| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. | 2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
| 5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
| 6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
| 7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
| 8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
| 9 */ | 9 */ |
| 10 | 10 |
| (...skipping 133 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 144 return aRe * bIm + aIm * bRe; | 144 return aRe * bIm + aIm * bRe; |
| 145 } | 145 } |
| 146 | 146 |
| 147 static int CmpFloat(const void* a, const void* b) { | 147 static int CmpFloat(const void* a, const void* b) { |
| 148 const float* da = (const float*)a; | 148 const float* da = (const float*)a; |
| 149 const float* db = (const float*)b; | 149 const float* db = (const float*)b; |
| 150 | 150 |
| 151 return (*da > *db) - (*da < *db); | 151 return (*da > *db) - (*da < *db); |
| 152 } | 152 } |
| 153 | 153 |
| 154 static void FilterFar(int num_partitions, | 154 static void FilterFar( |
| 155 int x_fft_buffer_block_pos, | 155 int num_partitions, |
| 156 float x_fft_buffer[2][kExtendedNumPartitions * PART_LEN1], | 156 int x_fft_buf_block_pos, |
| 157 float h_fft_buffer[2][kExtendedNumPartitions * PART_LEN1], | 157 float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1], |
| 158 float y_fft[2][PART_LEN1]) { | 158 float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1], |
| 159 float y_fft[2][PART_LEN1]) { |
| 159 int i; | 160 int i; |
| 160 for (i = 0; i < num_partitions; i++) { | 161 for (i = 0; i < num_partitions; i++) { |
| 161 int j; | 162 int j; |
| 162 int x_pos = (i + x_fft_buffer_block_pos) * PART_LEN1; | 163 int xPos = (i + x_fft_buf_block_pos) * PART_LEN1; |
| 163 int pos = i * PART_LEN1; | 164 int pos = i * PART_LEN1; |
| 164 // Check for wrapped buffer. | 165 // Check for wrap |
| 165 if (i + x_fft_buffer_block_pos >= num_partitions) { | 166 if (i + x_fft_buf_block_pos >= num_partitions) { |
| 166 x_pos -= num_partitions * (PART_LEN1); | 167 xPos -= num_partitions * (PART_LEN1); |
| 167 } | 168 } |
| 168 | 169 |
| 169 for (j = 0; j < PART_LEN1; j++) { | 170 for (j = 0; j < PART_LEN1; j++) { |
| 170 y_fft[0][j] += MulRe(x_fft_buffer[0][x_pos + j], | 171 y_fft[0][j] += MulRe(x_fft_buf[0][xPos + j], |
| 171 x_fft_buffer[1][x_pos + j], | 172 x_fft_buf[1][xPos + j], |
| 172 h_fft_buffer[0][pos + j], | 173 h_fft_buf[0][pos + j], |
| 173 h_fft_buffer[1][pos + j]); | 174 h_fft_buf[1][pos + j]); |
| 174 y_fft[1][j] += MulIm(x_fft_buffer[0][x_pos + j], | 175 y_fft[1][j] += MulIm(x_fft_buf[0][xPos + j], |
| 175 x_fft_buffer[1][x_pos + j], | 176 x_fft_buf[1][xPos + j], |
| 176 h_fft_buffer[0][pos + j], | 177 h_fft_buf[0][pos + j], |
| 177 h_fft_buffer[1][pos + j]); | 178 h_fft_buf[1][pos + j]); |
| 178 } | 179 } |
| 179 } | 180 } |
| 180 } | 181 } |
| 181 | 182 |
| 182 static void ScaleErrorSignal(int extended_filter_enabled, | 183 static void ScaleErrorSignal(int extended_filter_enabled, |
| 183 float normal_mu, | 184 float normal_mu, |
| 184 float normal_error_threshold, | 185 float normal_error_threshold, |
| 185 float *x_pow, | 186 float x_pow[PART_LEN1], |
| 186 float ef[2][PART_LEN1]) { | 187 float ef[2][PART_LEN1]) { |
