OLD | NEW |
---|---|
(Empty) | |
1 //===- PromoteIntegers.cpp - Promote illegal integers for PNaCl ABI -------===// | |
2 // | |
3 // The LLVM Compiler Infrastructure | |
4 // | |
5 // This file is distributed under the University of Illinois Open Source | |
6 // License. See LICENSE.TXT for details. | |
7 // | |
8 // A limited set of transformations to promote illegal-sized int types. | |
9 // | |
10 //===----------------------------------------------------------------------===// | |
11 // | |
12 // Legal sizes are currently 1, 8, 16, 32, 64 (and higher, see note below) | |
13 // Operations on illegal integers and int pointers are be changed to operate | |
14 // on the next-higher legal size. | |
15 // It always maintains the invariant that the upper bits (above the size of the | |
16 // original type) are zero; therefore after operations which can overwrite these | |
17 // bits (e.g. add, shl, sext), the bits are cleared. | |
18 // | |
19 // Limitations: | |
20 // 1) It can't change function signatures or global variables | |
21 // 2) It won't promote (and can't expand) types larger than i64 | |
22 // 3) Doesn't support mul/div operators | |
23 // 4) Doesn't handle arrays or structs (or GEPs) with illegal types | |
24 // 5) Doesn't handle constant expressions | |
25 // | |
26 //===----------------------------------------------------------------------===// | |
27 | |
28 | |
29 #include "llvm/ADT/DenseMap.h" | |
30 #include "llvm/ADT/SmallVector.h" | |
31 #include "llvm/IR/DerivedTypes.h" | |
32 #include "llvm/IR/Function.h" | |
33 #include "llvm/IR/Instructions.h" | |
34 #include "llvm/IR/IRBuilder.h" | |
35 #include "llvm/Pass.h" | |
36 #include "llvm/Support/raw_ostream.h" | |
37 | |
38 using namespace llvm; | |
39 | |
40 namespace { | |
41 class PromoteIntegers : public FunctionPass { | |
42 public: | |
43 static char ID; | |
44 PromoteIntegers() : FunctionPass(ID) { | |
45 initializePromoteIntegersPass(*PassRegistry::getPassRegistry()); | |
46 } | |
47 virtual bool runOnFunction(Function &F); | |
48 }; | |
49 } | |
50 | |
51 char PromoteIntegers::ID = 0; | |
52 INITIALIZE_PASS(PromoteIntegers, "nacl-promote-ints", | |
53 "Promote integer types which are illegal in PNaCl", | |
54 false, false) | |
55 | |
56 | |
57 // Legal sizes are currently 1, 8, 16, 32, and 64. | |
58 // We can't yet expand types above 64 bit, so don't try to touch them for now. | |
59 static bool isLegalSize(unsigned Size) { | |
60 // TODO(dschuff): expand >64bit types or disallow >64bit packed bitfields | |
61 if (Size > 64) return true; | |
62 return Size == 1 || Size == 8 || Size == 16 || Size == 32 || Size == 64; | |
63 } | |
64 | |
65 static Type *getPromotedIntType(IntegerType *Ty) { | |
66 unsigned Width = Ty->getBitWidth(); | |
67 assert(Width <= 64 && "Don't know how to legalize >64 bit types yet"); | |
68 if (isLegalSize(Width)) | |
69 return Ty; | |
70 return IntegerType::get(Ty->getContext(), | |
71 Width < 8 ? 8 : NextPowerOf2(Width)); | |
72 } | |
73 | |
74 // Return a legal integer or pointer-to-integer type, promoting to a larger | |
75 // size if necessary. | |
76 static Type *getPromotedType(Type *Ty) { | |
77 assert((isa<IntegerType>(Ty) || isa<PointerType>(Ty)) && | |
78 "Trying to convert a non-integer type"); | |
79 | |
80 if (isa<PointerType>(Ty)) | |
81 return getPromotedIntType( | |
