Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(680)

Side by Side Diff: src/ast.h

Issue 1481613002: Create ast/ and parsing/ subdirectories and move appropriate files (Closed) Base URL: https://chromium.googlesource.com/v8/v8.git@master
Patch Set: Rebase Created 5 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « src/assembler.cc ('k') | src/ast.cc » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_AST_H_
6 #define V8_AST_H_
7
8 #include "src/assembler.h"
9 #include "src/ast-value-factory.h"
10 #include "src/bailout-reason.h"
11 #include "src/base/flags.h"
12 #include "src/base/smart-pointers.h"
13 #include "src/factory.h"
14 #include "src/isolate.h"
15 #include "src/list.h"
16 #include "src/modules.h"
17 #include "src/regexp/jsregexp.h"
18 #include "src/runtime/runtime.h"
19 #include "src/small-pointer-list.h"
20 #include "src/token.h"
21 #include "src/types.h"
22 #include "src/utils.h"
23 #include "src/variables.h"
24
25 namespace v8 {
26 namespace internal {
27
28 // The abstract syntax tree is an intermediate, light-weight
29 // representation of the parsed JavaScript code suitable for
30 // compilation to native code.
31
32 // Nodes are allocated in a separate zone, which allows faster
33 // allocation and constant-time deallocation of the entire syntax
34 // tree.
35
36
37 // ----------------------------------------------------------------------------
38 // Nodes of the abstract syntax tree. Only concrete classes are
39 // enumerated here.
40
41 #define DECLARATION_NODE_LIST(V) \
42 V(VariableDeclaration) \
43 V(FunctionDeclaration) \
44 V(ImportDeclaration) \
45 V(ExportDeclaration)
46
47 #define STATEMENT_NODE_LIST(V) \
48 V(Block) \
49 V(ExpressionStatement) \
50 V(EmptyStatement) \
51 V(SloppyBlockFunctionStatement) \
52 V(IfStatement) \
53 V(ContinueStatement) \
54 V(BreakStatement) \
55 V(ReturnStatement) \
56 V(WithStatement) \
57 V(SwitchStatement) \
58 V(DoWhileStatement) \
59 V(WhileStatement) \
60 V(ForStatement) \
61 V(ForInStatement) \
62 V(ForOfStatement) \
63 V(TryCatchStatement) \
64 V(TryFinallyStatement) \
65 V(DebuggerStatement)
66
67 #define EXPRESSION_NODE_LIST(V) \
68 V(FunctionLiteral) \
69 V(ClassLiteral) \
70 V(NativeFunctionLiteral) \
71 V(Conditional) \
72 V(VariableProxy) \
73 V(Literal) \
74 V(RegExpLiteral) \
75 V(ObjectLiteral) \
76 V(ArrayLiteral) \
77 V(Assignment) \
78 V(Yield) \
79 V(Throw) \
80 V(Property) \
81 V(Call) \
82 V(CallNew) \
83 V(CallRuntime) \
84 V(UnaryOperation) \
85 V(CountOperation) \
86 V(BinaryOperation) \
87 V(CompareOperation) \
88 V(Spread) \
89 V(ThisFunction) \
90 V(SuperPropertyReference) \
91 V(SuperCallReference) \
92 V(CaseClause) \
93 V(EmptyParentheses) \
94 V(DoExpression)
95
96 #define AST_NODE_LIST(V) \
97 DECLARATION_NODE_LIST(V) \
98 STATEMENT_NODE_LIST(V) \
99 EXPRESSION_NODE_LIST(V)
100
101 // Forward declarations
102 class AstNodeFactory;
103 class AstVisitor;
104 class Declaration;
105 class Module;
106 class BreakableStatement;
107 class Expression;
108 class IterationStatement;
109 class MaterializedLiteral;
110 class Statement;
111 class TypeFeedbackOracle;
112
113 class RegExpAlternative;
114 class RegExpAssertion;
115 class RegExpAtom;
116 class RegExpBackReference;
117 class RegExpCapture;
118 class RegExpCharacterClass;
119 class RegExpCompiler;
120 class RegExpDisjunction;
121 class RegExpEmpty;
122 class RegExpLookaround;
123 class RegExpQuantifier;
124 class RegExpText;
125
126 #define DEF_FORWARD_DECLARATION(type) class type;
127 AST_NODE_LIST(DEF_FORWARD_DECLARATION)
128 #undef DEF_FORWARD_DECLARATION
129
130
131 // Typedef only introduced to avoid unreadable code.
132 typedef ZoneList<Handle<String>> ZoneStringList;
133 typedef ZoneList<Handle<Object>> ZoneObjectList;
134
135
136 #define DECLARE_NODE_TYPE(type) \
137 void Accept(AstVisitor* v) override; \
138 AstNode::NodeType node_type() const final { return AstNode::k##type; } \
139 friend class AstNodeFactory;
140
141
142 class FeedbackVectorSlotCache {
143 public:
144 explicit FeedbackVectorSlotCache(Zone* zone)
145 : zone_(zone),
146 hash_map_(HashMap::PointersMatch, ZoneHashMap::kDefaultHashMapCapacity,
147 ZoneAllocationPolicy(zone)) {}
148
149 void Put(Variable* variable, FeedbackVectorSlot slot) {
150 ZoneHashMap::Entry* entry = hash_map_.LookupOrInsert(
151 variable, ComputePointerHash(variable), ZoneAllocationPolicy(zone_));
152 entry->value = reinterpret_cast<void*>(slot.ToInt());
153 }
154
155 ZoneHashMap::Entry* Get(Variable* variable) const {
156 return hash_map_.Lookup(variable, ComputePointerHash(variable));
157 }
158
159 private:
160 Zone* zone_;
161 ZoneHashMap hash_map_;
162 };
163
164
165 class AstProperties final BASE_EMBEDDED {
166 public:
167 enum Flag {
168 kNoFlags = 0,
169 kDontSelfOptimize = 1 << 0,
170 kDontCrankshaft = 1 << 1
171 };
172
173 typedef base::Flags<Flag> Flags;
174
175 explicit AstProperties(Zone* zone) : node_count_(0), spec_(zone) {}
176
177 Flags& flags() { return flags_; }
178 Flags flags() const { return flags_; }
179 int node_count() { return node_count_; }
180 void add_node_count(int count) { node_count_ += count; }
181
182 const FeedbackVectorSpec* get_spec() const { return &spec_; }
183 FeedbackVectorSpec* get_spec() { return &spec_; }
184
185 private:
186 Flags flags_;
187 int node_count_;
188 FeedbackVectorSpec spec_;
189 };
190
191 DEFINE_OPERATORS_FOR_FLAGS(AstProperties::Flags)
192
193
194 class AstNode: public ZoneObject {
195 public:
196 #define DECLARE_TYPE_ENUM(type) k##type,
197 enum NodeType {
198 AST_NODE_LIST(DECLARE_TYPE_ENUM)
199 kInvalid = -1
200 };
201 #undef DECLARE_TYPE_ENUM
202
203 void* operator new(size_t size, Zone* zone) { return zone->New(size); }
204
205 explicit AstNode(int position): position_(position) {}
206 virtual ~AstNode() {}
207
208 virtual void Accept(AstVisitor* v) = 0;
209 virtual NodeType node_type() const = 0;
210 int position() const { return position_; }
211
212 // Type testing & conversion functions overridden by concrete subclasses.
213 #define DECLARE_NODE_FUNCTIONS(type) \
214 bool Is##type() const { return node_type() == AstNode::k##type; } \
215 type* As##type() { \
216 return Is##type() ? reinterpret_cast<type*>(this) : NULL; \
217 } \
218 const type* As##type() const { \
219 return Is##type() ? reinterpret_cast<const type*>(this) : NULL; \
220 }
221 AST_NODE_LIST(DECLARE_NODE_FUNCTIONS)
222 #undef DECLARE_NODE_FUNCTIONS
223
224 virtual BreakableStatement* AsBreakableStatement() { return NULL; }
225 virtual IterationStatement* AsIterationStatement() { return NULL; }
226 virtual MaterializedLiteral* AsMaterializedLiteral() { return NULL; }
227
228 // The interface for feedback slots, with default no-op implementations for
229 // node types which don't actually have this. Note that this is conceptually
230 // not really nice, but multiple inheritance would introduce yet another
231 // vtable entry per node, something we don't want for space reasons.
232 virtual void AssignFeedbackVectorSlots(Isolate* isolate,
233 FeedbackVectorSpec* spec,
234 FeedbackVectorSlotCache* cache) {}
235
236 private:
237 // Hidden to prevent accidental usage. It would have to load the
238 // current zone from the TLS.
239 void* operator new(size_t size);
240
241 friend class CaseClause; // Generates AST IDs.
242
243 int position_;
244 };
245
246
247 class Statement : public AstNode {
248 public:
249 explicit Statement(Zone* zone, int position) : AstNode(position) {}
250
251 bool IsEmpty() { return AsEmptyStatement() != NULL; }
252 virtual bool IsJump() const { return false; }
253 };
254
255
256 class SmallMapList final {
257 public:
258 SmallMapList() {}
259 SmallMapList(int capacity, Zone* zone) : list_(capacity, zone) {}
260
261 void Reserve(int capacity, Zone* zone) { list_.Reserve(capacity, zone); }
262 void Clear() { list_.Clear(); }
263 void Sort() { list_.Sort(); }
264
265 bool is_empty() const { return list_.is_empty(); }
266 int length() const { return list_.length(); }
267
268 void AddMapIfMissing(Handle<Map> map, Zone* zone) {
269 if (!Map::TryUpdate(map).ToHandle(&map)) return;
270 for (int i = 0; i < length(); ++i) {
271 if (at(i).is_identical_to(map)) return;
272 }
273 Add(map, zone);
274 }
275
276 void FilterForPossibleTransitions(Map* root_map) {
277 for (int i = list_.length() - 1; i >= 0; i--) {
278 if (at(i)->FindRootMap() != root_map) {
279 list_.RemoveElement(list_.at(i));
280 }
281 }
282 }
283
284 void Add(Handle<Map> handle, Zone* zone) {
285 list_.Add(handle.location(), zone);
286 }
287
288 Handle<Map> at(int i) const {
289 return Handle<Map>(list_.at(i));
290 }
291
292 Handle<Map> first() const { return at(0); }
293 Handle<Map> last() const { return at(length() - 1); }
294
295 private:
296 // The list stores pointers to Map*, that is Map**, so it's GC safe.
297 SmallPointerList<Map*> list_;
298
299 DISALLOW_COPY_AND_ASSIGN(SmallMapList);
300 };
301
302
303 class Expression : public AstNode {
304 public:
305 enum Context {
306 // Not assigned a context yet, or else will not be visited during
307 // code generation.
308 kUninitialized,
309 // Evaluated for its side effects.
310 kEffect,
311 // Evaluated for its value (and side effects).
312 kValue,
313 // Evaluated for control flow (and side effects).
314 kTest
315 };
316
317 // True iff the expression is a valid reference expression.
318 virtual bool IsValidReferenceExpression() const { return false; }
319
320 // Helpers for ToBoolean conversion.
321 virtual bool ToBooleanIsTrue() const { return false; }
322 virtual bool ToBooleanIsFalse() const { return false; }
323
324 // Symbols that cannot be parsed as array indices are considered property
325 // names. We do not treat symbols that can be array indexes as property
326 // names because [] for string objects is handled only by keyed ICs.
327 virtual bool IsPropertyName() const { return false; }
328
329 // True iff the expression is a literal represented as a smi.
330 bool IsSmiLiteral() const;
331
332 // True iff the expression is a string literal.
333 bool IsStringLiteral() const;
334
335 // True iff the expression is the null literal.
336 bool IsNullLiteral() const;
337
338 // True if we can prove that the expression is the undefined literal.
339 bool IsUndefinedLiteral(Isolate* isolate) const;
340
341 // True iff the expression is a valid target for an assignment.
342 bool IsValidReferenceExpressionOrThis() const;
343
344 // Expression type bounds
345 Bounds bounds() const { return bounds_; }
346 void set_bounds(Bounds bounds) { bounds_ = bounds; }
347
348 // Type feedback information for assignments and properties.
349 virtual bool IsMonomorphic() {
350 UNREACHABLE();
351 return false;
352 }
353 virtual SmallMapList* GetReceiverTypes() {
354 UNREACHABLE();
355 return NULL;
356 }
357 virtual KeyedAccessStoreMode GetStoreMode() const {
358 UNREACHABLE();
359 return STANDARD_STORE;
360 }
361 virtual IcCheckType GetKeyType() const {
362 UNREACHABLE();
363 return ELEMENT;
364 }
365
366 // TODO(rossberg): this should move to its own AST node eventually.
367 virtual void RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle);
368 uint16_t to_boolean_types() const {
369 return ToBooleanTypesField::decode(bit_field_);
370 }
371
372 void set_base_id(int id) { base_id_ = id; }
373 static int num_ids() { return parent_num_ids() + 2; }
374 BailoutId id() const { return BailoutId(local_id(0)); }
375 TypeFeedbackId test_id() const { return TypeFeedbackId(local_id(1)); }
376
377 protected:
378 Expression(Zone* zone, int pos)
379 : AstNode(pos),
380 base_id_(BailoutId::None().ToInt()),
381 bounds_(Bounds::Unbounded()),
382 bit_field_(0) {}
383 static int parent_num_ids() { return 0; }
384 void set_to_boolean_types(uint16_t types) {
385 bit_field_ = ToBooleanTypesField::update(bit_field_, types);
386 }
387
388 int base_id() const {
389 DCHECK(!BailoutId(base_id_).IsNone());
390 return base_id_;
391 }
392
393 private:
394 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
395
396 int base_id_;
397 Bounds bounds_;
398 class ToBooleanTypesField : public BitField16<uint16_t, 0, 9> {};
399 uint16_t bit_field_;
400 // Ends with 16-bit field; deriving classes in turn begin with
401 // 16-bit fields for optimum packing efficiency.
402 };
403
404
405 class BreakableStatement : public Statement {
406 public:
407 enum BreakableType {
408 TARGET_FOR_ANONYMOUS,
409 TARGET_FOR_NAMED_ONLY
410 };
411
412 // The labels associated with this statement. May be NULL;
413 // if it is != NULL, guaranteed to contain at least one entry.
414 ZoneList<const AstRawString*>* labels() const { return labels_; }
415
416 // Type testing & conversion.
417 BreakableStatement* AsBreakableStatement() final { return this; }
418
419 // Code generation
420 Label* break_target() { return &break_target_; }
421
422 // Testers.
423 bool is_target_for_anonymous() const {
424 return breakable_type_ == TARGET_FOR_ANONYMOUS;
425 }
426
427 void set_base_id(int id) { base_id_ = id; }
428 static int num_ids() { return parent_num_ids() + 2; }
429 BailoutId EntryId() const { return BailoutId(local_id(0)); }
430 BailoutId ExitId() const { return BailoutId(local_id(1)); }
431
432 protected:
433 BreakableStatement(Zone* zone, ZoneList<const AstRawString*>* labels,
434 BreakableType breakable_type, int position)
435 : Statement(zone, position),
436 labels_(labels),
437 breakable_type_(breakable_type),
438 base_id_(BailoutId::None().ToInt()) {
439 DCHECK(labels == NULL || labels->length() > 0);
440 }
441 static int parent_num_ids() { return 0; }
442
443 int base_id() const {
444 DCHECK(!BailoutId(base_id_).IsNone());
445 return base_id_;
446 }
447
448 private:
449 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
450
451 ZoneList<const AstRawString*>* labels_;
452 BreakableType breakable_type_;
453 Label break_target_;
454 int base_id_;
455 };
456
457
458 class Block final : public BreakableStatement {
459 public:
460 DECLARE_NODE_TYPE(Block)
461
462 ZoneList<Statement*>* statements() { return &statements_; }
463 bool ignore_completion_value() const { return ignore_completion_value_; }
464
465 static int num_ids() { return parent_num_ids() + 1; }
466 BailoutId DeclsId() const { return BailoutId(local_id(0)); }
467
468 bool IsJump() const override {
469 return !statements_.is_empty() && statements_.last()->IsJump()
470 && labels() == NULL; // Good enough as an approximation...