| 187 const float mu = extended_filter_enabled ? kExtendedMu : normal_mu; | 188 const float mu = extended_filter_enabled ? kExtendedMu : normal_mu; |
| 188 const float error_threshold = extended_filter_enabled | 189 const float error_threshold = extended_filter_enabled |
| 189 ? kExtendedErrorThreshold | 190 ? kExtendedErrorThreshold |
| 190 : normal_error_threshold; | 191 : normal_error_threshold; |
| 191 int i; | 192 int i; |
| 192 float abs_ef; | 193 float abs_ef; |
| 193 for (i = 0; i < (PART_LEN1); i++) { | 194 for (i = 0; i < (PART_LEN1); i++) { |
| 194 ef[0][i] /= (x_pow[i] + 1e-10f); | 195 ef[0][i] /= (x_pow[i] + 1e-10f); |
| 195 ef[1][i] /= (x_pow[i] + 1e-10f); | 196 ef[1][i] /= (x_pow[i] + 1e-10f); |
| 196 abs_ef = sqrtf(ef[0][i] * ef[0][i] + ef[1][i] * ef[1][i]); | 197 abs_ef = sqrtf(ef[0][i] * ef[0][i] + ef[1][i] * ef[1][i]); |
| 197 | 198 |
| 198 if (abs_ef > error_threshold) { | 199 if (abs_ef > error_threshold) { |
| 199 abs_ef = error_threshold / (abs_ef + 1e-10f); | 200 abs_ef = error_threshold / (abs_ef + 1e-10f); |
| 200 ef[0][i] *= abs_ef; | 201 ef[0][i] *= abs_ef; |
| 201 ef[1][i] *= abs_ef; | 202 ef[1][i] *= abs_ef; |
| 202 } | 203 } |
| 203 | 204 |
| 204 // Stepsize factor | 205 // Stepsize factor |
| 205 ef[0][i] *= mu; | 206 ef[0][i] *= mu; |
| 206 ef[1][i] *= mu; | 207 ef[1][i] *= mu; |
| 207 } | 208 } |
| 208 } | 209 } |
| 209 | 210 |
| 210 // Time-unconstrined filter adaptation. | |
| 211 // TODO(andrew): consider for a low-complexity mode. | |
| 212 // static void FilterAdaptationUnconstrained(AecCore* aec, float *fft, | |
| 213 // float ef[2][PART_LEN1]) { | |
| 214 // int i, j; | |
| 215 // for (i = 0; i < aec->num_partitions; i++) { | |
| 216 // int xPos = (i + aec->xfBufBlockPos)*(PART_LEN1); | |
| 217 // int pos; | |
| 218 // // Check for wrap | |
| 219 // if (i + aec->xfBufBlockPos >= aec->num_partitions) { | |
| 220 // xPos -= aec->num_partitions * PART_LEN1; | |
| 221 // } | |
| 222 // | |
| 223 // pos = i * PART_LEN1; | |
| 224 // | |
| 225 // for (j = 0; j < PART_LEN1; j++) { | |
| 226 // aec->wfBuf[0][pos + j] += MulRe(aec->xfBuf[0][xPos + j], | |
| 227 // -aec->xfBuf[1][xPos + j], | |
| 228 // ef[0][j], ef[1][j]); | |
| 229 // aec->wfBuf[1][pos + j] += MulIm(aec->xfBuf[0][xPos + j], | |
| 230 // -aec->xfBuf[1][xPos + j], | |
| 231 // ef[0][j], ef[1][j]); | |
| 232 // } | |
| 233 // } | |
| 234 //} | |
| 235 | 211 |
| 236 static void FilterAdaptation(AecCore* aec, float* fft, float ef[2][PART_LEN1]) { | 212 static void FilterAdaptation( |
| 213 int num_partitions, |
| 214 int x_fft_buf_block_pos, |
| 215 float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1], |
| 216 float e_fft[2][PART_LEN1], |
| 217 float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1]) { |
| 237 int i, j; | 218 int i, j; |
| 238 for (i = 0; i < aec->num_partitions; i++) { | 219 float fft[PART_LEN2]; |
| 239 int xPos = (i + aec->xfBufBlockPos) * (PART_LEN1); | 220 for (i = 0; i < num_partitions; i++) { |
| 221 int xPos = (i + x_fft_buf_block_pos) * (PART_LEN1); |
| 240 int pos; | 222 int pos; |
| 241 // Check for wrap | 223 // Check for wrap |
| 242 if (i + aec->xfBufBlockPos >= aec->num_partitions) { | 224 if (i + x_fft_buf_block_pos >= num_partitions) { |
