OLD | NEW |
| (Empty) |
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 | |
6 // Windows Timer Primer | |
7 // | |
8 // A good article: http://www.ddj.com/windows/184416651 | |
9 // A good mozilla bug: http://bugzilla.mozilla.org/show_bug.cgi?id=363258 | |
10 // | |
11 // The default windows timer, GetSystemTimeAsFileTime is not very precise. | |
12 // It is only good to ~15.5ms. | |
13 // | |
14 // QueryPerformanceCounter is the logical choice for a high-precision timer. | |
15 // However, it is known to be buggy on some hardware. Specifically, it can | |
16 // sometimes "jump". On laptops, QPC can also be very expensive to call. | |
17 // It's 3-4x slower than timeGetTime() on desktops, but can be 10x slower | |
18 // on laptops. A unittest exists which will show the relative cost of various | |
19 // timers on any system. | |
20 // | |
21 // The next logical choice is timeGetTime(). timeGetTime has a precision of | |
22 // 1ms, but only if you call APIs (timeBeginPeriod()) which affect all other | |
23 // applications on the system. By default, precision is only 15.5ms. | |
24 // Unfortunately, we don't want to call timeBeginPeriod because we don't | |
25 // want to affect other applications. Further, on mobile platforms, use of | |
26 // faster multimedia timers can hurt battery life. See the intel | |
27 // article about this here: | |
28 // http://softwarecommunity.intel.com/articles/eng/1086.htm | |
29 // | |
30 // To work around all this, we're going to generally use timeGetTime(). We | |
31 // will only increase the system-wide timer if we're not running on battery | |
32 // power. | |
33 | |
34 #include "base/time/time.h" | |
35 | |
36 #pragma comment(lib, "winmm.lib") | |
37 #include <windows.h> | |
38 #include <mmsystem.h> | |
39 #include <stdint.h> | |
40 | |
41 #include "base/basictypes.h" | |
42 #include "base/cpu.h" | |
43 #include "base/lazy_instance.h" | |
44 #include "base/logging.h" | |
45 #include "base/synchronization/lock.h" | |
46 | |
47 using base::ThreadTicks; | |
48 using base::Time; | |
49 using base::TimeDelta; | |
50 using base::TimeTicks; | |
51 using base::TraceTicks; | |
52 | |
53 namespace { | |
54 | |
55 // From MSDN, FILETIME "Contains a 64-bit value representing the number of | |
56 // 100-nanosecond intervals since January 1, 1601 (UTC)." | |
57 int64 FileTimeToMicroseconds(const FILETIME& ft) { | |
58 // Need to bit_cast to fix alignment, then divide by 10 to convert | |
59 // 100-nanoseconds to milliseconds. This only works on little-endian | |
60 // machines. | |
61 return bit_cast<int64, FILETIME>(ft) / 10; | |
62 } | |
63 | |
64 void MicrosecondsToFileTime(int64 us, FILETIME* ft) { | |
65 DCHECK_GE(us, 0LL) << "Time is less than 0, negative values are not " | |
66 "representable in FILETIME"; | |
67 | |
68 // Multiply by 10 to convert milliseconds to 100-nanoseconds. Bit_cast will | |
69 // handle alignment problems. This only works on little-endian machines. | |
70 *ft = bit_cast<FILETIME, int64>(us * 10); | |
71 } | |
72 | |
73 int64 CurrentWallclockMicroseconds() { | |
74 FILETIME ft; | |
75 ::GetSystemTimeAsFileTime(&ft); | |
76 return FileTimeToMicroseconds(ft); | |
77 } | |
78 | |
79 // Time between resampling the un-granular clock for this API. 60 seconds. | |
80 const int kMaxMillisecondsToAvoidDrift = 60 * Time::kMillisecondsPerSecond; | |
81 | |
82 int64 initial_time = 0; | |
83 TimeTicks initial_ticks; | |
84 | |
85 void InitializeClock() { | |
86 initial_ticks = TimeTicks::Now(); | |
87 initial_time = CurrentWallclockMicroseconds(); | |
88 } | |
89 | |
90 // The two values that ActivateHighResolutionTimer uses to set the systemwide | |
91 // timer interrupt frequency on Windows. It controls how precise timers are | |
