Index: base/time/time_win_unittest.cc |
diff --git a/base/time/time_win_unittest.cc b/base/time/time_win_unittest.cc |
deleted file mode 100644 |
index 75b237ed65da1a36f9f17c9da6ce0352113ac504..0000000000000000000000000000000000000000 |
--- a/base/time/time_win_unittest.cc |
+++ /dev/null |
@@ -1,268 +0,0 @@ |
-// Copyright (c) 2012 The Chromium Authors. All rights reserved. |
-// Use of this source code is governed by a BSD-style license that can be |
-// found in the LICENSE file. |
- |
-#include <windows.h> |
-#include <mmsystem.h> |
-#include <process.h> |
- |
-#include <cmath> |
-#include <limits> |
-#include <vector> |
- |
-#include "base/threading/platform_thread.h" |
-#include "base/time/time.h" |
-#include "testing/gtest/include/gtest/gtest.h" |
- |
-using base::Time; |
-using base::TimeDelta; |
-using base::TimeTicks; |
-using base::TraceTicks; |
- |
-namespace { |
- |
-class MockTimeTicks : public TimeTicks { |
- public: |
- static DWORD Ticker() { |
- return static_cast<int>(InterlockedIncrement(&ticker_)); |
- } |
- |
- static void InstallTicker() { |
- old_tick_function_ = SetMockTickFunction(&Ticker); |
- ticker_ = -5; |
- } |
- |
- static void UninstallTicker() { |
- SetMockTickFunction(old_tick_function_); |
- } |
- |
- private: |
- static volatile LONG ticker_; |
- static TickFunctionType old_tick_function_; |
-}; |
- |
-volatile LONG MockTimeTicks::ticker_; |
-MockTimeTicks::TickFunctionType MockTimeTicks::old_tick_function_; |
- |
-HANDLE g_rollover_test_start; |
- |
-unsigned __stdcall RolloverTestThreadMain(void* param) { |
- int64 counter = reinterpret_cast<int64>(param); |
- DWORD rv = WaitForSingleObject(g_rollover_test_start, INFINITE); |
- EXPECT_EQ(rv, WAIT_OBJECT_0); |
- |
- TimeTicks last = TimeTicks::Now(); |
- for (int index = 0; index < counter; index++) { |
- TimeTicks now = TimeTicks::Now(); |
- int64 milliseconds = (now - last).InMilliseconds(); |
- // This is a tight loop; we could have looped faster than our |
- // measurements, so the time might be 0 millis. |
- EXPECT_GE(milliseconds, 0); |
- EXPECT_LT(milliseconds, 250); |
- last = now; |
- } |
- return 0; |
-} |
- |
-} // namespace |
- |
-TEST(TimeTicks, WinRollover) { |
- // The internal counter rolls over at ~49days. We'll use a mock |
- // timer to test this case. |
- // Basic test algorithm: |
- // 1) Set clock to rollover - N |
- // 2) Create N threads |
- // 3) Start the threads |
- // 4) Each thread loops through TimeTicks() N times |
- // 5) Each thread verifies integrity of result. |
- |
- const int kThreads = 8; |
- // Use int64 so we can cast into a void* without a compiler warning. |
- const int64 kChecks = 10; |
- |
- // It takes a lot of iterations to reproduce the bug! |
- // (See bug 1081395) |
- for (int loop = 0; loop < 4096; loop++) { |
- // Setup |
- MockTimeTicks::InstallTicker(); |
- g_rollover_test_start = CreateEvent(0, TRUE, FALSE, 0); |
- HANDLE threads[kThreads]; |
- |
- for (int index = 0; index < kThreads; index++) { |
- void* argument = reinterpret_cast<void*>(kChecks); |
- unsigned thread_id; |
- threads[index] = reinterpret_cast<HANDLE>( |
- _beginthreadex(NULL, 0, RolloverTestThreadMain, argument, 0, |
- &thread_id)); |