| 243 xPos -= aec->num_partitions * PART_LEN1; | 225 xPos -= num_partitions * PART_LEN1; |
| 244 } | 226 } |
| 245 | 227 |
| 246 pos = i * PART_LEN1; | 228 pos = i * PART_LEN1; |
| 247 | 229 |
| 248 for (j = 0; j < PART_LEN; j++) { | 230 for (j = 0; j < PART_LEN; j++) { |
| 249 | 231 |
| 250 fft[2 * j] = MulRe(aec->xfBuf[0][xPos + j], | 232 fft[2 * j] = MulRe(x_fft_buf[0][xPos + j], |
| 251 -aec->xfBuf[1][xPos + j], | 233 -x_fft_buf[1][xPos + j], |
| 252 ef[0][j], | 234 e_fft[0][j], |
| 253 ef[1][j]); | 235 e_fft[1][j]); |
| 254 fft[2 * j + 1] = MulIm(aec->xfBuf[0][xPos + j], | 236 fft[2 * j + 1] = MulIm(x_fft_buf[0][xPos + j], |
| 255 -aec->xfBuf[1][xPos + j], | 237 -x_fft_buf[1][xPos + j], |
| 256 ef[0][j], | 238 e_fft[0][j], |
| 257 ef[1][j]); | 239 e_fft[1][j]); |
| 258 } | 240 } |
| 259 fft[1] = MulRe(aec->xfBuf[0][xPos + PART_LEN], | 241 fft[1] = MulRe(x_fft_buf[0][xPos + PART_LEN], |
| 260 -aec->xfBuf[1][xPos + PART_LEN], | 242 -x_fft_buf[1][xPos + PART_LEN], |
| 261 ef[0][PART_LEN], | 243 e_fft[0][PART_LEN], |
| 262 ef[1][PART_LEN]); | 244 e_fft[1][PART_LEN]); |
| 263 | 245 |
| 264 aec_rdft_inverse_128(fft); | 246 aec_rdft_inverse_128(fft); |
| 265 memset(fft + PART_LEN, 0, sizeof(float) * PART_LEN); | 247 memset(fft + PART_LEN, 0, sizeof(float) * PART_LEN); |
| 266 | 248 |
| 267 // fft scaling | 249 // fft scaling |
| 268 { | 250 { |
| 269 float scale = 2.0f / PART_LEN2; | 251 float scale = 2.0f / PART_LEN2; |
| 270 for (j = 0; j < PART_LEN; j++) { | 252 for (j = 0; j < PART_LEN; j++) { |
| 271 fft[j] *= scale; | 253 fft[j] *= scale; |
| 272 } | 254 } |
| 273 } | 255 } |
| 274 aec_rdft_forward_128(fft); | 256 aec_rdft_forward_128(fft); |
| 275 | 257 |
| 276 aec->wfBuf[0][pos] += fft[0]; | 258 h_fft_buf[0][pos] += fft[0]; |
| 277 aec->wfBuf[0][pos + PART_LEN] += fft[1]; | 259 h_fft_buf[0][pos + PART_LEN] += fft[1]; |
| 278 | 260 |
| 279 for (j = 1; j < PART_LEN; j++) { | 261 for (j = 1; j < PART_LEN; j++) { |
| 280 aec->wfBuf[0][pos + j] += fft[2 * j]; | 262 h_fft_buf[0][pos + j] += fft[2 * j]; |
| 281 aec->wfBuf[1][pos + j] += fft[2 * j + 1]; | 263 h_fft_buf[1][pos + j] += fft[2 * j + 1]; |
| 282 } | 264 } |
| 283 } | 265 } |
| 284 } | 266 } |
| 285 | 267 |
| 286 static void OverdriveAndSuppress(AecCore* aec, | 268 static void OverdriveAndSuppress(AecCore* aec, |
| 287 float hNl[PART_LEN1], | 269 float hNl[PART_LEN1], |
| 288 const float hNlFb, | 270 const float hNlFb, |
| 289 float efw[2][PART_LEN1]) { | 271 float efw[2][PART_LEN1]) { |
| 290 int i; | 272 int i; |
| 291 for (i = 0; i < PART_LEN1; i++) { | 273 for (i = 0; i < PART_LEN1; i++) { |
| (...skipping 546 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 838 self->num_delay_values; | 820 self->num_delay_values; |
| 839 } | 821 } |
| 840 | 822 |
| 841 // Reset histogram. | 823 // Reset histogram. |
| 842 memset(self->delay_histogram, 0, sizeof(self->delay_histogram)); | 824 memset(self->delay_histogram, 0, sizeof(self->delay_histogram)); |
| 843 self->num_delay_values = 0; | 825 self->num_delay_values = 0; |
| 844 | 826 |
| 845 return; | 827 return; |
| 846 } | 828 } |
| 847 | 829 |
