Chromium Code Reviews| OLD | NEW |
|---|---|
| 1 | 1 |
| 2 /* | 2 /* |
| 3 * Copyright 2006 The Android Open Source Project | 3 * Copyright 2006 The Android Open Source Project |
| 4 * | 4 * |
| 5 * Use of this source code is governed by a BSD-style license that can be | 5 * Use of this source code is governed by a BSD-style license that can be |
| 6 * found in the LICENSE file. | 6 * found in the LICENSE file. |
| 7 */ | 7 */ |
| 8 | 8 |
| 9 | 9 |
| 10 #ifndef SkTDArray_DEFINED | 10 #ifndef SkTDArray_DEFINED |
| 11 #define SkTDArray_DEFINED | 11 #define SkTDArray_DEFINED |
| 12 | 12 |
| 13 #include "SkTypes.h" | 13 #include "SkTypes.h" |
| 14 #include "SkTemplates.h" | |
| 14 | 15 |
| 15 template <typename T> class SkTDArray { | 16 template <typename T> class SkTDArray { |
| 16 public: | 17 public: |
| 17 SkTDArray() { | 18 SkTDArray() { |
| 18 fReserve = fCount = 0; | 19 this->init(NULL, 0, NULL, 0); |
| 19 fArray = NULL; | |
| 20 } | 20 } |
| 21 SkTDArray(const T src[], int count) { | 21 SkTDArray(const T src[], size_t count) { |
| 22 SkASSERT(src || count == 0); | 22 this->init(src, count, NULL, 0); |
| 23 } | |
| 24 SkTDArray(const SkTDArray<T>& that) { | |
| 25 this->init(that.fArray, that.fCount, NULL, 0); | |
| 26 } | |
| 23 | 27 |
| 24 fReserve = fCount = 0; | 28 ~SkTDArray() { |
| 25 fArray = NULL; | 29 if (fArray != fPreAllocMemArray) { |
| 26 if (count) { | 30 sk_free(fArray); |
| 27 fArray = (T*)sk_malloc_throw(count * sizeof(T)); | |
| 28 memcpy(fArray, src, sizeof(T) * count); | |
| 29 fReserve = fCount = count; | |
| 30 } | 31 } |
| 31 } | 32 } |
| 32 SkTDArray(const SkTDArray<T>& src) { | |
| 33 fReserve = fCount = 0; | |
| 34 fArray = NULL; | |
| 35 SkTDArray<T> tmp(src.fArray, src.fCount); | |
| 36 this->swap(tmp); | |
| 37 } | |
| 38 ~SkTDArray() { | |
| 39 sk_free(fArray); | |
| 40 } | |
| 41 | 33 |
| 42 SkTDArray<T>& operator=(const SkTDArray<T>& src) { | 34 SkTDArray<T>& operator=(const SkTDArray<T>& that) { |
| 43 if (this != &src) { | 35 if (this != &that) { |
| 44 if (src.fCount > fReserve) { | 36 if (that.fCount > fReserve) { |
| 45 SkTDArray<T> tmp(src.fArray, src.fCount); | 37 T* oldArray = fArray; |
| 46 this->swap(tmp); | 38 |
| 39 T* newArray = (T*)sk_malloc_throw(that.fCount * sizeof(T)); | |
| 40 memcpy(newArray, that.fArray, sizeof(T) * that.fCount); | |
| 41 SkTSwap(newArray, fArray); | |
| 42 fReserve = that.fCount; | |
| 43 | |
| 44 if (oldArray != fPreAllocMemArray) { | |
| 45 sk_free(oldArray); | |
| 46 } | |
| 47 } else { | 47 } else { |
| 48 memcpy(fArray, src.fArray, sizeof(T) * src.fCount); | 48 memcpy(fArray, that.fArray, sizeof(T) * that.fCount); |
| 49 fCount = src.fCount; | |
| 50 } | 49 } |
| 50 fCount = that.fCount; | |
| 51 } | 51 } |
| 52 return *this; | 52 return *this; |
| 53 } | 53 } |
| 54 | 54 |
| 55 friend bool operator==(const SkTDArray<T>& a, const SkTDArray<T>& b) { | 55 friend bool operator==(const SkTDArray<T>& a, const SkTDArray<T>& b) { |
| 56 return a.fCount == b.fCount && | 56 return a.fCount == b.fCount && |
| 57 (a.fCount == 0 || | 57 (a.fCount == 0 || |
| 58 !memcmp(a.fArray, b.fArray, a.fCount * sizeof(T))); | 58 !memcmp(a.fArray, b.fArray, a.fCount * sizeof(T))); |
| 59 } | 59 } |
| 60 friend bool operator!=(const SkTDArray<T>& a, const SkTDArray<T>& b) { | 60 friend bool operator!=(const SkTDArray<T>& a, const SkTDArray<T>& b) { |
| 61 return !(a == b); | 61 return !(a == b); |
| 62 } | 62 } |
| 63 | 63 |
| 64 void swap(SkTDArray<T>& other) { | 64 void swap(SkTDArray<T>& other) { |
