OLD | NEW |
(Empty) | |
| 1 // Copyright 2014 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 #include "cc/raster/task_graph_work_queue.h" |
| 6 |
| 7 #include <algorithm> |
| 8 #include <utility> |
| 9 |
| 10 #include "base/trace_event/trace_event.h" |
| 11 |
| 12 namespace cc { |
| 13 |
| 14 TaskGraphWorkQueue::TaskNamespace::TaskNamespace() {} |
| 15 |
| 16 TaskGraphWorkQueue::TaskNamespace::~TaskNamespace() {} |
| 17 |
| 18 TaskGraphWorkQueue::TaskGraphWorkQueue() : next_namespace_id_(1) {} |
| 19 TaskGraphWorkQueue::~TaskGraphWorkQueue() {} |
| 20 |
| 21 NamespaceToken TaskGraphWorkQueue::GetNamespaceToken() { |
| 22 NamespaceToken token(next_namespace_id_++); |
| 23 DCHECK(namespaces_.find(token) == namespaces_.end()); |
| 24 return token; |
| 25 } |
| 26 |
| 27 void TaskGraphWorkQueue::ScheduleTasks(NamespaceToken token, TaskGraph* graph) { |
| 28 TaskNamespace& task_namespace = namespaces_[token]; |
| 29 |
| 30 // First adjust number of dependencies to reflect completed tasks. |
| 31 for (const scoped_refptr<Task>& task : task_namespace.completed_tasks) { |
| 32 for (DependentIterator node_it(graph, task.get()); node_it; ++node_it) { |
| 33 TaskGraph::Node& node = *node_it; |
| 34 DCHECK_LT(0u, node.dependencies); |
| 35 node.dependencies--; |
| 36 } |
| 37 } |
| 38 |
| 39 // Build new "ready to run" queue and remove nodes from old graph. |
| 40 task_namespace.ready_to_run_tasks.clear(); |
| 41 for (const TaskGraph::Node& node : graph->nodes) { |
| 42 // Remove any old nodes that are associated with this task. The result is |
| 43 // that the old graph is left with all nodes not present in this graph, |
| 44 // which we use below to determine what tasks need to be canceled. |
| 45 TaskGraph::Node::Vector::iterator old_it = std::find_if( |
| 46 task_namespace.graph.nodes.begin(), task_namespace.graph.nodes.end(), |
| 47 [node](const TaskGraph::Node& other) { |
| 48 return node.task == other.task; |
| 49 }); |
| 50 if (old_it != task_namespace.graph.nodes.end()) { |
| 51 std::swap(*old_it, task_namespace.graph.nodes.back()); |
| 52 task_namespace.graph.nodes.pop_back(); |
| 53 } |
| 54 |
| 55 // Task is not ready to run if dependencies are not yet satisfied. |
| 56 if (node.dependencies) |
| 57 continue; |
| 58 |
| 59 // Skip if already finished running task. |
| 60 if (node.task->HasFinishedRunning()) |
| 61 continue; |
| 62 |
| 63 // Skip if already running. |
| 64 if (std::find(task_namespace.running_tasks.begin(), |
| 65 task_namespace.running_tasks.end(), |
| 66 node.task) != task_namespace.running_tasks.end()) |
| 67 continue; |
| 68 |
| 69 task_namespace.ready_to_run_tasks.push_back( |
| 70 PrioritizedTask(node.task, &task_namespace, node.priority)); |
| 71 } |
| 72 |
| 73 // Rearrange the elements in |ready_to_run_tasks| in such a way that they |
| 74 // form a heap. |
| 75 std::make_heap(task_namespace.ready_to_run_tasks.begin(), |
| 76 task_namespace.ready_to_run_tasks.end(), CompareTaskPriority); |
| 77 |
| 78 // Swap task graph. |
| 79 task_namespace.graph.Swap(graph); |
| 80 |
| 81 // Determine what tasks in old graph need to be canceled. |
| 82 for (TaskGraph::Node::Vector::iterator it = graph->nodes.begin(); |