| 848 static void FrequencyToTime(float freq_data[2][PART_LEN1], | 830 static void InverseFft(float freq_data[2][PART_LEN1], |
| 849 float time_data[PART_LEN2]) { | 831 float time_data[PART_LEN2]) { |
| 850 int i; | 832 int i; |
| 851 time_data[0] = freq_data[0][0]; | 833 const float scale = 1.0f / PART_LEN2; |
| 852 time_data[1] = freq_data[0][PART_LEN]; | 834 time_data[0] = freq_data[0][0] * scale; |
| 835 time_data[1] = freq_data[0][PART_LEN] * scale; |
| 853 for (i = 1; i < PART_LEN; i++) { | 836 for (i = 1; i < PART_LEN; i++) { |
| 854 time_data[2 * i] = freq_data[0][i]; | 837 time_data[2 * i] = freq_data[0][i] * scale; |
| 855 time_data[2 * i + 1] = freq_data[1][i]; | 838 time_data[2 * i + 1] = freq_data[1][i] * scale; |
| 856 } | 839 } |
| 857 aec_rdft_inverse_128(time_data); | 840 aec_rdft_inverse_128(time_data); |
| 858 } | 841 } |
| 859 | 842 |
| 860 | 843 |
| 861 static void TimeToFrequency(float time_data[PART_LEN2], | 844 static void Fft(float time_data[PART_LEN2], |
| 862 float freq_data[2][PART_LEN1], | 845 float freq_data[2][PART_LEN1]) { |
| 863 int window) { | 846 int i; |
| 864 int i = 0; | 847 aec_rdft_forward_128(time_data); |
| 865 | 848 |
| 866 // TODO(bjornv): Should we have a different function/wrapper for windowed FFT? | 849 // Reorder fft output data. |
| 867 if (window) { | |
| 868 for (i = 0; i < PART_LEN; i++) { | |
| 869 time_data[i] *= WebRtcAec_sqrtHanning[i]; | |
| 870 time_data[PART_LEN + i] *= WebRtcAec_sqrtHanning[PART_LEN - i]; | |
| 871 } | |
| 872 } | |
| 873 | |
| 874 aec_rdft_forward_128(time_data); | |
| 875 // Reorder. | |
| 876 freq_data[1][0] = 0; | 850 freq_data[1][0] = 0; |
| 877 freq_data[1][PART_LEN] = 0; | 851 freq_data[1][PART_LEN] = 0; |
| 878 freq_data[0][0] = time_data[0]; | 852 freq_data[0][0] = time_data[0]; |
| 879 freq_data[0][PART_LEN] = time_data[1]; | 853 freq_data[0][PART_LEN] = time_data[1]; |
| 880 for (i = 1; i < PART_LEN; i++) { | 854 for (i = 1; i < PART_LEN; i++) { |
| 881 freq_data[0][i] = time_data[2 * i]; | 855 freq_data[0][i] = time_data[2 * i]; |
| 882 freq_data[1][i] = time_data[2 * i + 1]; | 856 freq_data[1][i] = time_data[2 * i + 1]; |
| 883 } | 857 } |
| 884 } | 858 } |
| 885 | 859 |
| (...skipping 70 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 956 float delay_quality = WebRtc_last_delay_quality(self->delay_estimator); | 930 float delay_quality = WebRtc_last_delay_quality(self->delay_estimator); |
| 957 delay_quality = (delay_quality > kDelayQualityThresholdMax ? | 931 delay_quality = (delay_quality > kDelayQualityThresholdMax ? |
| 958 kDelayQualityThresholdMax : delay_quality); | 932 kDelayQualityThresholdMax : delay_quality); |
| 959 self->delay_quality_threshold = | 933 self->delay_quality_threshold = |
| 960 (delay_quality > self->delay_quality_threshold ? delay_quality : | 934 (delay_quality > self->delay_quality_threshold ? delay_quality : |
| 961 self->delay_quality_threshold); | 935 self->delay_quality_threshold); |
| 962 } | 936 } |
| 963 return delay_correction; | 937 return delay_correction; |
| 964 } | 938 } |
| 965 | 939 |
| 966 static void EchoSubtraction(AecCore* aec, | 940 static void EchoSubtraction( |
| 967 float* nearend_ptr) { | 941 AecCore* aec, |
| 968 float yf[2][PART_LEN1]; | 942 int num_partitions, |