82 cast<IntegerType>(Ty->getContainedType(0)))->getPointerTo(); | |
83 | |
84 return getPromotedIntType(cast<IntegerType>(Ty)); | |
85 } | |
86 | |
87 // Return true if Val is an int or pointer-to-int which should be converted. | |
88 static bool shouldConvert(Value *Val) { | |
89 Type *Ty = Val->getType(); | |
90 if (PointerType *Pty = dyn_cast<PointerType>(Ty)) | |
91 Ty = Pty->getContainedType(0); | |
92 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) { | |
93 if (!isLegalSize(ITy->getBitWidth())) { | |
94 return true; | |
95 } | |
96 } | |
97 return false; | |
98 } | |
99 | |
100 // Return a constant which has been promoted to a legal size. | |
101 static Value *convertConstant(Constant *C, bool SignExt=false) { | |
102 assert(shouldConvert(C)); | |
103 ConstantInt *CInt = cast<ConstantInt>(C); | |
104 return ConstantInt::get( | |
105 getPromotedType(cast<IntegerType>(CInt->getType())), | |
106 SignExt ? CInt->getSExtValue() : CInt->getZExtValue(), | |
107 /*isSigned=*/SignExt); | |
108 } | |
109 | |
110 // Holds the state for converting/replacing values. Conversion is done in one | |
111 // pass, with each value requiring conversion possibly having two stages. When | |
112 // an instruction needs to be replaced (i.e. it has illegal operands or result) | |
113 // a new instruction is created, and the pass calls getConverted to get its | |
114 // operands. If the original operand has already been converted, the new value | |
115 // is returned. Otherwise, a placeholder is created and used in the new | |
116 // instruction. After a new instruction is created to replace an illegal one, | |
117 // recordConverted is called to register the replacement. All users are updated, | |
118 // and if there is a placeholder, its users are also updated. | |
119 // recordConverted also queues the old value for deletion. | |
120 // This strategy avoids the need for recursion or worklists for conversion. | |
121 class ConversionState { | |
122 public: | |
123 // Return the promoted value for Val. If Val has not yet been converted, | |
124 // return a placeholder, which will be converted later. | |
125 Value *getConverted(Value *Val) { | |
126 if (!shouldConvert(Val)) | |
127 return Val; | |
128 if (isa<GlobalVariable>(Val)) | |
129 report_fatal_error("Can't convert illegal GlobalVariables"); | |
130 if (RewrittenMap.count(Val)) | |
131 return RewrittenMap[Val]; | |
132 Value *P; | |
133 // Directly convert constants. | |
134 if (Constant *C = dyn_cast<Constant>(Val)) { | |
135 return convertConstant(C, /*SignExt=*/false); | |
136 } else { | |
137 // No converted value available yet, so create a placeholder. | |
138 P = new Argument(getPromotedType(Val->getType())); | |
139 } | |
140 RewrittenMap[Val] = P; | |
141 Placeholders[Val] = P; | |
142 return P; | |
143 } | |
144 | |
145 // Replace the uses of From with To, replace the uses of any | |
146 // placeholders for From, and optionally give From's name to To. | |
147 // Also mark To for deletion. | |
148 void recordConverted(Instruction *From, Value *To, bool TakeName=true) { | |
149 ToErase.push_back(From); | |
150 if (!shouldConvert(From)) { | |
151 // From does not produce an illegal value, update its users in place. | |
152 From->replaceAllUsesWith(To); | |
153 } else { | |
154 // From produces an illegal value, so its users will be replaced. When | |