| 83 it != graph->nodes.end(); ++it) { |
| 84 TaskGraph::Node& node = *it; |
| 85 |
| 86 // Skip if already finished running task. |
| 87 if (node.task->HasFinishedRunning()) |
| 88 continue; |
| 89 |
| 90 // Skip if already running. |
| 91 if (std::find(task_namespace.running_tasks.begin(), |
| 92 task_namespace.running_tasks.end(), |
| 93 node.task) != task_namespace.running_tasks.end()) |
| 94 continue; |
| 95 |
| 96 DCHECK(std::find(task_namespace.completed_tasks.begin(), |
| 97 task_namespace.completed_tasks.end(), |
| 98 node.task) == task_namespace.completed_tasks.end()); |
| 99 task_namespace.completed_tasks.push_back(node.task); |
| 100 } |
| 101 |
| 102 // Build new "ready to run" task namespaces queue. |
| 103 ready_to_run_namespaces_.clear(); |
| 104 for (auto& it : namespaces_) { |
| 105 if (!it.second.ready_to_run_tasks.empty()) |
| 106 ready_to_run_namespaces_.push_back(&it.second); |
| 107 } |
| 108 |
| 109 // Rearrange the task namespaces in |ready_to_run_namespaces| in such a |
| 110 // way that they form a heap. |
| 111 std::make_heap(ready_to_run_namespaces_.begin(), |
| 112 ready_to_run_namespaces_.end(), CompareTaskNamespacePriority); |
| 113 } |
| 114 |
| 115 TaskGraphWorkQueue::PrioritizedTask TaskGraphWorkQueue::GetNextTaskToRun() { |
| 116 DCHECK(!ready_to_run_namespaces_.empty()); |
| 117 |
| 118 // Take top priority TaskNamespace from |ready_to_run_namespaces_|. |
| 119 std::pop_heap(ready_to_run_namespaces_.begin(), |
| 120 ready_to_run_namespaces_.end(), CompareTaskNamespacePriority); |
| 121 TaskNamespace* task_namespace = ready_to_run_namespaces_.back(); |
| 122 ready_to_run_namespaces_.pop_back(); |
| 123 DCHECK(!task_namespace->ready_to_run_tasks.empty()); |
| 124 |
| 125 // Take top priority task from |ready_to_run_tasks|. |
| 126 std::pop_heap(task_namespace->ready_to_run_tasks.begin(), |
| 127 task_namespace->ready_to_run_tasks.end(), CompareTaskPriority); |
| 128 PrioritizedTask task = task_namespace->ready_to_run_tasks.back(); |
| 129 task_namespace->ready_to_run_tasks.pop_back(); |
| 130 |
| 131 // Add task namespace back to |ready_to_run_namespaces_| if not empty after |
| 132 // taking top priority task. |
| 133 if (!task_namespace->ready_to_run_tasks.empty()) { |
| 134 ready_to_run_namespaces_.push_back(task_namespace); |
| 135 std::push_heap(ready_to_run_namespaces_.begin(), |
| 136 ready_to_run_namespaces_.end(), |
| 137 CompareTaskNamespacePriority); |
| 138 } |
| 139 |
| 140 // Add task to |running_tasks|. |
| 141 task_namespace->running_tasks.push_back(task.task); |
| 142 |
| 143 return task; |
| 144 } |
| 145 |
| 146 void TaskGraphWorkQueue::CompleteTask(const PrioritizedTask& completed_task) { |
| 147 TaskNamespace* task_namespace = completed_task.task_namespace; |
| 148 scoped_refptr<Task> task(completed_task.task); |
| 149 |
| 150 // Remove task from |running_tasks|. |
| 151 auto it = std::find(task_namespace->running_tasks.begin(), |
| 152 task_namespace->running_tasks.end(), task); |
| 153 DCHECK(it != task_namespace->running_tasks.end()); |
| 154 std::swap(*it, task_namespace->running_tasks.back()); |
| 155 task_namespace->running_tasks.pop_back(); |
