| Index: src/opts/SkXfermode_opts.h
|
| diff --git a/src/opts/SkXfermode_opts.h b/src/opts/SkXfermode_opts.h
|
| index a40faec21a9289c16eeb4aca19f4875917eb767e..69f2b420f5f4e6fe2166d2175803322b622a0906 100644
|
| --- a/src/opts/SkXfermode_opts.h
|
| +++ b/src/opts/SkXfermode_opts.h
|
| @@ -109,76 +109,71 @@ XFERMODE(Lighten) {
|
| }
|
| #undef XFERMODE
|
|
|
| -// Some xfermodes use math like divide or sqrt that's best done in floats.
|
| -// We write it generically, then call it 1 or 2 pixels at a time (T == Sk4f or Sk8f).
|
| -#define XFERMODE(Name) struct Name { template <typename T> T operator()(const T&, const T&); }; \
|
| - template <typename T> T Name::operator()(const T& d, const T& s)
|
| +// Some xfermodes use math like divide or sqrt that's best done in floats 1 pixel at a time.
|
| +#define XFERMODE(Name) static Sk4f SK_VECTORCALL Name(Sk4f d, Sk4f s)
|
|
|
| -static_assert(SK_A32_SHIFT == 24, "");
|
| static inline Sk4f a_rgb(const Sk4f& a, const Sk4f& rgb) {
|
| + static_assert(SK_A32_SHIFT == 24, "");
|
| return a * Sk4f(0,0,0,1) + rgb * Sk4f(1,1,1,0);
|
| }
|
| -static inline Sk8f a_rgb(const Sk8f& a, const Sk8f& rgb) {
|
| - // TODO: SkNx_blend<0,0,0,1,0,0,0,1>(a, rgb) to let us use _mm256_blend_ps?
|
| - return a * Sk8f(0,0,0,1,0,0,0,1) + rgb * Sk8f(1,1,1,0,1,1,1,0);
|
| +static inline Sk4f alphas(const Sk4f& f) {
|
| + return SkNx_dup<SK_A32_SHIFT/8>(f);
|
| }
|
| -static inline Sk4f alphas(const Sk4f& f) { return SkNx_shuffle<3,3,3,3> (f); }
|
| -static inline Sk8f alphas(const Sk8f& f) { return SkNx_shuffle<3,3,3,3,7,7,7,7>(f); }
|
|
|
| XFERMODE(ColorDodge) {
|
| auto sa = alphas(s),
|
| da = alphas(d),
|
| - isa = T(1)-sa,
|
| - ida = T(1)-da;
|
| + isa = Sk4f(1)-sa,
|
| + ida = Sk4f(1)-da;
|
|
|
| auto srcover = s + d*isa,
|
| dstover = d + s*ida,
|
| - otherwise = sa * T::Min(da, (d*sa)*(sa-s).approxInvert()) + s*ida + d*isa;
|
| + otherwise = sa * Sk4f::Min(da, (d*sa)*(sa-s).approxInvert()) + s*ida + d*isa;
|
|
|
| // Order matters here, preferring d==0 over s==sa.
|
| - auto colors = (d == 0).thenElse(dstover,
|
| - (s == sa).thenElse(srcover,
|
| - otherwise));
|
| + auto colors = (d == Sk4f(0)).thenElse(dstover,
|
| + (s == sa).thenElse(srcover,
|
| + otherwise));
|
| return a_rgb(srcover, colors);
|
| }
|
| XFERMODE(ColorBurn) {
|
| auto sa = alphas(s),
|
| da = alphas(d),
|
| - isa = T(1)-sa,
|
| - ida = T(1)-da;
|
| + isa = Sk4f(1)-sa,
|
| + ida = Sk4f(1)-da;
|
|
|
| auto srcover = s + d*isa,
|
| dstover = d + s*ida,
|
| - otherwise = sa*(da-T::Min(da, (da-d)*sa*s.approxInvert())) + s*ida + d*isa;
|
| + otherwise = sa*(da-Sk4f::Min(da, (da-d)*sa*s.approxInvert())) + s*ida + d*isa;
|
|
|
| // Order matters here, preferring d==da over s==0.