155 // replacements are created they will use values returned by getConverted. | |
156 if (Placeholders.count(From)) { | |
157 // Users of the placeholder can be updated in place. | |
158 Placeholders[From]->replaceAllUsesWith(To); | |
159 Placeholders.erase(From); | |
160 } | |
161 RewrittenMap[From] = To; | |
162 } | |
163 if (TakeName) { | |
164 To->takeName(From); | |
165 } | |
166 } | |
167 | |
168 void eraseReplacedInstructions() { | |
169 for (SmallVectorImpl<Instruction *>::iterator I = ToErase.begin(), | |
170 E = ToErase.end(); I != E; ++I) | |
171 (*I)->dropAllReferences(); | |
172 for (SmallVectorImpl<Instruction *>::iterator I = ToErase.begin(), | |
173 E = ToErase.end(); I != E; ++I) | |
174 (*I)->eraseFromParent(); | |
175 } | |
176 | |
177 private: | |
178 // Maps illegal values to their new converted values (or placeholders | |
179 // if no new value is available yet) | |
180 DenseMap<Value *, Value *> RewrittenMap; | |
181 // Maps illegal values with no conversion available yet to their placeholders | |
182 DenseMap<Value *, Value *> Placeholders; | |
183 // Illegal values which have already been converted, will be erased. | |
184 SmallVector<Instruction *, 8> ToErase; | |
185 }; | |
186 | |
187 // Split an illegal load into multiple legal loads and return the resulting | |
188 // promoted value. The size of the load is assumed to be a multiple of 8. | |
189 static Value *splitLoad(LoadInst *Inst, ConversionState &State) { | |
190 if (Inst->isVolatile() || Inst->isAtomic()) | |
191 report_fatal_error("Can't split volatile/atomic loads"); | |
192 if (cast<IntegerType>(Inst->getType())->getBitWidth() % 8 != 0) | |
193 report_fatal_error("Loads must be a multiple of 8 bits"); | |
194 | |
195 Value *OrigPtr = State.getConverted(Inst->getPointerOperand()); | |
196 // OrigPtr is a placeholder in recursive calls, and so has no name | |
197 if (OrigPtr->getName().empty()) | |
198 OrigPtr->setName(Inst->getPointerOperand()->getName()); | |
199 unsigned Width = cast<IntegerType>(Inst->getType())->getBitWidth(); | |
200 Type *NewType = getPromotedType(Inst->getType()); | |
201 unsigned LoWidth = Width; | |
202 | |
203 while (!isLegalSize(LoWidth)) LoWidth -= 8; | |
204 IntegerType *LoType = IntegerType::get(Inst->getContext(), LoWidth); | |
205 IntegerType *HiType = IntegerType::get(Inst->getContext(), Width - LoWidth); | |
206 IRBuilder<> IRB(Inst->getParent(), Inst); | |
207 | |
208 Value *BCLo = IRB.CreateBitCast( | |
209 OrigPtr, | |
210 LoType->getPointerTo(), | |
211 OrigPtr->getName() + ".loty"); | |
212 Value *LoadLo = IRB.CreateAlignedLoad( | |
213 BCLo, Inst->getAlignment(), Inst->getName() + ".lo"); | |
214 Value *LoExt = IRB.CreateZExt(LoadLo, NewType, LoadLo->getName() + ".ext"); | |
215 Value *GEPHi = IRB.CreateConstGEP1_32(BCLo, 1, OrigPtr->getName() + ".hi"); | |
216 Value *BCHi = IRB.CreateBitCast( | |
217 GEPHi, | |
218 HiType->getPointerTo(), | |
219 OrigPtr->getName() + ".hity"); | |
220 | |
221 Value *LoadHi = IRB.CreateLoad(BCHi, Inst->getName() + ".hi"); | |
222 if (!isLegalSize(Width - LoWidth)) { | |
223 LoadHi = splitLoad(cast<LoadInst>(LoadHi), State); | |
224 // BCHi was still illegal, and has been replaced with a placeholder in the | |
225 // recursive call. Since it is redundant with BCLo in the recursive call, | |
226 // just splice it out entirely. | |
227 State.recordConverted(cast<Instruction>(BCHi), GEPHi, /*TakeName=*/false); | |