|
bungeman-skia
2015/04/22 22:20:29
This swap is wrong for any STD versions, haven't t
| |
| 65 SkTSwap(fArray, other.fArray); | 65 SkTSwap(fArray, other.fArray); |
| 66 SkTSwap(fReserve, other.fReserve); | 66 SkTSwap(fReserve, other.fReserve); |
| 67 SkTSwap(fCount, other.fCount); | 67 SkTSwap(fCount, other.fCount); |
| 68 } | 68 } |
| 69 | 69 |
| 70 /** Return a ptr to the array of data, to be freed with sk_free. This also | 70 /** Returns a pointer to the array of data, to be freed with sk_free. |
| 71 resets the SkTDArray to be empty. | 71 * This also resets the SkTDArray to be empty. |
| 72 * Note that the value returned may differ from begin(). | |
| 72 */ | 73 */ |
| 73 T* detach() { | 74 T* detach() { |
| 74 T* array = fArray; | 75 T* array = fArray; |
| 75 fArray = NULL; | 76 if (fArray == fPreAllocMemArray && fCount > 0) { |
| 76 fReserve = fCount = 0; | 77 array = (T*)sk_malloc_throw(fCount * sizeof(T)); |
| 78 memcpy(array, fPreAllocMemArray, fCount * sizeof(T)); | |
| 79 } | |
| 80 // The following line will not throw because the second parameter is 0. | |
| 81 this->init(NULL, 0, fPreAllocMemArray, fPreAllocMemArraySize); | |
| 77 return array; | 82 return array; |
| 78 } | 83 } |
| 79 | 84 |
| 80 bool isEmpty() const { return fCount == 0; } | 85 bool isEmpty() const { return fCount == 0; } |
| 81 | 86 |
| 82 /** | 87 /** |
| 83 * Return the number of elements in the array | 88 * Return the number of elements in the array |
| 84 */ | 89 */ |
| 85 int count() const { return fCount; } | 90 int count() const { return fCount; } |
| 86 | 91 |
| 87 /** | 92 /** |
| 88 * Return the total number of elements allocated. | 93 * Return the total number of elements allocated. |
| 89 * reserved() - count() gives you the number of elements you can add | 94 * reserved() - count() gives you the number of elements you can add |
| 90 * without causing an allocation. | 95 * without causing an allocation. |
| 91 */ | 96 */ |
| 92 int reserved() const { return fReserve; } | 97 int reserved() const { return fReserve; } |
| 93 | 98 |
| 94 /** | 99 /** |
| 95 * return the number of bytes in the array: count * sizeof(T) | 100 * return the number of bytes in the array: count * sizeof(T) |
| 96 */ | 101 */ |
| 97 size_t bytes() const { return fCount * sizeof(T); } | 102 size_t bytes() const { return fCount * sizeof(T); } |
| 98 | 103 |
| 99 T* begin() { return fArray; } | 104 T* begin() { return fArray; } |
| 100 const T* begin() const { return fArray; } | 105 const T* begin() const { return fArray; } |
| 101 T* end() { return fArray ? fArray + fCount : NULL; } | 106 T* end() { return fArray ? fArray + fCount : NULL; } |
| 102 const T* end() const { return fArray ? fArray + fCount : NULL; } | 107 const T* end() const { return fArray ? fArray + fCount : NULL; } |
| 103 | 108 |
| 104 T& operator[](int index) { | 109 T& operator[](int index) { |
| 105 SkASSERT(index < fCount); | 110 SkASSERT((size_t)index < fCount); |
| 106 return fArray[index]; | 111 return fArray[index]; |
| 107 } | 112 } |
| 108 const T& operator[](int index) const { | 113 const T& operator[](int index) const { |
| 109 SkASSERT(index < fCount); | 114 SkASSERT((size_t)index < fCount); |
| 110 return fArray[index]; | 115 return fArray[index]; |
| 111 } | 116 } |
| 112 | 117 |
| 113 T& getAt(int index) { | 118 T& getAt(int index) { |
| 114 return (*this)[index]; | 119 return (*this)[index]; |
| 115 } | 120 } |
