Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(64)

Side by Side Diff: third_party/openh264/testing/h264_encoder_impl.cc

Issue 1446453004: Adding third_party/openh264 build files for encoding (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: Addressed torbjorng's comments Created 5 years, 1 month ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 *
10 */
11
12 // TODO(hbos): This is essentially a copy of an encoder class in WebRTC that as
13 // of this statement has not yet landed, but that I want to have accessible in
14 // Chromium before that CL lands. This is because I use it in order to validate
15 // the build files for OpenH264 and the WebRTC encoder/decoder CL cannot land
16 // until I can build OpenH264 from source. Once the build files are stable I
17 // will land both CLs and remove this copy of the encoder.
18
19 #include "openh264/testing/h264_encoder_impl.h"
20
21 // OpenH264
22 #include "openh264/src/codec/api/svc/codec_api.h"
23 #include "openh264/src/codec/api/svc/codec_app_def.h"
24 #include "openh264/src/codec/api/svc/codec_def.h"
25
26 #include "webrtc/base/checks.h"
27 #include "webrtc/base/logging.h"
28 #include "webrtc/common_video/libyuv/include/webrtc_libyuv.h"
29
30 using rtc::LS_WARNING;
31 using rtc::LS_ERROR;
32 using webrtc::kRealtimeVideo;
33 using webrtc::kScreensharing;
34 using webrtc::kUPlane;
35 using webrtc::kVideoFrameDelta;
36 using webrtc::kVideoFrameKey;
37 using webrtc::kVPlane;
38 using webrtc::kYPlane;
39 using webrtc::RTPFragmentationHeader;
40 using webrtc::VideoType;
41 using webrtc::VideoCodecType;
42
43 namespace openh264 {
44
45 namespace {
46 const bool kOpenH264EncoderDetailedLogging = false;
47 } // namespace
48
49 static FrameType EVideoFrameType_to_FrameType(
50 EVideoFrameType type) {
51 switch (type) {
52 case videoFrameTypeInvalid:
53 return kVideoFrameDelta; // TODO(hbos): handle error
54 case videoFrameTypeSkip:
55 return kVideoFrameDelta;
56 case videoFrameTypeIDR:
57 return kVideoFrameKey;
58 case videoFrameTypeI:
59 case videoFrameTypeP:
60 case videoFrameTypeIPMixed:
61 return kVideoFrameDelta;
62 default:
63 return kVideoFrameDelta;
64 }
65 }
66 // Helper method used by H264EncoderImpl::Encode.
67 // Copies the encoded bytes from |info| to |encoded_image| and updates the
68 // fragmentation information of |frag_header|. The |encoded_image->_buffer| may
69 // be deleted and reallocated if a bigger buffer is required.
70 // After OpenH264 encoding, the encoded bytes are stored in |info| spread out
71 // over a number of layers and "NAL units". Each NAL unit is a fragment starting
72 // with the four-byte start code {0,0,0,1}. All of this data (including the
73 // start codes) is copied to the |encoded_image->_buffer| and the |frag_header|
74 // is updated to point to each fragment, with offsets and lengths set as to
75 // exclude the start codes.
76 static void RtpFragmentize(EncodedImage* encoded_image,
77 rtc::scoped_ptr<uint8_t[]>* encoded_image_buffer,
78 const VideoFrame& frame,
79 SFrameBSInfo* info,
80 RTPFragmentationHeader* frag_header) {
81 // Calculate minimum buffer size required to hold encoded data.
82 size_t required_size = 0;
83 size_t fragments_count = 0;
84 for (int iLayer = 0; iLayer < info->iLayerNum; ++iLayer) {
85 const SLayerBSInfo& layerInfo = info->sLayerInfo[iLayer];
86 for (int iNal = 0; iNal < layerInfo.iNalCount; ++iNal) {
87 required_size += layerInfo.pNalLengthInByte[iNal];
88 ++fragments_count;
89 }
90 }
91 if (encoded_image->_size < required_size) {
92 // Increase buffer size. Allocate enough to hold an unencoded image, this
93 // should be more than enough to hold any encoded data of future frames of
94 // the same size (avoiding possible future reallocation due to variations in
95 // required size).
96 encoded_image->_size = CalcBufferSize(
97 VideoType::kI420, frame.width(), frame.height());
98 if (encoded_image->_size < required_size) {
99 // Encoded data > unencoded data, wtf? Allocate required bytes.