228 } | |
229 | |
230 Value *HiExt = IRB.CreateZExt(LoadHi, NewType, LoadHi->getName() + ".ext"); | |
231 Value *HiShift = IRB.CreateShl(HiExt, LoWidth, HiExt->getName() + ".sh"); | |
232 Value *Result = IRB.CreateOr(LoExt, HiShift); | |
233 | |
234 State.recordConverted(Inst, Result); | |
235 | |
236 return Result; | |
237 } | |
238 | |
239 static Value *splitStore(StoreInst *Inst, ConversionState &State) { | |
240 if (Inst->isVolatile() || Inst->isAtomic()) | |
241 report_fatal_error("Can't split volatile/atomic stores"); | |
242 if (cast<IntegerType>(Inst->getValueOperand()->getType())->getBitWidth() % 8 | |
243 != 0) | |
244 report_fatal_error("Stores must be a multiple of 8 bits"); | |
245 | |
246 Value *OrigPtr = State.getConverted(Inst->getPointerOperand()); | |
247 // OrigPtr is now a placeholder in recursive calls, and so has no name. | |
248 if (OrigPtr->getName().empty()) | |
249 OrigPtr->setName(Inst->getPointerOperand()->getName()); | |
250 Value *OrigVal = State.getConverted(Inst->getValueOperand()); | |
251 unsigned Width = cast<IntegerType>( | |
252 Inst->getValueOperand()->getType())->getBitWidth(); | |
253 unsigned LoWidth = Width; | |
254 | |
255 while (!isLegalSize(LoWidth)) LoWidth -= 8; | |
256 IntegerType *LoType = IntegerType::get(Inst->getContext(), LoWidth); | |
257 IntegerType *HiType = IntegerType::get(Inst->getContext(), Width - LoWidth); | |
258 IRBuilder<> IRB(Inst->getParent(), Inst); | |
259 | |
260 Value *BCLo = IRB.CreateBitCast( | |
261 OrigPtr, | |
262 LoType->getPointerTo(), | |
263 OrigPtr->getName() + ".loty"); | |
264 Value *LoTrunc = IRB.CreateTrunc( | |
265 OrigVal, LoType, OrigVal->getName() + ".lo"); | |
266 IRB.CreateAlignedStore(LoTrunc, BCLo, Inst->getAlignment()); | |
267 | |
268 Value *HiLShr = IRB.CreateLShr( | |
269 OrigVal, LoWidth, OrigVal->getName() + ".hi.sh"); | |
270 Value *GEPHi = IRB.CreateConstGEP1_32(BCLo, 1, OrigPtr->getName() + ".hi"); | |
271 Value *HiTrunc = IRB.CreateTrunc( | |
272 HiLShr, HiType, OrigVal->getName() + ".hi"); | |
273 Value *BCHi = IRB.CreateBitCast( | |
274 GEPHi, | |
275 HiType->getPointerTo(), | |
276 OrigPtr->getName() + ".hity"); | |
277 | |
278 Value *StoreHi = IRB.CreateStore(HiTrunc, BCHi); | |
279 | |
280 if (!isLegalSize(Width - LoWidth)) { | |
281 // HiTrunc is still illegal, and is redundant with the truncate in the | |
282 // recursive call, so just get rid of it. | |
283 State.recordConverted(cast<Instruction>(HiTrunc), HiLShr, | |
284 /*TakeName=*/false); | |
285 StoreHi = splitStore(cast<StoreInst>(StoreHi), State); | |
286 // BCHi was still illegal, and has been replaced with a placeholder in the | |
287 // recursive call. Since it is redundant with BCLo in the recursive call, | |
288 // just splice it out entirely. | |
289 State.recordConverted(cast<Instruction>(BCHi), GEPHi, /*TakeName=*/false); | |
290 } | |
291 State.recordConverted(Inst, StoreHi, /*TakeName=*/false); | |
292 return StoreHi; | |
293 } | |
294 | |
295 // Return a value with the bits of the operand above the size of the original | |
296 // type cleared. The operand is assumed to have been legalized already. | |
297 static Value *getClearUpper(Value *Operand, Type *OrigType, | |
298 Instruction *InsertPt) { | |
299 // If the operand is a constant, it will have been created by | |