| 116 const T& getAt(int index) const { | 121 const T& getAt(int index) const { |
| 117 return (*this)[index]; | 122 return (*this)[index]; |
| 118 } | 123 } |
| 119 | 124 |
| 120 void reset() { | 125 void reset() { |
| 121 if (fArray) { | 126 T* oldArray = fArray; |
| 122 sk_free(fArray); | 127 this->init(NULL, 0, fPreAllocMemArray, fPreAllocMemArraySize); |
| 123 fArray = NULL; | 128 if (oldArray != fPreAllocMemArray) { |
| 124 fReserve = fCount = 0; | 129 sk_free(oldArray); |
| 125 } else { | |
| 126 SkASSERT(fReserve == 0 && fCount == 0); | |
| 127 } | 130 } |
| 128 } | 131 } |
| 129 | 132 |
| 130 void rewind() { | 133 void rewind() { |
| 131 // same as setCount(0) | 134 // same as setCount(0) |
| 132 fCount = 0; | 135 fCount = 0; |
| 133 } | 136 } |
| 134 | 137 |
| 135 /** | 138 /** |
| 136 * Sets the number of elements in the array. | 139 * Sets the number of elements in the array. |
| 137 * If the array does not have space for count elements, it will increase | 140 * If the array does not have space for count elements, it will increase |
| 138 * the storage allocated to some amount greater than that required. | 141 * the storage allocated to some amount greater than that required. |
| 139 * It will never shrink the shrink the storage. | 142 * It will never shrink the shrink the storage. |
| 140 */ | 143 */ |
| 141 void setCount(int count) { | 144 void setCount(int count) { |
| 142 SkASSERT(count >= 0); | 145 SkASSERT(count >= 0); |
| 143 if (count > fReserve) { | 146 if ((size_t)count > fReserve) { |
| 144 this->resizeStorageToAtLeast(count); | 147 this->growReserveTo(count); |
| 145 } | 148 } |
| 146 fCount = count; | 149 fCount = count; |
| 147 } | 150 } |
| 148 | 151 |
| 149 void setReserve(int reserve) { | 152 void setReserve(int reserve) { |
| 150 if (reserve > fReserve) { | 153 if ((size_t)reserve > fReserve) { |
| 151 this->resizeStorageToAtLeast(reserve); | 154 SkASSERT((size_t)reserve > fCount); |
| 155 this->growReserveTo(reserve); | |
| 152 } | 156 } |
| 153 } | 157 } |
| 154 | 158 |
| 155 T* prepend() { | 159 T* prepend() { |
| 156 this->adjustCount(1); | 160 this->growBy(1); |
| 157 memmove(fArray + 1, fArray, (fCount - 1) * sizeof(T)); | 161 memmove(fArray + 1, fArray, (fCount - 1) * sizeof(T)); |
| 158 return fArray; | 162 return fArray; |
| 159 } | 163 } |
| 160 | 164 |
| 161 T* append() { | 165 T* append() { |
| 162 return this->append(1, NULL); | 166 return this->append(1, NULL); |
| 163 } | 167 } |
| 164 T* append(int count, const T* src = NULL) { | 168 T* append(int count, const T* src = NULL) { |
| 165 int oldCount = fCount; | 169 int oldCount = fCount; |
| 166 if (count) { | 170 if (count) { |
| 167 SkASSERT(src == NULL || fArray == NULL || | 171 SkASSERT(src == NULL || fArray == NULL || |
| 168 src + count <= fArray || fArray + oldCount <= src); | 172 src + count <= fArray || fArray + oldCount <= src); |
| 169 | 173 |
| 170 this->adjustCount(count); | 174 this->growBy(count); |
| 171 if (src) { | 175 if (src) { |
| 172 memcpy(fArray + oldCount, src, sizeof(T) * count); | 176 memcpy(fArray + oldCount, src, sizeof(T) * count); |
| 173 } | 177 } |
| 174 } | 178 } |
| 175 return fArray + oldCount; | 179 return fArray + oldCount; |
| 176 } | 180 } |
| 177 | 181 |
| 178 T* appendClear() { | 182 T* appendClear() { |
| 179 T* result = this->append(); | 183 T* result = this->append(); |
| 180 *result = 0; | 184 *result = 0; |
| 181 return result; | 185 return result; |
| 182 } | 186 } |
| 183 | 187 |
| 184 T* insert(int index) { | 188 T* insert(int index) { |