92 // but also has a big impact on battery life. | |
93 const int kMinTimerIntervalHighResMs = 1; | |
94 const int kMinTimerIntervalLowResMs = 4; | |
95 // Track if kMinTimerIntervalHighResMs or kMinTimerIntervalLowResMs is active. | |
96 bool g_high_res_timer_enabled = false; | |
97 // How many times the high resolution timer has been called. | |
98 uint32_t g_high_res_timer_count = 0; | |
99 // The lock to control access to the above two variables. | |
100 base::LazyInstance<base::Lock>::Leaky g_high_res_lock = | |
101 LAZY_INSTANCE_INITIALIZER; | |
102 | |
103 } // namespace | |
104 | |
105 // Time ----------------------------------------------------------------------- | |
106 | |
107 // The internal representation of Time uses FILETIME, whose epoch is 1601-01-01 | |
108 // 00:00:00 UTC. ((1970-1601)*365+89)*24*60*60*1000*1000, where 89 is the | |
109 // number of leap year days between 1601 and 1970: (1970-1601)/4 excluding | |
110 // 1700, 1800, and 1900. | |
111 // static | |
112 const int64 Time::kTimeTToMicrosecondsOffset = INT64_C(11644473600000000); | |
113 | |
114 // static | |
115 Time Time::Now() { | |
116 if (initial_time == 0) | |
117 InitializeClock(); | |
118 | |
119 // We implement time using the high-resolution timers so that we can get | |
120 // timeouts which are smaller than 10-15ms. If we just used | |
121 // CurrentWallclockMicroseconds(), we'd have the less-granular timer. | |
122 // | |
123 // To make this work, we initialize the clock (initial_time) and the | |
124 // counter (initial_ctr). To compute the initial time, we can check | |
125 // the number of ticks that have elapsed, and compute the delta. | |
126 // | |
127 // To avoid any drift, we periodically resync the counters to the system | |
128 // clock. | |
129 while (true) { | |
130 TimeTicks ticks = TimeTicks::Now(); | |
131 | |
132 // Calculate the time elapsed since we started our timer | |
133 TimeDelta elapsed = ticks - initial_ticks; | |
134 | |
135 // Check if enough time has elapsed that we need to resync the clock. | |
136 if (elapsed.InMilliseconds() > kMaxMillisecondsToAvoidDrift) { | |
137 InitializeClock(); | |
138 continue; | |
139 } | |
140 | |
141 return Time(elapsed + Time(initial_time)); | |
142 } | |
143 } | |
144 | |
145 // static | |
146 Time Time::NowFromSystemTime() { | |
147 // Force resync. | |
148 InitializeClock(); | |
149 return Time(initial_time); | |
150 } | |
151 | |
152 // static | |
153 Time Time::FromFileTime(FILETIME ft) { | |
154 if (bit_cast<int64, FILETIME>(ft) == 0) | |
155 return Time(); | |
156 if (ft.dwHighDateTime == std::numeric_limits<DWORD>::max() && | |
157 ft.dwLowDateTime == std::numeric_limits<DWORD>::max()) | |
158 return Max(); | |
159 return Time(FileTimeToMicroseconds(ft)); | |
160 } | |
161 | |
162 FILETIME Time::ToFileTime() const { | |
163 if (is_null()) | |
164 return bit_cast<FILETIME, int64>(0); | |
165 if (is_max()) { | |
166 FILETIME result; | |
167 result.dwHighDateTime = std::numeric_limits<DWORD>::max(); | |
168 result.dwLowDateTime = std::numeric_limits<DWORD>::max(); | |
169 return result; | |
170 } | |
171 FILETIME utc_ft; | |
172 MicrosecondsToFileTime(us_, &utc_ft); | |
173 return utc_ft; | |
174 } | |
175 | |
176 // static | |
177 void Time::EnableHighResolutionTimer(bool enable) { | |
178 base::AutoLock lock(g_high_res_lock.Get()); | |
179 if (g_high_res_timer_enabled == enable) | |
180 return; | |
181 g_high_res_timer_enabled = enable; | |
182 if (!g_high_res_timer_count) | |
183 return; | |
184 // Since g_high_res_timer_count != 0, an ActivateHighResolutionTimer(true) | |
185 // was called which called timeBeginPeriod with g_high_res_timer_enabled | |
186 // with a value which is the opposite of |enable|. With that information we | |