300 // ConversionState.getConverted, which zero-extends by default. | |
301 if (isa<Constant>(Operand)) | |
302 return Operand; | |
303 return BinaryOperator::Create( | |
304 Instruction::And, | |
305 Operand, | |
306 ConstantInt::get( | |
307 getPromotedType(OrigType), | |
308 APInt::getLowBitsSet(getPromotedType(OrigType)->getIntegerBitWidth(), | |
309 OrigType->getIntegerBitWidth())), | |
310 Operand->getName() + ".clear", | |
311 InsertPt); | |
312 } | |
313 | |
314 // Return a value with the bits of the operand above the size of the original | |
315 // type equal to the sign bit of the original operand. The new operand is | |
316 // assumed to have been legalized already. | |
317 // This is done by shifting the sign bit of the smaller value up to the MSB | |
318 // position in the larger size, and then arithmetic-shifting it back down. | |
319 static Value *getSignExtend(Value *Operand, Value *OrigOperand, | |
320 Instruction *InsertPt) { | |
321 // If OrigOperand was a constant, NewOperand will have been created by | |
322 // ConversionState.getConverted, which zero-extends by default. But that is | |
323 // wrong here, so replace it with a sign-extended constant. | |
324 if (Constant *C = dyn_cast<Constant>(OrigOperand)) | |
325 return convertConstant(C, /*SignExt=*/true); | |
326 Type *OrigType = OrigOperand->getType(); | |
327 ConstantInt *ShiftAmt = ConstantInt::getSigned( | |
328 cast<IntegerType>(getPromotedType(OrigType)), | |
329 getPromotedType(OrigType)->getIntegerBitWidth() - | |
330 OrigType->getIntegerBitWidth()); | |
331 BinaryOperator *Shl = BinaryOperator::Create( | |
332 Instruction::Shl, | |
333 Operand, | |
334 ShiftAmt, | |
335 Operand->getName() + ".getsign", | |
336 InsertPt); | |
337 return BinaryOperator::Create( | |
338 Instruction::AShr, | |
339 Shl, | |
340 ShiftAmt, | |
341 Operand->getName() + ".signed", | |
342 InsertPt); | |
343 } | |
344 | |
345 static void convertInstruction(Instruction *Inst, ConversionState &State) { | |
346 if (SExtInst *Sext = dyn_cast<SExtInst>(Inst)) { | |
347 Value *Op = Sext->getOperand(0); | |
348 Value *NewInst = NULL; | |
349 // If the operand to be extended is illegal, we first need to fill its | |
350 // upper bits (which are zero) with its sign bit. | |
351 if (shouldConvert(Op)) { | |
352 NewInst = getSignExtend(State.getConverted(Op), Op, Sext); | |
353 } | |
354 // If the converted type of the operand is the same as the converted | |
355 // type of the result, we won't actually be changing the type of the | |
356 // variable, just its value. | |
357 if (getPromotedType(Op->getType()) != | |
358 getPromotedType(Sext->getType())) { | |
359 NewInst = new SExtInst( | |
360 NewInst ? NewInst : State.getConverted(Op), | |
361 getPromotedType(cast<IntegerType>(Sext->getType())), | |
362 Sext->getName() + ".sext", Sext); | |
363 } | |
364 // Now all the bits of the result are correct, but we need to restore | |
365 // the bits above its type to zero. | |
366 if (shouldConvert(Sext)) { | |
367 NewInst = getClearUpper(NewInst, Sext->getType(), Sext); | |
368 } | |
369 assert(NewInst && "Failed to convert sign extension"); | |
370 State.recordConverted(Sext, NewInst); | |
371 } else if (ZExtInst *Zext = dyn_cast<ZExtInst>(Inst)) { | |
372 Value *Op = Zext->getOperand(0); | |
373 Value *NewInst = NULL; | |
374 // TODO(dschuff): Some of these zexts could be no-ops. | |