| 185 return this->insert(index, 1, NULL); | 189 return this->insert(index, 1, NULL); |
| 186 } | 190 } |
| 187 T* insert(int index, int count, const T* src = NULL) { | 191 T* insert(int index, int count, const T* src = NULL) { |
| 188 SkASSERT(count); | 192 SkASSERT(count); |
| 189 SkASSERT(index <= fCount); | 193 SkASSERT((size_t)index <= fCount); |
| 190 size_t oldCount = fCount; | 194 size_t oldCount = fCount; |
| 191 this->adjustCount(count); | 195 this->growBy(count); |
| 192 T* dst = fArray + index; | 196 T* dst = fArray + index; |
| 193 memmove(dst + count, dst, sizeof(T) * (oldCount - index)); | 197 memmove(dst + count, dst, sizeof(T) * (oldCount - index)); |
| 194 if (src) { | 198 if (src) { |
| 195 memcpy(dst, src, sizeof(T) * count); | 199 memcpy(dst, src, sizeof(T) * count); |
| 196 } | 200 } |
| 197 return dst; | 201 return dst; |
| 198 } | 202 } |
| 199 | 203 |
| 200 void remove(int index, int count = 1) { | 204 void remove(int index, int count = 1) { |
| 201 SkASSERT(index + count <= fCount); | 205 SkASSERT((size_t)(index + count) <= fCount); |
| 202 fCount = fCount - count; | 206 fCount = fCount - count; |
| 203 memmove(fArray + index, fArray + index + count, sizeof(T) * (fCount - in dex)); | 207 memmove(fArray + index, fArray + index + count, sizeof(T) * (fCount - in dex)); |
| 204 } | 208 } |
| 205 | 209 |
| 206 void removeShuffle(int index) { | 210 void removeShuffle(int index) { |
| 207 SkASSERT(index < fCount); | 211 SkASSERT((size_t)index < fCount); |
| 208 int newCount = fCount - 1; | 212 int newCount = fCount - 1; |
| 209 fCount = newCount; | 213 fCount = newCount; |
| 210 if (index != newCount) { | 214 if (index != newCount) { |
| 211 memcpy(fArray + index, fArray + newCount, sizeof(T)); | 215 memcpy(fArray + index, fArray + newCount, sizeof(T)); |
| 212 } | 216 } |
| 213 } | 217 } |
| 214 | 218 |
| 215 int find(const T& elem) const { | 219 int find(const T& elem) const { |
| 216 const T* iter = fArray; | 220 const T* iter = fArray; |
| 217 const T* stop = fArray + fCount; | 221 const T* stop = fArray + fCount; |
| (...skipping 25 matching lines...) Expand all Loading... | |
| 243 return (this->find(elem) >= 0); | 247 return (this->find(elem) >= 0); |
| 244 } | 248 } |
| 245 | 249 |
| 246 /** | 250 /** |
| 247 * Copies up to max elements into dst. The number of items copied is | 251 * Copies up to max elements into dst. The number of items copied is |
| 248 * capped by count - index. The actual number copied is returned. | 252 * capped by count - index. The actual number copied is returned. |
| 249 */ | 253 */ |
| 250 int copyRange(T* dst, int index, int max) const { | 254 int copyRange(T* dst, int index, int max) const { |
| 251 SkASSERT(max >= 0); | 255 SkASSERT(max >= 0); |
| 252 SkASSERT(!max || dst); | 256 SkASSERT(!max || dst); |
| 253 if (index >= fCount) { | 257 if ((size_t)index >= fCount) { |
| 254 return 0; | 258 return 0; |
| 255 } | 259 } |
| 256 int count = SkMin32(max, fCount - index); | 260 int count = SkMin32(max, fCount - index); |
| 257 memcpy(dst, fArray + index, sizeof(T) * count); | 261 memcpy(dst, fArray + index, sizeof(T) * count); |
| 258 return count; | 262 return count; |
| 259 } | 263 } |
| 260 | 264 |
| 261 void copy(T* dst) const { | 265 void copy(T* dst) const { |
| 262 this->copyRange(dst, 0, fCount); | 266 this->copyRange(dst, 0, fCount); |
| 263 } | 267 } |
| (...skipping 50 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 314 T* stop = this->end(); | 318 T* stop = this->end(); |
