| OLD | NEW |
| (Empty) |
| 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | |
| 2 // Use of this source code is governed by a BSD-style license that can be | |
| 3 // found in the LICENSE file. | |
| 4 | |
| 5 #ifndef BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_ | |
| 6 #define BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_ | |
| 7 | |
| 8 #include <windows.h> | |
| 9 | |
| 10 #include <list> | |
| 11 | |
| 12 #include "base/base_export.h" | |
| 13 #include "base/basictypes.h" | |
| 14 #include "base/message_loop/message_pump.h" | |
| 15 #include "base/message_loop/message_pump_dispatcher.h" | |
| 16 #include "base/observer_list.h" | |
| 17 #include "base/time/time.h" | |
| 18 #include "base/win/scoped_handle.h" | |
| 19 | |
| 20 namespace base { | |
| 21 | |
| 22 // MessagePumpWin serves as the base for specialized versions of the MessagePump | |
| 23 // for Windows. It provides basic functionality like handling of observers and | |
| 24 // controlling the lifetime of the message pump. | |
| 25 class BASE_EXPORT MessagePumpWin : public MessagePump { | |
| 26 public: | |
| 27 MessagePumpWin() : have_work_(0), state_(NULL) {} | |
| 28 | |
| 29 // Like MessagePump::Run, but MSG objects are routed through dispatcher. | |
| 30 void RunWithDispatcher(Delegate* delegate, MessagePumpDispatcher* dispatcher); | |
| 31 | |
| 32 // MessagePump methods: | |
| 33 void Run(Delegate* delegate) override; | |
| 34 void Quit() override; | |
| 35 | |
| 36 protected: | |
| 37 struct RunState { | |
| 38 Delegate* delegate; | |
| 39 MessagePumpDispatcher* dispatcher; | |
| 40 | |
| 41 // Used to flag that the current Run() invocation should return ASAP. | |
| 42 bool should_quit; | |
| 43 | |
| 44 // Used to count how many Run() invocations are on the stack. | |
| 45 int run_depth; | |
| 46 }; | |
| 47 | |
| 48 virtual void DoRunLoop() = 0; | |
| 49 int GetCurrentDelay() const; | |
| 50 | |
| 51 // The time at which delayed work should run. | |
| 52 TimeTicks delayed_work_time_; | |
| 53 | |
| 54 // A boolean value used to indicate if there is a kMsgDoWork message pending | |
| 55 // in the Windows Message queue. There is at most one such message, and it | |
| 56 // can drive execution of tasks when a native message pump is running. | |
| 57 LONG have_work_; | |
| 58 | |
| 59 // State for the current invocation of Run. | |
| 60 RunState* state_; | |
| 61 }; | |
| 62 | |
| 63 //----------------------------------------------------------------------------- | |
| 64 // MessagePumpForUI extends MessagePumpWin with methods that are particular to a | |
| 65 // MessageLoop instantiated with TYPE_UI. | |
| 66 // | |
| 67 // MessagePumpForUI implements a "traditional" Windows message pump. It contains | |
| 68 // a nearly infinite loop that peeks out messages, and then dispatches them. | |
| 69 // Intermixed with those peeks are callouts to DoWork for pending tasks, and | |
| 70 // DoDelayedWork for pending timers. When there are no events to be serviced, | |
| 71 // this pump goes into a wait state. In most cases, this message pump handles | |
| 72 // all processing. | |
| 73 // | |
| 74 // However, when a task, or windows event, invokes on the stack a native dialog | |
| 75 // box or such, that window typically provides a bare bones (native?) message | |
| 76 // pump. That bare-bones message pump generally supports little more than a | |
| 77 // peek of the Windows message queue, followed by a dispatch of the peeked | |
| 78 // message. MessageLoop extends that bare-bones message pump to also service | |
| 79 // Tasks, at the cost of some complexity. | |
| 80 // | |
| 81 // The basic structure of the extension (refered to as a sub-pump) is that a | |
| 82 // special message, kMsgHaveWork, is repeatedly injected into the Windows | |
| 83 // Message queue. Each time the kMsgHaveWork message is peeked, checks are | |
| 84 // made for an extended set of events, including the availability of Tasks to | |
| 85 // run. | |
| 86 // | |
| 87 // After running a task, the special message kMsgHaveWork is again posted to | |
| 88 // the Windows Message queue, ensuring a future time slice for processing a | |
| 89 // future event. To prevent flooding the Windows Message queue, care is taken | |
| 90 // to be sure that at most one kMsgHaveWork message is EVER pending in the | |
| 91 // Window's Message queue. | |
| 92 // | |
| 93 // There are a few additional complexities in this system where, when there are | |