375 if (shouldConvert(Op)) { | |
376 NewInst = getClearUpper(State.getConverted(Op), | |
377 Op->getType(), | |
378 Zext); | |
379 } | |
380 // If the converted type of the operand is the same as the converted | |
381 // type of the result, we won't actually be changing the type of the | |
382 // variable, just its value. | |
383 if (getPromotedType(Op->getType()) != | |
384 getPromotedType(Zext->getType())) { | |
385 NewInst = CastInst::CreateZExtOrBitCast( | |
386 NewInst ? NewInst : State.getConverted(Op), | |
387 getPromotedType(cast<IntegerType>(Zext->getType())), | |
388 "", Zext); | |
389 } | |
390 assert(NewInst); | |
391 State.recordConverted(Zext, NewInst); | |
392 } else if (TruncInst *Trunc = dyn_cast<TruncInst>(Inst)) { | |
393 Value *Op = Trunc->getOperand(0); | |
394 Value *NewInst = NULL; | |
395 // If the converted type of the operand is the same as the converted | |
396 // type of the result, we won't actually be changing the type of the | |
397 // variable, just its value. | |
398 if (getPromotedType(Op->getType()) != | |
399 getPromotedType(Trunc->getType())) { | |
400 NewInst = new TruncInst( | |
401 State.getConverted(Op), | |
402 getPromotedType(cast<IntegerType>(Trunc->getType())), | |
403 State.getConverted(Op)->getName() + ".trunc", | |
404 Trunc); | |
405 } | |
406 // Restoring the upper-bits-are-zero invariant effectively truncates the | |
407 // value. | |
408 if (shouldConvert(Trunc)) { | |
409 NewInst = getClearUpper(NewInst ? NewInst : Op, | |
410 Trunc->getType(), | |
411 Trunc); | |
412 } | |
413 assert(NewInst); | |
414 State.recordConverted(Trunc, NewInst); | |
415 } else if (AllocaInst *Alloc = dyn_cast<AllocaInst>(Inst)) { | |
416 // Don't handle arrays of illegal types, but we could handle an array | |
417 // with size specified as an illegal type, as unlikely as that seems. | |
418 if (shouldConvert(Alloc) && Alloc->isArrayAllocation()) | |
419 report_fatal_error("Can't convert arrays of illegal type"); | |
420 AllocaInst *NewInst = new AllocaInst( | |
421 getPromotedType(Alloc->getAllocatedType()), | |
422 State.getConverted(Alloc->getArraySize()), | |
423 "", Alloc); | |
424 NewInst->setAlignment(Alloc->getAlignment()); | |
425 State.recordConverted(Alloc, NewInst); | |
426 } else if (BitCastInst *BCInst = dyn_cast<BitCastInst>(Inst)) { | |
427 // Only handle pointers. Ints can't be casted to/from other ints | |
428 if (shouldConvert(BCInst) || shouldConvert(BCInst->getOperand(0))) { | |
429 BitCastInst *NewInst = new BitCastInst( | |
430 State.getConverted(BCInst->getOperand(0)), | |
431 getPromotedType(BCInst->getDestTy()), | |
432 "", BCInst); | |
433 State.recordConverted(BCInst, NewInst); | |
434 } | |
435 } else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) { | |
436 if (shouldConvert(Load)) { | |
437 splitLoad(Load, State); | |
438 } | |
439 } else if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) { | |
440 if (shouldConvert(Store->getValueOperand())) { | |
441 splitStore(Store, State); | |
442 } | |
443 } else if (CallInst *Call = dyn_cast<CallInst>(Inst)) { | |
444 report_fatal_error("can't convert calls with illegal types"); | |
445 } else if (BinaryOperator *Binop = dyn_cast<BinaryOperator>(Inst)) { | |
446 Value *NewInst = NULL; | |
447 if (Binop->getOpcode() == Instruction::AShr) { | |
448 // The AShr operand needs to be sign-extended to the promoted size | |