471 }
472
473 Scope* scope() const { return scope_; }
474 void set_scope(Scope* scope) { scope_ = scope; }
475
476 protected:
477 Block(Zone* zone, ZoneList<const AstRawString*>* labels, int capacity,
478 bool ignore_completion_value, int pos)
479 : BreakableStatement(zone, labels, TARGET_FOR_NAMED_ONLY, pos),
480 statements_(capacity, zone),
481 ignore_completion_value_(ignore_completion_value),
482 scope_(NULL) {}
483 static int parent_num_ids() { return BreakableStatement::num_ids(); }
484
485 private:
486 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
487
488 ZoneList<Statement*> statements_;
489 bool ignore_completion_value_;
490 Scope* scope_;
491 };
492
493
494 class DoExpression final : public Expression {
495 public:
496 DECLARE_NODE_TYPE(DoExpression)
497
498 Block* block() { return block_; }
499 VariableProxy* result() { return result_; }
500
501 protected:
502 DoExpression(Zone* zone, Block* block, VariableProxy* result, int pos)
503 : Expression(zone, pos), block_(block), result_(result) {
504 DCHECK_NOT_NULL(block_);
505 DCHECK_NOT_NULL(result_);
506 }
507 static int parent_num_ids() { return Expression::num_ids(); }
508
509 private:
510 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
511
512 Block* block_;
513 VariableProxy* result_;
514 };
515
516
517 class Declaration : public AstNode {
518 public:
519 VariableProxy* proxy() const { return proxy_; }
520 VariableMode mode() const { return mode_; }
521 Scope* scope() const { return scope_; }
522 virtual InitializationFlag initialization() const = 0;
523 virtual bool IsInlineable() const;
524
525 protected:
526 Declaration(Zone* zone, VariableProxy* proxy, VariableMode mode, Scope* scope,
527 int pos)
528 : AstNode(pos), mode_(mode), proxy_(proxy), scope_(scope) {
529 DCHECK(IsDeclaredVariableMode(mode));
530 }
531
532 private:
533 VariableMode mode_;
534 VariableProxy* proxy_;
535
536 // Nested scope from which the declaration originated.
537 Scope* scope_;
538 };
539
540
541 class VariableDeclaration final : public Declaration {
542 public:
543 DECLARE_NODE_TYPE(VariableDeclaration)
544
545 InitializationFlag initialization() const override {
546 return mode() == VAR ? kCreatedInitialized : kNeedsInitialization;
547 }
548
549 bool is_class_declaration() const { return is_class_declaration_; }
550
551 // VariableDeclarations can be grouped into consecutive declaration
552 // groups. Each VariableDeclaration is associated with the start position of
553 // the group it belongs to. The positions are used for strong mode scope
554 // checks for classes and functions.
555 int declaration_group_start() const { return declaration_group_start_; }
556
557 protected:
558 VariableDeclaration(Zone* zone, VariableProxy* proxy, VariableMode mode,
559 Scope* scope, int pos, bool is_class_declaration = false,
560 int declaration_group_start = -1)
561 : Declaration(zone, proxy, mode, scope, pos),
562 is_class_declaration_(is_class_declaration),
563 declaration_group_start_(declaration_group_start) {}
564
565 bool is_class_declaration_;
566 int declaration_group_start_;
567 };
568
569
570 class FunctionDeclaration final : public Declaration {
571 public:
572 DECLARE_NODE_TYPE(FunctionDeclaration)
573
574 FunctionLiteral* fun() const { return fun_; }
575 InitializationFlag initialization() const override {
576 return kCreatedInitialized;
577 }
578 bool IsInlineable() const override;
579
580 protected:
581 FunctionDeclaration(Zone* zone,
582 VariableProxy* proxy,
583 VariableMode mode,
584 FunctionLiteral* fun,
585 Scope* scope,
586 int pos)
587 : Declaration(zone, proxy, mode, scope, pos),
588 fun_(fun) {
589 DCHECK(mode == VAR || mode == LET || mode == CONST);
590 DCHECK(fun != NULL);
591 }
592
593 private:
594 FunctionLiteral* fun_;
595 };
596
597
598 class ImportDeclaration final : public Declaration {
599 public:
600 DECLARE_NODE_TYPE(ImportDeclaration)
601
602 const AstRawString* import_name() const { return import_name_; }
603 const AstRawString* module_specifier() const { return module_specifier_; }
604 void set_module_specifier(const AstRawString* module_specifier) {
605 DCHECK(module_specifier_ == NULL);
606 module_specifier_ = module_specifier;
607 }
608 InitializationFlag initialization() const override {
609 return kNeedsInitialization;
610 }
611
612 protected:
613 ImportDeclaration(Zone* zone, VariableProxy* proxy,
614 const AstRawString* import_name,
615 const AstRawString* module_specifier, Scope* scope, int pos)
616 : Declaration(zone, proxy, IMPORT, scope, pos),
617 import_name_(import_name),
618 module_specifier_(module_specifier) {}
619
620 private:
621 const AstRawString* import_name_;
622 const AstRawString* module_specifier_;
623 };
624
625
626 class ExportDeclaration final : public Declaration {
627 public:
628 DECLARE_NODE_TYPE(ExportDeclaration)
629
630 InitializationFlag initialization() const override {
631 return kCreatedInitialized;
632 }
633
634 protected:
635 ExportDeclaration(Zone* zone, VariableProxy* proxy, Scope* scope, int pos)
636 : Declaration(zone, proxy, LET, scope, pos) {}
637 };
638
639
640 class Module : public AstNode {
641 public:
642 ModuleDescriptor* descriptor() const { return descriptor_; }
643 Block* body() const { return body_; }
644
645 protected:
646 Module(Zone* zone, int pos)
647 : AstNode(pos), descriptor_(ModuleDescriptor::New(zone)), body_(NULL) {}
648 Module(Zone* zone, ModuleDescriptor* descriptor, int pos, Block* body = NULL)
649 : AstNode(pos), descriptor_(descriptor), body_(body) {}
650
651 private:
652 ModuleDescriptor* descriptor_;
653 Block* body_;
654 };
655
656
657 class IterationStatement : public BreakableStatement {
658 public:
659 // Type testing & conversion.
660 IterationStatement* AsIterationStatement() final { return this; }
661
662 Statement* body() const { return body_; }
663 void set_body(Statement* s) { body_ = s; }
664
665 static int num_ids() { return parent_num_ids() + 1; }
666 BailoutId OsrEntryId() const { return BailoutId(local_id(0)); }
667 virtual BailoutId ContinueId() const = 0;
668 virtual BailoutId StackCheckId() const = 0;
669
670 // Code generation
671 Label* continue_target() { return &continue_target_; }
672
673 protected:
674 IterationStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
675 : BreakableStatement(zone, labels, TARGET_FOR_ANONYMOUS, pos),
676 body_(NULL) {}
677 static int parent_num_ids() { return BreakableStatement::num_ids(); }
678 void Initialize(Statement* body) { body_ = body; }
679
680 private:
681 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
682
683 Statement* body_;
684 Label continue_target_;
685 };
686
687
688 class DoWhileStatement final : public IterationStatement {
689 public:
690 DECLARE_NODE_TYPE(DoWhileStatement)
691
692 void Initialize(Expression* cond, Statement* body) {
693 IterationStatement::Initialize(body);
694 cond_ = cond;
695 }
696
697 Expression* cond() const { return cond_; }
698
699 static int num_ids() { return parent_num_ids() + 2; }
700 BailoutId ContinueId() const override { return BailoutId(local_id(0)); }
701 BailoutId StackCheckId() const override { return BackEdgeId(); }
702 BailoutId BackEdgeId() const { return BailoutId(local_id(1)); }
703
704 protected:
705 DoWhileStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
706 : IterationStatement(zone, labels, pos), cond_(NULL) {}
707 static int parent_num_ids() { return IterationStatement::num_ids(); }
708
709 private:
710 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
711
712 Expression* cond_;
713 };
714
715
716 class WhileStatement final : public IterationStatement {
717 public:
718 DECLARE_NODE_TYPE(WhileStatement)
719
720 void Initialize(Expression* cond, Statement* body) {
721 IterationStatement::Initialize(body);
722 cond_ = cond;
723 }
724
725 Expression* cond() const { return cond_; }
726
727 static int num_ids() { return parent_num_ids() + 1; }
728 BailoutId ContinueId() const override { return EntryId(); }
729 BailoutId StackCheckId() const override { return BodyId(); }
730 BailoutId BodyId() const { return BailoutId(local_id(0)); }
731
732 protected:
733 WhileStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
734 : IterationStatement(zone, labels, pos), cond_(NULL) {}
735 static int parent_num_ids() { return IterationStatement::num_ids(); }
736
737 private:
738 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
739
740 Expression* cond_;
741 };
742
743
744 class ForStatement final : public IterationStatement {
745 public:
746 DECLARE_NODE_TYPE(ForStatement)
747
748 void Initialize(Statement* init,
749 Expression* cond,
750 Statement* next,
751 Statement* body) {
752 IterationStatement::Initialize(body);
753 init_ = init;
754 cond_ = cond;
755 next_ = next;
756 }
757
758 Statement* init() const { return init_; }
759 Expression* cond() const { return cond_; }
760 Statement* next() const { return next_; }
761
762 static int num_ids() { return parent_num_ids() + 2; }
763 BailoutId ContinueId() const override { return BailoutId(local_id(0)); }
764 BailoutId StackCheckId() const override { return BodyId(); }
765 BailoutId BodyId() const { return BailoutId(local_id(1)); }
766
767 protected:
768 ForStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
769 : IterationStatement(zone, labels, pos),
770 init_(NULL),
771 cond_(NULL),
772 next_(NULL) {}
773 static int parent_num_ids() { return IterationStatement::num_ids(); }
774
775 private:
776 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
777
778 Statement* init_;
779 Expression* cond_;
780 Statement* next_;
781 };
782
783
784 class ForEachStatement : public IterationStatement {
785 public:
786 enum VisitMode {
787 ENUMERATE, // for (each in subject) body;
788 ITERATE // for (each of subject) body;
789 };
790
791 void Initialize(Expression* each, Expression* subject, Statement* body) {
792 IterationStatement::Initialize(body);
793 each_ = each;
794 subject_ = subject;
795 }
796
797 Expression* each() const { return each_; }
798 Expression* subject() const { return subject_; }
799
800 void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
801 FeedbackVectorSlotCache* cache) override;
802 FeedbackVectorSlot EachFeedbackSlot() const { return each_slot_; }
803
804 protected:
805 ForEachStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
806 : IterationStatement(zone, labels, pos), each_(NULL), subject_(NULL) {}
807
808 private:
809 Expression* each_;
810 Expression* subject_;
811 FeedbackVectorSlot each_slot_;
812 };
813
814
815 class ForInStatement final : public ForEachStatement {
816 public:
817 DECLARE_NODE_TYPE(ForInStatement)
818
819 Expression* enumerable() const {
820 return subject();
821 }
822
823 // Type feedback information.
824 void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
825 FeedbackVectorSlotCache* cache) override {
826 ForEachStatement::AssignFeedbackVectorSlots(isolate, spec, cache);
827 for_in_feedback_slot_ = spec->AddGeneralSlot();
828 }
829
830 FeedbackVectorSlot ForInFeedbackSlot() {
831 DCHECK(!for_in_feedback_slot_.IsInvalid());
832 return for_in_feedback_slot_;
833 }
834
835 enum ForInType { FAST_FOR_IN, SLOW_FOR_IN };
836 ForInType for_in_type() const { return for_in_type_; }
837 void set_for_in_type(ForInType type) { for_in_type_ = type; }
838
839 static int num_ids() { return parent_num_ids() + 6; }
840 BailoutId BodyId() const { return BailoutId(local_id(0)); }
841 BailoutId PrepareId() const { return BailoutId(local_id(1)); }
842 BailoutId EnumId() const { return BailoutId(local_id(2)); }
843 BailoutId ToObjectId() const { return BailoutId(local_id(3)); }
844 BailoutId FilterId() const { return BailoutId(local_id(4)); }
845 BailoutId AssignmentId() const { return BailoutId(local_id(5)); }
846 BailoutId ContinueId() const override { return EntryId(); }
847 BailoutId StackCheckId() const override { return BodyId(); }
848
849 protected:
850 ForInStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
851 : ForEachStatement(zone, labels, pos), for_in_type_(SLOW_FOR_IN) {}
852 static int parent_num_ids() { return ForEachStatement::num_ids(); }
853
854 private:
855 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
856
857 ForInType for_in_type_;
858 FeedbackVectorSlot for_in_feedback_slot_;
859 };
860
861
862 class ForOfStatement final : public ForEachStatement {
863 public:
864 DECLARE_NODE_TYPE(ForOfStatement)
865
866 void Initialize(Expression* each,
867 Expression* subject,
868 Statement* body,
869 Expression* assign_iterator,
870 Expression* next_result,
871 Expression* result_done,
872 Expression* assign_each) {
873 ForEachStatement::Initialize(each, subject, body);
874 assign_iterator_ = assign_iterator;
875 next_result_ = next_result;
876 result_done_ = result_done;
877 assign_each_ = assign_each;
878 }
879
880 Expression* iterable() const {
881 return subject();
882 }
883
884 // iterator = subject[Symbol.iterator]()
885 Expression* assign_iterator() const {
886 return assign_iterator_;
887 }
888
889 // result = iterator.next() // with type check
890 Expression* next_result() const {
891 return next_result_;
892 }
893
894 // result.done
895 Expression* result_done() const {
896 return result_done_;
897 }
898
899 // each = result.value
900 Expression* assign_each() const {
901 return assign_each_;
902 }
903
904 BailoutId ContinueId() const override { return EntryId(); }
905 BailoutId StackCheckId() const override { return BackEdgeId(); }
906
907 static int num_ids() { return parent_num_ids() + 1; }
908 BailoutId BackEdgeId() const { return BailoutId(local_id(0)); }
909
910 protected:
911 ForOfStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
912 : ForEachStatement(zone, labels, pos),
913 assign_iterator_(NULL),
914 next_result_(NULL),
915 result_done_(NULL),
916 assign_each_(NULL) {}
917 static int parent_num_ids() { return ForEachStatement::num_ids(); }
918
919 private:
920 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
921
922 Expression* assign_iterator_;
923 Expression* next_result_;
924 Expression* result_done_;
925 Expression* assign_each_;
926 };
927
928
929 class ExpressionStatement final : public Statement {
930 public:
931 DECLARE_NODE_TYPE(ExpressionStatement)
932
933 void set_expression(Expression* e) { expression_ = e; }
934 Expression* expression() const { return expression_; }
935 bool IsJump() const override { return expression_->IsThrow(); }
936
937 protected:
938 ExpressionStatement(Zone* zone, Expression* expression, int pos)
939 : Statement(zone, pos), expression_(expression) { }
940
941 private:
942 Expression* expression_;
943 };
944
945
946 class JumpStatement : public Statement {
947 public:
948 bool IsJump() const final { return true; }
949
950 protected:
951 explicit JumpStatement(Zone* zone, int pos) : Statement(zone, pos) {}
952 };
953
954
955 class ContinueStatement final : public JumpStatement {
956 public:
957 DECLARE_NODE_TYPE(ContinueStatement)
958
959 IterationStatement* target() const { return target_; }
960
961 protected:
962 explicit ContinueStatement(Zone* zone, IterationStatement* target, int pos)
963 : JumpStatement(zone, pos), target_(target) { }
964
965 private:
966 IterationStatement* target_;
967 };
968
969
970 class BreakStatement final : public JumpStatement {
971 public:
972 DECLARE_NODE_TYPE(BreakStatement)
973
974 BreakableStatement* target() const { return target_; }
975
976 protected:
977 explicit BreakStatement(Zone* zone, BreakableStatement* target, int pos)
978 : JumpStatement(zone, pos), target_(target) { }
979
980 private:
981 BreakableStatement* target_;
982 };
983
984
985 class ReturnStatement final : public JumpStatement {
986 public:
987 DECLARE_NODE_TYPE(ReturnStatement)
988
989 Expression* expression() const { return expression_; }
990
991 protected:
992 explicit ReturnStatement(Zone* zone, Expression* expression, int pos)
993 : JumpStatement(zone, pos), expression_(expression) { }
994
995 private:
996 Expression* expression_;
997 };
998
999
1000 class WithStatement final : public Statement {
1001 public:
1002 DECLARE_NODE_TYPE(WithStatement)
1003
1004 Scope* scope() { return scope_; }
1005 Expression* expression() const { return expression_; }
1006 Statement* statement() const { return statement_; }
1007 void set_statement(Statement* s) { statement_ = s; }
1008
1009 void set_base_id(int id) { base_id_ = id; }
1010 static int num_ids() { return parent_num_ids() + 1; }
1011 BailoutId EntryId() const { return BailoutId(local_id(0)); }
1012
1013 protected:
1014 WithStatement(Zone* zone, Scope* scope, Expression* expression,
1015 Statement* statement, int pos)
1016 : Statement(zone, pos),
1017 scope_(scope),
1018 expression_(expression),
1019 statement_(statement),
1020 base_id_(BailoutId::None().ToInt()) {}
1021 static int parent_num_ids() { return 0; }
1022
1023 int base_id() const {
1024 DCHECK(!BailoutId(base_id_).IsNone());
1025 return base_id_;
1026 }
1027
1028 private:
1029 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1030
1031 Scope* scope_;
1032 Expression* expression_;
1033 Statement* statement_;
1034 int base_id_;
1035 };
1036
1037
1038 class CaseClause final : public Expression {
1039 public:
1040 DECLARE_NODE_TYPE(CaseClause)
1041
1042 bool is_default() const { return label_ == NULL; }
1043 Expression* label() const {
1044 CHECK(!is_default());
1045 return label_;
1046 }
1047 Label* body_target() { return &body_target_; }
1048 ZoneList<Statement*>* statements() const { return statements_; }
1049
1050 static int num_ids() { return parent_num_ids() + 2; }
1051 BailoutId EntryId() const { return BailoutId(local_id(0)); }
1052 TypeFeedbackId CompareId() { return TypeFeedbackId(local_id(1)); }
1053
1054 Type* compare_type() { return compare_type_; }
1055 void set_compare_type(Type* type) { compare_type_ = type; }
1056
1057 protected:
1058 static int parent_num_ids() { return Expression::num_ids(); }
1059
1060 private:
1061 CaseClause(Zone* zone, Expression* label, ZoneList<Statement*>* statements,
1062 int pos);
1063 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1064
1065 Expression* label_;
1066 Label body_target_;
1067 ZoneList<Statement*>* statements_;
1068 Type* compare_type_;
1069 };
1070
1071
1072 class SwitchStatement final : public BreakableStatement {
1073 public:
1074 DECLARE_NODE_TYPE(SwitchStatement)
1075
1076 void Initialize(Expression* tag, ZoneList<CaseClause*>* cases) {
1077 tag_ = tag;
1078 cases_ = cases;
1079 }
1080
1081 Expression* tag() const { return tag_; }
1082 ZoneList<CaseClause*>* cases() const { return cases_; }
1083
1084 protected:
1085 SwitchStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
1086 : BreakableStatement(zone, labels, TARGET_FOR_ANONYMOUS, pos),
1087 tag_(NULL),
1088 cases_(NULL) {}
1089
1090 private:
1091 Expression* tag_;
1092 ZoneList<CaseClause*>* cases_;
1093 };
1094
1095
1096 // If-statements always have non-null references to their then- and
1097 // else-parts. When parsing if-statements with no explicit else-part,
1098 // the parser implicitly creates an empty statement. Use the
1099 // HasThenStatement() and HasElseStatement() functions to check if a
1100 // given if-statement has a then- or an else-part containing code.