- EXPECT_NE((HANDLE)NULL, threads[index]); |
- } |
- |
- // Start! |
- SetEvent(g_rollover_test_start); |
- |
- // Wait for threads to finish |
- for (int index = 0; index < kThreads; index++) { |
- DWORD rv = WaitForSingleObject(threads[index], INFINITE); |
- EXPECT_EQ(rv, WAIT_OBJECT_0); |
- // Since using _beginthreadex() (as opposed to _beginthread), |
- // an explicit CloseHandle() is supposed to be called. |
- CloseHandle(threads[index]); |
- } |
- |
- CloseHandle(g_rollover_test_start); |
- |
- // Teardown |
- MockTimeTicks::UninstallTicker(); |
- } |
-} |
- |
-TEST(TimeTicks, SubMillisecondTimers) { |
- // IsHighResolution() is false on some systems. Since the product still works |
- // even if it's false, it makes this entire test questionable. |
- if (!TimeTicks::IsHighResolution()) |
- return; |
- |
- const int kRetries = 1000; |
- bool saw_submillisecond_timer = false; |
- |
- // Run kRetries attempts to see a sub-millisecond timer. |
- for (int index = 0; index < kRetries; index++) { |
- TimeTicks last_time = TimeTicks::Now(); |
- TimeDelta delta; |
- // Spin until the clock has detected a change. |
- do { |
- delta = TimeTicks::Now() - last_time; |
- } while (delta.InMicroseconds() == 0); |
- if (delta.InMicroseconds() < 1000) { |
- saw_submillisecond_timer = true; |
- break; |
- } |
- } |
- EXPECT_TRUE(saw_submillisecond_timer); |
-} |
- |
-TEST(TimeTicks, TimeGetTimeCaps) { |
- // Test some basic assumptions that we expect about how timeGetDevCaps works. |
- |
- TIMECAPS caps; |
- MMRESULT status = timeGetDevCaps(&caps, sizeof(caps)); |
- EXPECT_EQ(TIMERR_NOERROR, status); |
- if (status != TIMERR_NOERROR) { |
- printf("Could not get timeGetDevCaps\n"); |
- return; |
- } |
- |
- EXPECT_GE(static_cast<int>(caps.wPeriodMin), 1); |
- EXPECT_GT(static_cast<int>(caps.wPeriodMax), 1); |
- EXPECT_GE(static_cast<int>(caps.wPeriodMin), 1); |
- EXPECT_GT(static_cast<int>(caps.wPeriodMax), 1); |
- printf("timeGetTime range is %d to %dms\n", caps.wPeriodMin, |
- caps.wPeriodMax); |
-} |
- |
-TEST(TimeTicks, QueryPerformanceFrequency) { |
- // Test some basic assumptions that we expect about QPC. |
- |
- LARGE_INTEGER frequency; |
- BOOL rv = QueryPerformanceFrequency(&frequency); |
- EXPECT_EQ(TRUE, rv); |
- EXPECT_GT(frequency.QuadPart, 1000000); // Expect at least 1MHz |
- printf("QueryPerformanceFrequency is %5.2fMHz\n", |
- frequency.QuadPart / 1000000.0); |
-} |
- |
-TEST(TimeTicks, TimerPerformance) { |
- // Verify that various timer mechanisms can always complete quickly. |
- // Note: This is a somewhat arbitrary test. |
- const int kLoops = 10000; |
- |
- typedef TimeTicks (*TestFunc)(); |
- struct TestCase { |
- TestFunc func; |
- const char *description; |
- }; |
- // Cheating a bit here: assumes sizeof(TimeTicks) == sizeof(Time) |
- // in order to create a single test case list. |
- COMPILE_ASSERT(sizeof(TimeTicks) == sizeof(Time), |
- test_only_works_with_same_sizes); |
- TestCase cases[] = { |
- { reinterpret_cast<TestFunc>(&Time::Now), "Time::Now" }, |
- { &TimeTicks::Now, "TimeTicks::Now" }, |
- { reinterpret_cast<TestFunc>(&TraceTicks::Now), "TraceTicks::Now" }, |
- { NULL, "" } |
- }; |
- |
- int test_case = 0; |
- while (cases[test_case].func) { |