100 encoded_image->_size = required_size;
101 }
102 encoded_image->_buffer = new uint8_t[encoded_image->_size];
103 encoded_image_buffer->reset(encoded_image->_buffer);
104 }
105
106 // Iterate layers and NAL units, note each NAL unit as a fragment and copy
107 // the data to |encoded_image->_buffer|.
108 const uint8_t kStartCode[4] = {0, 0, 0, 1};
109 frag_header->VerifyAndAllocateFragmentationHeader(fragments_count);
110 size_t frag_i = 0;
111 encoded_image->_length = 0;
112 for (int iLayer = 0; iLayer < info->iLayerNum; ++iLayer) {
113 const SLayerBSInfo& layerInfo = info->sLayerInfo[iLayer];
114 // Iterate NAL units making up this layer, noting fragments.
115 size_t iLayerLen = 0;
116 for (int iNal = 0; iNal < layerInfo.iNalCount; ++iNal, ++frag_i) {
117 RTC_DCHECK_EQ(layerInfo.pBsBuf[iLayerLen+0], kStartCode[0]);
118 RTC_DCHECK_EQ(layerInfo.pBsBuf[iLayerLen+1], kStartCode[1]);
119 RTC_DCHECK_EQ(layerInfo.pBsBuf[iLayerLen+2], kStartCode[2]);
120 RTC_DCHECK_EQ(layerInfo.pBsBuf[iLayerLen+3], kStartCode[3]);
121 frag_header->fragmentationOffset[frag_i] =
122 encoded_image->_length + iLayerLen + sizeof(kStartCode);
123 frag_header->fragmentationLength[frag_i] =
124 layerInfo.pNalLengthInByte[iNal] - sizeof(kStartCode);
125 iLayerLen += layerInfo.pNalLengthInByte[iNal];
126 }
127 // Copy the entire layer's data (including start codes).
128 memcpy(encoded_image->_buffer + encoded_image->_length,
129 layerInfo.pBsBuf,
130 iLayerLen * sizeof(unsigned char));
131 encoded_image->_length += iLayerLen;
132 }
133 }
134
135 H264EncoderImpl::H264EncoderImpl()
136 : openh264_encoder_(nullptr),
137 encoded_image_callback_(nullptr) {
138 }
139
140 H264EncoderImpl::~H264EncoderImpl() {
141 Release();
142 }
143
144 int32_t H264EncoderImpl::InitEncode(const VideoCodec* codec_settings,
145 int32_t /*number_of_cores*/,
146 size_t /*max_payload_size*/) {
147 if (!codec_settings ||
148 codec_settings->codecType != VideoCodecType::kVideoCodecH264) {
149 return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
150 }
151 if (codec_settings->maxFramerate == 0)
152 return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
153 if (codec_settings->width < 1 || codec_settings->height < 1)
154 return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
155
156 int release_ret = Release();
157 if (release_ret != WEBRTC_VIDEO_CODEC_OK)
158 return release_ret;
159 RTC_DCHECK(!openh264_encoder_);
160
161 // Create encoder.
162 if (WelsCreateSVCEncoder(&openh264_encoder_) != 0) {
163 // Failed to create encoder.
164 RTC_DCHECK(!openh264_encoder_);
165 return WEBRTC_VIDEO_CODEC_ERROR;
166 }
167 RTC_DCHECK(openh264_encoder_);
168 if (kOpenH264EncoderDetailedLogging) {
169 int trace_level = WELS_LOG_DETAIL;
170 openh264_encoder_->SetOption(ENCODER_OPTION_TRACE_LEVEL,
171 &trace_level);
172 }
173 // else WELS_LOG_DEFAULT is used by default.
174
175 codec_settings_ = *codec_settings;
176 if (codec_settings_.targetBitrate == 0)
177 codec_settings_.targetBitrate = codec_settings_.startBitrate;
178
179 // Initialization parameters.
180 // There are two ways to initialize. There is SEncParamBase (cleared with
181 // memset(&p, 0, sizeof(SEncParamBase)) used in Initialize, and SEncParamExt
182 // which is a superset of SEncParamBase (cleared with GetDefaultParams) used
183 // in InitializeExt.