187 // call timeEndPeriod with the same value used in timeBeginPeriod and | |
188 // therefore undo the period effect. | |
189 if (enable) { | |
190 timeEndPeriod(kMinTimerIntervalLowResMs); | |
191 timeBeginPeriod(kMinTimerIntervalHighResMs); | |
192 } else { | |
193 timeEndPeriod(kMinTimerIntervalHighResMs); | |
194 timeBeginPeriod(kMinTimerIntervalLowResMs); | |
195 } | |
196 } | |
197 | |
198 // static | |
199 bool Time::ActivateHighResolutionTimer(bool activating) { | |
200 // We only do work on the transition from zero to one or one to zero so we | |
201 // can easily undo the effect (if necessary) when EnableHighResolutionTimer is | |
202 // called. | |
203 const uint32_t max = std::numeric_limits<uint32_t>::max(); | |
204 | |
205 base::AutoLock lock(g_high_res_lock.Get()); | |
206 UINT period = g_high_res_timer_enabled ? kMinTimerIntervalHighResMs | |
207 : kMinTimerIntervalLowResMs; | |
208 if (activating) { | |
209 DCHECK_NE(g_high_res_timer_count, max); | |
210 ++g_high_res_timer_count; | |
211 if (g_high_res_timer_count == 1) | |
212 timeBeginPeriod(period); | |
213 } else { | |
214 DCHECK_NE(g_high_res_timer_count, 0u); | |
215 --g_high_res_timer_count; | |
216 if (g_high_res_timer_count == 0) | |
217 timeEndPeriod(period); | |
218 } | |
219 return (period == kMinTimerIntervalHighResMs); | |
220 } | |
221 | |
222 // static | |
223 bool Time::IsHighResolutionTimerInUse() { | |
224 base::AutoLock lock(g_high_res_lock.Get()); | |
225 return g_high_res_timer_enabled && g_high_res_timer_count > 0; | |
226 } | |
227 | |
228 // static | |
229 Time Time::FromExploded(bool is_local, const Exploded& exploded) { | |
230 // Create the system struct representing our exploded time. It will either be | |
231 // in local time or UTC. | |
232 SYSTEMTIME st; | |
233 st.wYear = static_cast<WORD>(exploded.year); | |
234 st.wMonth = static_cast<WORD>(exploded.month); | |
235 st.wDayOfWeek = static_cast<WORD>(exploded.day_of_week); | |
236 st.wDay = static_cast<WORD>(exploded.day_of_month); | |
237 st.wHour = static_cast<WORD>(exploded.hour); | |
238 st.wMinute = static_cast<WORD>(exploded.minute); | |
239 st.wSecond = static_cast<WORD>(exploded.second); | |
240 st.wMilliseconds = static_cast<WORD>(exploded.millisecond); | |
241 | |
242 FILETIME ft; | |
243 bool success = true; | |
244 // Ensure that it's in UTC. | |
245 if (is_local) { | |
246 SYSTEMTIME utc_st; | |
247 success = TzSpecificLocalTimeToSystemTime(NULL, &st, &utc_st) && | |
248 SystemTimeToFileTime(&utc_st, &ft); | |
249 } else { | |
250 success = !!SystemTimeToFileTime(&st, &ft); | |
251 } | |
252 | |
253 if (!success) { | |
254 NOTREACHED() << "Unable to convert time"; | |
255 return Time(0); | |
256 } | |
257 return Time(FileTimeToMicroseconds(ft)); | |
258 } | |
259 | |
260 void Time::Explode(bool is_local, Exploded* exploded) const { | |
261 if (us_ < 0LL) { | |
262 // We are not able to convert it to FILETIME. | |
263 ZeroMemory(exploded, sizeof(*exploded)); | |
264 return; | |
265 } | |
266 | |
267 // FILETIME in UTC. | |
268 FILETIME utc_ft; | |
269 MicrosecondsToFileTime(us_, &utc_ft); | |
270 | |
271 // FILETIME in local time if necessary. | |
272 bool success = true; | |
273 // FILETIME in SYSTEMTIME (exploded). | |
274 SYSTEMTIME st = {0}; | |
275 if (is_local) { | |
276 SYSTEMTIME utc_st; | |
277 // We don't use FileTimeToLocalFileTime here, since it uses the current | |
278 // settings for the time zone and daylight saving time. Therefore, if it is | |
279 // daylight saving time, it will take daylight saving time into account, | |
280 // even if the time you are converting is in standard time. | |
281 success = FileTimeToSystemTime(&utc_ft, &utc_st) && | |
282 SystemTimeToTzSpecificLocalTime(NULL, &utc_st, &st); | |
283 } else { | |