1101 class IfStatement final : public Statement {
1102 public:
1103 DECLARE_NODE_TYPE(IfStatement)
1104
1105 bool HasThenStatement() const { return !then_statement()->IsEmpty(); }
1106 bool HasElseStatement() const { return !else_statement()->IsEmpty(); }
1107
1108 Expression* condition() const { return condition_; }
1109 Statement* then_statement() const { return then_statement_; }
1110 Statement* else_statement() const { return else_statement_; }
1111
1112 void set_then_statement(Statement* s) { then_statement_ = s; }
1113 void set_else_statement(Statement* s) { else_statement_ = s; }
1114
1115 bool IsJump() const override {
1116 return HasThenStatement() && then_statement()->IsJump()
1117 && HasElseStatement() && else_statement()->IsJump();
1118 }
1119
1120 void set_base_id(int id) { base_id_ = id; }
1121 static int num_ids() { return parent_num_ids() + 3; }
1122 BailoutId IfId() const { return BailoutId(local_id(0)); }
1123 BailoutId ThenId() const { return BailoutId(local_id(1)); }
1124 BailoutId ElseId() const { return BailoutId(local_id(2)); }
1125
1126 protected:
1127 IfStatement(Zone* zone, Expression* condition, Statement* then_statement,
1128 Statement* else_statement, int pos)
1129 : Statement(zone, pos),
1130 condition_(condition),
1131 then_statement_(then_statement),
1132 else_statement_(else_statement),
1133 base_id_(BailoutId::None().ToInt()) {}
1134 static int parent_num_ids() { return 0; }
1135
1136 int base_id() const {
1137 DCHECK(!BailoutId(base_id_).IsNone());
1138 return base_id_;
1139 }
1140
1141 private:
1142 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1143
1144 Expression* condition_;
1145 Statement* then_statement_;
1146 Statement* else_statement_;
1147 int base_id_;
1148 };
1149
1150
1151 class TryStatement : public Statement {
1152 public:
1153 Block* try_block() const { return try_block_; }
1154 void set_try_block(Block* b) { try_block_ = b; }
1155
1156 void set_base_id(int id) { base_id_ = id; }
1157 static int num_ids() { return parent_num_ids() + 1; }
1158 BailoutId HandlerId() const { return BailoutId(local_id(0)); }
1159
1160 protected:
1161 TryStatement(Zone* zone, Block* try_block, int pos)
1162 : Statement(zone, pos),
1163 try_block_(try_block),
1164 base_id_(BailoutId::None().ToInt()) {}
1165 static int parent_num_ids() { return 0; }
1166
1167 int base_id() const {
1168 DCHECK(!BailoutId(base_id_).IsNone());
1169 return base_id_;
1170 }
1171
1172 private:
1173 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1174
1175 Block* try_block_;
1176 int base_id_;
1177 };
1178
1179
1180 class TryCatchStatement final : public TryStatement {
1181 public:
1182 DECLARE_NODE_TYPE(TryCatchStatement)
1183
1184 Scope* scope() { return scope_; }
1185 Variable* variable() { return variable_; }
1186 Block* catch_block() const { return catch_block_; }
1187 void set_catch_block(Block* b) { catch_block_ = b; }
1188
1189 protected:
1190 TryCatchStatement(Zone* zone, Block* try_block, Scope* scope,
1191 Variable* variable, Block* catch_block, int pos)
1192 : TryStatement(zone, try_block, pos),
1193 scope_(scope),
1194 variable_(variable),
1195 catch_block_(catch_block) {}
1196
1197 private:
1198 Scope* scope_;
1199 Variable* variable_;
1200 Block* catch_block_;
1201 };
1202
1203
1204 class TryFinallyStatement final : public TryStatement {
1205 public:
1206 DECLARE_NODE_TYPE(TryFinallyStatement)
1207
1208 Block* finally_block() const { return finally_block_; }
1209 void set_finally_block(Block* b) { finally_block_ = b; }
1210
1211 protected:
1212 TryFinallyStatement(Zone* zone, Block* try_block, Block* finally_block,
1213 int pos)
1214 : TryStatement(zone, try_block, pos), finally_block_(finally_block) {}
1215
1216 private:
1217 Block* finally_block_;
1218 };
1219
1220
1221 class DebuggerStatement final : public Statement {
1222 public:
1223 DECLARE_NODE_TYPE(DebuggerStatement)
1224
1225 void set_base_id(int id) { base_id_ = id; }
1226 static int num_ids() { return parent_num_ids() + 1; }
1227 BailoutId DebugBreakId() const { return BailoutId(local_id(0)); }
1228
1229 protected:
1230 explicit DebuggerStatement(Zone* zone, int pos)
1231 : Statement(zone, pos), base_id_(BailoutId::None().ToInt()) {}
1232 static int parent_num_ids() { return 0; }
1233
1234 int base_id() const {
1235 DCHECK(!BailoutId(base_id_).IsNone());
1236 return base_id_;
1237 }
1238
1239 private:
1240 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1241
1242 int base_id_;
1243 };
1244
1245
1246 class EmptyStatement final : public Statement {
1247 public:
1248 DECLARE_NODE_TYPE(EmptyStatement)
1249
1250 protected:
1251 explicit EmptyStatement(Zone* zone, int pos): Statement(zone, pos) {}
1252 };
1253
1254
1255 // Delegates to another statement, which may be overwritten.
1256 // This was introduced to implement ES2015 Annex B3.3 for conditionally making
1257 // sloppy-mode block-scoped functions have a var binding, which is changed
1258 // from one statement to another during parsing.
1259 class SloppyBlockFunctionStatement final : public Statement {
1260 public:
1261 DECLARE_NODE_TYPE(SloppyBlockFunctionStatement)
1262
1263 Statement* statement() const { return statement_; }
1264 void set_statement(Statement* statement) { statement_ = statement; }
1265 Scope* scope() const { return scope_; }
1266
1267 private:
1268 SloppyBlockFunctionStatement(Zone* zone, Statement* statement, Scope* scope)
1269 : Statement(zone, RelocInfo::kNoPosition),
1270 statement_(statement),
1271 scope_(scope) {}
1272
1273 Statement* statement_;
1274 Scope* const scope_;
1275 };
1276
1277
1278 class Literal final : public Expression {
1279 public:
1280 DECLARE_NODE_TYPE(Literal)
1281
1282 bool IsPropertyName() const override { return value_->IsPropertyName(); }
1283
1284 Handle<String> AsPropertyName() {
1285 DCHECK(IsPropertyName());
1286 return Handle<String>::cast(value());
1287 }
1288
1289 const AstRawString* AsRawPropertyName() {
1290 DCHECK(IsPropertyName());
1291 return value_->AsString();
1292 }
1293
1294 bool ToBooleanIsTrue() const override { return value()->BooleanValue(); }
1295 bool ToBooleanIsFalse() const override { return !value()->BooleanValue(); }
1296
1297 Handle<Object> value() const { return value_->value(); }
1298 const AstValue* raw_value() const { return value_; }
1299
1300 // Support for using Literal as a HashMap key. NOTE: Currently, this works
1301 // only for string and number literals!
1302 uint32_t Hash();
1303 static bool Match(void* literal1, void* literal2);
1304
1305 static int num_ids() { return parent_num_ids() + 1; }
1306 TypeFeedbackId LiteralFeedbackId() const {
1307 return TypeFeedbackId(local_id(0));
1308 }
1309
1310 protected:
1311 Literal(Zone* zone, const AstValue* value, int position)
1312 : Expression(zone, position), value_(value) {}
1313 static int parent_num_ids() { return Expression::num_ids(); }
1314
1315 private:
1316 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1317
1318 const AstValue* value_;
1319 };
1320
1321
1322 class AstLiteralReindexer;
1323
1324 // Base class for literals that needs space in the corresponding JSFunction.
1325 class MaterializedLiteral : public Expression {
1326 public:
1327 MaterializedLiteral* AsMaterializedLiteral() final { return this; }
1328
1329 int literal_index() { return literal_index_; }
1330
1331 int depth() const {
1332 // only callable after initialization.
1333 DCHECK(depth_ >= 1);
1334 return depth_;
1335 }
1336
1337 bool is_strong() const { return is_strong_; }
1338
1339 protected:
1340 MaterializedLiteral(Zone* zone, int literal_index, bool is_strong, int pos)
1341 : Expression(zone, pos),
1342 literal_index_(literal_index),
1343 is_simple_(false),
1344 is_strong_(is_strong),
1345 depth_(0) {}
1346
1347 // A materialized literal is simple if the values consist of only
1348 // constants and simple object and array literals.
1349 bool is_simple() const { return is_simple_; }
1350 void set_is_simple(bool is_simple) { is_simple_ = is_simple; }
1351 friend class CompileTimeValue;
1352
1353 void set_depth(int depth) {
1354 DCHECK(depth >= 1);
1355 depth_ = depth;
1356 }
1357
1358 // Populate the constant properties/elements fixed array.
1359 void BuildConstants(Isolate* isolate);
1360 friend class ArrayLiteral;
1361 friend class ObjectLiteral;
1362
1363 // If the expression is a literal, return the literal value;
1364 // if the expression is a materialized literal and is simple return a
1365 // compile time value as encoded by CompileTimeValue::GetValue().
1366 // Otherwise, return undefined literal as the placeholder
1367 // in the object literal boilerplate.
1368 Handle<Object> GetBoilerplateValue(Expression* expression, Isolate* isolate);
1369
1370 private:
1371 int literal_index_;
1372 bool is_simple_;
1373 bool is_strong_;
1374 int depth_;
1375
1376 friend class AstLiteralReindexer;
1377 };
1378
1379
1380 // Property is used for passing information
1381 // about an object literal's properties from the parser
1382 // to the code generator.
1383 class ObjectLiteralProperty final : public ZoneObject {
1384 public:
1385 enum Kind {
1386 CONSTANT, // Property with constant value (compile time).
1387 COMPUTED, // Property with computed value (execution time).
1388 MATERIALIZED_LITERAL, // Property value is a materialized literal.
1389 GETTER, SETTER, // Property is an accessor function.
1390 PROTOTYPE // Property is __proto__.
1391 };
1392
1393 Expression* key() { return key_; }
1394 Expression* value() { return value_; }
1395 Kind kind() { return kind_; }
1396
1397 // Type feedback information.
1398 bool IsMonomorphic() { return !receiver_type_.is_null(); }
1399 Handle<Map> GetReceiverType() { return receiver_type_; }
1400
1401 bool IsCompileTimeValue();
1402
1403 void set_emit_store(bool emit_store);
1404 bool emit_store();
1405
1406 bool is_static() const { return is_static_; }
1407 bool is_computed_name() const { return is_computed_name_; }
1408
1409 FeedbackVectorSlot GetSlot(int offset = 0) const {
1410 DCHECK_LT(offset, static_cast<int>(arraysize(slots_)));
1411 return slots_[offset];
1412 }
1413 void SetSlot(FeedbackVectorSlot slot, int offset = 0) {
1414 DCHECK_LT(offset, static_cast<int>(arraysize(slots_)));
1415 slots_[offset] = slot;
1416 }
1417
1418 void set_receiver_type(Handle<Map> map) { receiver_type_ = map; }
1419
1420 protected:
1421 friend class AstNodeFactory;
1422
1423 ObjectLiteralProperty(Expression* key, Expression* value, Kind kind,
1424 bool is_static, bool is_computed_name);
1425 ObjectLiteralProperty(AstValueFactory* ast_value_factory, Expression* key,
1426 Expression* value, bool is_static,
1427 bool is_computed_name);
1428
1429 private:
1430 Expression* key_;
1431 Expression* value_;
1432 FeedbackVectorSlot slots_[2];
1433 Kind kind_;
1434 bool emit_store_;
1435 bool is_static_;
1436 bool is_computed_name_;
1437 Handle<Map> receiver_type_;
1438 };
1439
1440
1441 // An object literal has a boilerplate object that is used
1442 // for minimizing the work when constructing it at runtime.
1443 class ObjectLiteral final : public MaterializedLiteral {
1444 public:
1445 typedef ObjectLiteralProperty Property;
1446
1447 DECLARE_NODE_TYPE(ObjectLiteral)
1448
1449 Handle<FixedArray> constant_properties() const {
1450 return constant_properties_;
1451 }
1452 int properties_count() const { return constant_properties_->length() / 2; }
1453 ZoneList<Property*>* properties() const { return properties_; }
1454 bool fast_elements() const { return fast_elements_; }
1455 bool may_store_doubles() const { return may_store_doubles_; }
1456 bool has_function() const { return has_function_; }
1457 bool has_elements() const { return has_elements_; }
1458
1459 // Decide if a property should be in the object boilerplate.
1460 static bool IsBoilerplateProperty(Property* property);
1461
1462 // Populate the constant properties fixed array.
1463 void BuildConstantProperties(Isolate* isolate);
1464
1465 // Mark all computed expressions that are bound to a key that
1466 // is shadowed by a later occurrence of the same key. For the
1467 // marked expressions, no store code is emitted.
1468 void CalculateEmitStore(Zone* zone);
1469
1470 // Assemble bitfield of flags for the CreateObjectLiteral helper.
1471 int ComputeFlags(bool disable_mementos = false) const {
1472 int flags = fast_elements() ? kFastElements : kNoFlags;
1473 flags |= has_function() ? kHasFunction : kNoFlags;
1474 if (depth() == 1 && !has_elements() && !may_store_doubles()) {
1475 flags |= kShallowProperties;
1476 }
1477 if (disable_mementos) {
1478 flags |= kDisableMementos;
1479 }
1480 if (is_strong()) {
1481 flags |= kIsStrong;
1482 }
1483 return flags;
1484 }
1485
1486 enum Flags {
1487 kNoFlags = 0,
1488 kFastElements = 1,
1489 kHasFunction = 1 << 1,
1490 kShallowProperties = 1 << 2,
1491 kDisableMementos = 1 << 3,
1492 kIsStrong = 1 << 4
1493 };
1494
1495 struct Accessors: public ZoneObject {
1496 Accessors() : getter(NULL), setter(NULL) {}
1497 ObjectLiteralProperty* getter;
1498 ObjectLiteralProperty* setter;
1499 };
1500
1501 BailoutId CreateLiteralId() const { return BailoutId(local_id(0)); }
1502
1503 // Return an AST id for a property that is used in simulate instructions.
1504 BailoutId GetIdForProperty(int i) { return BailoutId(local_id(i + 1)); }
1505
1506 // Unlike other AST nodes, this number of bailout IDs allocated for an
1507 // ObjectLiteral can vary, so num_ids() is not a static method.
1508 int num_ids() const { return parent_num_ids() + 1 + properties()->length(); }
1509
1510 // Object literals need one feedback slot for each non-trivial value, as well
1511 // as some slots for home objects.
