OLD | NEW |
| (Empty) |
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #ifndef BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_ | |
6 #define BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_ | |
7 | |
8 #include <windows.h> | |
9 | |
10 #include <list> | |
11 | |
12 #include "base/base_export.h" | |
13 #include "base/basictypes.h" | |
14 #include "base/message_loop/message_pump.h" | |
15 #include "base/message_loop/message_pump_dispatcher.h" | |
16 #include "base/observer_list.h" | |
17 #include "base/time/time.h" | |
18 #include "base/win/scoped_handle.h" | |
19 | |
20 namespace base { | |
21 | |
22 // MessagePumpWin serves as the base for specialized versions of the MessagePump | |
23 // for Windows. It provides basic functionality like handling of observers and | |
24 // controlling the lifetime of the message pump. | |
25 class BASE_EXPORT MessagePumpWin : public MessagePump { | |
26 public: | |
27 MessagePumpWin() : have_work_(0), state_(NULL) {} | |
28 | |
29 // Like MessagePump::Run, but MSG objects are routed through dispatcher. | |
30 void RunWithDispatcher(Delegate* delegate, MessagePumpDispatcher* dispatcher); | |
31 | |
32 // MessagePump methods: | |
33 void Run(Delegate* delegate) override; | |
34 void Quit() override; | |
35 | |
36 protected: | |
37 struct RunState { | |
38 Delegate* delegate; | |
39 MessagePumpDispatcher* dispatcher; | |
40 | |
41 // Used to flag that the current Run() invocation should return ASAP. | |
42 bool should_quit; | |
43 | |
44 // Used to count how many Run() invocations are on the stack. | |
45 int run_depth; | |
46 }; | |
47 | |
48 virtual void DoRunLoop() = 0; | |
49 int GetCurrentDelay() const; | |
50 | |
51 // The time at which delayed work should run. | |
52 TimeTicks delayed_work_time_; | |
53 | |
54 // A boolean value used to indicate if there is a kMsgDoWork message pending | |
55 // in the Windows Message queue. There is at most one such message, and it | |
56 // can drive execution of tasks when a native message pump is running. | |
57 LONG have_work_; | |
58 | |
59 // State for the current invocation of Run. | |
60 RunState* state_; | |
61 }; | |
62 | |
63 //----------------------------------------------------------------------------- | |
64 // MessagePumpForUI extends MessagePumpWin with methods that are particular to a | |
65 // MessageLoop instantiated with TYPE_UI. | |
66 // | |
67 // MessagePumpForUI implements a "traditional" Windows message pump. It contains | |
68 // a nearly infinite loop that peeks out messages, and then dispatches them. | |
69 // Intermixed with those peeks are callouts to DoWork for pending tasks, and | |
70 // DoDelayedWork for pending timers. When there are no events to be serviced, | |
71 // this pump goes into a wait state. In most cases, this message pump handles | |
72 // all processing. | |
73 // | |
74 // However, when a task, or windows event, invokes on the stack a native dialog | |
75 // box or such, that window typically provides a bare bones (native?) message | |
76 // pump. That bare-bones message pump generally supports little more than a | |
77 // peek of the Windows message queue, followed by a dispatch of the peeked | |
78 // message. MessageLoop extends that bare-bones message pump to also service | |
79 // Tasks, at the cost of some complexity. | |
80 // | |
81 // The basic structure of the extension (refered to as a sub-pump) is that a | |
82 // special message, kMsgHaveWork, is repeatedly injected into the Windows | |
83 // Message queue. Each time the kMsgHaveWork message is peeked, checks are | |
84 // made for an extended set of events, including the availability of Tasks to | |
85 // run. | |
86 // | |
87 // After running a task, the special message kMsgHaveWork is again posted to | |
88 // the Windows Message queue, ensuring a future time slice for processing a | |
89 // future event. To prevent flooding the Windows Message queue, care is taken | |
90 // to be sure that at most one kMsgHaveWork message is EVER pending in the | |
91 // Window's Message queue. | |
92 // | |
93 // There are a few additional complexities in this system where, when there are | |
94 // no Tasks to run, this otherwise infinite stream of messages which drives the | |
95 // sub-pump is halted. The pump is automatically re-started when Tasks are | |
96 // queued. | |
97 // | |
98 // A second complexity is that the presence of this stream of posted tasks may | |
99 // prevent a bare-bones message pump from ever peeking a WM_PAINT or WM_TIMER. | |
100 // Such paint and timer events always give priority to a posted message, such as | |
101 // kMsgHaveWork messages. As a result, care is taken to do some peeking in | |
102 // between the posting of each kMsgHaveWork message (i.e., after kMsgHaveWork | |
103 // is peeked, and before a replacement kMsgHaveWork is posted). | |
104 // | |
105 // NOTE: Although it may seem odd that messages are used to start and stop this | |