284 success = !!FileTimeToSystemTime(&utc_ft, &st); | |
285 } | |
286 | |
287 if (!success) { | |
288 NOTREACHED() << "Unable to convert time, don't know why"; | |
289 ZeroMemory(exploded, sizeof(*exploded)); | |
290 return; | |
291 } | |
292 | |
293 exploded->year = st.wYear; | |
294 exploded->month = st.wMonth; | |
295 exploded->day_of_week = st.wDayOfWeek; | |
296 exploded->day_of_month = st.wDay; | |
297 exploded->hour = st.wHour; | |
298 exploded->minute = st.wMinute; | |
299 exploded->second = st.wSecond; | |
300 exploded->millisecond = st.wMilliseconds; | |
301 } | |
302 | |
303 // TimeTicks ------------------------------------------------------------------ | |
304 namespace { | |
305 | |
306 // We define a wrapper to adapt between the __stdcall and __cdecl call of the | |
307 // mock function, and to avoid a static constructor. Assigning an import to a | |
308 // function pointer directly would require setup code to fetch from the IAT. | |
309 DWORD timeGetTimeWrapper() { | |
310 return timeGetTime(); | |
311 } | |
312 | |
313 DWORD (*g_tick_function)(void) = &timeGetTimeWrapper; | |
314 | |
315 // Accumulation of time lost due to rollover (in milliseconds). | |
316 int64 g_rollover_ms = 0; | |
317 | |
318 // The last timeGetTime value we saw, to detect rollover. | |
319 DWORD g_last_seen_now = 0; | |
320 | |
321 // Lock protecting rollover_ms and last_seen_now. | |
322 // Note: this is a global object, and we usually avoid these. However, the time | |
323 // code is low-level, and we don't want to use Singletons here (it would be too | |
324 // easy to use a Singleton without even knowing it, and that may lead to many | |
325 // gotchas). Its impact on startup time should be negligible due to low-level | |
326 // nature of time code. | |
327 base::Lock g_rollover_lock; | |
328 | |
329 // We use timeGetTime() to implement TimeTicks::Now(). This can be problematic | |
330 // because it returns the number of milliseconds since Windows has started, | |
331 // which will roll over the 32-bit value every ~49 days. We try to track | |
332 // rollover ourselves, which works if TimeTicks::Now() is called at least every | |
333 // 49 days. | |
334 TimeDelta RolloverProtectedNow() { | |
335 base::AutoLock locked(g_rollover_lock); | |
336 // We should hold the lock while calling tick_function to make sure that | |
337 // we keep last_seen_now stay correctly in sync. | |
338 DWORD now = g_tick_function(); | |
339 if (now < g_last_seen_now) | |
340 g_rollover_ms += 0x100000000I64; // ~49.7 days. | |
341 g_last_seen_now = now; | |
342 return TimeDelta::FromMilliseconds(now + g_rollover_ms); | |
343 } | |
344 | |
345 // Discussion of tick counter options on Windows: | |
346 // | |
347 // (1) CPU cycle counter. (Retrieved via RDTSC) | |
348 // The CPU counter provides the highest resolution time stamp and is the least | |
349 // expensive to retrieve. However, on older CPUs, two issues can affect its | |
350 // reliability: First it is maintained per processor and not synchronized | |
351 // between processors. Also, the counters will change frequency due to thermal | |
352 // and power changes, and stop in some states. | |
353 // | |
354 // (2) QueryPerformanceCounter (QPC). The QPC counter provides a high- | |
355 // resolution (<1 microsecond) time stamp. On most hardware running today, it | |
356 // auto-detects and uses the constant-rate RDTSC counter to provide extremely | |
357 // efficient and reliable time stamps. | |
358 // | |
359 // On older CPUs where RDTSC is unreliable, it falls back to using more | |
360 // expensive (20X to 40X more costly) alternate clocks, such as HPET or the ACPI | |
361 // PM timer, and can involve system calls; and all this is up to the HAL (with | |