| 969 float fft[PART_LEN2]; | 943 int x_fft_buf_block_pos, |
| 970 float y[PART_LEN]; | 944 int metrics_mode, |
| 945 int extended_filter_enabled, |
| 946 float normal_mu, |
| 947 float normal_error_threshold, |
| 948 float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1], |
| 949 float* const y, |
| 950 float x_pow[PART_LEN1], |
| 951 float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1], |
| 952 PowerLevel* linout_level, |
| 953 float echo_subtractor_output[PART_LEN]) { |
| 954 float s_fft[2][PART_LEN1]; |
| 955 float e_extended[PART_LEN2]; |
| 956 float s_extended[PART_LEN2]; |
| 957 float *s; |
| 971 float e[PART_LEN]; | 958 float e[PART_LEN]; |
| 972 float ef[2][PART_LEN1]; | 959 float e_fft[2][PART_LEN1]; |
| 973 float scale; | |
| 974 int i; | 960 int i; |
| 975 memset(yf, 0, sizeof(yf)); | 961 memset(s_fft, 0, sizeof(s_fft)); |
| 976 | 962 |
| 977 // Produce frequency domain echo estimate. | 963 // Produce echo estimate s_fft. |
| 978 WebRtcAec_FilterFar(aec->num_partitions, | 964 WebRtcAec_FilterFar(num_partitions, |
| 979 aec->xfBufBlockPos, | 965 x_fft_buf_block_pos, |
| 980 aec->xfBuf, | 966 x_fft_buf, |
| 981 aec->wfBuf, | 967 h_fft_buf, |
| 982 yf); | 968 s_fft); |
| 983 | 969 |
| 984 // Inverse fft to obtain echo estimate and error. | 970 // Compute the time-domain echo estimate s. |
| 985 FrequencyToTime(yf, fft); | 971 InverseFft(s_fft, s_extended); |
| 986 | 972 s = &s_extended[PART_LEN]; |
| 987 // Extract the output signal and compute the time-domain error. | |
| 988 scale = 2.0f / PART_LEN2; | |
| 989 for (i = 0; i < PART_LEN; ++i) { | 973 for (i = 0; i < PART_LEN; ++i) { |
| 990 y[i] = fft[PART_LEN + i] * scale; // fft scaling. | 974 s[i] *= 2.0f; |
| 991 e[i] = nearend_ptr[i] - y[i]; | |
| 992 } | 975 } |
| 993 | 976 |
| 994 // Error fft | 977 // Compute the time-domain echo prediction error. |
| 995 memcpy(aec->eBuf + PART_LEN, e, sizeof(float) * PART_LEN); | 978 for (i = 0; i < PART_LEN; ++i) { |
| 996 memset(fft, 0, sizeof(float) * PART_LEN); | 979 e[i] = y[i] - s[i]; |
| 997 memcpy(fft + PART_LEN, e, sizeof(float) * PART_LEN); | 980 } |
| 998 TimeToFrequency(fft, ef, 0); | 981 |
| 982 // Compute the frequency domain echo prediction error. |
| 983 memset(e_extended, 0, sizeof(float) * PART_LEN); |
| 984 memcpy(e_extended + PART_LEN, e, sizeof(float) * PART_LEN); |
| 985 Fft(e_extended, e_fft); |
| 999 | 986 |
| 1000 RTC_AEC_DEBUG_RAW_WRITE(aec->e_fft_file, | 987 RTC_AEC_DEBUG_RAW_WRITE(aec->e_fft_file, |
| 1001 &ef[0][0], | 988 &e_fft[0][0], |
| 1002 sizeof(ef[0][0]) * PART_LEN1 * 2); | 989 sizeof(e_fft[0][0]) * PART_LEN1 * 2); |
| 1003 | 990 |
| 1004 if (aec->metricsMode == 1) { | 991 if (metrics_mode == 1) { |
| 1005 // Note that the first PART_LEN samples in fft (before transformation) are | 992 // Note that the first PART_LEN samples in fft (before transformation) are |
| 1006 // zero. Hence, the scaling by two in UpdateLevel() should not be | 993 // zero. Hence, the scaling by two in UpdateLevel() should not be |
| 1007 // performed. That scaling is taken care of in UpdateMetrics() instead. | 994 // performed. That scaling is taken care of in UpdateMetrics() instead. |