449 // before shifting. Because the sign-extension is implemented with | |
450 // with AShr, it can be combined with the original operation. | |
451 Value *Op = Binop->getOperand(0); | |
452 Value *ShiftAmount = NULL; | |
453 APInt SignShiftAmt = APInt( | |
454 getPromotedType(Op->getType())->getIntegerBitWidth(), | |
455 getPromotedType(Op->getType())->getIntegerBitWidth() - | |
456 Op->getType()->getIntegerBitWidth()); | |
457 NewInst = BinaryOperator::Create( | |
458 Instruction::Shl, | |
459 State.getConverted(Op), | |
460 ConstantInt::get(getPromotedType(Op->getType()), SignShiftAmt), | |
461 State.getConverted(Op)->getName() + ".getsign", | |
462 Binop); | |
463 if (ConstantInt *C = dyn_cast<ConstantInt>( | |
464 State.getConverted(Binop->getOperand(1)))) { | |
465 ShiftAmount = ConstantInt::get(getPromotedType(Op->getType()), | |
466 SignShiftAmt + C->getValue()); | |
467 } else { | |
468 ShiftAmount = BinaryOperator::Create( | |
469 Instruction::Add, | |
470 State.getConverted(Binop->getOperand(1)), | |
471 ConstantInt::get( | |
472 getPromotedType(Binop->getOperand(1)->getType()), | |
473 SignShiftAmt), | |
474 State.getConverted(Op)->getName() + ".shamt", Binop); | |
475 } | |
476 NewInst = BinaryOperator::Create( | |
477 Instruction::AShr, | |
478 NewInst, | |
479 ShiftAmount, | |
480 Binop->getName() + ".result", Binop); | |
481 } else { | |
482 // If the original operation is not AShr, just recreate it as usual. | |
483 NewInst = BinaryOperator::Create( | |
484 Binop->getOpcode(), | |
485 NewInst ? NewInst : State.getConverted(Binop->getOperand(0)), | |
jvoung (off chromium)
2013/05/10 01:22:44
NewInst is always null entering this branch?
Derek Schuff
2013/05/11 00:11:45
Done.
| |
486 State.getConverted(Binop->getOperand(1)), | |
487 Binop->getName() + ".result", Binop); | |
488 if (isa<OverflowingBinaryOperator>(NewInst)) { | |
489 cast<BinaryOperator>(NewInst)->setHasNoUnsignedWrap | |
490 (Binop->hasNoUnsignedWrap()); | |
491 cast<BinaryOperator>(NewInst)->setHasNoSignedWrap( | |
492 Binop->hasNoSignedWrap()); | |
493 } | |
494 } | |
495 | |
496 // Now restore the invariant if necessary. | |
497 // This switch also sanity-checks the operation. | |
498 switch (Binop->getOpcode()) { | |
499 case Instruction::And: | |
500 case Instruction::Or: | |
501 case Instruction::Xor: | |
502 case Instruction::LShr: | |
503 // These won't change the upper bits. | |
504 break; | |
505 // These can change the upper bits, unless we are sure they never | |
506 // overflow. So clear them now. | |
507 case Instruction::Add: | |
508 case Instruction::Sub: | |
509 if (!(Binop->hasNoUnsignedWrap() && Binop->hasNoSignedWrap())) | |
510 NewInst = getClearUpper(NewInst, Binop->getType(), Binop); | |
511 break; | |
512 case Instruction::Shl: | |
513 if (!Binop->hasNoUnsignedWrap()) | |
514 NewInst = getClearUpper(NewInst, Binop->getType(), Binop); | |
515 break; | |
516 // We modified the upper bits ourselves when implementing AShr | |
517 case Instruction::AShr: | |
518 NewInst = getClearUpper(NewInst, Binop->getType(), Binop); | |
519 break; | |
520 // We should not see FP operators here. | |
521 // We don't handle mul/div. | |
522 case Instruction::FAdd: | |
523 case Instruction::FSub: | |
524 case Instruction::Mul: | |
525 case Instruction::FMul: | |
526 case Instruction::UDiv: | |