1512 void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
1513 FeedbackVectorSlotCache* cache) override;
1514
1515 protected:
1516 ObjectLiteral(Zone* zone, ZoneList<Property*>* properties, int literal_index,
1517 int boilerplate_properties, bool has_function, bool is_strong,
1518 int pos)
1519 : MaterializedLiteral(zone, literal_index, is_strong, pos),
1520 properties_(properties),
1521 boilerplate_properties_(boilerplate_properties),
1522 fast_elements_(false),
1523 has_elements_(false),
1524 may_store_doubles_(false),
1525 has_function_(has_function) {}
1526 static int parent_num_ids() { return MaterializedLiteral::num_ids(); }
1527
1528 private:
1529 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1530 Handle<FixedArray> constant_properties_;
1531 ZoneList<Property*>* properties_;
1532 int boilerplate_properties_;
1533 bool fast_elements_;
1534 bool has_elements_;
1535 bool may_store_doubles_;
1536 bool has_function_;
1537 FeedbackVectorSlot slot_;
1538 };
1539
1540
1541 // A map from property names to getter/setter pairs allocated in the zone.
1542 class AccessorTable : public TemplateHashMap<Literal, ObjectLiteral::Accessors,
1543 ZoneAllocationPolicy> {
1544 public:
1545 explicit AccessorTable(Zone* zone)
1546 : TemplateHashMap<Literal, ObjectLiteral::Accessors,
1547 ZoneAllocationPolicy>(Literal::Match,
1548 ZoneAllocationPolicy(zone)),
1549 zone_(zone) {}
1550
1551 Iterator lookup(Literal* literal) {
1552 Iterator it = find(literal, true, ZoneAllocationPolicy(zone_));
1553 if (it->second == NULL) it->second = new (zone_) ObjectLiteral::Accessors();
1554 return it;
1555 }
1556
1557 private:
1558 Zone* zone_;
1559 };
1560
1561
1562 // Node for capturing a regexp literal.
1563 class RegExpLiteral final : public MaterializedLiteral {
1564 public:
1565 DECLARE_NODE_TYPE(RegExpLiteral)
1566
1567 Handle<String> pattern() const { return pattern_->string(); }
1568 int flags() const { return flags_; }
1569
1570 protected:
1571 RegExpLiteral(Zone* zone, const AstRawString* pattern, int flags,
1572 int literal_index, bool is_strong, int pos)
1573 : MaterializedLiteral(zone, literal_index, is_strong, pos),
1574 pattern_(pattern),
1575 flags_(flags) {
1576 set_depth(1);
1577 }
1578
1579 private:
1580 const AstRawString* const pattern_;
1581 int const flags_;
1582 };
1583
1584
1585 // An array literal has a literals object that is used
1586 // for minimizing the work when constructing it at runtime.
1587 class ArrayLiteral final : public MaterializedLiteral {
1588 public:
1589 DECLARE_NODE_TYPE(ArrayLiteral)
1590
1591 Handle<FixedArray> constant_elements() const { return constant_elements_; }
1592 ElementsKind constant_elements_kind() const {
1593 DCHECK_EQ(2, constant_elements_->length());
1594 return static_cast<ElementsKind>(
1595 Smi::cast(constant_elements_->get(0))->value());
1596 }
1597
1598 ZoneList<Expression*>* values() const { return values_; }
1599
1600 BailoutId CreateLiteralId() const { return BailoutId(local_id(0)); }
1601
1602 // Return an AST id for an element that is used in simulate instructions.
1603 BailoutId GetIdForElement(int i) { return BailoutId(local_id(i + 1)); }
1604
1605 // Unlike other AST nodes, this number of bailout IDs allocated for an
1606 // ArrayLiteral can vary, so num_ids() is not a static method.
1607 int num_ids() const { return parent_num_ids() + 1 + values()->length(); }
1608
1609 // Populate the constant elements fixed array.
1610 void BuildConstantElements(Isolate* isolate);
1611
1612 // Assemble bitfield of flags for the CreateArrayLiteral helper.
1613 int ComputeFlags(bool disable_mementos = false) const {
1614 int flags = depth() == 1 ? kShallowElements : kNoFlags;
1615 if (disable_mementos) {
1616 flags |= kDisableMementos;
1617 }
1618 if (is_strong()) {
1619 flags |= kIsStrong;
1620 }
1621 return flags;
1622 }
1623
1624 enum Flags {
1625 kNoFlags = 0,
1626 kShallowElements = 1,
1627 kDisableMementos = 1 << 1,
1628 kIsStrong = 1 << 2
1629 };
1630
1631 void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
1632 FeedbackVectorSlotCache* cache) override;
1633 FeedbackVectorSlot LiteralFeedbackSlot() const { return literal_slot_; }
1634
1635 protected:
1636 ArrayLiteral(Zone* zone, ZoneList<Expression*>* values,
1637 int first_spread_index, int literal_index, bool is_strong,
1638 int pos)
1639 : MaterializedLiteral(zone, literal_index, is_strong, pos),
1640 values_(values),
1641 first_spread_index_(first_spread_index) {}
1642 static int parent_num_ids() { return MaterializedLiteral::num_ids(); }
1643
1644 private:
1645 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1646
1647 Handle<FixedArray> constant_elements_;
1648 ZoneList<Expression*>* values_;
1649 int first_spread_index_;
1650 FeedbackVectorSlot literal_slot_;
1651 };
1652
1653
1654 class VariableProxy final : public Expression {
1655 public:
1656 DECLARE_NODE_TYPE(VariableProxy)
1657
1658 bool IsValidReferenceExpression() const override {
1659 return !is_this() && !is_new_target();
1660 }
1661
1662 bool IsArguments() const { return is_resolved() && var()->is_arguments(); }
1663
1664 Handle<String> name() const { return raw_name()->string(); }
1665 const AstRawString* raw_name() const {
1666 return is_resolved() ? var_->raw_name() : raw_name_;
1667 }
1668
1669 Variable* var() const {
1670 DCHECK(is_resolved());
1671 return var_;
1672 }
1673 void set_var(Variable* v) {
1674 DCHECK(!is_resolved());
1675 DCHECK_NOT_NULL(v);
1676 var_ = v;
1677 }
1678
1679 bool is_this() const { return IsThisField::decode(bit_field_); }
1680
1681 bool is_assigned() const { return IsAssignedField::decode(bit_field_); }
1682 void set_is_assigned() {
1683 bit_field_ = IsAssignedField::update(bit_field_, true);
1684 }
1685
1686 bool is_resolved() const { return IsResolvedField::decode(bit_field_); }
1687 void set_is_resolved() {
1688 bit_field_ = IsResolvedField::update(bit_field_, true);
1689 }
1690
1691 bool is_new_target() const { return IsNewTargetField::decode(bit_field_); }
1692 void set_is_new_target() {
1693 bit_field_ = IsNewTargetField::update(bit_field_, true);
1694 }
1695
1696 int end_position() const { return end_position_; }
1697
1698 // Bind this proxy to the variable var.
1699 void BindTo(Variable* var);
1700
1701 bool UsesVariableFeedbackSlot() const {
1702 return var()->IsUnallocated() || var()->IsLookupSlot();
1703 }
1704
1705 void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
1706 FeedbackVectorSlotCache* cache) override;
1707
1708 FeedbackVectorSlot VariableFeedbackSlot() { return variable_feedback_slot_; }
1709
1710 static int num_ids() { return parent_num_ids() + 1; }
1711 BailoutId BeforeId() const { return BailoutId(local_id(0)); }
1712
1713 protected:
1714 VariableProxy(Zone* zone, Variable* var, int start_position,
1715 int end_position);
1716
1717 VariableProxy(Zone* zone, const AstRawString* name,
1718 Variable::Kind variable_kind, int start_position,
1719 int end_position);
1720 static int parent_num_ids() { return Expression::num_ids(); }
1721 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1722
1723 class IsThisField : public BitField8<bool, 0, 1> {};
1724 class IsAssignedField : public BitField8<bool, 1, 1> {};
1725 class IsResolvedField : public BitField8<bool, 2, 1> {};
1726 class IsNewTargetField : public BitField8<bool, 3, 1> {};
1727
1728 // Start with 16-bit (or smaller) field, which should get packed together
1729 // with Expression's trailing 16-bit field.
1730 uint8_t bit_field_;
1731 FeedbackVectorSlot variable_feedback_slot_;
1732 union {
1733 const AstRawString* raw_name_; // if !is_resolved_
1734 Variable* var_; // if is_resolved_
1735 };
1736 // Position is stored in the AstNode superclass, but VariableProxy needs to
1737 // know its end position too (for error messages). It cannot be inferred from
1738 // the variable name length because it can contain escapes.
1739 int end_position_;
1740 };
1741
1742
1743 // Left-hand side can only be a property, a global or a (parameter or local)
1744 // slot.
1745 enum LhsKind {
1746 VARIABLE,
1747 NAMED_PROPERTY,
1748 KEYED_PROPERTY,
1749 NAMED_SUPER_PROPERTY,
1750 KEYED_SUPER_PROPERTY
1751 };
1752
1753
1754 class Property final : public Expression {
1755 public:
1756 DECLARE_NODE_TYPE(Property)
1757
1758 bool IsValidReferenceExpression() const override { return true; }
1759
1760 Expression* obj() const { return obj_; }
1761 Expression* key() const { return key_; }
1762
1763 static int num_ids() { return parent_num_ids() + 1; }
1764 BailoutId LoadId() const { return BailoutId(local_id(0)); }
1765
1766 bool IsStringAccess() const {
1767 return IsStringAccessField::decode(bit_field_);
1768 }
1769
1770 // Type feedback information.
1771 bool IsMonomorphic() override { return receiver_types_.length() == 1; }
1772 SmallMapList* GetReceiverTypes() override { return &receiver_types_; }
1773 KeyedAccessStoreMode GetStoreMode() const override { return STANDARD_STORE; }
1774 IcCheckType GetKeyType() const override {
1775 return KeyTypeField::decode(bit_field_);
1776 }
1777 bool IsUninitialized() const {
1778 return !is_for_call() && HasNoTypeInformation();
1779 }
1780 bool HasNoTypeInformation() const {
1781 return GetInlineCacheState() == UNINITIALIZED;
1782 }
1783 InlineCacheState GetInlineCacheState() const {
1784 return InlineCacheStateField::decode(bit_field_);
1785 }
1786 void set_is_string_access(bool b) {
1787 bit_field_ = IsStringAccessField::update(bit_field_, b);
1788 }
1789 void set_key_type(IcCheckType key_type) {
1790 bit_field_ = KeyTypeField::update(bit_field_, key_type);
1791 }
1792 void set_inline_cache_state(InlineCacheState state) {
1793 bit_field_ = InlineCacheStateField::update(bit_field_, state);
1794 }
1795 void mark_for_call() {
1796 bit_field_ = IsForCallField::update(bit_field_, true);
1797 }
1798 bool is_for_call() const { return IsForCallField::decode(bit_field_); }
1799
1800 bool IsSuperAccess() { return obj()->IsSuperPropertyReference(); }
1801
1802 void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
1803 FeedbackVectorSlotCache* cache) override {
1804 FeedbackVectorSlotKind kind = key()->IsPropertyName()
1805 ? FeedbackVectorSlotKind::LOAD_IC
1806 : FeedbackVectorSlotKind::KEYED_LOAD_IC;
1807 property_feedback_slot_ = spec->AddSlot(kind);
1808 }
1809
1810 FeedbackVectorSlot PropertyFeedbackSlot() const {
1811 return property_feedback_slot_;
1812 }
1813
1814 static LhsKind GetAssignType(Property* property) {
1815 if (property == NULL) return VARIABLE;
1816 bool super_access = property->IsSuperAccess();
1817 return (property->key()->IsPropertyName())
1818 ? (super_access ? NAMED_SUPER_PROPERTY : NAMED_PROPERTY)
1819 : (super_access ? KEYED_SUPER_PROPERTY : KEYED_PROPERTY);
1820 }
1821
1822 protected:
1823 Property(Zone* zone, Expression* obj, Expression* key, int pos)
1824 : Expression(zone, pos),
1825 bit_field_(IsForCallField::encode(false) |
1826 IsStringAccessField::encode(false) |
1827 InlineCacheStateField::encode(UNINITIALIZED)),
1828 obj_(obj),
1829 key_(key) {}
1830 static int parent_num_ids() { return Expression::num_ids(); }
1831
1832 private:
1833 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1834
1835 class IsForCallField : public BitField8<bool, 0, 1> {};
1836 class IsStringAccessField : public BitField8<bool, 1, 1> {};
1837 class KeyTypeField : public BitField8<IcCheckType, 2, 1> {};
1838 class InlineCacheStateField : public BitField8<InlineCacheState, 3, 4> {};
1839 uint8_t bit_field_;
1840 FeedbackVectorSlot property_feedback_slot_;
1841 Expression* obj_;
1842 Expression* key_;
1843 SmallMapList receiver_types_;
1844 };
1845
1846
1847 class Call final : public Expression {
1848 public:
1849 DECLARE_NODE_TYPE(Call)
1850
1851 Expression* expression() const { return expression_; }
1852 ZoneList<Expression*>* arguments() const { return arguments_; }
1853
1854 // Type feedback information.
1855 void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
1856 FeedbackVectorSlotCache* cache) override;
1857
1858 FeedbackVectorSlot CallFeedbackSlot() const { return stub_slot_; }
1859
1860 FeedbackVectorSlot CallFeedbackICSlot() const { return ic_slot_; }
1861
1862 SmallMapList* GetReceiverTypes() override {
1863 if (expression()->IsProperty()) {
1864 return expression()->AsProperty()->GetReceiverTypes();
1865 }
1866 return NULL;
1867 }
1868
1869 bool IsMonomorphic() override {
1870 if (expression()->IsProperty()) {
1871 return expression()->AsProperty()->IsMonomorphic();
1872 }
1873 return !target_.is_null();
1874 }
1875
1876 bool global_call() const {
1877 VariableProxy* proxy = expression_->AsVariableProxy();
1878 return proxy != NULL && proxy->var()->IsUnallocatedOrGlobalSlot();
1879 }
1880
1881 bool known_global_function() const {
1882 return global_call() && !target_.is_null();
1883 }
1884
1885 Handle<JSFunction> target() { return target_; }
1886
1887 Handle<AllocationSite> allocation_site() { return allocation_site_; }
1888
1889 void SetKnownGlobalTarget(Handle<JSFunction> target) {
1890 target_ = target;
1891 set_is_uninitialized(false);
1892 }
1893 void set_target(Handle<JSFunction> target) { target_ = target; }
1894 void set_allocation_site(Handle<AllocationSite> site) {
1895 allocation_site_ = site;
1896 }
1897
1898 static int num_ids() { return parent_num_ids() + 4; }
1899 BailoutId ReturnId() const { return BailoutId(local_id(0)); }
1900 BailoutId EvalId() const { return BailoutId(local_id(1)); }
1901 BailoutId LookupId() const { return BailoutId(local_id(2)); }
1902 BailoutId CallId() const { return BailoutId(local_id(3)); }
1903
1904 bool is_uninitialized() const {
1905 return IsUninitializedField::decode(bit_field_);
1906 }
1907 void set_is_uninitialized(bool b) {
1908 bit_field_ = IsUninitializedField::update(bit_field_, b);
1909 }
1910
1911 enum CallType {
1912 POSSIBLY_EVAL_CALL,
1913 GLOBAL_CALL,
1914 LOOKUP_SLOT_CALL,
1915 NAMED_PROPERTY_CALL,
1916 KEYED_PROPERTY_CALL,
1917 NAMED_SUPER_PROPERTY_CALL,
1918 KEYED_SUPER_PROPERTY_CALL,
1919 SUPER_CALL,
1920 OTHER_CALL
1921 };
1922
1923 // Helpers to determine how to handle the call.
1924 CallType GetCallType(Isolate* isolate) const;
1925 bool IsUsingCallFeedbackSlot(Isolate* isolate) const;
1926 bool IsUsingCallFeedbackICSlot(Isolate* isolate) const;
1927
1928 #ifdef DEBUG
1929 // Used to assert that the FullCodeGenerator records the return site.
1930 bool return_is_recorded_;
1931 #endif
1932
1933 protected:
1934 Call(Zone* zone, Expression* expression, ZoneList<Expression*>* arguments,
1935 int pos)
1936 : Expression(zone, pos),
1937 expression_(expression),
1938 arguments_(arguments),
1939 bit_field_(IsUninitializedField::encode(false)) {
1940 if (expression->IsProperty()) {
1941 expression->AsProperty()->mark_for_call();
1942 }
1943 }
1944 static int parent_num_ids() { return Expression::num_ids(); }
1945
1946 private:
1947 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1948
1949 FeedbackVectorSlot ic_slot_;
1950 FeedbackVectorSlot stub_slot_;
1951 Expression* expression_;
1952 ZoneList<Expression*>* arguments_;
1953 Handle<JSFunction> target_;
1954 Handle<AllocationSite> allocation_site_;
1955 class IsUninitializedField : public BitField8<bool, 0, 1> {};
1956 uint8_t bit_field_;
1957 };
1958
1959
1960 class CallNew final : public Expression {
1961 public:
1962 DECLARE_NODE_TYPE(CallNew)
1963
1964 Expression* expression() const { return expression_; }
1965 ZoneList<Expression*>* arguments() const { return arguments_; }
1966
1967 // Type feedback information.