|
| - auto colors = (d == da).thenElse(dstover,
|
| - (s == 0).thenElse(srcover,
|
| - otherwise));
|
| + auto colors = (d == da).thenElse(dstover,
|
| + (s == Sk4f(0)).thenElse(srcover,
|
| + otherwise));
|
| return a_rgb(srcover, colors);
|
| }
|
| XFERMODE(SoftLight) {
|
| auto sa = alphas(s),
|
| da = alphas(d),
|
| - isa = T(1)-sa,
|
| - ida = T(1)-da;
|
| + isa = Sk4f(1)-sa,
|
| + ida = Sk4f(1)-da;
|
|
|
| // Some common terms.
|
| - auto m = (da > 0).thenElse(d / da, 0),
|
| - s2 = s*2,
|
| - m4 = m*4;
|
| + auto m = (da > Sk4f(0)).thenElse(d / da, Sk4f(0)),
|
| + s2 = Sk4f(2)*s,
|
| + m4 = Sk4f(4)*m;
|
|
|
| // The logic forks three ways:
|
| // 1. dark src?
|
| // 2. light src, dark dst?
|
| // 3. light src, light dst?
|
| - auto darkSrc = d*(sa + (s2 - sa)*(T(1) - m)), // Used in case 1.
|
| - darkDst = (m4*m4 + m4)*(m - 1) + m*7, // Used in case 2.
|
| - liteDst = m.sqrt() - m, // Used in case 3.
|
| - liteSrc = d*sa + da*(s2-sa)*(d*4 <= da).thenElse(darkDst, liteDst); // Case 2 or 3?
|
| + auto darkSrc = d*(sa + (s2 - sa)*(Sk4f(1) - m)), // Used in case 1.
|
| + darkDst = (m4*m4 + m4)*(m - Sk4f(1)) + Sk4f(7)*m, // Used in case 2.
|
| + liteDst = m.sqrt() - m, // Used in case 3.
|
| + liteSrc = d*sa + da*(s2-sa)*(Sk4f(4)*d <= da).thenElse(darkDst, liteDst); // Case 2 or 3?
|
|
|
| auto alpha = s + d*isa;
|
| - auto colors = s*ida + d*isa + (s2 <= sa).thenElse(darkSrc, liteSrc); // Case 1 or 2/3?
|
| + auto colors = s*ida + d*isa + (s2 <= sa).thenElse(darkSrc, liteSrc); // Case 1 or 2/3?
|
|
|
| return a_rgb(alpha, colors);
|
| }
|
| @@ -245,52 +240,53 @@ private:
|
| typedef SkProcCoeffXfermode INHERITED;
|
| };
|
|
|
| -template <typename BlendFn>
|
| -class FloatXfermode : public SkProcCoeffXfermode {
|
| +class Sk4fXfermode : public SkProcCoeffXfermode {
|
| public:
|
| - FloatXfermode(const ProcCoeff& rec, SkXfermode::Mode mode)
|
| - : INHERITED(rec, mode) {}
|
| + typedef Sk4f (SK_VECTORCALL *ProcF)(Sk4f, Sk4f);
|
| + Sk4fXfermode(const ProcCoeff& rec, SkXfermode::Mode mode, ProcF procf)
|
| + : INHERITED(rec, mode)
|
| + , fProcF(procf) {}
|
|
|
| void xfer32(SkPMColor dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override {
|
| - BlendFn blend;
|
| - while (n >= 2) {
|
| - auto d = Sk8f::FromBytes((const uint8_t*)dst) * (1.0f/255),
|
| - s = Sk8f::FromBytes((const uint8_t*)src) * (1.0f/255),
|
| - b = blend(d, s);
|
| - if (aa) {
|
| - auto a255 = Sk8f(aa[0],aa[0],aa[0],aa[0], aa[1],aa[1],aa[1],aa[1]);
|