362 // some help from ACPI). According to | |
363 // http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx, in the | |
364 // worst case, it gets the counter from the rollover interrupt on the | |
365 // programmable interrupt timer. In best cases, the HAL may conclude that the | |
366 // RDTSC counter runs at a constant frequency, then it uses that instead. On | |
367 // multiprocessor machines, it will try to verify the values returned from | |
368 // RDTSC on each processor are consistent with each other, and apply a handful | |
369 // of workarounds for known buggy hardware. In other words, QPC is supposed to | |
370 // give consistent results on a multiprocessor computer, but for older CPUs it | |
371 // can be unreliable due bugs in BIOS or HAL. | |
372 // | |
373 // (3) System time. The system time provides a low-resolution (from ~1 to ~15.6 | |
374 // milliseconds) time stamp but is comparatively less expensive to retrieve and | |
375 // more reliable. Time::EnableHighResolutionTimer() and | |
376 // Time::ActivateHighResolutionTimer() can be called to alter the resolution of | |
377 // this timer; and also other Windows applications can alter it, affecting this | |
378 // one. | |
379 | |
380 using NowFunction = TimeDelta (*)(void); | |
381 | |
382 TimeDelta InitialNowFunction(); | |
383 TimeDelta InitialSystemTraceNowFunction(); | |
384 | |
385 // See "threading notes" in InitializeNowFunctionPointers() for details on how | |
386 // concurrent reads/writes to these globals has been made safe. | |
387 NowFunction g_now_function = &InitialNowFunction; | |
388 NowFunction g_system_trace_now_function = &InitialSystemTraceNowFunction; | |
389 int64 g_qpc_ticks_per_second = 0; | |
390 | |
391 // As of January 2015, use of <atomic> is forbidden in Chromium code. This is | |
392 // what std::atomic_thread_fence does on Windows on all Intel architectures when | |
393 // the memory_order argument is anything but std::memory_order_seq_cst: | |
394 #define ATOMIC_THREAD_FENCE(memory_order) _ReadWriteBarrier(); | |
395 | |
396 TimeDelta QPCValueToTimeDelta(LONGLONG qpc_value) { | |
397 // Ensure that the assignment to |g_qpc_ticks_per_second|, made in | |
398 // InitializeNowFunctionPointers(), has happened by this point. | |
399 ATOMIC_THREAD_FENCE(memory_order_acquire); | |
400 | |
401 DCHECK_GT(g_qpc_ticks_per_second, 0); | |
402 | |
403 // If the QPC Value is below the overflow threshold, we proceed with | |
404 // simple multiply and divide. | |
405 if (qpc_value < Time::kQPCOverflowThreshold) { | |
406 return TimeDelta::FromMicroseconds( | |
407 qpc_value * Time::kMicrosecondsPerSecond / g_qpc_ticks_per_second); | |
408 } | |
409 // Otherwise, calculate microseconds in a round about manner to avoid | |
410 // overflow and precision issues. | |
411 int64 whole_seconds = qpc_value / g_qpc_ticks_per_second; | |
412 int64 leftover_ticks = qpc_value - (whole_seconds * g_qpc_ticks_per_second); | |
413 return TimeDelta::FromMicroseconds( | |
414 (whole_seconds * Time::kMicrosecondsPerSecond) + | |
415 ((leftover_ticks * Time::kMicrosecondsPerSecond) / | |
416 g_qpc_ticks_per_second)); | |
417 } | |
418 | |
419 TimeDelta QPCNow() { | |
420 LARGE_INTEGER now; | |
421 QueryPerformanceCounter(&now); | |
422 return QPCValueToTimeDelta(now.QuadPart); | |
423 } | |
424 | |
425 bool IsBuggyAthlon(const base::CPU& cpu) { | |
426 // On Athlon X2 CPUs (e.g. model 15) QueryPerformanceCounter is unreliable. | |
427 return cpu.vendor_name() == "AuthenticAMD" && cpu.family() == 15; | |
428 } | |
429 | |
430 void InitializeNowFunctionPointers() { | |
431 LARGE_INTEGER ticks_per_sec = {0}; | |
432 if (!QueryPerformanceFrequency(&ticks_per_sec)) | |
433 ticks_per_sec.QuadPart = 0; | |
434 | |
