cycle detection. Here we | |
1268 // undershoot the target and allow referring to any class in the same | |
1269 // consectuive declaration group. | |
1270 | |
1271 // The cycle detection can work roughly like this: 1) detect init-time | |
1272 // references here (they are free variables which are inside the class | |
1273 // scope but not inside a method scope - no parser changes needed to | |
1274 // detect them) 2) if we encounter an init-time reference here, allow it, | |
1275 // but record it for a later dependency cycle check 3) also record | |
1276 // non-init-time references here 4) after scope analysis is done, analyse | |
1277 // the dependency cycles: an illegal cycle is one starting with an | |
1278 // init-time reference and leading back to the starting point with either | |
1279 // non-init-time and init-time references. | |
1280 } | |
1281 } | |
1282 | |
1283 // If both the use and the declaration are inside an eval scope (possibly | |
1284 // indirectly), or one of them is, we need to check whether they are inside | |
1285 // the same eval scope or different ones. | |
1286 | |
1287 // TODO(marja,rossberg): Detect errors across different evals (depends on the | |
1288 // future of eval in strong mode). | |
1289 const Scope* eval_for_use = NearestOuterEvalScope(); | |
1290 const Scope* eval_for_declaration = var->scope()->NearestOuterEvalScope(); | |
1291 | |
1292 if (proxy->position() != RelocInfo::kNoPosition && | |
1293 proxy->position() < var->initializer_position() && !var->is_function() && | |
1294 eval_for_use == eval_for_declaration) { | |
1295 DCHECK(proxy->end_position() != RelocInfo::kNoPosition); | |
1296 ReportMessage(proxy->position(), proxy->end_position(), | |
1297 MessageTemplate::kStrongUseBeforeDeclaration, | |
1298 proxy->raw_name()); | |
1299 return false; | |
1300 } | |
1301 return true; | |
1302 } | |
1303 | |
1304 | |
1305 ClassVariable* Scope::ClassVariableForMethod() const { | |
1306 // TODO(marja, rossberg): This fails to find a class variable in the following | |
1307 // cases: | |
1308 // let A = class { ... } | |
1309 // It needs to be investigated whether this causes any practical problems. | |
1310 if (!is_function_scope()) return nullptr; | |
1311 if (IsInObjectLiteral(function_kind_)) return nullptr; | |
1312 if (!IsConciseMethod(function_kind_) && !IsClassConstructor(function_kind_) && | |
1313 !IsAccessorFunction(function_kind_)) { | |
1314 return nullptr; | |
1315 } | |
1316 DCHECK_NOT_NULL(outer_scope_); | |
1317 // The class scope contains at most one variable, the class name. | |
1318 DCHECK(outer_scope_->variables_.occupancy() <= 1); | |
1319 if (outer_scope_->variables_.occupancy() == 0) return nullptr; | |
1320 VariableMap::Entry* p = outer_scope_->variables_.Start(); | |
1321 Variable* var = reinterpret_cast<Variable*>(p->value); | |
1322 if (!var->is_class()) return nullptr; | |
1323 return var->AsClassVariable(); | |
1324 } | |
1325 | |
1326 | |
1327 bool Scope::ResolveVariablesRecursively(ParseInfo* info, | |
1328 AstNodeFactory* factory) { | |
1329 DCHECK(info->script_scope()->is_script_scope()); | |
1330 | |
1331 // Resolve unresolved variables for this scope. | |
1332 for (int i = 0; i < unresolved_.length(); i++) { | |
1333 if (!ResolveVariable(info, unresolved_[i], factory)) return false; | |
1334 } | |
1335 | |
1336 // Resolve unresolved variables for inner scopes. | |