| 315 for (T* curr = this->begin(); curr < stop; curr++) { | 319 for (T* curr = this->begin(); curr < stop; curr++) { |
| 316 if (*curr) { | 320 if (*curr) { |
| 317 visitor(*curr); | 321 visitor(*curr); |
| 318 } | 322 } |
| 319 } | 323 } |
| 320 } | 324 } |
| 321 | 325 |
| 322 #ifdef SK_DEBUG | 326 #ifdef SK_DEBUG |
| 323 void validate() const { | 327 void validate() const { |
| 324 SkASSERT((fReserve == 0 && fArray == NULL) || | 328 SkASSERT((fArray == NULL && fReserve == 0) || |
| 325 (fReserve > 0 && fArray != NULL)); | 329 (fArray == fPreAllocMemArray && fReserve == fPreAllocMemArraySi ze) || |
| 330 (fArray != NULL && fArray != fPreAllocMemArray && fReserve > 0) ); | |
| 326 SkASSERT(fCount <= fReserve); | 331 SkASSERT(fCount <= fReserve); |
| 332 SkASSERT(fReserve <= fPreAllocMemArraySize || fArray != fPreAllocMemArra y); | |
| 327 } | 333 } |
| 328 #endif | 334 #endif |
| 329 | 335 |
| 330 void shrinkToFit() { | 336 protected: |
| 331 fReserve = fCount; | 337 template <int N> SkTDArray(SkAlignedSTStorage<N, T>* storage) { |
| 332 fArray = (T*)sk_realloc_throw(fArray, fReserve * sizeof(T)); | 338 this->init(NULL, 0, (T*)storage->get(), N); |
| 339 } | |
| 340 template <int N> SkTDArray(const T src[], size_t count, SkAlignedSTStorage<N , T>* storage) { | |
| 341 this->init(src, count, (T*)storage->get(), N); | |
| 342 } | |
| 343 template <int N> SkTDArray(const SkTDArray<T>& that, SkAlignedSTStorage<N, T >* storage) { | |
| 344 this->init(that.fArray, that.fCount, (T*)storage->get(), N); | |
| 345 } | |
| 346 | |
| 347 void init(const T* src, size_t count, T* preAllocStorage, size_t preAllocCou nt) { | |
| 348 SkASSERT(src || count == 0); | |
| 349 | |
| 350 fArray = preAllocStorage; | |
| 351 fPreAllocMemArray = preAllocStorage; | |
| 352 fReserve = preAllocCount; | |
| 353 fCount = count; | |
| 354 fPreAllocMemArraySize = preAllocCount; | |
| 355 | |
| 356 // The following is almost equivalent to calling this->append(count, src ). | |
| 357 // This creates a tight fit instead of allocating extra room. | |
| 358 if (count) { | |
| 359 if (NULL == fArray || count > fReserve) { | |
| 360 fArray = (T*)sk_malloc_throw(count * sizeof(T)); | |
| 361 fReserve = count; | |
| 362 } | |
| 363 memcpy(fArray, src, sizeof(T) * count); | |
| 364 fCount = count; | |
| 365 } | |
| 333 } | 366 } |
| 334 | 367 |
| 335 private: | 368 private: |
| 336 T* fArray; | 369 /** The underlying storage. |
| 337 int fReserve; | 370 * If fArray == NULL; fReserve == 0, fCount == 0. |
| 338 int fCount; | 371 * If fArray == fPreAllocMemArray; fReserve = fPreAllocMemArraySize. |
| 372 * Otherwise fArray points to sk_malloc memory. | |
| 373 */ | |
| 374 T* fArray; | |
| 375 | |
| 376 /** Fixed-size storage which may be used as underlying storage. | |
| 377 * Once out of init, this value is constant. | |
| 378 * If fPreAllocMemArray == NULL; fPreAllocMemArraySize == 0. | |
| 379 * If fPreAllocMemArray == fArray; fReserve = fPreAllocMemArraySize. | |
| 380 */ | |
| 381 T* fPreAllocMemArray; | |
| 382 | |
| 383 /** The current total size of the underlying storage in elements. | |
| 384 * If fReserve == 0; fArray == NULL, fCount == 0. | |
| 385 * If fReserve > 0; fArray != NULL. | |
| 386 * If fReserve > fPreAllocMemArraySize; fArray != fPreAllocMemArray. | |
| 387 * fReserve >= fCount. | |
| 388 */ | |
| 389 size_t fReserve; | |
|
reed1
2015/04/22 23:02:12
Why change fReserve and fCount from int to size_t?