1968 void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
1969 FeedbackVectorSlotCache* cache) override {
1970 callnew_feedback_slot_ = spec->AddGeneralSlot();
1971 }
1972
1973 FeedbackVectorSlot CallNewFeedbackSlot() {
1974 DCHECK(!callnew_feedback_slot_.IsInvalid());
1975 return callnew_feedback_slot_;
1976 }
1977
1978 bool IsMonomorphic() override { return is_monomorphic_; }
1979 Handle<JSFunction> target() const { return target_; }
1980 Handle<AllocationSite> allocation_site() const {
1981 return allocation_site_;
1982 }
1983
1984 static int num_ids() { return parent_num_ids() + 1; }
1985 static int feedback_slots() { return 1; }
1986 BailoutId ReturnId() const { return BailoutId(local_id(0)); }
1987
1988 void set_allocation_site(Handle<AllocationSite> site) {
1989 allocation_site_ = site;
1990 }
1991 void set_is_monomorphic(bool monomorphic) { is_monomorphic_ = monomorphic; }
1992 void set_target(Handle<JSFunction> target) { target_ = target; }
1993 void SetKnownGlobalTarget(Handle<JSFunction> target) {
1994 target_ = target;
1995 is_monomorphic_ = true;
1996 }
1997
1998 protected:
1999 CallNew(Zone* zone, Expression* expression, ZoneList<Expression*>* arguments,
2000 int pos)
2001 : Expression(zone, pos),
2002 expression_(expression),
2003 arguments_(arguments),
2004 is_monomorphic_(false) {}
2005
2006 static int parent_num_ids() { return Expression::num_ids(); }
2007
2008 private:
2009 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2010
2011 Expression* expression_;
2012 ZoneList<Expression*>* arguments_;
2013 bool is_monomorphic_;
2014 Handle<JSFunction> target_;
2015 Handle<AllocationSite> allocation_site_;
2016 FeedbackVectorSlot callnew_feedback_slot_;
2017 };
2018
2019
2020 // The CallRuntime class does not represent any official JavaScript
2021 // language construct. Instead it is used to call a C or JS function
2022 // with a set of arguments. This is used from the builtins that are
2023 // implemented in JavaScript (see "v8natives.js").
2024 class CallRuntime final : public Expression {
2025 public:
2026 DECLARE_NODE_TYPE(CallRuntime)
2027
2028 ZoneList<Expression*>* arguments() const { return arguments_; }
2029 bool is_jsruntime() const { return function_ == NULL; }
2030
2031 int context_index() const {
2032 DCHECK(is_jsruntime());
2033 return context_index_;
2034 }
2035 const Runtime::Function* function() const {
2036 DCHECK(!is_jsruntime());
2037 return function_;
2038 }
2039
2040 static int num_ids() { return parent_num_ids() + 1; }
2041 BailoutId CallId() { return BailoutId(local_id(0)); }
2042
2043 const char* debug_name() {
2044 return is_jsruntime() ? "(context function)" : function_->name;
2045 }
2046
2047 protected:
2048 CallRuntime(Zone* zone, const Runtime::Function* function,
2049 ZoneList<Expression*>* arguments, int pos)
2050 : Expression(zone, pos), function_(function), arguments_(arguments) {}
2051
2052 CallRuntime(Zone* zone, int context_index, ZoneList<Expression*>* arguments,
2053 int pos)
2054 : Expression(zone, pos),
2055 function_(NULL),
2056 context_index_(context_index),
2057 arguments_(arguments) {}
2058
2059 static int parent_num_ids() { return Expression::num_ids(); }
2060
2061 private:
2062 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2063
2064 const Runtime::Function* function_;
2065 int context_index_;
2066 ZoneList<Expression*>* arguments_;
2067 };
2068
2069
2070 class UnaryOperation final : public Expression {
2071 public:
2072 DECLARE_NODE_TYPE(UnaryOperation)
2073
2074 Token::Value op() const { return op_; }
2075 Expression* expression() const { return expression_; }
2076
2077 // For unary not (Token::NOT), the AST ids where true and false will
2078 // actually be materialized, respectively.
2079 static int num_ids() { return parent_num_ids() + 2; }
2080 BailoutId MaterializeTrueId() const { return BailoutId(local_id(0)); }
2081 BailoutId MaterializeFalseId() const { return BailoutId(local_id(1)); }
2082
2083 void RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) override;
2084
2085 protected:
2086 UnaryOperation(Zone* zone, Token::Value op, Expression* expression, int pos)
2087 : Expression(zone, pos), op_(op), expression_(expression) {
2088 DCHECK(Token::IsUnaryOp(op));
2089 }
2090 static int parent_num_ids() { return Expression::num_ids(); }
2091
2092 private:
2093 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2094
2095 Token::Value op_;
2096 Expression* expression_;
2097 };
2098
2099
2100 class BinaryOperation final : public Expression {
2101 public:
2102 DECLARE_NODE_TYPE(BinaryOperation)
2103
2104 Token::Value op() const { return static_cast<Token::Value>(op_); }
2105 Expression* left() const { return left_; }
2106 Expression* right() const { return right_; }
2107 Handle<AllocationSite> allocation_site() const { return allocation_site_; }
2108 void set_allocation_site(Handle<AllocationSite> allocation_site) {
2109 allocation_site_ = allocation_site;
2110 }
2111
2112 // The short-circuit logical operations need an AST ID for their
2113 // right-hand subexpression.
2114 static int num_ids() { return parent_num_ids() + 2; }
2115 BailoutId RightId() const { return BailoutId(local_id(0)); }
2116
2117 TypeFeedbackId BinaryOperationFeedbackId() const {
2118 return TypeFeedbackId(local_id(1));
2119 }
2120 Maybe<int> fixed_right_arg() const {
2121 return has_fixed_right_arg_ ? Just(fixed_right_arg_value_) : Nothing<int>();
2122 }
2123 void set_fixed_right_arg(Maybe<int> arg) {
2124 has_fixed_right_arg_ = arg.IsJust();
2125 if (arg.IsJust()) fixed_right_arg_value_ = arg.FromJust();
2126 }
2127
2128 void RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) override;
2129
2130 protected:
2131 BinaryOperation(Zone* zone, Token::Value op, Expression* left,
2132 Expression* right, int pos)
2133 : Expression(zone, pos),
2134 op_(static_cast<byte>(op)),
2135 has_fixed_right_arg_(false),
2136 fixed_right_arg_value_(0),
2137 left_(left),
2138 right_(right) {
2139 DCHECK(Token::IsBinaryOp(op));
2140 }
2141 static int parent_num_ids() { return Expression::num_ids(); }
2142
2143 private:
2144 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2145
2146 const byte op_; // actually Token::Value
2147 // TODO(rossberg): the fixed arg should probably be represented as a Constant
2148 // type for the RHS. Currenty it's actually a Maybe<int>
2149 bool has_fixed_right_arg_;
2150 int fixed_right_arg_value_;
2151 Expression* left_;
2152 Expression* right_;
2153 Handle<AllocationSite> allocation_site_;
2154 };
2155
2156
2157 class CountOperation final : public Expression {
2158 public:
2159 DECLARE_NODE_TYPE(CountOperation)
2160
2161 bool is_prefix() const { return IsPrefixField::decode(bit_field_); }
2162 bool is_postfix() const { return !is_prefix(); }
2163
2164 Token::Value op() const { return TokenField::decode(bit_field_); }
2165 Token::Value binary_op() {
2166 return (op() == Token::INC) ? Token::ADD : Token::SUB;
2167 }
2168
2169 Expression* expression() const { return expression_; }
2170
2171 bool IsMonomorphic() override { return receiver_types_.length() == 1; }
2172 SmallMapList* GetReceiverTypes() override { return &receiver_types_; }
2173 IcCheckType GetKeyType() const override {
2174 return KeyTypeField::decode(bit_field_);
2175 }
2176 KeyedAccessStoreMode GetStoreMode() const override {
2177 return StoreModeField::decode(bit_field_);
2178 }
2179 Type* type() const { return type_; }
2180 void set_key_type(IcCheckType type) {
2181 bit_field_ = KeyTypeField::update(bit_field_, type);
2182 }
2183 void set_store_mode(KeyedAccessStoreMode mode) {
2184 bit_field_ = StoreModeField::update(bit_field_, mode);
2185 }
2186 void set_type(Type* type) { type_ = type; }
2187
2188 static int num_ids() { return parent_num_ids() + 4; }
2189 BailoutId AssignmentId() const { return BailoutId(local_id(0)); }
2190 BailoutId ToNumberId() const { return BailoutId(local_id(1)); }
2191 TypeFeedbackId CountBinOpFeedbackId() const {
2192 return TypeFeedbackId(local_id(2));
2193 }
2194 TypeFeedbackId CountStoreFeedbackId() const {
2195 return TypeFeedbackId(local_id(3));
2196 }
2197
2198 void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
2199 FeedbackVectorSlotCache* cache) override;
2200 FeedbackVectorSlot CountSlot() const { return slot_; }
2201
2202 protected:
2203 CountOperation(Zone* zone, Token::Value op, bool is_prefix, Expression* expr,
2204 int pos)
2205 : Expression(zone, pos),
2206 bit_field_(
2207 IsPrefixField::encode(is_prefix) | KeyTypeField::encode(ELEMENT) |
2208 StoreModeField::encode(STANDARD_STORE) | TokenField::encode(op)),
2209 type_(NULL),
2210 expression_(expr) {}
2211 static int parent_num_ids() { return Expression::num_ids(); }
2212
2213 private:
2214 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2215
2216 class IsPrefixField : public BitField16<bool, 0, 1> {};
2217 class KeyTypeField : public BitField16<IcCheckType, 1, 1> {};
2218 class StoreModeField : public BitField16<KeyedAccessStoreMode, 2, 3> {};
2219 class TokenField : public BitField16<Token::Value, 5, 8> {};
2220
2221 // Starts with 16-bit field, which should get packed together with
2222 // Expression's trailing 16-bit field.
2223 uint16_t bit_field_;
2224 Type* type_;
2225 Expression* expression_;
2226 SmallMapList receiver_types_;
2227 FeedbackVectorSlot slot_;
2228 };
2229
2230
2231 class CompareOperation final : public Expression {
2232 public:
2233 DECLARE_NODE_TYPE(CompareOperation)
2234
2235 Token::Value op() const { return op_; }
2236 Expression* left() const { return left_; }
2237 Expression* right() const { return right_; }
2238
2239 // Type feedback information.
2240 static int num_ids() { return parent_num_ids() + 1; }
2241 TypeFeedbackId CompareOperationFeedbackId() const {
2242 return TypeFeedbackId(local_id(0));
2243 }
2244 Type* combined_type() const { return combined_type_; }
2245 void set_combined_type(Type* type) { combined_type_ = type; }
2246
2247 // Match special cases.
2248 bool IsLiteralCompareTypeof(Expression** expr, Handle<String>* check);
2249 bool IsLiteralCompareUndefined(Expression** expr, Isolate* isolate);
2250 bool IsLiteralCompareNull(Expression** expr);
2251
2252 protected:
2253 CompareOperation(Zone* zone, Token::Value op, Expression* left,
2254 Expression* right, int pos)
2255 : Expression(zone, pos),
2256 op_(op),
2257 left_(left),
2258 right_(right),
2259 combined_type_(Type::None(zone)) {
2260 DCHECK(Token::IsCompareOp(op));
2261 }
2262 static int parent_num_ids() { return Expression::num_ids(); }
2263
2264 private:
2265 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2266
2267 Token::Value op_;
2268 Expression* left_;
2269 Expression* right_;
2270
2271 Type* combined_type_;
2272 };
2273
2274
2275 class Spread final : public Expression {
2276 public:
2277 DECLARE_NODE_TYPE(Spread)
2278
2279 Expression* expression() const { return expression_; }
2280
2281 static int num_ids() { return parent_num_ids(); }
2282
2283 protected:
2284 Spread(Zone* zone, Expression* expression, int pos)
2285 : Expression(zone, pos), expression_(expression) {}
2286 static int parent_num_ids() { return Expression::num_ids(); }
2287
2288 private:
2289 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2290
2291 Expression* expression_;
2292 };
2293
2294
2295 class Conditional final : public Expression {
2296 public:
2297 DECLARE_NODE_TYPE(Conditional)
2298
2299 Expression* condition() const { return condition_; }
2300 Expression* then_expression() const { return then_expression_; }
2301 Expression* else_expression() const { return else_expression_; }
2302
2303 static int num_ids() { return parent_num_ids() + 2; }
2304 BailoutId ThenId() const { return BailoutId(local_id(0)); }
2305 BailoutId ElseId() const { return BailoutId(local_id(1)); }
2306
2307 protected:
2308 Conditional(Zone* zone, Expression* condition, Expression* then_expression,
2309 Expression* else_expression, int position)
2310 : Expression(zone, position),
2311 condition_(condition),
2312 then_expression_(then_expression),
2313 else_expression_(else_expression) {}
2314 static int parent_num_ids() { return Expression::num_ids(); }
2315
2316 private:
2317 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2318
2319 Expression* condition_;
2320 Expression* then_expression_;
2321 Expression* else_expression_;
2322 };
2323
2324
2325 class Assignment final : public Expression {
2326 public:
2327 DECLARE_NODE_TYPE(Assignment)
2328
2329 Assignment* AsSimpleAssignment() { return !is_compound() ? this : NULL; }
2330
2331 Token::Value binary_op() const;
2332
2333 Token::Value op() const { return TokenField::decode(bit_field_); }
2334 Expression* target() const { return target_; }
2335 Expression* value() const { return value_; }
2336 BinaryOperation* binary_operation() const { return binary_operation_; }
2337
2338 // This check relies on the definition order of token in token.h.
2339 bool is_compound() const { return op() > Token::ASSIGN; }
2340
2341 static int num_ids() { return parent_num_ids() + 2; }
2342 BailoutId AssignmentId() const { return BailoutId(local_id(0)); }
2343
2344 // Type feedback information.
2345 TypeFeedbackId AssignmentFeedbackId() { return TypeFeedbackId(local_id(1)); }
2346 bool IsMonomorphic() override { return receiver_types_.length() == 1; }
2347 bool IsUninitialized() const {
2348 return IsUninitializedField::decode(bit_field_);
2349 }
2350 bool HasNoTypeInformation() {
2351 return IsUninitializedField::decode(bit_field_);
2352 }
2353 SmallMapList* GetReceiverTypes() override { return &receiver_types_; }
2354 IcCheckType GetKeyType() const override {
2355 return KeyTypeField::decode(bit_field_);
2356 }
2357 KeyedAccessStoreMode GetStoreMode() const override {
2358 return StoreModeField::decode(bit_field_);
2359 }
2360 void set_is_uninitialized(bool b) {
2361 bit_field_ = IsUninitializedField::update(bit_field_, b);
2362 }
2363 void set_key_type(IcCheckType key_type) {
2364 bit_field_ = KeyTypeField::update(bit_field_, key_type);
2365 }
2366 void set_store_mode(KeyedAccessStoreMode mode) {
2367 bit_field_ = StoreModeField::update(bit_field_, mode);
2368 }
2369
2370 void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
2371 FeedbackVectorSlotCache* cache) override;
2372 FeedbackVectorSlot AssignmentSlot() const { return slot_; }
2373
2374 protected:
2375 Assignment(Zone* zone, Token::Value op, Expression* target, Expression* value,
2376 int pos);
2377 static int parent_num_ids() { return Expression::num_ids(); }
2378
2379 private:
2380 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2381
2382 class IsUninitializedField : public BitField16<bool, 0, 1> {};
2383 class KeyTypeField : public BitField16<IcCheckType, 1, 1> {};
2384 class StoreModeField : public BitField16<KeyedAccessStoreMode, 2, 3> {};
2385 class TokenField : public BitField16<Token::Value, 5, 8> {};
2386
2387 // Starts with 16-bit field, which should get packed together with
2388 // Expression's trailing 16-bit field.
2389 uint16_t bit_field_;
2390 Expression* target_;
2391 Expression* value_;
2392 BinaryOperation* binary_operation_;
2393 SmallMapList receiver_types_;
2394 FeedbackVectorSlot slot_;
2395 };
2396
2397
2398 class Yield final : public Expression {
2399 public:
2400 DECLARE_NODE_TYPE(Yield)
2401
2402 enum Kind {
2403 kInitial, // The initial yield that returns the unboxed generator object.
2404 kSuspend, // A normal yield: { value: EXPRESSION, done: false }
2405 kDelegating, // A yield*.
2406 kFinal // A return: { value: EXPRESSION, done: true }
2407 };
2408
2409 Expression* generator_object() const { return generator_object_; }
2410 Expression* expression() const { return expression_; }
2411 Kind yield_kind() const { return yield_kind_; }
2412
2413 // Type feedback information.