1337 for (int i = 0; i < inner_scopes_.length(); i++) { | |
1338 if (!inner_scopes_[i]->ResolveVariablesRecursively(info, factory)) | |
1339 return false; | |
1340 } | |
1341 | |
1342 return true; | |
1343 } | |
1344 | |
1345 | |
1346 void Scope::PropagateScopeInfo(bool outer_scope_calls_sloppy_eval ) { | |
1347 if (outer_scope_calls_sloppy_eval) { | |
1348 outer_scope_calls_sloppy_eval_ = true; | |
1349 } | |
1350 | |
1351 bool calls_sloppy_eval = | |
1352 this->calls_sloppy_eval() || outer_scope_calls_sloppy_eval_; | |
1353 for (int i = 0; i < inner_scopes_.length(); i++) { | |
1354 Scope* inner = inner_scopes_[i]; | |
1355 inner->PropagateScopeInfo(calls_sloppy_eval); | |
1356 if (inner->scope_calls_eval_ || inner->inner_scope_calls_eval_) { | |
1357 inner_scope_calls_eval_ = true; | |
1358 } | |
1359 if (inner->force_eager_compilation_) { | |
1360 force_eager_compilation_ = true; | |
1361 } | |
1362 if (asm_module_ && inner->scope_type() == FUNCTION_SCOPE) { | |
1363 inner->asm_function_ = true; | |
1364 } | |
1365 } | |
1366 } | |
1367 | |
1368 | |
1369 bool Scope::MustAllocate(Variable* var) { | |
1370 // Give var a read/write use if there is a chance it might be accessed | |
1371 // via an eval() call. This is only possible if the variable has a | |
1372 // visible name. | |
1373 if ((var->is_this() || !var->raw_name()->IsEmpty()) && | |
1374 (var->has_forced_context_allocation() || scope_calls_eval_ || | |
1375 inner_scope_calls_eval_ || scope_contains_with_ || is_catch_scope() || | |
1376 is_block_scope() || is_module_scope() || is_script_scope())) { | |
1377 var->set_is_used(); | |
1378 if (scope_calls_eval_ || inner_scope_calls_eval_) var->set_maybe_assigned(); | |
1379 } | |
1380 // Global variables do not need to be allocated. | |
1381 return !var->IsGlobalObjectProperty() && var->is_used(); | |
1382 } | |
1383 | |
1384 | |
1385 bool Scope::MustAllocateInContext(Variable* var) { | |
1386 // If var is accessed from an inner scope, or if there is a possibility | |
1387 // that it might be accessed from the current or an inner scope (through | |
1388 // an eval() call or a runtime with lookup), it must be allocated in the | |
1389 // context. | |
1390 // | |
1391 // Exceptions: If the scope as a whole has forced context allocation, all | |
1392 // variables will have context allocation, even temporaries. Otherwise | |
1393 // temporary variables are always stack-allocated. Catch-bound variables are | |
1394 // always context-allocated. | |
1395 if (has_forced_context_allocation()) return true; | |
1396 if (var->mode() == TEMPORARY) return false; | |
1397 if (is_catch_scope() || is_module_scope()) return true; | |
1398 if (is_script_scope() && IsLexicalVariableMode(var->mode())) return true; | |
1399 return var->has_forced_context_allocation() || | |
1400 scope_calls_eval_ || | |
1401 inner_scope_calls_eval_ || | |
1402 scope_contains_with_; | |
1403 } | |
1404 | |
1405 | |
1406 bool Scope::HasArgumentsParameter(Isolate* isolate) { | |
1407 for (int i = 0; i < params_.length(); i++) { | |
1408 if (params_[i]->name().is_identical_to( | |
1409 isolate->factory()->arguments_string())) { | |
1410 return true; | |
1411 } | |
1412 } | |
1413 return false; | |
1414 } | |
1415 | |
1416 | |
1417 void Scope::AllocateStackSlot(Variable* var) { | |
1418 if (is_block_scope()) { | |
1419 outer_scope()->DeclarationScope()->AllocateStackSlot(var); | |