| 1008 UpdateLevel(&aec->linoutlevel, ef); | 995 UpdateLevel(linout_level, e_fft); |
| 1009 } | 996 } |
| 1010 | 997 |
| 1011 // Scale error signal inversely with far power. | 998 // Scale error signal inversely with far power. |
| 1012 WebRtcAec_ScaleErrorSignal(aec->extended_filter_enabled, | 999 WebRtcAec_ScaleErrorSignal(extended_filter_enabled, |
| 1013 aec->normal_mu, | 1000 normal_mu, |
| 1014 aec->normal_error_threshold, | 1001 normal_error_threshold, |
| 1015 aec->xPow, | 1002 x_pow, |
| 1016 ef); | 1003 e_fft); |
| 1017 WebRtcAec_FilterAdaptation(aec, fft, ef); | 1004 WebRtcAec_FilterAdaptation(num_partitions, |
| 1018 | 1005 x_fft_buf_block_pos, |
| 1019 | 1006 x_fft_buf, |
| 1020 RTC_AEC_DEBUG_WAV_WRITE(aec->outLinearFile, e, PART_LEN); | 1007 e_fft, |
| 1008 h_fft_buf); |
| 1009 memcpy(echo_subtractor_output, e, sizeof(float) * PART_LEN); |
| 1021 } | 1010 } |
| 1022 | 1011 |
| 1023 | 1012 |
| 1024 static void EchoSuppression(AecCore* aec, | 1013 static void EchoSuppression(AecCore* aec, |
| 1025 float* output, | 1014 float* output, |
| 1026 float* const* outputH) { | 1015 float* const* outputH) { |
| 1027 float efw[2][PART_LEN1], xfw[2][PART_LEN1]; | 1016 float efw[2][PART_LEN1], xfw[2][PART_LEN1]; |
| 1028 complex_t comfortNoiseHband[PART_LEN1]; | 1017 complex_t comfortNoiseHband[PART_LEN1]; |
| 1029 float fft[PART_LEN2]; | 1018 float fft[PART_LEN2]; |
| 1030 float scale, dtmp; | 1019 float scale, dtmp; |
| (...skipping 236 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 1267 | 1256 |
| 1268 const float gPow[2] = {0.9f, 0.1f}; | 1257 const float gPow[2] = {0.9f, 0.1f}; |
| 1269 | 1258 |
| 1270 // Noise estimate constants. | 1259 // Noise estimate constants. |
| 1271 const int noiseInitBlocks = 500 * aec->mult; | 1260 const int noiseInitBlocks = 500 * aec->mult; |
| 1272 const float step = 0.1f; | 1261 const float step = 0.1f; |
| 1273 const float ramp = 1.0002f; | 1262 const float ramp = 1.0002f; |
| 1274 const float gInitNoise[2] = {0.999f, 0.001f}; | 1263 const float gInitNoise[2] = {0.999f, 0.001f}; |
| 1275 | 1264 |
| 1276 float nearend[PART_LEN]; | 1265 float nearend[PART_LEN]; |
| 1266 float echo_subtractor_output[PART_LEN]; |
| 1277 float* nearend_ptr = NULL; | 1267 float* nearend_ptr = NULL; |
| 1278 float output[PART_LEN]; | 1268 float output[PART_LEN]; |
| 1279 float outputH[NUM_HIGH_BANDS_MAX][PART_LEN]; | 1269 float outputH[NUM_HIGH_BANDS_MAX][PART_LEN]; |
| 1280 float* outputH_ptr[NUM_HIGH_BANDS_MAX]; | 1270 float* outputH_ptr[NUM_HIGH_BANDS_MAX]; |
| 1281 float* xf_ptr = NULL; | 1271 float* xf_ptr = NULL; |
| 1282 | 1272 |
| 1283 for (i = 0; i < NUM_HIGH_BANDS_MAX; ++i) { | 1273 for (i = 0; i < NUM_HIGH_BANDS_MAX; ++i) { |
| 1284 outputH_ptr[i] = outputH[i]; | 1274 outputH_ptr[i] = outputH[i]; |
| 1285 } | 1275 } |
| 1286 | 1276 |
| (...skipping 19 matching lines...) Expand all Loading... |
| 1306 RTC_AEC_DEBUG_WAV_WRITE(aec->nearFile, nearend_ptr, PART_LEN); | 1296 RTC_AEC_DEBUG_WAV_WRITE(aec->nearFile, nearend_ptr, PART_LEN); |
| 1307 } | 1297 } |
| 1308 #endif | 1298 #endif |
| 1309 | 1299 |
| 1310 // We should always have at least one element stored in |far_buf|. | 1300 // We should always have at least one element stored in |far_buf|. |