2414 bool HasFeedbackSlots() const { return yield_kind() == kDelegating; }
2415 void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
2416 FeedbackVectorSlotCache* cache) override {
2417 if (HasFeedbackSlots()) {
2418 yield_first_feedback_slot_ = spec->AddKeyedLoadICSlot();
2419 keyed_load_feedback_slot_ = spec->AddLoadICSlot();
2420 done_feedback_slot_ = spec->AddLoadICSlot();
2421 }
2422 }
2423
2424 FeedbackVectorSlot KeyedLoadFeedbackSlot() {
2425 DCHECK(!HasFeedbackSlots() || !yield_first_feedback_slot_.IsInvalid());
2426 return yield_first_feedback_slot_;
2427 }
2428
2429 FeedbackVectorSlot DoneFeedbackSlot() { return keyed_load_feedback_slot_; }
2430
2431 FeedbackVectorSlot ValueFeedbackSlot() { return done_feedback_slot_; }
2432
2433 protected:
2434 Yield(Zone* zone, Expression* generator_object, Expression* expression,
2435 Kind yield_kind, int pos)
2436 : Expression(zone, pos),
2437 generator_object_(generator_object),
2438 expression_(expression),
2439 yield_kind_(yield_kind) {}
2440
2441 private:
2442 Expression* generator_object_;
2443 Expression* expression_;
2444 Kind yield_kind_;
2445 FeedbackVectorSlot yield_first_feedback_slot_;
2446 FeedbackVectorSlot keyed_load_feedback_slot_;
2447 FeedbackVectorSlot done_feedback_slot_;
2448 };
2449
2450
2451 class Throw final : public Expression {
2452 public:
2453 DECLARE_NODE_TYPE(Throw)
2454
2455 Expression* exception() const { return exception_; }
2456
2457 protected:
2458 Throw(Zone* zone, Expression* exception, int pos)
2459 : Expression(zone, pos), exception_(exception) {}
2460
2461 private:
2462 Expression* exception_;
2463 };
2464
2465
2466 class FunctionLiteral final : public Expression {
2467 public:
2468 enum FunctionType {
2469 ANONYMOUS_EXPRESSION,
2470 NAMED_EXPRESSION,
2471 DECLARATION
2472 };
2473
2474 enum ParameterFlag {
2475 kNoDuplicateParameters = 0,
2476 kHasDuplicateParameters = 1
2477 };
2478
2479 enum IsFunctionFlag {
2480 kGlobalOrEval,
2481 kIsFunction
2482 };
2483
2484 enum EagerCompileHint { kShouldEagerCompile, kShouldLazyCompile };
2485
2486 enum ShouldBeUsedOnceHint { kShouldBeUsedOnce, kDontKnowIfShouldBeUsedOnce };
2487
2488 enum ArityRestriction {
2489 NORMAL_ARITY,
2490 GETTER_ARITY,
2491 SETTER_ARITY
2492 };
2493
2494 DECLARE_NODE_TYPE(FunctionLiteral)
2495
2496 Handle<String> name() const { return raw_name_->string(); }
2497 const AstRawString* raw_name() const { return raw_name_; }
2498 Scope* scope() const { return scope_; }
2499 ZoneList<Statement*>* body() const { return body_; }
2500 void set_function_token_position(int pos) { function_token_position_ = pos; }
2501 int function_token_position() const { return function_token_position_; }
2502 int start_position() const;
2503 int end_position() const;
2504 int SourceSize() const { return end_position() - start_position(); }
2505 bool is_expression() const { return IsExpression::decode(bitfield_); }
2506 bool is_anonymous() const { return IsAnonymous::decode(bitfield_); }
2507 LanguageMode language_mode() const;
2508
2509 static bool NeedsHomeObject(Expression* expr);
2510
2511 int materialized_literal_count() { return materialized_literal_count_; }
2512 int expected_property_count() { return expected_property_count_; }
2513 int parameter_count() { return parameter_count_; }
2514
2515 bool AllowsLazyCompilation();
2516 bool AllowsLazyCompilationWithoutContext();
2517
2518 Handle<String> debug_name() const {
2519 if (raw_name_ != NULL && !raw_name_->IsEmpty()) {
2520 return raw_name_->string();
2521 }
2522 return inferred_name();
2523 }
2524
2525 Handle<String> inferred_name() const {
2526 if (!inferred_name_.is_null()) {
2527 DCHECK(raw_inferred_name_ == NULL);
2528 return inferred_name_;
2529 }
2530 if (raw_inferred_name_ != NULL) {
2531 return raw_inferred_name_->string();
2532 }
2533 UNREACHABLE();
2534 return Handle<String>();
2535 }
2536
2537 // Only one of {set_inferred_name, set_raw_inferred_name} should be called.
2538 void set_inferred_name(Handle<String> inferred_name) {
2539 DCHECK(!inferred_name.is_null());
2540 inferred_name_ = inferred_name;
2541 DCHECK(raw_inferred_name_== NULL || raw_inferred_name_->IsEmpty());
2542 raw_inferred_name_ = NULL;
2543 }
2544
2545 void set_raw_inferred_name(const AstString* raw_inferred_name) {
2546 DCHECK(raw_inferred_name != NULL);
2547 raw_inferred_name_ = raw_inferred_name;
2548 DCHECK(inferred_name_.is_null());
2549 inferred_name_ = Handle<String>();
2550 }
2551
2552 bool pretenure() { return Pretenure::decode(bitfield_); }
2553 void set_pretenure() { bitfield_ |= Pretenure::encode(true); }
2554
2555 bool has_duplicate_parameters() {
2556 return HasDuplicateParameters::decode(bitfield_);
2557 }
2558
2559 bool is_function() { return IsFunction::decode(bitfield_) == kIsFunction; }
2560
2561 // This is used as a heuristic on when to eagerly compile a function
2562 // literal. We consider the following constructs as hints that the
2563 // function will be called immediately:
2564 // - (function() { ... })();
2565 // - var x = function() { ... }();
2566 bool should_eager_compile() const {
2567 return EagerCompileHintBit::decode(bitfield_) == kShouldEagerCompile;
2568 }
2569 void set_should_eager_compile() {
2570 bitfield_ = EagerCompileHintBit::update(bitfield_, kShouldEagerCompile);
2571 }
2572
2573 // A hint that we expect this function to be called (exactly) once,
2574 // i.e. we suspect it's an initialization function.
2575 bool should_be_used_once_hint() const {
2576 return ShouldBeUsedOnceHintBit::decode(bitfield_) == kShouldBeUsedOnce;
2577 }
2578 void set_should_be_used_once_hint() {
2579 bitfield_ = ShouldBeUsedOnceHintBit::update(bitfield_, kShouldBeUsedOnce);
2580 }
2581
2582 FunctionKind kind() const { return FunctionKindBits::decode(bitfield_); }
2583
2584 int ast_node_count() { return ast_properties_.node_count(); }
2585 AstProperties::Flags flags() const { return ast_properties_.flags(); }
2586 void set_ast_properties(AstProperties* ast_properties) {
2587 ast_properties_ = *ast_properties;
2588 }
2589 const FeedbackVectorSpec* feedback_vector_spec() const {
2590 return ast_properties_.get_spec();
2591 }
2592 bool dont_optimize() { return dont_optimize_reason_ != kNoReason; }
2593 BailoutReason dont_optimize_reason() { return dont_optimize_reason_; }
2594 void set_dont_optimize_reason(BailoutReason reason) {
2595 dont_optimize_reason_ = reason;
2596 }
2597
2598 protected:
2599 FunctionLiteral(Zone* zone, const AstRawString* name,
2600 AstValueFactory* ast_value_factory, Scope* scope,
2601 ZoneList<Statement*>* body, int materialized_literal_count,
2602 int expected_property_count, int parameter_count,
2603 FunctionType function_type,
2604 ParameterFlag has_duplicate_parameters,
2605 IsFunctionFlag is_function,
2606 EagerCompileHint eager_compile_hint, FunctionKind kind,
2607 int position)
2608 : Expression(zone, position),
2609 raw_name_(name),
2610 scope_(scope),
2611 body_(body),
2612 raw_inferred_name_(ast_value_factory->empty_string()),
2613 ast_properties_(zone),
2614 dont_optimize_reason_(kNoReason),
2615 materialized_literal_count_(materialized_literal_count),
2616 expected_property_count_(expected_property_count),
2617 parameter_count_(parameter_count),
2618 function_token_position_(RelocInfo::kNoPosition) {
2619 bitfield_ = IsExpression::encode(function_type != DECLARATION) |
2620 IsAnonymous::encode(function_type == ANONYMOUS_EXPRESSION) |
2621 Pretenure::encode(false) |
2622 HasDuplicateParameters::encode(has_duplicate_parameters) |
2623 IsFunction::encode(is_function) |
2624 EagerCompileHintBit::encode(eager_compile_hint) |
2625 FunctionKindBits::encode(kind) |
2626 ShouldBeUsedOnceHintBit::encode(kDontKnowIfShouldBeUsedOnce);
2627 DCHECK(IsValidFunctionKind(kind));
2628 }
2629
2630 private:
2631 const AstRawString* raw_name_;
2632 Handle<String> name_;
2633 Scope* scope_;
2634 ZoneList<Statement*>* body_;
2635 const AstString* raw_inferred_name_;
2636 Handle<String> inferred_name_;
2637 AstProperties ast_properties_;
2638 BailoutReason dont_optimize_reason_;
2639
2640 int materialized_literal_count_;
2641 int expected_property_count_;
2642 int parameter_count_;
2643 int function_token_position_;
2644
2645 unsigned bitfield_;
2646 class IsExpression : public BitField<bool, 0, 1> {};
2647 class IsAnonymous : public BitField<bool, 1, 1> {};
2648 class Pretenure : public BitField<bool, 2, 1> {};
2649 class HasDuplicateParameters : public BitField<ParameterFlag, 3, 1> {};
2650 class IsFunction : public BitField<IsFunctionFlag, 4, 1> {};
2651 class EagerCompileHintBit : public BitField<EagerCompileHint, 5, 1> {};
2652 class FunctionKindBits : public BitField<FunctionKind, 6, 8> {};
2653 class ShouldBeUsedOnceHintBit : public BitField<ShouldBeUsedOnceHint, 15, 1> {
2654 };
2655 };
2656
2657
2658 class ClassLiteral final : public Expression {
2659 public:
2660 typedef ObjectLiteralProperty Property;
2661
2662 DECLARE_NODE_TYPE(ClassLiteral)
2663
2664 Handle<String> name() const { return raw_name_->string(); }
2665 const AstRawString* raw_name() const { return raw_name_; }
2666 Scope* scope() const { return scope_; }
2667 VariableProxy* class_variable_proxy() const { return class_variable_proxy_; }
2668 Expression* extends() const { return extends_; }
2669 FunctionLiteral* constructor() const { return constructor_; }
2670 ZoneList<Property*>* properties() const { return properties_; }
2671 int start_position() const { return position(); }
2672 int end_position() const { return end_position_; }
2673
2674 BailoutId EntryId() const { return BailoutId(local_id(0)); }
2675 BailoutId DeclsId() const { return BailoutId(local_id(1)); }
2676 BailoutId ExitId() { return BailoutId(local_id(2)); }
2677 BailoutId CreateLiteralId() const { return BailoutId(local_id(3)); }
2678
2679 // Return an AST id for a property that is used in simulate instructions.
2680 BailoutId GetIdForProperty(int i) { return BailoutId(local_id(i + 4)); }
2681
2682 // Unlike other AST nodes, this number of bailout IDs allocated for an
2683 // ClassLiteral can vary, so num_ids() is not a static method.
2684 int num_ids() const { return parent_num_ids() + 4 + properties()->length(); }
2685
2686 // Object literals need one feedback slot for each non-trivial value, as well
2687 // as some slots for home objects.
2688 void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
2689 FeedbackVectorSlotCache* cache) override;
2690
2691 bool NeedsProxySlot() const {
2692 return class_variable_proxy() != nullptr &&
2693 class_variable_proxy()->var()->IsUnallocated();
2694 }
2695
2696 FeedbackVectorSlot ProxySlot() const { return slot_; }
2697
2698 protected:
2699 ClassLiteral(Zone* zone, const AstRawString* name, Scope* scope,
2700 VariableProxy* class_variable_proxy, Expression* extends,
2701 FunctionLiteral* constructor, ZoneList<Property*>* properties,
2702 int start_position, int end_position)
2703 : Expression(zone, start_position),
2704 raw_name_(name),
2705 scope_(scope),
2706 class_variable_proxy_(class_variable_proxy),
2707 extends_(extends),
2708 constructor_(constructor),
2709 properties_(properties),
2710 end_position_(end_position) {}
2711
2712 static int parent_num_ids() { return Expression::num_ids(); }
2713
2714 private:
2715 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2716
2717 const AstRawString* raw_name_;
2718 Scope* scope_;
2719 VariableProxy* class_variable_proxy_;
2720 Expression* extends_;
2721 FunctionLiteral* constructor_;
2722 ZoneList<Property*>* properties_;
2723 int end_position_;
2724 FeedbackVectorSlot slot_;
2725 };
2726
2727
2728 class NativeFunctionLiteral final : public Expression {
2729 public:
2730 DECLARE_NODE_TYPE(NativeFunctionLiteral)
2731
2732 Handle<String> name() const { return name_->string(); }
2733 v8::Extension* extension() const { return extension_; }
2734
2735 protected:
2736 NativeFunctionLiteral(Zone* zone, const AstRawString* name,
2737 v8::Extension* extension, int pos)
2738 : Expression(zone, pos), name_(name), extension_(extension) {}
2739
2740 private:
2741 const AstRawString* name_;
2742 v8::Extension* extension_;
2743 };
2744
2745
2746 class ThisFunction final : public Expression {
2747 public:
2748 DECLARE_NODE_TYPE(ThisFunction)
2749
2750 protected:
2751 ThisFunction(Zone* zone, int pos) : Expression(zone, pos) {}
2752 };
2753
2754
2755 class SuperPropertyReference final : public Expression {
2756 public:
2757 DECLARE_NODE_TYPE(SuperPropertyReference)
2758
2759 VariableProxy* this_var() const { return this_var_; }
2760 Expression* home_object() const { return home_object_; }
2761
2762 protected:
2763 SuperPropertyReference(Zone* zone, VariableProxy* this_var,
2764 Expression* home_object, int pos)
2765 : Expression(zone, pos), this_var_(this_var), home_object_(home_object) {
2766 DCHECK(this_var->is_this());
2767 DCHECK(home_object->IsProperty());
2768 }
2769
2770 private:
2771 VariableProxy* this_var_;
2772 Expression* home_object_;
2773 };
2774
2775
2776 class SuperCallReference final : public Expression {
2777 public:
2778 DECLARE_NODE_TYPE(SuperCallReference)
2779
2780 VariableProxy* this_var() const { return this_var_; }
2781 VariableProxy* new_target_var() const { return new_target_var_; }
2782 VariableProxy* this_function_var() const { return this_function_var_; }
2783
2784 protected:
2785 SuperCallReference(Zone* zone, VariableProxy* this_var,
2786 VariableProxy* new_target_var,
2787 VariableProxy* this_function_var, int pos)
2788 : Expression(zone, pos),
2789 this_var_(this_var),
2790 new_target_var_(new_target_var),
2791 this_function_var_(this_function_var) {
2792 DCHECK(this_var->is_this());
2793 DCHECK(new_target_var->raw_name()->IsOneByteEqualTo(".new.target"));
2794 DCHECK(this_function_var->raw_name()->IsOneByteEqualTo(".this_function"));
2795 }
2796
2797 private:
2798 VariableProxy* this_var_;
2799 VariableProxy* new_target_var_;
2800 VariableProxy* this_function_var_;
2801 };
2802
2803
2804 // This class is produced when parsing the () in arrow functions without any
2805 // arguments and is not actually a valid expression.
2806 class EmptyParentheses final : public Expression {
2807 public:
2808 DECLARE_NODE_TYPE(EmptyParentheses)
2809
2810 private:
2811 EmptyParentheses(Zone* zone, int pos) : Expression(zone, pos) {}
2812 };
2813
2814
2815 #undef DECLARE_NODE_TYPE
2816
2817
2818 // ----------------------------------------------------------------------------
2819 // Regular expressions
2820
2821
2822 class RegExpVisitor BASE_EMBEDDED {
2823 public:
2824 virtual ~RegExpVisitor() { }
2825 #define MAKE_CASE(Name) \
2826 virtual void* Visit##Name(RegExp##Name*, void* data) = 0;
2827 FOR_EACH_REG_EXP_TREE_TYPE(MAKE_CASE)
2828 #undef MAKE_CASE
2829 };
2830
2831
2832 class RegExpTree : public ZoneObject {
2833 public:
2834 static const int kInfinity = kMaxInt;
2835 virtual ~RegExpTree() {}
2836 virtual void* Accept(RegExpVisitor* visitor, void* data) = 0;
2837 virtual RegExpNode* ToNode(RegExpCompiler* compiler,
2838 RegExpNode* on_success) = 0;
2839 virtual bool IsTextElement() { return false; }
2840 virtual bool IsAnchoredAtStart() { return false; }
2841 virtual bool IsAnchoredAtEnd() { return false; }
2842 virtual int min_match() = 0;
2843 virtual int max_match() = 0;
2844 // Returns the interval of registers used for captures within this
2845 // expression.