1420 } else { | |
1421 var->AllocateTo(VariableLocation::LOCAL, num_stack_slots_++); | |
1422 } | |
1423 } | |
1424 | |
1425 | |
1426 void Scope::AllocateHeapSlot(Variable* var) { | |
1427 var->AllocateTo(VariableLocation::CONTEXT, num_heap_slots_++); | |
1428 } | |
1429 | |
1430 | |
1431 void Scope::AllocateParameterLocals(Isolate* isolate) { | |
1432 DCHECK(is_function_scope()); | |
1433 Variable* arguments = LookupLocal(ast_value_factory_->arguments_string()); | |
1434 // Functions have 'arguments' declared implicitly in all non arrow functions. | |
1435 DCHECK(arguments != nullptr || is_arrow_scope()); | |
1436 | |
1437 bool uses_sloppy_arguments = false; | |
1438 | |
1439 if (arguments != nullptr && MustAllocate(arguments) && | |
1440 !HasArgumentsParameter(isolate)) { | |
1441 // 'arguments' is used. Unless there is also a parameter called | |
1442 // 'arguments', we must be conservative and allocate all parameters to | |
1443 // the context assuming they will be captured by the arguments object. | |
1444 // If we have a parameter named 'arguments', a (new) value is always | |
1445 // assigned to it via the function invocation. Then 'arguments' denotes | |
1446 // that specific parameter value and cannot be used to access the | |
1447 // parameters, which is why we don't need to allocate an arguments | |
1448 // object in that case. | |
1449 | |
1450 // We are using 'arguments'. Tell the code generator that is needs to | |
1451 // allocate the arguments object by setting 'arguments_'. | |
1452 arguments_ = arguments; | |
1453 | |
1454 // In strict mode 'arguments' does not alias formal parameters. | |
1455 // Therefore in strict mode we allocate parameters as if 'arguments' | |
1456 // were not used. | |
1457 // If the parameter list is not simple, arguments isn't sloppy either. | |
1458 uses_sloppy_arguments = | |
1459 is_sloppy(language_mode()) && has_simple_parameters(); | |
1460 } | |
1461 | |
1462 if (rest_parameter_ && !MustAllocate(rest_parameter_)) { | |
1463 rest_parameter_ = NULL; | |
1464 } | |
1465 | |
1466 // The same parameter may occur multiple times in the parameters_ list. | |
1467 // If it does, and if it is not copied into the context object, it must | |
1468 // receive the highest parameter index for that parameter; thus iteration | |
1469 // order is relevant! | |
1470 for (int i = params_.length() - 1; i >= 0; --i) { | |
1471 Variable* var = params_[i]; | |
1472 if (var == rest_parameter_) continue; | |
1473 | |
1474 DCHECK(var->scope() == this); | |
1475 if (uses_sloppy_arguments || has_forced_context_allocation()) { | |
1476 // Force context allocation of the parameter. | |
1477 var->ForceContextAllocation(); | |
1478 } | |
1479 AllocateParameter(var, i); | |
1480 } | |
1481 } | |
1482 | |
1483 | |
1484 void Scope::AllocateParameter(Variable* var, int index) { | |
1485 if (MustAllocate(var)) { | |
1486 if (MustAllocateInContext(var)) { | |
1487 DCHECK(var->IsUnallocated() || var->IsContextSlot()); | |
1488 if (var->IsUnallocated()) { | |
1489 AllocateHeapSlot(var); | |
1490 } | |
1491 } else { | |
1492 DCHECK(var->IsUnallocated() || var->IsParameter()); | |
1493 if (var->IsUnallocated()) { | |
1494 var->AllocateTo(VariableLocation::PARAMETER, index); | |
1495 } | |
1496 } | |
1497 } else { | |
1498 DCHECK(!var->IsGlobalSlot()); | |
1499 } | |
1500 } | |
1501 | |