106 // flow (as opposed to signaling objects, etc.), it should be understood that | |
107 // the native message pump will *only* respond to messages. As a result, it is | |
108 // an excellent choice. It is also helpful that the starter messages that are | |
109 // placed in the queue when new task arrive also awakens DoRunLoop. | |
110 // | |
111 class BASE_EXPORT MessagePumpForUI : public MessagePumpWin { | |
112 public: | |
113 // The application-defined code passed to the hook procedure. | |
114 static const int kMessageFilterCode = 0x5001; | |
115 | |
116 MessagePumpForUI(); | |
117 ~MessagePumpForUI() override; | |
118 | |
119 // MessagePump methods: | |
120 void ScheduleWork() override; | |
121 void ScheduleDelayedWork(const TimeTicks& delayed_work_time) override; | |
122 | |
123 private: | |
124 static LRESULT CALLBACK WndProcThunk(HWND window_handle, | |
125 UINT message, | |
126 WPARAM wparam, | |
127 LPARAM lparam); | |
128 void DoRunLoop() override; | |
129 void InitMessageWnd(); | |
130 void WaitForWork(); | |
131 void HandleWorkMessage(); | |
132 void HandleTimerMessage(); | |
133 void RescheduleTimer(); | |
134 bool ProcessNextWindowsMessage(); | |
135 bool ProcessMessageHelper(const MSG& msg); | |
136 bool ProcessPumpReplacementMessage(); | |
137 | |
138 // Atom representing the registered window class. | |
139 ATOM atom_; | |
140 | |
141 // A hidden message-only window. | |
142 HWND message_hwnd_; | |
143 }; | |
144 | |
145 //----------------------------------------------------------------------------- | |
146 // MessagePumpForIO extends MessagePumpWin with methods that are particular to a | |
147 // MessageLoop instantiated with TYPE_IO. This version of MessagePump does not | |
148 // deal with Windows mesagges, and instead has a Run loop based on Completion | |
149 // Ports so it is better suited for IO operations. | |
150 // | |
151 class BASE_EXPORT MessagePumpForIO : public MessagePumpWin { | |
152 public: | |
153 struct IOContext; | |
154 | |
155 // Clients interested in receiving OS notifications when asynchronous IO | |
156 // operations complete should implement this interface and register themselves | |
157 // with the message pump. | |
158 // | |
159 // Typical use #1: | |
160 // // Use only when there are no user's buffers involved on the actual IO, | |
161 // // so that all the cleanup can be done by the message pump. | |
162 // class MyFile : public IOHandler { | |
163 // MyFile() { | |
164 // ... | |
165 // context_ = new IOContext; | |
166 // context_->handler = this; | |
167 // message_pump->RegisterIOHandler(file_, this); | |
168 // } | |
169 // ~MyFile() { | |
170 // if (pending_) { | |
171 // // By setting the handler to NULL, we're asking for this context | |
172 // // to be deleted when received, without calling back to us. | |
173 // context_->handler = NULL; | |
174 // } else { | |
175 // delete context_; | |
176 // } | |
177 // } | |
178 // virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered, | |
179 // DWORD error) { | |
180 // pending_ = false; | |
181 // } | |
182 // void DoSomeIo() { | |
183 // ... | |
184 // // The only buffer required for this operation is the overlapped | |
185 // // structure. | |
186 // ConnectNamedPipe(file_, &context_->overlapped); | |
187 // pending_ = true; | |
188 // } | |
189 // bool pending_; | |
190 // IOContext* context_; | |
191 // HANDLE file_; | |
192 // }; | |
193 // | |
194 // Typical use #2: | |
195 // class MyFile : public IOHandler { | |
196 // MyFile() { | |
197 // ... | |
198 // message_pump->RegisterIOHandler(file_, this); | |
199 // } | |
200 // // Plus some code to make sure that this destructor is not called | |
201 // // while there are pending IO operations. | |
202 // ~MyFile() { | |
203 // } | |
204 // virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered, | |
205 // DWORD error) { | |
206 // ... | |
207 // delete context; | |
208 // } | |
209 // void DoSomeIo() { | |
210 // ... | |
211 // IOContext* context = new IOContext; | |
212 // // This is not used for anything. It just prevents the context from | |
213 // // being considered "abandoned". | |
214 // context->handler = this; | |
215 // ReadFile(file_, buffer, num_bytes, &read, &context->overlapped); | |
216 // } | |
217 // HANDLE file_; | |
218 // }; | |
219 // | |
220 // Typical use #3: | |
221 // Same as the previous example, except that in order to deal with the | |
222 // requirement stated for the destructor, the class calls WaitForIOCompletion | |
223 // from the destructor to block until all IO finishes. | |
224 // ~MyFile() { | |
225 // while(pending_) | |
226 // message_pump->WaitForIOCompletion(INFINITE, this); | |
227 // } | |
228 // | |
229 class IOHandler { | |
230 public: | |
231 virtual ~IOHandler() {} | |
232 // This will be called once the pending IO operation associated with | |
233 // |context| completes. |error| is the Win32 error code of the IO operation | |
234 // (ERROR_SUCCESS if there was no error). |bytes_transfered| will be zero | |