| 1311 assert(WebRtc_available_read(aec->far_buf) > 0); | 1301 assert(WebRtc_available_read(aec->far_buf) > 0); |
| 1312 WebRtc_ReadBuffer(aec->far_buf, (void**)&xf_ptr, &xf[0][0], 1); | 1302 WebRtc_ReadBuffer(aec->far_buf, (void**)&xf_ptr, &xf[0][0], 1); |
| 1313 | 1303 |
| 1314 // Near fft | 1304 // Near fft |
| 1315 memcpy(fft, aec->dBuf, sizeof(float) * PART_LEN2); | 1305 memcpy(fft, aec->dBuf, sizeof(float) * PART_LEN2); |
| 1316 TimeToFrequency(fft, df, 0); | 1306 Fft(fft, df); |
| 1317 | 1307 |
| 1318 // Power smoothing | 1308 // Power smoothing |
| 1319 for (i = 0; i < PART_LEN1; i++) { | 1309 for (i = 0; i < PART_LEN1; i++) { |
| 1320 far_spectrum = (xf_ptr[i] * xf_ptr[i]) + | 1310 far_spectrum = (xf_ptr[i] * xf_ptr[i]) + |
| 1321 (xf_ptr[PART_LEN1 + i] * xf_ptr[PART_LEN1 + i]); | 1311 (xf_ptr[PART_LEN1 + i] * xf_ptr[PART_LEN1 + i]); |
| 1322 aec->xPow[i] = | 1312 aec->xPow[i] = |
| 1323 gPow[0] * aec->xPow[i] + gPow[1] * aec->num_partitions * far_spectrum; | 1313 gPow[0] * aec->xPow[i] + gPow[1] * aec->num_partitions * far_spectrum; |
| 1324 // Calculate absolute spectra | 1314 // Calculate absolute spectra |
| 1325 abs_far_spectrum[i] = sqrtf(far_spectrum); | 1315 abs_far_spectrum[i] = sqrtf(far_spectrum); |
| 1326 | 1316 |
| (...skipping 58 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 1385 | 1375 |
| 1386 // Buffer xf | 1376 // Buffer xf |
| 1387 memcpy(aec->xfBuf[0] + aec->xfBufBlockPos * PART_LEN1, | 1377 memcpy(aec->xfBuf[0] + aec->xfBufBlockPos * PART_LEN1, |
| 1388 xf_ptr, | 1378 xf_ptr, |
| 1389 sizeof(float) * PART_LEN1); | 1379 sizeof(float) * PART_LEN1); |
| 1390 memcpy(aec->xfBuf[1] + aec->xfBufBlockPos * PART_LEN1, | 1380 memcpy(aec->xfBuf[1] + aec->xfBufBlockPos * PART_LEN1, |
| 1391 &xf_ptr[PART_LEN1], | 1381 &xf_ptr[PART_LEN1], |
| 1392 sizeof(float) * PART_LEN1); | 1382 sizeof(float) * PART_LEN1); |
| 1393 | 1383 |
| 1394 // Perform echo subtraction. | 1384 // Perform echo subtraction. |
| 1395 EchoSubtraction(aec, nearend_ptr); | 1385 EchoSubtraction(aec, |
| 1386 aec->num_partitions, |
| 1387 aec->xfBufBlockPos, |
| 1388 aec->metricsMode, |
| 1389 aec->extended_filter_enabled, |
| 1390 aec->normal_mu, |
| 1391 aec->normal_error_threshold, |
| 1392 aec->xfBuf, |
| 1393 nearend_ptr, |
| 1394 aec->xPow, |
| 1395 aec->wfBuf, |
| 1396 &aec->linoutlevel, |
| 1397 echo_subtractor_output); |
| 1398 |
| 1399 RTC_AEC_DEBUG_WAV_WRITE(aec->outLinearFile, echo_subtractor_output, PART_LEN); |
| 1396 | 1400 |
| 1397 // Perform echo suppression. | 1401 // Perform echo suppression. |
| 1402 memcpy(aec->eBuf + PART_LEN, |
| 1403 echo_subtractor_output, |
| 1404 sizeof(float) * PART_LEN); |
| 1398 EchoSuppression(aec, output, outputH_ptr); | 1405 EchoSuppression(aec, output, outputH_ptr); |
| 1399 | 1406 |
| 1400 if (aec->metricsMode == 1) { | 1407 if (aec->metricsMode == 1) { |
| 1401 // Update power levels and echo metrics | 1408 // Update power levels and echo metrics |
| 1402 UpdateLevel(&aec->farlevel, (float(*)[PART_LEN1])xf_ptr); | 1409 UpdateLevel(&aec->farlevel, (float(*)[PART_LEN1])xf_ptr); |
| 1403 UpdateLevel(&aec->nearlevel, df); | 1410 UpdateLevel(&aec->nearlevel, df); |
| 1404 UpdateMetrics(aec); | 1411 UpdateMetrics(aec); |