1502 | |
1503 void Scope::AllocateReceiver() { | |
1504 DCHECK_NOT_NULL(receiver()); | |
1505 DCHECK_EQ(receiver()->scope(), this); | |
1506 | |
1507 if (has_forced_context_allocation()) { | |
1508 // Force context allocation of the receiver. | |
1509 receiver()->ForceContextAllocation(); | |
1510 } | |
1511 AllocateParameter(receiver(), -1); | |
1512 } | |
1513 | |
1514 | |
1515 void Scope::AllocateNonParameterLocal(Isolate* isolate, Variable* var) { | |
1516 DCHECK(var->scope() == this); | |
1517 DCHECK(!var->IsVariable(isolate->factory()->dot_result_string()) || | |
1518 !var->IsStackLocal()); | |
1519 if (var->IsUnallocated() && MustAllocate(var)) { | |
1520 if (MustAllocateInContext(var)) { | |
1521 AllocateHeapSlot(var); | |
1522 } else { | |
1523 AllocateStackSlot(var); | |
1524 } | |
1525 } | |
1526 } | |
1527 | |
1528 | |
1529 void Scope::AllocateDeclaredGlobal(Isolate* isolate, Variable* var) { | |
1530 DCHECK(var->scope() == this); | |
1531 DCHECK(!var->IsVariable(isolate->factory()->dot_result_string()) || | |
1532 !var->IsStackLocal()); | |
1533 if (var->IsUnallocated()) { | |
1534 if (var->IsStaticGlobalObjectProperty()) { | |
1535 DCHECK_EQ(-1, var->index()); | |
1536 DCHECK(var->name()->IsString()); | |
1537 var->AllocateTo(VariableLocation::GLOBAL, num_heap_slots_++); | |
1538 num_global_slots_++; | |
1539 } else { | |
1540 // There must be only DYNAMIC_GLOBAL in the script scope. | |
1541 DCHECK(!is_script_scope() || DYNAMIC_GLOBAL == var->mode()); | |
1542 } | |
1543 } | |
1544 } | |
1545 | |
1546 | |
1547 void Scope::AllocateNonParameterLocalsAndDeclaredGlobals(Isolate* isolate) { | |
1548 // All variables that have no rewrite yet are non-parameter locals. | |
1549 for (int i = 0; i < temps_.length(); i++) { | |
1550 AllocateNonParameterLocal(isolate, temps_[i]); | |
1551 } | |
1552 | |
1553 ZoneList<VarAndOrder> vars(variables_.occupancy(), zone()); | |
1554 for (VariableMap::Entry* p = variables_.Start(); | |
1555 p != NULL; | |
1556 p = variables_.Next(p)) { | |
1557 Variable* var = reinterpret_cast<Variable*>(p->value); | |
1558 vars.Add(VarAndOrder(var, p->order), zone()); | |
1559 } | |
1560 vars.Sort(VarAndOrder::Compare); | |
1561 int var_count = vars.length(); | |
1562 for (int i = 0; i < var_count; i++) { | |
1563 AllocateNonParameterLocal(isolate, vars[i].var()); | |
1564 } | |
1565 | |
1566 if (FLAG_global_var_shortcuts) { | |
1567 for (int i = 0; i < var_count; i++) { | |
1568 AllocateDeclaredGlobal(isolate, vars[i].var()); | |
1569 } | |
1570 } | |
1571 | |
1572 // For now, function_ must be allocated at the very end. If it gets | |
1573 // allocated in the context, it must be the last slot in the context, | |
1574 // because of the current ScopeInfo implementation (see | |
1575 // ScopeInfo::ScopeInfo(FunctionScope* scope) constructor). | |
1576 if (function_ != nullptr) { | |
1577 AllocateNonParameterLocal(isolate, function_->proxy()->var()); | |
1578 } | |
1579 | |
1580 if (rest_parameter_ != nullptr) { | |
1581 AllocateNonParameterLocal(isolate, rest_parameter_); | |
1582 } | |
1583 | |
1584 Variable* new_target_var = | |
1585 LookupLocal(ast_value_factory_->new_target_string()); | |
1586 if (new_target_var != nullptr && MustAllocate(new_target_var)) { | |
1587 new_target_ = new_target_var; | |
1588 } | |
1589 | |
1590 Variable* this_function_var = | |
1591 LookupLocal(ast_value_factory_->this_function_string()); | |