- TimeTicks start = TimeTicks::Now(); |
- for (int index = 0; index < kLoops; index++) |
- cases[test_case].func(); |
- TimeTicks stop = TimeTicks::Now(); |
- // Turning off the check for acceptible delays. Without this check, |
- // the test really doesn't do much other than measure. But the |
- // measurements are still useful for testing timers on various platforms. |
- // The reason to remove the check is because the tests run on many |
- // buildbots, some of which are VMs. These machines can run horribly |
- // slow, and there is really no value for checking against a max timer. |
- //const int kMaxTime = 35; // Maximum acceptible milliseconds for test. |
- //EXPECT_LT((stop - start).InMilliseconds(), kMaxTime); |
- printf("%s: %1.2fus per call\n", cases[test_case].description, |
- (stop - start).InMillisecondsF() * 1000 / kLoops); |
- test_case++; |
- } |
-} |
- |
-TEST(TimeTicks, FromQPCValue) { |
- if (!TimeTicks::IsHighResolution()) |
- return; |
- |
- LARGE_INTEGER frequency; |
- ASSERT_TRUE(QueryPerformanceFrequency(&frequency)); |
- const int64 ticks_per_second = frequency.QuadPart; |
- ASSERT_GT(ticks_per_second, 0); |
- |
- // Generate the tick values to convert, advancing the tick count by varying |
- // amounts. These values will ensure that both the fast and overflow-safe |
- // conversion logic in FromQPCValue() is tested, and across the entire range |
- // of possible QPC tick values. |
- std::vector<int64> test_cases; |
- test_cases.push_back(0); |
- const int kNumAdvancements = 100; |
- int64 ticks = 0; |
- int64 ticks_increment = 10; |
- for (int i = 0; i < kNumAdvancements; ++i) { |
- test_cases.push_back(ticks); |
- ticks += ticks_increment; |
- ticks_increment = ticks_increment * 6 / 5; |
- } |
- test_cases.push_back(Time::kQPCOverflowThreshold - 1); |
- test_cases.push_back(Time::kQPCOverflowThreshold); |
- test_cases.push_back(Time::kQPCOverflowThreshold + 1); |
- ticks = Time::kQPCOverflowThreshold + 10; |
- ticks_increment = 10; |
- for (int i = 0; i < kNumAdvancements; ++i) { |
- test_cases.push_back(ticks); |
- ticks += ticks_increment; |
- ticks_increment = ticks_increment * 6 / 5; |
- } |
- test_cases.push_back(std::numeric_limits<int64>::max()); |
- |
- // Test that the conversions using FromQPCValue() match those computed here |
- // using simple floating-point arithmetic. The floating-point math provides |
- // enough precision to confirm the implementation is correct to the |
- // microsecond for all |test_cases| (though it would be insufficient to |
- // confirm many "very large" tick values which are not being tested here). |
- for (int64 ticks : test_cases) { |
- const double expected_microseconds_since_origin = |
- (static_cast<double>(ticks) * Time::kMicrosecondsPerSecond) / |
- ticks_per_second; |
- const TimeTicks converted_value = TimeTicks::FromQPCValue(ticks); |
- const double converted_microseconds_since_origin = |
- static_cast<double>((converted_value - TimeTicks()).InMicroseconds()); |
- EXPECT_NEAR(expected_microseconds_since_origin, |
- converted_microseconds_since_origin, |
- 1.0) |
- << "ticks=" << ticks << ", to be converted via logic path: " |
- << (ticks < Time::kQPCOverflowThreshold ? "FAST" : "SAFE"); |
- } |
-} |