| 1405 } | 1412 } |
| 1406 | 1413 |
| 1407 // Store the output block. | 1414 // Store the output block. |
| (...skipping 322 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 1730 void WebRtcAec_BufferFarendPartition(AecCore* aec, const float* farend) { | 1737 void WebRtcAec_BufferFarendPartition(AecCore* aec, const float* farend) { |
| 1731 float fft[PART_LEN2]; | 1738 float fft[PART_LEN2]; |
| 1732 float xf[2][PART_LEN1]; | 1739 float xf[2][PART_LEN1]; |
| 1733 | 1740 |
| 1734 // Check if the buffer is full, and in that case flush the oldest data. | 1741 // Check if the buffer is full, and in that case flush the oldest data. |
| 1735 if (WebRtc_available_write(aec->far_buf) < 1) { | 1742 if (WebRtc_available_write(aec->far_buf) < 1) { |
| 1736 WebRtcAec_MoveFarReadPtr(aec, 1); | 1743 WebRtcAec_MoveFarReadPtr(aec, 1); |
| 1737 } | 1744 } |
| 1738 // Convert far-end partition to the frequency domain without windowing. | 1745 // Convert far-end partition to the frequency domain without windowing. |
| 1739 memcpy(fft, farend, sizeof(float) * PART_LEN2); | 1746 memcpy(fft, farend, sizeof(float) * PART_LEN2); |
| 1740 TimeToFrequency(fft, xf, 0); | 1747 Fft(fft, xf); |
| 1741 WebRtc_WriteBuffer(aec->far_buf, &xf[0][0], 1); | 1748 WebRtc_WriteBuffer(aec->far_buf, &xf[0][0], 1); |
| 1742 | 1749 |
| 1743 // Convert far-end partition to the frequency domain with windowing. | 1750 // Convert far-end partition to the frequency domain with windowing. |
| 1744 memcpy(fft, farend, sizeof(float) * PART_LEN2); | 1751 WindowData(fft, farend); |
| 1745 TimeToFrequency(fft, xf, 1); | 1752 Fft(fft, xf); |
| 1746 WebRtc_WriteBuffer(aec->far_buf_windowed, &xf[0][0], 1); | 1753 WebRtc_WriteBuffer(aec->far_buf_windowed, &xf[0][0], 1); |
| 1747 } | 1754 } |
| 1748 | 1755 |
| 1749 int WebRtcAec_MoveFarReadPtr(AecCore* aec, int elements) { | 1756 int WebRtcAec_MoveFarReadPtr(AecCore* aec, int elements) { |
| 1750 int elements_moved = MoveFarReadPtrWithoutSystemDelayUpdate(aec, elements); | 1757 int elements_moved = MoveFarReadPtrWithoutSystemDelayUpdate(aec, elements); |
| 1751 aec->system_delay -= elements_moved * PART_LEN; | 1758 aec->system_delay -= elements_moved * PART_LEN; |
| 1752 return elements_moved; | 1759 return elements_moved; |
| 1753 } | 1760 } |
| 1754 | 1761 |
| 1755 void WebRtcAec_ProcessFrames(AecCore* aec, | 1762 void WebRtcAec_ProcessFrames(AecCore* aec, |
| (...skipping 191 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 1947 int WebRtcAec_extended_filter_enabled(AecCore* self) { | 1954 int WebRtcAec_extended_filter_enabled(AecCore* self) { |
| 1948 return self->extended_filter_enabled; | 1955 return self->extended_filter_enabled; |
| 1949 } | 1956 } |
| 1950 | 1957 |
| 1951 int WebRtcAec_system_delay(AecCore* self) { return self->system_delay; } | 1958 int WebRtcAec_system_delay(AecCore* self) { return self->system_delay; } |
| 1952 | 1959 |
| 1953 void WebRtcAec_SetSystemDelay(AecCore* self, int delay) { | 1960 void WebRtcAec_SetSystemDelay(AecCore* self, int delay) { |
| 1954 assert(delay >= 0); | 1961 assert(delay >= 0); |
| 1955 self->system_delay = delay; | 1962 self->system_delay = delay; |
| 1956 } | 1963 } |
| OLD | NEW |