1592 if (this_function_var != nullptr && MustAllocate(this_function_var)) { | |
1593 this_function_ = this_function_var; | |
1594 } | |
1595 } | |
1596 | |
1597 | |
1598 void Scope::AllocateVariablesRecursively(Isolate* isolate) { | |
1599 if (!already_resolved()) { | |
1600 num_stack_slots_ = 0; | |
1601 } | |
1602 // Allocate variables for inner scopes. | |
1603 for (int i = 0; i < inner_scopes_.length(); i++) { | |
1604 inner_scopes_[i]->AllocateVariablesRecursively(isolate); | |
1605 } | |
1606 | |
1607 // If scope is already resolved, we still need to allocate | |
1608 // variables in inner scopes which might not had been resolved yet. | |
1609 if (already_resolved()) return; | |
1610 // The number of slots required for variables. | |
1611 num_heap_slots_ = Context::MIN_CONTEXT_SLOTS; | |
1612 | |
1613 // Allocate variables for this scope. | |
1614 // Parameters must be allocated first, if any. | |
1615 if (is_function_scope()) AllocateParameterLocals(isolate); | |
1616 if (has_this_declaration()) AllocateReceiver(); | |
1617 AllocateNonParameterLocalsAndDeclaredGlobals(isolate); | |
1618 | |
1619 // Force allocation of a context for this scope if necessary. For a 'with' | |
1620 // scope and for a function scope that makes an 'eval' call we need a context, | |
1621 // even if no local variables were statically allocated in the scope. | |
1622 // Likewise for modules. | |
1623 bool must_have_context = | |
1624 is_with_scope() || is_module_scope() || | |
1625 (is_function_scope() && calls_sloppy_eval()) || | |
1626 (is_block_scope() && is_declaration_scope() && calls_sloppy_eval()); | |
1627 | |
1628 // If we didn't allocate any locals in the local context, then we only | |
1629 // need the minimal number of slots if we must have a context. | |
1630 if (num_heap_slots_ == Context::MIN_CONTEXT_SLOTS && !must_have_context) { | |
1631 num_heap_slots_ = 0; | |
1632 } | |
1633 | |
1634 // Allocation done. | |
1635 DCHECK(num_heap_slots_ == 0 || num_heap_slots_ >= Context::MIN_CONTEXT_SLOTS); | |
1636 } | |
1637 | |
1638 | |
1639 void Scope::AllocateModules() { | |
1640 DCHECK(is_script_scope()); | |
1641 DCHECK(!already_resolved()); | |
1642 for (int i = 0; i < inner_scopes_.length(); i++) { | |
1643 Scope* scope = inner_scopes_.at(i); | |
1644 if (scope->is_module_scope()) { | |
1645 DCHECK(!scope->already_resolved()); | |
1646 DCHECK(scope->module_descriptor_->IsFrozen()); | |
1647 DCHECK_NULL(scope->module_var_); | |
1648 scope->module_var_ = | |
1649 NewTemporary(ast_value_factory_->dot_module_string()); | |
1650 ++num_modules_; | |
1651 } | |
1652 } | |
1653 } | |
1654 | |
1655 | |
1656 int Scope::StackLocalCount() const { | |
1657 return num_stack_slots() - | |
1658 (function_ != NULL && function_->proxy()->var()->IsStackLocal() ? 1 : 0); | |
1659 } | |
1660 | |
1661 | |
1662 int Scope::ContextLocalCount() const { | |
1663 if (num_heap_slots() == 0) return 0; | |
1664 bool is_function_var_in_context = | |
1665 function_ != NULL && function_->proxy()->var()->IsContextSlot(); | |
1666 return num_heap_slots() - Context::MIN_CONTEXT_SLOTS - num_global_slots() - | |
1667 (is_function_var_in_context ? 1 : 0); | |
1668 } | |
1669 | |
1670 | |
1671 int Scope::ContextGlobalCount() const { return num_global_slots(); } | |
1672 | |
1673 } // namespace internal | |
1674 } // namespace v8 | |
OLD | NEW |