435 // If Windows cannot provide a QPC implementation, both TimeTicks::Now() and | |
436 // TraceTicks::Now() must use the low-resolution clock. | |
437 // | |
438 // If the QPC implementation is expensive and/or unreliable, TimeTicks::Now() | |
439 // will use the low-resolution clock, but TraceTicks::Now() will use the QPC | |
440 // (in the hope that it is still useful for tracing purposes). A CPU lacking a | |
441 // non-stop time counter will cause Windows to provide an alternate QPC | |
442 // implementation that works, but is expensive to use. Certain Athlon CPUs are | |
443 // known to make the QPC implementation unreliable. | |
444 // | |
445 // Otherwise, both Now functions can use the high-resolution QPC clock. As of | |
446 // 4 January 2015, ~68% of users fall within this category. | |
447 NowFunction now_function; | |
448 NowFunction system_trace_now_function; | |
449 base::CPU cpu; | |
450 if (ticks_per_sec.QuadPart <= 0) { | |
451 now_function = system_trace_now_function = &RolloverProtectedNow; | |
452 } else if (!cpu.has_non_stop_time_stamp_counter() || IsBuggyAthlon(cpu)) { | |
453 now_function = &RolloverProtectedNow; | |
454 system_trace_now_function = &QPCNow; | |
455 } else { | |
456 now_function = system_trace_now_function = &QPCNow; | |
457 } | |
458 | |
459 // Threading note 1: In an unlikely race condition, it's possible for two or | |
460 // more threads to enter InitializeNowFunctionPointers() in parallel. This is | |
461 // not a problem since all threads should end up writing out the same values | |
462 // to the global variables. | |
463 // | |
464 // Threading note 2: A release fence is placed here to ensure, from the | |
465 // perspective of other threads using the function pointers, that the | |
466 // assignment to |g_qpc_ticks_per_second| happens before the function pointers | |
467 // are changed. | |
468 g_qpc_ticks_per_second = ticks_per_sec.QuadPart; | |
469 ATOMIC_THREAD_FENCE(memory_order_release); | |
470 g_now_function = now_function; | |
471 g_system_trace_now_function = system_trace_now_function; | |
472 } | |
473 | |
474 TimeDelta InitialNowFunction() { | |
475 InitializeNowFunctionPointers(); | |
476 return g_now_function(); | |
477 } | |
478 | |
479 TimeDelta InitialSystemTraceNowFunction() { | |
480 InitializeNowFunctionPointers(); | |
481 return g_system_trace_now_function(); | |
482 } | |
483 | |
484 } // namespace | |
485 | |
486 // static | |
487 TimeTicks::TickFunctionType TimeTicks::SetMockTickFunction( | |
488 TickFunctionType ticker) { | |
489 base::AutoLock locked(g_rollover_lock); | |
490 TickFunctionType old = g_tick_function; | |
491 g_tick_function = ticker; | |
492 g_rollover_ms = 0; | |
493 g_last_seen_now = 0; | |
494 return old; | |
495 } | |
496 | |
497 // static | |
498 TimeTicks TimeTicks::Now() { | |
499 return TimeTicks() + g_now_function(); | |
500 } | |
501 | |
502 // static | |
503 bool TimeTicks::IsHighResolution() { | |
504 if (g_now_function == &InitialNowFunction) | |
505 InitializeNowFunctionPointers(); | |
506 return g_now_function == &QPCNow; | |
507 } | |
508 | |
509 // static | |
510 ThreadTicks ThreadTicks::Now() { | |
511 NOTREACHED(); | |
512 return ThreadTicks(); | |
513 } | |
514 | |
515 // static | |
516 TraceTicks TraceTicks::Now() { | |
517 return TraceTicks() + g_system_trace_now_function(); | |
518 } | |
519 | |
520 // static | |
521 TimeTicks TimeTicks::FromQPCValue(LONGLONG qpc_value) { | |
522 return TimeTicks() + QPCValueToTimeDelta(qpc_value); | |
523 } | |
524 | |
525 // TimeDelta ------------------------------------------------------------------ | |
526 | |
527 // static | |
528 TimeDelta TimeDelta::FromQPCValue(LONGLONG qpc_value) { | |
529 return QPCValueToTimeDelta(qpc_value); | |
530 } | |
OLD | NEW |