| 156 |
| 157 // Now iterate over all dependents to decrement dependencies and check if they |
| 158 // are ready to run. |
| 159 bool ready_to_run_namespaces_has_heap_properties = true; |
| 160 for (DependentIterator it(&task_namespace->graph, task.get()); it; ++it) { |
| 161 TaskGraph::Node& dependent_node = *it; |
| 162 |
| 163 DCHECK_LT(0u, dependent_node.dependencies); |
| 164 dependent_node.dependencies--; |
| 165 // Task is ready if it has no dependencies. Add it to |ready_to_run_tasks_|. |
| 166 if (!dependent_node.dependencies) { |
| 167 bool was_empty = task_namespace->ready_to_run_tasks.empty(); |
| 168 task_namespace->ready_to_run_tasks.push_back(PrioritizedTask( |
| 169 dependent_node.task, task_namespace, dependent_node.priority)); |
| 170 std::push_heap(task_namespace->ready_to_run_tasks.begin(), |
| 171 task_namespace->ready_to_run_tasks.end(), |
| 172 CompareTaskPriority); |
| 173 // Task namespace is ready if it has at least one ready to run task. Add |
| 174 // it to |ready_to_run_namespaces_| if it just become ready. |
| 175 if (was_empty) { |
| 176 DCHECK(std::find(ready_to_run_namespaces_.begin(), |
| 177 ready_to_run_namespaces_.end(), |
| 178 task_namespace) == ready_to_run_namespaces_.end()); |
| 179 ready_to_run_namespaces_.push_back(task_namespace); |
| 180 } |
| 181 ready_to_run_namespaces_has_heap_properties = false; |
| 182 } |
| 183 } |
| 184 |
| 185 // Rearrange the task namespaces in |ready_to_run_namespaces_| in such a way |
| 186 // that they yet again form a heap. |
| 187 if (!ready_to_run_namespaces_has_heap_properties) { |
| 188 std::make_heap(ready_to_run_namespaces_.begin(), |
| 189 ready_to_run_namespaces_.end(), |
| 190 CompareTaskNamespacePriority); |
| 191 } |
| 192 |
| 193 // Finally add task to |completed_tasks_|. |
| 194 task_namespace->completed_tasks.push_back(task); |
| 195 } |
| 196 |
| 197 void TaskGraphWorkQueue::CollectCompletedTasks(NamespaceToken token, |
| 198 Task::Vector* completed_tasks) { |
| 199 TaskNamespaceMap::iterator it = namespaces_.find(token); |
| 200 if (it == namespaces_.end()) |
| 201 return; |
| 202 |
| 203 TaskNamespace& task_namespace = it->second; |
| 204 |
| 205 DCHECK_EQ(0u, completed_tasks->size()); |
| 206 completed_tasks->swap(task_namespace.completed_tasks); |
| 207 if (!HasFinishedRunningTasksInNamespace(&task_namespace)) |
| 208 return; |
| 209 |
| 210 // Remove namespace if finished running tasks. |
| 211 DCHECK_EQ(0u, task_namespace.completed_tasks.size()); |
| 212 DCHECK_EQ(0u, task_namespace.ready_to_run_tasks.size()); |
| 213 DCHECK_EQ(0u, task_namespace.running_tasks.size()); |
| 214 namespaces_.erase(it); |
| 215 } |
| 216 |
| 217 bool TaskGraphWorkQueue::DependencyMismatch(const TaskGraph* graph) { |
| 218 // Value storage will be 0-initialized. |
| 219 base::hash_map<const Task*, size_t> dependents; |
| 220 for (const TaskGraph::Edge& edge : graph->edges) |
| 221 dependents[edge.dependent]++; |
| 222 |
| 223 for (const TaskGraph::Node& node : graph->nodes) { |
| 224 if (dependents[node.task] != node.dependencies) |
| 225 return true; |
| 226 } |
| 227 |
| 228 return false; |
| 229 } |
| 230 |
| 231 } // namespace cc |
OLD | NEW |