184 SEncParamExt init_params;
185 openh264_encoder_->GetDefaultParams(&init_params);
186 if (codec_settings_.mode == kRealtimeVideo) {
187 init_params.iUsageType = CAMERA_VIDEO_REAL_TIME;
188 } else if (codec_settings_.mode == kScreensharing) {
189 init_params.iUsageType = SCREEN_CONTENT_REAL_TIME;
190 } else {
191 return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
192 }
193 init_params.iPicWidth = codec_settings_.width;
194 init_params.iPicHeight = codec_settings_.height;
195 // |init_params| uses bit/s, |codec_settings_| uses kbit/s.
196 init_params.iTargetBitrate = codec_settings_.targetBitrate * 1000;
197 init_params.iMaxBitrate = codec_settings_.maxBitrate * 1000;
198 // Rate Control mode
199 init_params.iRCMode = RC_BITRATE_MODE;
200 init_params.fMaxFrameRate = static_cast<float>(codec_settings_.maxFramerate);
201
202 // The following parameters are extension parameters (they're in SEncParamExt,
203 // not in SEncParamBase).
204 init_params.bEnableFrameSkip =
205 codec_settings_.codecSpecific.H264.frameDroppingOn;
206 // |uiIntraPeriod| - multiple of GOP size
207 // |keyFrameInterval| - number of frames
208 init_params.uiIntraPeriod =
209 codec_settings_.codecSpecific.H264.keyFrameInterval;
210 init_params.uiMaxNalSize = 0;
211 // Threading model: use auto.
212 // 0: auto (dynamic imp. internal encoder)
213 // 1: single thread (default value)
214 // >1: number of threads
215 init_params.iMultipleThreadIdc = 0;
216 // The base spatial layer 0 is the only one we use.
217 init_params.sSpatialLayers[0].iVideoWidth = init_params.iPicWidth;
218 init_params.sSpatialLayers[0].iVideoHeight = init_params.iPicHeight;
219 init_params.sSpatialLayers[0].fFrameRate = init_params.fMaxFrameRate;
220 init_params.sSpatialLayers[0].iSpatialBitrate = init_params.iTargetBitrate;
221 init_params.sSpatialLayers[0].iMaxSpatialBitrate = init_params.iMaxBitrate;
222 // Slice num according to number of threads.
223 init_params.sSpatialLayers[0].sSliceCfg.uiSliceMode = SM_AUTO_SLICE;
224
225 // Initialize.
226 if (openh264_encoder_->InitializeExt(&init_params) != 0) {
227 Release();
228 return WEBRTC_VIDEO_CODEC_ERROR;
229 }
230 int video_format = EVideoFormatType::videoFormatI420;
231 openh264_encoder_->SetOption(ENCODER_OPTION_DATAFORMAT,
232 &video_format);
233
234 // Initialize encoded image. Default buffer size: size of unencoded data.
235 encoded_image_._size = CalcBufferSize(
236 VideoType::kI420, codec_settings_.width, codec_settings_.height);
237 encoded_image_._buffer = new uint8_t[encoded_image_._size];
238 encoded_image_buffer_.reset(encoded_image_._buffer);
239 encoded_image_._completeFrame = true;
240 encoded_image_._encodedWidth = 0;
241 encoded_image_._encodedHeight = 0;
242 encoded_image_._length = 0;
243 return WEBRTC_VIDEO_CODEC_OK;
244 }
245
246 int32_t H264EncoderImpl::Release() {
247 if (openh264_encoder_) {
248 openh264_encoder_->Uninitialize();
249 WelsDestroySVCEncoder(openh264_encoder_);
250 openh264_encoder_ = nullptr;
251 }
252 if (encoded_image_._buffer != nullptr) {
253 encoded_image_._buffer = nullptr;
254 encoded_image_buffer_.reset();
255 }
256 return WEBRTC_VIDEO_CODEC_OK;
257 }
258
259 int32_t H264EncoderImpl::RegisterEncodeCompleteCallback(
260 EncodedImageCallback* callback) {
261 encoded_image_callback_ = callback;
262 return WEBRTC_VIDEO_CODEC_OK;
263 }
264
265 int32_t H264EncoderImpl::SetRates(uint32_t bitrate, uint32_t framerate) {
266 if (bitrate <= 0 || framerate <= 0) {
267 return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
268 }
269 codec_settings_.targetBitrate = bitrate;
270 codec_settings_.maxFramerate = framerate;
271
272 SBitrateInfo target_bitrate;
273 memset(&target_bitrate, 0, sizeof(SBitrateInfo));
274 target_bitrate.iLayer = SPATIAL_LAYER_ALL,
275 target_bitrate.iBitrate = codec_settings_.targetBitrate * 1000;
276 openh264_encoder_->SetOption(ENCODER_OPTION_BITRATE,
277 &target_bitrate);
278 float max_framerate = static_cast<float>(codec_settings_.maxFramerate);
279 openh264_encoder_->SetOption(ENCODER_OPTION_FRAME_RATE,
280 &max_framerate);
281 return WEBRTC_VIDEO_CODEC_OK;
282 }
283
284 int32_t H264EncoderImpl::Encode(
285 const VideoFrame& frame, const CodecSpecificInfo* codec_specific_info,
286 const std::vector<FrameType>* frame_types) {
287 if (!IsInitialized())
288 return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
289 if (frame.IsZeroSize())
290 return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
291 if (!encoded_image_callback_) {
292 return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
293 }
294 if (frame.width() != codec_settings_.width ||
295 frame.height() != codec_settings_.height) {
296 return WEBRTC_VIDEO_CODEC_ERR_SIZE;
297 }
298
299 bool force_key_frame = false;
300 if (frame_types != nullptr) {
301 // We only support a single stream.