527 case Instruction::SDiv: | |
528 case Instruction::FDiv: | |
529 case Instruction::URem: | |
530 case Instruction::SRem: | |
531 case Instruction::FRem: | |
532 case Instruction::BinaryOpsEnd: | |
533 errs() << *Inst << "\n"; | |
534 llvm_unreachable("Cannot handle binary operator"); | |
535 break; | |
536 } | |
537 | |
538 State.recordConverted(Binop, NewInst); | |
539 } else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(Inst)) { | |
540 Value *Op0, *Op1; | |
541 // For signed compares, operands are sign-extended to their | |
542 // promoted type. For unsigned or equality compares, the comparison | |
543 // is equivalent with the larger type because they are already | |
544 // zero-extended. | |
545 if (Cmp->isSigned()) { | |
546 Op0 = getSignExtend(State.getConverted(Cmp->getOperand(0)), | |
547 Cmp->getOperand(0), | |
548 Cmp); | |
549 Op1 = getSignExtend(State.getConverted(Cmp->getOperand(1)), | |
550 Cmp->getOperand(1), | |
551 Cmp); | |
552 } else { | |
553 Op0 = State.getConverted(Cmp->getOperand(0)); | |
554 Op1 = State.getConverted(Cmp->getOperand(1)); | |
555 } | |
556 ICmpInst *NewInst = new ICmpInst( | |
557 Cmp, Cmp->getPredicate(), Op0, Op1, ""); | |
558 State.recordConverted(Cmp, NewInst); | |
559 } else if (SelectInst *Select = dyn_cast<SelectInst>(Inst)) { | |
560 SelectInst *NewInst = SelectInst::Create( | |
561 Select->getCondition(), | |
562 State.getConverted(Select->getTrueValue()), | |
563 State.getConverted(Select->getFalseValue()), | |
564 "", Select); | |
565 State.recordConverted(Select, NewInst); | |
566 } else if (PHINode *Phi = dyn_cast<PHINode>(Inst)) { | |
567 PHINode *NewPhi = PHINode::Create( | |
568 getPromotedType(Phi->getType()), | |
569 Phi->getNumIncomingValues(), | |
570 "", Phi); | |
571 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I < E; ++I) { | |
572 NewPhi->addIncoming(State.getConverted(Phi->getIncomingValue(I)), | |
573 Phi->getIncomingBlock(I)); | |
574 } | |
575 State.recordConverted(Phi, NewPhi); | |
576 } else { | |
577 errs() << *Inst<<"\n"; | |
578 llvm_unreachable("unhandled instruction"); | |
579 } | |
580 } | |
581 | |
582 bool PromoteIntegers::runOnFunction(Function &F) { | |
583 // Don't support changing the function arguments. This should not be | |
584 // generated by clang. | |
585 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { | |
586 Value *Arg = I; | |
587 if (shouldConvert(Arg)) { | |
588 errs() << "Function " << F.getName() << ": " << *Arg << "\n"; | |
589 llvm_unreachable("Function has illegal integer/pointer argument"); | |
590 } | |
591 } | |
592 | |
593 ConversionState State; | |
594 bool Modified = false; | |
595 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { | |
596 for (BasicBlock::iterator BBI = FI->begin(), BBE = FI->end(); BBI != BBE;) { | |
597 Instruction *Inst = BBI++; | |
598 // Only attempt to convert an instruction if its result or any of its | |
599 // operands are illegal. | |
600 bool ShouldConvert = shouldConvert(Inst); | |
601 for (User::op_iterator OI = Inst->op_begin(), OE = Inst->op_end(); | |
602 OI != OE; ++OI) | |
603 ShouldConvert |= shouldConvert(cast<Value>(OI)); | |
604 | |
605 if (ShouldConvert) { | |
606 convertInstruction(Inst, State); | |
607 Modified = true; | |
608 } | |
609 } | |
610 } | |
611 State.eraseReplacedInstructions(); | |
612 return Modified; | |
613 } | |
OLD | NEW |