| |
| 390 | |
| 391 /** The current logical number of elements. | |
| 392 * fCount <= fReserve. | |
| 393 * Note that 'If fCount == 0; fArray == NULL' is not maintained. | |
| 394 */ | |
| 395 size_t fCount; | |
| 396 | |
| 397 /** The total size of the fixed size storage in elements. | |
| 398 * Once out of init, this value is constant. | |
| 399 * If fPreAllocMemArraySize == 0; fPreAllocMemArray == NULL. | |
| 400 */ | |
| 401 size_t fPreAllocMemArraySize; | |
| 339 | 402 |
| 340 /** | 403 /** |
| 341 * Adjusts the number of elements in the array. | 404 * Adjusts the number of elements in the array. |
| 342 * This is the same as calling setCount(count() + delta). | 405 * This is the same as calling setCount(count() + extra). |
| 343 */ | 406 */ |
| 344 void adjustCount(int delta) { | 407 void growBy(size_t extra) { |
| 345 this->setCount(fCount + delta); | 408 SkASSERT(extra); |
| 409 | |
| 410 size_t newCount = fCount + extra; | |
| 411 if (newCount > fReserve) { | |
| 412 size_t size = newCount + 4; | |
| 413 size += size >> 2; | |
| 414 | |
| 415 growReserveTo(size); | |
| 416 } | |
| 417 fCount = newCount; | |
| 346 } | 418 } |
| 347 | 419 |
| 348 /** | 420 /** |
| 349 * Increase the storage allocation such that it can hold (fCount + extra) | 421 * Increase the storage allocation such that it can hold size) elements. |
| 350 * elements. | |
| 351 * It never shrinks the allocation, and it may increase the allocation by | 422 * It never shrinks the allocation, and it may increase the allocation by |
| 352 * more than is strictly required, based on a private growth heuristic. | 423 * more than is strictly required, based on a private growth heuristic. |
| 353 * | 424 * |
| 354 * note: does NOT modify fCount | 425 * Note: does NOT modify fCount. |
| 355 */ | 426 */ |
| 356 void resizeStorageToAtLeast(int count) { | 427 void growReserveTo(size_t size) { |
| 357 SkASSERT(count > fReserve); | 428 SkASSERT(size > fReserve); |
| 358 fReserve = count + 4; | 429 |
| 359 fReserve += fReserve / 4; | 430 if (fArray == fPreAllocMemArray) { |
| 360 fArray = (T*)sk_realloc_throw(fArray, fReserve * sizeof(T)); | 431 fArray = (T*)sk_malloc_throw(size * sizeof(T)); |
| 432 memcpy(fArray, fPreAllocMemArray, fCount * sizeof(T)); | |
| 433 } else { | |
| 434 fArray = (T*)sk_realloc_throw(fArray, size * sizeof(T)); | |
| 435 } | |
| 436 fReserve = size; | |
| 361 } | 437 } |
| 362 }; | 438 }; |
| 363 | 439 |
| 440 | |
| 441 /** | |
| 442 * Subclass of SkTDArray that contains a preallocated memory block for the array . | |
| 443 * @param N the number of T elements to store in the preallocated memory block. | |
| 444 */ | |
| 445 template <size_t N, typename T> | |
| 446 class SkSTDArray : public SkTDArray<T> { | |
| 447 private: | |
| 448 typedef SkTDArray<T> INHERITED; | |
| 449 | |
| 450 public: | |
| 451 SkSTDArray() : INHERITED(&fStorage) { } | |
| 452 SkSTDArray(const T* src, int count) : INHERITED(src, count, &fStorage) { } | |
| 453 SkSTDArray(const SkSTDArray& that) : INHERITED(that, &fStorage) { } | |
| 454 | |
| 455 explicit SkSTDArray(const INHERITED& that) : INHERITED(that, &fStorage) { } | |
| 456 | |
| 457 SkSTDArray& operator= (const SkSTDArray& that) { | |
| 458 return *this = *(const INHERITED*)&that; | |
| 459 } | |
| 460 | |
| 461 SkSTDArray& operator= (const INHERITED& that) { | |
| 462 INHERITED::operator=(that); | |
| 463 return *this; | |
| 464 } | |
| 465 | |
| 466 private: | |
| 467 SkAlignedSTStorage<N, T> fStorage; | |
| 468 }; | |
| 469 | |
| 364 #endif | 470 #endif |
| OLD | NEW |