302 RTC_DCHECK_EQ(frame_types->size(), static_cast<size_t>(1));
303 // Force key frame?
304 force_key_frame = (*frame_types)[0] == kVideoFrameKey;
305 }
306 if (force_key_frame) {
307 // Only need to call ForceIntraFrame when true. API doc says
308 // ForceIntraFrame(false) does nothing but really if you call it for every
309 // frame it introduces massive delays and lag in the video stream.
310 openh264_encoder_->ForceIntraFrame(true);
311 }
312
313 // EncodeFrame input.
314 SSourcePicture picture;
315 memset(&picture, 0, sizeof(SSourcePicture));
316 picture.iPicWidth = frame.width();
317 picture.iPicHeight = frame.height();
318 picture.iColorFormat = EVideoFormatType::videoFormatI420;
319 picture.uiTimeStamp = frame.ntp_time_ms();
320 picture.iStride[0] = frame.stride(kYPlane);
321 picture.iStride[1] = frame.stride(kUPlane);
322 picture.iStride[2] = frame.stride(kVPlane);
323 picture.pData[0] = const_cast<uint8_t*>(frame.buffer(kYPlane));
324 picture.pData[1] = const_cast<uint8_t*>(frame.buffer(kUPlane));
325 picture.pData[2] = const_cast<uint8_t*>(frame.buffer(kVPlane));
326
327 // EncodeFrame output.
328 SFrameBSInfo info;
329 memset(&info, 0, sizeof(SFrameBSInfo));
330
331 // Encode!
332 int enc_ret = openh264_encoder_->EncodeFrame(&picture, &info);
333 if (enc_ret != 0) {
334 return WEBRTC_VIDEO_CODEC_ERROR;
335 }
336
337 encoded_image_._encodedWidth = frame.width();
338 encoded_image_._encodedHeight = frame.height();
339 encoded_image_._timeStamp = frame.timestamp();
340 encoded_image_.ntp_time_ms_ = frame.ntp_time_ms();
341 encoded_image_.capture_time_ms_ = frame.render_time_ms();
342 encoded_image_._frameType = EVideoFrameType_to_FrameType(
343 info.eFrameType);
344
345 // Split encoded image up into fragments. This also updates |encoded_image_|.
346 RTPFragmentationHeader frag_header;
347 RtpFragmentize(&encoded_image_, &encoded_image_buffer_,
348 frame, &info, &frag_header);
349
350 // Encoder can skip frames to save bandwidth in which case
351 // |encoded_image_._length| == 0.
352 if (encoded_image_._length > 0) {
353 // Deliver encoded image.
354 encoded_image_callback_->Encoded(encoded_image_, codec_specific_info,
355 &frag_header);
356 }
357 return WEBRTC_VIDEO_CODEC_OK;
358 }
359
360 bool H264EncoderImpl::IsInitialized() {
361 return openh264_encoder_ != nullptr;
362 }
363
364 int32_t H264EncoderImpl::SetChannelParameters(
365 uint32_t packet_loss, int64_t rtt) {
366 return WEBRTC_VIDEO_CODEC_OK;
367 }
368
369 int32_t H264EncoderImpl::SetPeriodicKeyFrames(bool enable) {
370 return WEBRTC_VIDEO_CODEC_OK;
371 }
372
373 void H264EncoderImpl::OnDroppedFrame() {
374 }
375
376 } // namespace openh264
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698