2846 virtual Interval CaptureRegisters() { return Interval::Empty(); }
2847 virtual void AppendToText(RegExpText* text, Zone* zone);
2848 std::ostream& Print(std::ostream& os, Zone* zone); // NOLINT
2849 #define MAKE_ASTYPE(Name) \
2850 virtual RegExp##Name* As##Name(); \
2851 virtual bool Is##Name();
2852 FOR_EACH_REG_EXP_TREE_TYPE(MAKE_ASTYPE)
2853 #undef MAKE_ASTYPE
2854 };
2855
2856
2857 class RegExpDisjunction final : public RegExpTree {
2858 public:
2859 explicit RegExpDisjunction(ZoneList<RegExpTree*>* alternatives);
2860 void* Accept(RegExpVisitor* visitor, void* data) override;
2861 RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override;
2862 RegExpDisjunction* AsDisjunction() override;
2863 Interval CaptureRegisters() override;
2864 bool IsDisjunction() override;
2865 bool IsAnchoredAtStart() override;
2866 bool IsAnchoredAtEnd() override;
2867 int min_match() override { return min_match_; }
2868 int max_match() override { return max_match_; }
2869 ZoneList<RegExpTree*>* alternatives() { return alternatives_; }
2870 private:
2871 bool SortConsecutiveAtoms(RegExpCompiler* compiler);
2872 void RationalizeConsecutiveAtoms(RegExpCompiler* compiler);
2873 void FixSingleCharacterDisjunctions(RegExpCompiler* compiler);
2874 ZoneList<RegExpTree*>* alternatives_;
2875 int min_match_;
2876 int max_match_;
2877 };
2878
2879
2880 class RegExpAlternative final : public RegExpTree {
2881 public:
2882 explicit RegExpAlternative(ZoneList<RegExpTree*>* nodes);
2883 void* Accept(RegExpVisitor* visitor, void* data) override;
2884 RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override;
2885 RegExpAlternative* AsAlternative() override;
2886 Interval CaptureRegisters() override;
2887 bool IsAlternative() override;
2888 bool IsAnchoredAtStart() override;
2889 bool IsAnchoredAtEnd() override;
2890 int min_match() override { return min_match_; }
2891 int max_match() override { return max_match_; }
2892 ZoneList<RegExpTree*>* nodes() { return nodes_; }
2893 private:
2894 ZoneList<RegExpTree*>* nodes_;
2895 int min_match_;
2896 int max_match_;
2897 };
2898
2899
2900 class RegExpAssertion final : public RegExpTree {
2901 public:
2902 enum AssertionType {
2903 START_OF_LINE,
2904 START_OF_INPUT,
2905 END_OF_LINE,
2906 END_OF_INPUT,
2907 BOUNDARY,
2908 NON_BOUNDARY
2909 };
2910 explicit RegExpAssertion(AssertionType type) : assertion_type_(type) { }
2911 void* Accept(RegExpVisitor* visitor, void* data) override;
2912 RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override;
2913 RegExpAssertion* AsAssertion() override;
2914 bool IsAssertion() override;
2915 bool IsAnchoredAtStart() override;
2916 bool IsAnchoredAtEnd() override;
2917 int min_match() override { return 0; }
2918 int max_match() override { return 0; }
2919 AssertionType assertion_type() { return assertion_type_; }
2920 private:
2921 AssertionType assertion_type_;
2922 };
2923
2924
2925 class CharacterSet final BASE_EMBEDDED {
2926 public:
2927 explicit CharacterSet(uc16 standard_set_type)
2928 : ranges_(NULL),
2929 standard_set_type_(standard_set_type) {}
2930 explicit CharacterSet(ZoneList<CharacterRange>* ranges)
2931 : ranges_(ranges),
2932 standard_set_type_(0) {}
2933 ZoneList<CharacterRange>* ranges(Zone* zone);
2934 uc16 standard_set_type() { return standard_set_type_; }
2935 void set_standard_set_type(uc16 special_set_type) {
2936 standard_set_type_ = special_set_type;
2937 }
2938 bool is_standard() { return standard_set_type_ != 0; }
2939 void Canonicalize();
2940 private:
2941 ZoneList<CharacterRange>* ranges_;
2942 // If non-zero, the value represents a standard set (e.g., all whitespace
2943 // characters) without having to expand the ranges.
2944 uc16 standard_set_type_;
2945 };
2946
2947
2948 class RegExpCharacterClass final : public RegExpTree {
2949 public:
2950 RegExpCharacterClass(ZoneList<CharacterRange>* ranges, bool is_negated)
2951 : set_(ranges),
2952 is_negated_(is_negated) { }
2953 explicit RegExpCharacterClass(uc16 type)
2954 : set_(type),
2955 is_negated_(false) { }
2956 void* Accept(RegExpVisitor* visitor, void* data) override;
2957 RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override;
2958 RegExpCharacterClass* AsCharacterClass() override;
2959 bool IsCharacterClass() override;
2960 bool IsTextElement() override { return true; }
2961 int min_match() override { return 1; }
2962 int max_match() override { return 1; }
2963 void AppendToText(RegExpText* text, Zone* zone) override;
2964 CharacterSet character_set() { return set_; }
2965 // TODO(lrn): Remove need for complex version if is_standard that
2966 // recognizes a mangled standard set and just do { return set_.is_special(); }
2967 bool is_standard(Zone* zone);
2968 // Returns a value representing the standard character set if is_standard()
2969 // returns true.
2970 // Currently used values are:
2971 // s : unicode whitespace
2972 // S : unicode non-whitespace
2973 // w : ASCII word character (digit, letter, underscore)
2974 // W : non-ASCII word character
2975 // d : ASCII digit
2976 // D : non-ASCII digit
2977 // . : non-unicode non-newline
2978 // * : All characters
2979 uc16 standard_type() { return set_.standard_set_type(); }
2980 ZoneList<CharacterRange>* ranges(Zone* zone) { return set_.ranges(zone); }
2981 bool is_negated() { return is_negated_; }
2982
2983 private:
2984 CharacterSet set_;
2985 bool is_negated_;
2986 };
2987
2988
2989 class RegExpAtom final : public RegExpTree {
2990 public:
2991 explicit RegExpAtom(Vector<const uc16> data) : data_(data) { }
2992 void* Accept(RegExpVisitor* visitor, void* data) override;
2993 RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override;
2994 RegExpAtom* AsAtom() override;
2995 bool IsAtom() override;
2996 bool IsTextElement() override { return true; }
2997 int min_match() override { return data_.length(); }
2998 int max_match() override { return data_.length(); }
2999 void AppendToText(RegExpText* text, Zone* zone) override;
3000 Vector<const uc16> data() { return data_; }
3001 int length() { return data_.length(); }
3002 private:
3003 Vector<const uc16> data_;
3004 };
3005
3006
3007 class RegExpText final : public RegExpTree {
3008 public:
3009 explicit RegExpText(Zone* zone) : elements_(2, zone), length_(0) {}
3010 void* Accept(RegExpVisitor* visitor, void* data) override;
3011 RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override;
3012 RegExpText* AsText() override;
3013 bool IsText() override;
3014 bool IsTextElement() override { return true; }
3015 int min_match() override { return length_; }
3016 int max_match() override { return length_; }
3017 void AppendToText(RegExpText* text, Zone* zone) override;
3018 void AddElement(TextElement elm, Zone* zone) {
3019 elements_.Add(elm, zone);
3020 length_ += elm.length();
3021 }
3022 ZoneList<TextElement>* elements() { return &elements_; }
3023 private:
3024 ZoneList<TextElement> elements_;
3025 int length_;
3026 };
3027
3028
3029 class RegExpQuantifier final : public RegExpTree {
3030 public:
3031 enum QuantifierType { GREEDY, NON_GREEDY, POSSESSIVE };
3032 RegExpQuantifier(int min, int max, QuantifierType type, RegExpTree* body)
3033 : body_(body),
3034 min_(min),
3035 max_(max),
3036 min_match_(min * body->min_match()),
3037 quantifier_type_(type) {
3038 if (max > 0 && body->max_match() > kInfinity / max) {
3039 max_match_ = kInfinity;
3040 } else {
3041 max_match_ = max * body->max_match();
3042 }
3043 }
3044 void* Accept(RegExpVisitor* visitor, void* data) override;
3045 RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override;
3046 static RegExpNode* ToNode(int min,
3047 int max,
3048 bool is_greedy,
3049 RegExpTree* body,
3050 RegExpCompiler* compiler,
3051 RegExpNode* on_success,
3052 bool not_at_start = false);
3053 RegExpQuantifier* AsQuantifier() override;
3054 Interval CaptureRegisters() override;
3055 bool IsQuantifier() override;
3056 int min_match() override { return min_match_; }
3057 int max_match() override { return max_match_; }
3058 int min() { return min_; }
3059 int max() { return max_; }
3060 bool is_possessive() { return quantifier_type_ == POSSESSIVE; }
3061 bool is_non_greedy() { return quantifier_type_ == NON_GREEDY; }
3062 bool is_greedy() { return quantifier_type_ == GREEDY; }
3063 RegExpTree* body() { return body_; }
3064
3065 private:
3066 RegExpTree* body_;
3067 int min_;
3068 int max_;
3069 int min_match_;
3070 int max_match_;
3071 QuantifierType quantifier_type_;
3072 };
3073
3074
3075 class RegExpCapture final : public RegExpTree {
3076 public:
3077 explicit RegExpCapture(int index) : body_(NULL), index_(index) {}
3078 void* Accept(RegExpVisitor* visitor, void* data) override;
3079 RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override;
3080 static RegExpNode* ToNode(RegExpTree* body,
3081 int index,
3082 RegExpCompiler* compiler,
3083 RegExpNode* on_success);
3084 RegExpCapture* AsCapture() override;
3085 bool IsAnchoredAtStart() override;
3086 bool IsAnchoredAtEnd() override;
3087 Interval CaptureRegisters() override;
3088 bool IsCapture() override;
3089 int min_match() override { return body_->min_match(); }
3090 int max_match() override { return body_->max_match(); }
3091 RegExpTree* body() { return body_; }
3092 void set_body(RegExpTree* body) { body_ = body; }
3093 int index() { return index_; }
3094 static int StartRegister(int index) { return index * 2; }
3095 static int EndRegister(int index) { return index * 2 + 1; }
3096
3097 private:
3098 RegExpTree* body_;
3099 int index_;
3100 };
3101
3102
3103 class RegExpLookaround final : public RegExpTree {
3104 public:
3105 enum Type { LOOKAHEAD, LOOKBEHIND };
3106
3107 RegExpLookaround(RegExpTree* body, bool is_positive, int capture_count,
3108 int capture_from, Type type)
3109 : body_(body),
3110 is_positive_(is_positive),
3111 capture_count_(capture_count),
3112 capture_from_(capture_from),
3113 type_(type) {}
3114
3115 void* Accept(RegExpVisitor* visitor, void* data) override;
3116 RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override;
3117 RegExpLookaround* AsLookaround() override;
3118 Interval CaptureRegisters() override;
3119 bool IsLookaround() override;
3120 bool IsAnchoredAtStart() override;
3121 int min_match() override { return 0; }
3122 int max_match() override { return 0; }
3123 RegExpTree* body() { return body_; }
3124 bool is_positive() { return is_positive_; }
3125 int capture_count() { return capture_count_; }
3126 int capture_from() { return capture_from_; }
3127 Type type() { return type_; }
3128
3129 private:
3130 RegExpTree* body_;
3131 bool is_positive_;
3132 int capture_count_;
3133 int capture_from_;
3134 Type type_;
3135 };
3136
3137
3138 class RegExpBackReference final : public RegExpTree {
3139 public:
3140 explicit RegExpBackReference(RegExpCapture* capture)
3141 : capture_(capture) { }
3142 void* Accept(RegExpVisitor* visitor, void* data) override;
3143 RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override;
3144 RegExpBackReference* AsBackReference() override;
3145 bool IsBackReference() override;
3146 int min_match() override { return 0; }
3147 // The capture may not be completely parsed yet, if the reference occurs
3148 // before the capture. In the ordinary case, nothing has been captured yet,
3149 // so the back reference must have the length 0. If the back reference is
3150 // inside a lookbehind, effectively making it a forward reference, we return
3151 // 0 since lookbehinds have a length of 0.
3152 int max_match() override {
3153 return capture_->body() ? capture_->max_match() : 0;
3154 }
3155 int index() { return capture_->index(); }
3156 RegExpCapture* capture() { return capture_; }
3157 private:
3158 RegExpCapture* capture_;
3159 };
3160
3161
3162 class RegExpEmpty final : public RegExpTree {
3163 public:
3164 RegExpEmpty() { }
3165 void* Accept(RegExpVisitor* visitor, void* data) override;
3166 RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override;
3167 RegExpEmpty* AsEmpty() override;
3168 bool IsEmpty() override;
3169 int min_match() override { return 0; }
3170 int max_match() override { return 0; }
3171 };
3172
3173
3174 // ----------------------------------------------------------------------------
3175 // Basic visitor
3176 // - leaf node visitors are abstract.
3177
3178 class AstVisitor BASE_EMBEDDED {
3179 public:
3180 AstVisitor() {}
3181 virtual ~AstVisitor() {}
3182
3183 // Stack overflow check and dynamic dispatch.
3184 virtual void Visit(AstNode* node) = 0;
3185
3186 // Iteration left-to-right.
3187 virtual void VisitDeclarations(ZoneList<Declaration*>* declarations);
3188 virtual void VisitStatements(ZoneList<Statement*>* statements);
3189 virtual void VisitExpressions(ZoneList<Expression*>* expressions);
3190
3191 // Individual AST nodes.