| - (b*a255 + d*(Sk8f(255)-a255) + 0.5).toBytes((uint8_t*)dst);
|
| - aa += 2;
|
| - } else {
|
| - (b * 255 + 0.5).toBytes((uint8_t*)dst);
|
| - }
|
| - dst += 2;
|
| - src += 2;
|
| - n -= 2;
|
| - }
|
| - if (n) {
|
| - auto d = Sk4f::FromBytes((const uint8_t*)dst) * (1.0f/255),
|
| - s = Sk4f::FromBytes((const uint8_t*)src) * (1.0f/255),
|
| - b = blend(d, s);
|
| - if (aa) {
|
| - auto a255 = Sk4f(aa[0],aa[0],aa[0],aa[0]);
|
| - (b*a255 + d*(Sk4f(255)-a255) + 0.5).toBytes((uint8_t*)dst);
|
| - aa++;
|
| - } else {
|
| - (b * 255 + 0.5).toBytes((uint8_t*)dst);
|
| - }
|
| + for (int i = 0; i < n; i++) {
|
| + dst[i] = aa ? this->xfer32(dst[i], src[i], aa[i])
|
| + : this->xfer32(dst[i], src[i]);
|
| }
|
| }
|
|
|
| void xfer16(uint16_t dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override {
|
| for (int i = 0; i < n; i++) {
|
| - SkPMColor dst32 = SkPixel16ToPixel32(dst[i]); // Convert dst up to 8888.
|
| - this->xfer32(&dst32, src+i, 1, aa ? aa+i : nullptr); // Blend 1 pixel.
|
| - dst[i] = SkPixel32ToPixel16(dst32); // Repack dst to 565 and store.
|
| + SkPMColor dst32 = SkPixel16ToPixel32(dst[i]);
|
| + dst32 = aa ? this->xfer32(dst32, src[i], aa[i])
|
| + : this->xfer32(dst32, src[i]);
|
| + dst[i] = SkPixel32ToPixel16(dst32);
|
| }
|
| }
|
|
|
| private:
|
| + static Sk4f Load(SkPMColor c) {
|
| + return Sk4f::FromBytes((uint8_t*)&c) * Sk4f(1.0f/255);
|
| + }
|
| + static SkPMColor Round(const Sk4f& f) {
|
| + SkPMColor c;
|
| + (f * Sk4f(255) + Sk4f(0.5f)).toBytes((uint8_t*)&c);
|
| + return c;
|
| + }
|
| + inline SkPMColor xfer32(SkPMColor dst, SkPMColor src) const {
|
| + return Round(fProcF(Load(dst), Load(src)));
|
| + }
|
| +
|
| + inline SkPMColor xfer32(SkPMColor dst, SkPMColor src, SkAlpha aa) const {
|
| + Sk4f s(Load(src)),
|
| + d(Load(dst)),
|
| + b(fProcF(d,s));
|
| + // We do aa in full float precision before going back down to bytes, because we can!
|
| + Sk4f a = Sk4f(aa) * Sk4f(1.0f/255);
|
| + b = b*a + d*(Sk4f(1)-a);
|
| + return Round(b);
|
| + }
|
| +
|
| + ProcF fProcF;
|
| typedef SkProcCoeffXfermode INHERITED;
|
| };
|
|
|
| @@ -327,7 +323,7 @@ static SkXfermode* create_xfermode(const ProcCoeff& rec, SkXfermode::Mode mode)
|
| #undef CASE
|
|
|
| #define CASE(Mode) \
|
| - case SkXfermode::k##Mode##_Mode: return new FloatXfermode<Mode>(rec, mode)
|
| + case SkXfermode::k##Mode##_Mode: return new Sk4fXfermode(rec, mode, &Mode)
|
| CASE(ColorDodge);
|
| CASE(ColorBurn);
|
| CASE(SoftLight);
|
|
|