235 // on error. | |
236 virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered, | |
237 DWORD error) = 0; | |
238 }; | |
239 | |
240 // An IOObserver is an object that receives IO notifications from the | |
241 // MessagePump. | |
242 // | |
243 // NOTE: An IOObserver implementation should be extremely fast! | |
244 class IOObserver { | |
245 public: | |
246 IOObserver() {} | |
247 | |
248 virtual void WillProcessIOEvent() = 0; | |
249 virtual void DidProcessIOEvent() = 0; | |
250 | |
251 protected: | |
252 virtual ~IOObserver() {} | |
253 }; | |
254 | |
255 // The extended context that should be used as the base structure on every | |
256 // overlapped IO operation. |handler| must be set to the registered IOHandler | |
257 // for the given file when the operation is started, and it can be set to NULL | |
258 // before the operation completes to indicate that the handler should not be | |
259 // called anymore, and instead, the IOContext should be deleted when the OS | |
260 // notifies the completion of this operation. Please remember that any buffers | |
261 // involved with an IO operation should be around until the callback is | |
262 // received, so this technique can only be used for IO that do not involve | |
263 // additional buffers (other than the overlapped structure itself). | |
264 struct IOContext { | |
265 OVERLAPPED overlapped; | |
266 IOHandler* handler; | |
267 }; | |
268 | |
269 MessagePumpForIO(); | |
270 ~MessagePumpForIO() override; | |
271 | |
272 // MessagePump methods: | |
273 void ScheduleWork() override; | |
274 void ScheduleDelayedWork(const TimeTicks& delayed_work_time) override; | |
275 | |
276 // Register the handler to be used when asynchronous IO for the given file | |
277 // completes. The registration persists as long as |file_handle| is valid, so | |
278 // |handler| must be valid as long as there is pending IO for the given file. | |
279 void RegisterIOHandler(HANDLE file_handle, IOHandler* handler); | |
280 | |
281 // Register the handler to be used to process job events. The registration | |
282 // persists as long as the job object is live, so |handler| must be valid | |
283 // until the job object is destroyed. Returns true if the registration | |
284 // succeeded, and false otherwise. | |
285 bool RegisterJobObject(HANDLE job_handle, IOHandler* handler); | |
286 | |
287 // Waits for the next IO completion that should be processed by |filter|, for | |
288 // up to |timeout| milliseconds. Return true if any IO operation completed, | |
289 // regardless of the involved handler, and false if the timeout expired. If | |
290 // the completion port received any message and the involved IO handler | |
291 // matches |filter|, the callback is called before returning from this code; | |
292 // if the handler is not the one that we are looking for, the callback will | |
293 // be postponed for another time, so reentrancy problems can be avoided. | |
294 // External use of this method should be reserved for the rare case when the | |
295 // caller is willing to allow pausing regular task dispatching on this thread. | |
296 bool WaitForIOCompletion(DWORD timeout, IOHandler* filter); | |
297 | |
298 void AddIOObserver(IOObserver* obs); | |
299 void RemoveIOObserver(IOObserver* obs); | |
300 | |
301 private: | |
302 struct IOItem { | |
303 IOHandler* handler; | |
304 IOContext* context; | |
305 DWORD bytes_transfered; | |
306 DWORD error; | |
307 | |
308 // In some cases |context| can be a non-pointer value casted to a pointer. | |
309 // |has_valid_io_context| is true if |context| is a valid IOContext | |
310 // pointer, and false otherwise. | |
311 bool has_valid_io_context; | |
312 }; | |
313 | |
314 void DoRunLoop() override; | |
315 void WaitForWork(); | |
316 bool MatchCompletedIOItem(IOHandler* filter, IOItem* item); | |
317 bool GetIOItem(DWORD timeout, IOItem* item); | |
318 bool ProcessInternalIOItem(const IOItem& item); | |
319 void WillProcessIOEvent(); | |
320 void DidProcessIOEvent(); | |
321 | |
322 // Converts an IOHandler pointer to a completion port key. | |
323 // |has_valid_io_context| specifies whether completion packets posted to | |
324 // |handler| will have valid OVERLAPPED pointers. | |
325 static ULONG_PTR HandlerToKey(IOHandler* handler, bool has_valid_io_context); | |
326 | |
327 // Converts a completion port key to an IOHandler pointer. | |
328 static IOHandler* KeyToHandler(ULONG_PTR key, bool* has_valid_io_context); | |
329 | |
330 // The completion port associated with this thread. | |
331 win::ScopedHandle port_; | |
332 // This list will be empty almost always. It stores IO completions that have | |
333 // not been delivered yet because somebody was doing cleanup. | |
334 std::list<IOItem> completed_io_; | |
335 | |
336 ObserverList<IOObserver> io_observers_; | |
337 }; | |
338 | |
339 } // namespace base | |
340 | |
341 #endif // BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_ | |
OLD | NEW |