3192 #define DEF_VISIT(type) \
3193 virtual void Visit##type(type* node) = 0;
3194 AST_NODE_LIST(DEF_VISIT)
3195 #undef DEF_VISIT
3196 };
3197
3198
3199 #define DEFINE_AST_VISITOR_SUBCLASS_MEMBERS() \
3200 public: \
3201 void Visit(AstNode* node) final { \
3202 if (!CheckStackOverflow()) node->Accept(this); \
3203 } \
3204 \
3205 void SetStackOverflow() { stack_overflow_ = true; } \
3206 void ClearStackOverflow() { stack_overflow_ = false; } \
3207 bool HasStackOverflow() const { return stack_overflow_; } \
3208 \
3209 bool CheckStackOverflow() { \
3210 if (stack_overflow_) return true; \
3211 if (GetCurrentStackPosition() < stack_limit_) { \
3212 stack_overflow_ = true; \
3213 return true; \
3214 } \
3215 return false; \
3216 } \
3217 \
3218 private: \
3219 void InitializeAstVisitor(Isolate* isolate) { \
3220 stack_limit_ = isolate->stack_guard()->real_climit(); \
3221 stack_overflow_ = false; \
3222 } \
3223 \
3224 void InitializeAstVisitor(uintptr_t stack_limit) { \
3225 stack_limit_ = stack_limit; \
3226 stack_overflow_ = false; \
3227 } \
3228 \
3229 uintptr_t stack_limit_; \
3230 bool stack_overflow_
3231
3232
3233 // ----------------------------------------------------------------------------
3234 // AstNode factory
3235
3236 class AstNodeFactory final BASE_EMBEDDED {
3237 public:
3238 explicit AstNodeFactory(AstValueFactory* ast_value_factory)
3239 : local_zone_(ast_value_factory->zone()),
3240 parser_zone_(ast_value_factory->zone()),
3241 ast_value_factory_(ast_value_factory) {}
3242
3243 AstValueFactory* ast_value_factory() const { return ast_value_factory_; }
3244
3245 VariableDeclaration* NewVariableDeclaration(
3246 VariableProxy* proxy, VariableMode mode, Scope* scope, int pos,
3247 bool is_class_declaration = false, int declaration_group_start = -1) {
3248 return new (parser_zone_)
3249 VariableDeclaration(parser_zone_, proxy, mode, scope, pos,
3250 is_class_declaration, declaration_group_start);
3251 }
3252
3253 FunctionDeclaration* NewFunctionDeclaration(VariableProxy* proxy,
3254 VariableMode mode,
3255 FunctionLiteral* fun,
3256 Scope* scope,
3257 int pos) {
3258 return new (parser_zone_)
3259 FunctionDeclaration(parser_zone_, proxy, mode, fun, scope, pos);
3260 }
3261
3262 ImportDeclaration* NewImportDeclaration(VariableProxy* proxy,
3263 const AstRawString* import_name,
3264 const AstRawString* module_specifier,
3265 Scope* scope, int pos) {
3266 return new (parser_zone_) ImportDeclaration(
3267 parser_zone_, proxy, import_name, module_specifier, scope, pos);
3268 }
3269
3270 ExportDeclaration* NewExportDeclaration(VariableProxy* proxy,
3271 Scope* scope,
3272 int pos) {
3273 return new (parser_zone_)
3274 ExportDeclaration(parser_zone_, proxy, scope, pos);
3275 }
3276
3277 Block* NewBlock(ZoneList<const AstRawString*>* labels, int capacity,
3278 bool ignore_completion_value, int pos) {
3279 return new (local_zone_)
3280 Block(local_zone_, labels, capacity, ignore_completion_value, pos);
3281 }
3282
3283 #define STATEMENT_WITH_LABELS(NodeType) \
3284 NodeType* New##NodeType(ZoneList<const AstRawString*>* labels, int pos) { \
3285 return new (local_zone_) NodeType(local_zone_, labels, pos); \
3286 }
3287 STATEMENT_WITH_LABELS(DoWhileStatement)
3288 STATEMENT_WITH_LABELS(WhileStatement)
3289 STATEMENT_WITH_LABELS(ForStatement)
3290 STATEMENT_WITH_LABELS(SwitchStatement)
3291 #undef STATEMENT_WITH_LABELS
3292
3293 ForEachStatement* NewForEachStatement(ForEachStatement::VisitMode visit_mode,
3294 ZoneList<const AstRawString*>* labels,
3295 int pos) {
3296 switch (visit_mode) {
3297 case ForEachStatement::ENUMERATE: {
3298 return new (local_zone_) ForInStatement(local_zone_, labels, pos);
3299 }
3300 case ForEachStatement::ITERATE: {
3301 return new (local_zone_) ForOfStatement(local_zone_, labels, pos);
3302 }
3303 }
3304 UNREACHABLE();
3305 return NULL;
3306 }
3307
3308 ExpressionStatement* NewExpressionStatement(Expression* expression, int pos) {
3309 return new (local_zone_) ExpressionStatement(local_zone_, expression, pos);
3310 }
3311
3312 ContinueStatement* NewContinueStatement(IterationStatement* target, int pos) {
3313 return new (local_zone_) ContinueStatement(local_zone_, target, pos);
3314 }
3315
3316 BreakStatement* NewBreakStatement(BreakableStatement* target, int pos) {
3317 return new (local_zone_) BreakStatement(local_zone_, target, pos);
3318 }
3319
3320 ReturnStatement* NewReturnStatement(Expression* expression, int pos) {
3321 return new (local_zone_) ReturnStatement(local_zone_, expression, pos);
3322 }
3323
3324 WithStatement* NewWithStatement(Scope* scope,
3325 Expression* expression,
3326 Statement* statement,
3327 int pos) {
3328 return new (local_zone_)
3329 WithStatement(local_zone_, scope, expression, statement, pos);
3330 }
3331
3332 IfStatement* NewIfStatement(Expression* condition,
3333 Statement* then_statement,
3334 Statement* else_statement,
3335 int pos) {
3336 return new (local_zone_) IfStatement(local_zone_, condition, then_statement,
3337 else_statement, pos);
3338 }
3339
3340 TryCatchStatement* NewTryCatchStatement(Block* try_block, Scope* scope,
3341 Variable* variable,
3342 Block* catch_block, int pos) {
3343 return new (local_zone_) TryCatchStatement(local_zone_, try_block, scope,
3344 variable, catch_block, pos);
3345 }
3346
3347 TryFinallyStatement* NewTryFinallyStatement(Block* try_block,
3348 Block* finally_block, int pos) {
3349 return new (local_zone_)
3350 TryFinallyStatement(local_zone_, try_block, finally_block, pos);
3351 }
3352
3353 DebuggerStatement* NewDebuggerStatement(int pos) {
3354 return new (local_zone_) DebuggerStatement(local_zone_, pos);
3355 }
3356
3357 EmptyStatement* NewEmptyStatement(int pos) {
3358 return new (local_zone_) EmptyStatement(local_zone_, pos);
3359 }
3360
3361 SloppyBlockFunctionStatement* NewSloppyBlockFunctionStatement(
3362 Statement* statement, Scope* scope) {
3363 return new (local_zone_)
3364 SloppyBlockFunctionStatement(local_zone_, statement, scope);
3365 }
3366
3367 CaseClause* NewCaseClause(
3368 Expression* label, ZoneList<Statement*>* statements, int pos) {
3369 return new (local_zone_) CaseClause(local_zone_, label, statements, pos);
3370 }
3371
3372 Literal* NewStringLiteral(const AstRawString* string, int pos) {
3373 return new (local_zone_)
3374 Literal(local_zone_, ast_value_factory_->NewString(string), pos);
3375 }
3376
3377 // A JavaScript symbol (ECMA-262 edition 6).
3378 Literal* NewSymbolLiteral(const char* name, int pos) {
3379 return new (local_zone_)
3380 Literal(local_zone_, ast_value_factory_->NewSymbol(name), pos);
3381 }
3382
3383 Literal* NewNumberLiteral(double number, int pos, bool with_dot = false) {
3384 return new (local_zone_) Literal(
3385 local_zone_, ast_value_factory_->NewNumber(number, with_dot), pos);
3386 }
3387
3388 Literal* NewSmiLiteral(int number, int pos) {
3389 return new (local_zone_)
3390 Literal(local_zone_, ast_value_factory_->NewSmi(number), pos);
3391 }
3392
3393 Literal* NewBooleanLiteral(bool b, int pos) {
3394 return new (local_zone_)
3395 Literal(local_zone_, ast_value_factory_->NewBoolean(b), pos);
3396 }
3397
3398 Literal* NewNullLiteral(int pos) {
3399 return new (local_zone_)
3400 Literal(local_zone_, ast_value_factory_->NewNull(), pos);
3401 }
3402
3403 Literal* NewUndefinedLiteral(int pos) {
3404 return new (local_zone_)
3405 Literal(local_zone_, ast_value_factory_->NewUndefined(), pos);
3406 }
3407
3408 Literal* NewTheHoleLiteral(int pos) {
3409 return new (local_zone_)
3410 Literal(local_zone_, ast_value_factory_->NewTheHole(), pos);
3411 }
3412
3413 ObjectLiteral* NewObjectLiteral(
3414 ZoneList<ObjectLiteral::Property*>* properties,
3415 int literal_index,
3416 int boilerplate_properties,
3417 bool has_function,
3418 bool is_strong,
3419 int pos) {
3420 return new (local_zone_)
3421 ObjectLiteral(local_zone_, properties, literal_index,
3422 boilerplate_properties, has_function, is_strong, pos);
3423 }
3424
3425 ObjectLiteral::Property* NewObjectLiteralProperty(
3426 Expression* key, Expression* value, ObjectLiteralProperty::Kind kind,
3427 bool is_static, bool is_computed_name) {
3428 return new (local_zone_)
3429 ObjectLiteral::Property(key, value, kind, is_static, is_computed_name);
3430 }
3431
3432 ObjectLiteral::Property* NewObjectLiteralProperty(Expression* key,
3433 Expression* value,
3434 bool is_static,
3435 bool is_computed_name) {
3436 return new (local_zone_) ObjectLiteral::Property(
3437 ast_value_factory_, key, value, is_static, is_computed_name);
3438 }
3439
3440 RegExpLiteral* NewRegExpLiteral(const AstRawString* pattern, int flags,
3441 int literal_index, bool is_strong, int pos) {
3442 return new (local_zone_) RegExpLiteral(local_zone_, pattern, flags,
3443 literal_index, is_strong, pos);
3444 }
3445
3446 ArrayLiteral* NewArrayLiteral(ZoneList<Expression*>* values,
3447 int literal_index,
3448 bool is_strong,
3449 int pos) {
3450 return new (local_zone_)
3451 ArrayLiteral(local_zone_, values, -1, literal_index, is_strong, pos);
3452 }
3453
3454 ArrayLiteral* NewArrayLiteral(ZoneList<Expression*>* values,
3455 int first_spread_index, int literal_index,
3456 bool is_strong, int pos) {
3457 return new (local_zone_) ArrayLiteral(
3458 local_zone_, values, first_spread_index, literal_index, is_strong, pos);
3459 }
3460
3461 VariableProxy* NewVariableProxy(Variable* var,
3462 int start_position = RelocInfo::kNoPosition,
3463 int end_position = RelocInfo::kNoPosition) {
3464 return new (parser_zone_)
3465 VariableProxy(parser_zone_, var, start_position, end_position);
3466 }
3467
3468 VariableProxy* NewVariableProxy(const AstRawString* name,
3469 Variable::Kind variable_kind,
3470 int start_position = RelocInfo::kNoPosition,
3471 int end_position = RelocInfo::kNoPosition) {
3472 DCHECK_NOT_NULL(name);
3473 return new (parser_zone_) VariableProxy(parser_zone_, name, variable_kind,
3474 start_position, end_position);
3475 }
3476
3477 Property* NewProperty(Expression* obj, Expression* key, int pos) {
3478 return new (local_zone_) Property(local_zone_, obj, key, pos);
3479 }
3480
3481 Call* NewCall(Expression* expression,
3482 ZoneList<Expression*>* arguments,
3483 int pos) {
3484 return new (local_zone_) Call(local_zone_, expression, arguments, pos);
3485 }
3486
3487 CallNew* NewCallNew(Expression* expression,
3488 ZoneList<Expression*>* arguments,
3489 int pos) {
3490 return new (local_zone_) CallNew(local_zone_, expression, arguments, pos);
3491 }
3492
3493 CallRuntime* NewCallRuntime(Runtime::FunctionId id,
3494 ZoneList<Expression*>* arguments, int pos) {
3495 return new (local_zone_)
3496 CallRuntime(local_zone_, Runtime::FunctionForId(id), arguments, pos);
3497 }
3498
3499 CallRuntime* NewCallRuntime(const Runtime::Function* function,
3500 ZoneList<Expression*>* arguments, int pos) {
3501 return new (local_zone_) CallRuntime(local_zone_, function, arguments, pos);
3502 }
3503
3504 CallRuntime* NewCallRuntime(int context_index,
3505 ZoneList<Expression*>* arguments, int pos) {
3506 return new (local_zone_)
3507 CallRuntime(local_zone_, context_index, arguments, pos);
3508 }
3509
3510 UnaryOperation* NewUnaryOperation(Token::Value op,
3511 Expression* expression,
3512 int pos) {
3513 return new (local_zone_) UnaryOperation(local_zone_, op, expression, pos);
3514 }
3515
3516 BinaryOperation* NewBinaryOperation(Token::Value op,
3517 Expression* left,
3518 Expression* right,
3519 int pos) {
3520 return new (local_zone_) BinaryOperation(local_zone_, op, left, right, pos);
3521 }
3522
3523 CountOperation* NewCountOperation(Token::Value op,
3524 bool is_prefix,
3525 Expression* expr,
3526 int pos) {
3527 return new (local_zone_)
3528 CountOperation(local_zone_, op, is_prefix, expr, pos);
3529 }
3530
3531 CompareOperation* NewCompareOperation(Token::Value op,
3532 Expression* left,
3533 Expression* right,
3534 int pos) {
3535 return new (local_zone_)
3536 CompareOperation(local_zone_, op, left, right, pos);
3537 }
3538
3539 Spread* NewSpread(Expression* expression, int pos) {
3540 return new (local_zone_) Spread(local_zone_, expression, pos);
3541 }
3542
3543 Conditional* NewConditional(Expression* condition,
3544 Expression* then_expression,
3545 Expression* else_expression,
3546 int position) {
3547 return new (local_zone_) Conditional(
3548 local_zone_, condition, then_expression, else_expression, position);
3549 }
3550
3551 Assignment* NewAssignment(Token::Value op,
3552 Expression* target,
3553 Expression* value,
3554 int pos) {
3555 DCHECK(Token::IsAssignmentOp(op));
3556 Assignment* assign =
3557 new (local_zone_) Assignment(local_zone_, op, target, value, pos);
3558 if (assign->is_compound()) {
3559 DCHECK(Token::IsAssignmentOp(op));
3560 assign->binary_operation_ =
3561 NewBinaryOperation(assign->binary_op(), target, value, pos + 1);
3562 }
3563 return assign;
3564 }
3565
3566 Yield* NewYield(Expression *generator_object,
3567 Expression* expression,
3568 Yield::Kind yield_kind,
3569 int pos) {
3570 if (!expression) expression = NewUndefinedLiteral(pos);
3571 return new (local_zone_)
3572 Yield(local_zone_, generator_object, expression, yield_kind, pos);
3573 }
3574
3575 Throw* NewThrow(Expression* exception, int pos) {
3576 return new (local_zone_) Throw(local_zone_, exception, pos);
3577 }
3578
3579 FunctionLiteral* NewFunctionLiteral(
3580 const AstRawString* name, AstValueFactory* ast_value_factory,
3581 Scope* scope, ZoneList<Statement*>* body, int materialized_literal_count,
3582 int expected_property_count, int parameter_count,
3583 FunctionLiteral::ParameterFlag has_duplicate_parameters,
3584 FunctionLiteral::FunctionType function_type,
3585 FunctionLiteral::IsFunctionFlag is_function,
3586 FunctionLiteral::EagerCompileHint eager_compile_hint, FunctionKind kind,
3587 int position) {
3588 return new (parser_zone_) FunctionLiteral(
3589 parser_zone_, name, ast_value_factory, scope, body,
3590 materialized_literal_count, expected_property_count, parameter_count,
3591 function_type, has_duplicate_parameters, is_function,
3592 eager_compile_hint, kind, position);
3593 }
3594
3595 ClassLiteral* NewClassLiteral(const AstRawString* name, Scope* scope,
3596 VariableProxy* proxy, Expression* extends,
3597 FunctionLiteral* constructor,
3598 ZoneList<ObjectLiteral::Property*>* properties,
3599 int start_position, int end_position) {
3600 return new (parser_zone_)
3601 ClassLiteral(parser_zone_, name, scope, proxy, extends, constructor,
3602 properties, start_position, end_position);
3603 }
3604
3605 NativeFunctionLiteral* NewNativeFunctionLiteral(const AstRawString* name,
3606 v8::Extension* extension,
3607 int pos) {
3608 return new (parser_zone_)
3609 NativeFunctionLiteral(parser_zone_, name, extension, pos);
3610 }
3611
3612 DoExpression* NewDoExpression(Block* block, Variable* result_var, int pos) {
3613 VariableProxy* result = NewVariableProxy(result_var, pos);
3614 return new (parser_zone_) DoExpression(parser_zone_, block, result, pos);
3615 }
3616
3617 ThisFunction* NewThisFunction(int pos) {
3618 return new (local_zone_) ThisFunction(local_zone_, pos);
3619 }
3620
3621 SuperPropertyReference* NewSuperPropertyReference(VariableProxy* this_var,
3622 Expression* home_object,
3623 int pos) {
3624 return new (parser_zone_)
3625 SuperPropertyReference(parser_zone_, this_var, home_object, pos);
3626 }
3627
3628 SuperCallReference* NewSuperCallReference(VariableProxy* this_var,
3629 VariableProxy* new_target_var,
3630 VariableProxy* this_function_var,
3631 int pos) {
3632 return new (parser_zone_) SuperCallReference(
3633 parser_zone_, this_var, new_target_var, this_function_var, pos);
3634 }
3635
3636 EmptyParentheses* NewEmptyParentheses(int pos) {
3637 return new (local_zone_) EmptyParentheses(local_zone_, pos);
3638 }
3639
3640 Zone* zone() const { return local_zone_; }
3641
3642 // Handles use of temporary zones when parsing inner function bodies.
3643 class BodyScope {
3644 public:
3645 BodyScope(AstNodeFactory* factory, Zone* temp_zone, bool use_temp_zone)
3646 : factory_(factory), prev_zone_(factory->local_zone_) {
3647 if (use_temp_zone) {
3648 factory->local_zone_ = temp_zone;
3649 }
3650 }
3651
3652 ~BodyScope() { factory_->local_zone_ = prev_zone_; }
3653
3654 private:
3655 AstNodeFactory* factory_;
3656 Zone* prev_zone_;
3657 };
3658
3659 private:
3660 // This zone may be deallocated upon returning from parsing a function body
3661 // which we can guarantee is not going to be compiled or have its AST
3662 // inspected.
3663 // See ParseFunctionLiteral in parser.cc for preconditions.
3664 Zone* local_zone_;
3665 // ZoneObjects which need to persist until scope analysis must be allocated in
3666 // the parser-level zone.
3667 Zone* parser_zone_;
3668 AstValueFactory* ast_value_factory_;
3669 };
3670
3671
3672 } // namespace internal
3673 } // namespace v8
3674
3675 #endif // V8_AST_H_
OLDNEW
« no previous file with comments | « src/assembler.cc ('k') | src/ast.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698