| 94 // no Tasks to run, this otherwise infinite stream of messages which drives the | |
| 95 // sub-pump is halted. The pump is automatically re-started when Tasks are | |
| 96 // queued. | |
| 97 // | |
| 98 // A second complexity is that the presence of this stream of posted tasks may | |
| 99 // prevent a bare-bones message pump from ever peeking a WM_PAINT or WM_TIMER. | |
| 100 // Such paint and timer events always give priority to a posted message, such as | |
| 101 // kMsgHaveWork messages. As a result, care is taken to do some peeking in | |
| 102 // between the posting of each kMsgHaveWork message (i.e., after kMsgHaveWork | |
| 103 // is peeked, and before a replacement kMsgHaveWork is posted). | |
| 104 // | |
| 105 // NOTE: Although it may seem odd that messages are used to start and stop this | |
| 106 // flow (as opposed to signaling objects, etc.), it should be understood that | |
| 107 // the native message pump will *only* respond to messages. As a result, it is | |
| 108 // an excellent choice. It is also helpful that the starter messages that are | |
| 109 // placed in the queue when new task arrive also awakens DoRunLoop. | |
| 110 // | |
| 111 class BASE_EXPORT MessagePumpForUI : public MessagePumpWin { | |
| 112 public: | |
| 113 // The application-defined code passed to the hook procedure. | |
| 114 static const int kMessageFilterCode = 0x5001; | |
| 115 | |
| 116 MessagePumpForUI(); | |
| 117 ~MessagePumpForUI() override; | |
| 118 | |
| 119 // MessagePump methods: | |
| 120 void ScheduleWork() override; | |
| 121 void ScheduleDelayedWork(const TimeTicks& delayed_work_time) override; | |
| 122 | |
| 123 private: | |
| 124 static LRESULT CALLBACK WndProcThunk(HWND window_handle, | |
| 125 UINT message, | |
| 126 WPARAM wparam, | |
| 127 LPARAM lparam); | |
| 128 void DoRunLoop() override; | |
| 129 void InitMessageWnd(); | |
| 130 void WaitForWork(); | |
| 131 void HandleWorkMessage(); | |
| 132 void HandleTimerMessage(); | |
| 133 void RescheduleTimer(); | |
| 134 bool ProcessNextWindowsMessage(); | |
| 135 bool ProcessMessageHelper(const MSG& msg); | |
| 136 bool ProcessPumpReplacementMessage(); | |
| 137 | |
| 138 // Atom representing the registered window class. | |
| 139 ATOM atom_; | |
| 140 | |
| 141 // A hidden message-only window. | |
| 142 HWND message_hwnd_; | |
| 143 }; | |
| 144 | |
| 145 //----------------------------------------------------------------------------- | |
| 146 // MessagePumpForIO extends MessagePumpWin with methods that are particular to a | |
| 147 // MessageLoop instantiated with TYPE_IO. This version of MessagePump does not | |
| 148 // deal with Windows mesagges, and instead has a Run loop based on Completion | |
| 149 // Ports so it is better suited for IO operations. | |
| 150 // | |
| 151 class BASE_EXPORT MessagePumpForIO : public MessagePumpWin { | |
| 152 public: | |
| 153 struct IOContext; | |
| 154 | |
| 155 // Clients interested in receiving OS notifications when asynchronous IO | |
| 156 // operations complete should implement this interface and register themselves | |
| 157 // with the message pump. | |
| 158 // | |
| 159 // Typical use #1: | |
| 160 // // Use only when there are no user's buffers involved on the actual IO, | |
| 161 // // so that all the cleanup can be done by the message pump. | |
| 162 // class MyFile : public IOHandler { | |
| 163 // MyFile() { | |
| 164 // ... | |
| 165 // context_ = new IOContext; | |
| 166 // context_->handler = this; | |
| 167 // message_pump->RegisterIOHandler(file_, this); | |
| 168 // } | |
| 169 // ~MyFile() { | |
| 170 // if (pending_) { | |
| 171 // // By setting the handler to NULL, we're asking for this context | |
| 172 // // to be deleted when received, without calling back to us. | |
| 173 // context_->handler = NULL; | |
| 174 // } else { | |
| 175 // delete context_; | |
| 176 // } | |
| 177 // } | |
| 178 // virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered, | |
| 179 // DWORD error) { | |
| 180 // pending_ = false; | |
| 181 // } | |
| 182 // void DoSomeIo() { | |
| 183 // ... | |
| 184 // // The only buffer required for this operation is the overlapped | |
| 185 // // structure. | |
| 186 // ConnectNamedPipe(file_, &context_->overlapped); | |
| 187 // pending_ = true; | |
| 188 // } | |
| 189 // bool pending_; | |
| 190 // IOContext* context_; | |
| 191 // HANDLE file_; | |
| 192 // }; | |
| 193 // | |
| 194 // Typical use #2: | |
| 195 // class MyFile : public IOHandler { | |
| 196 // MyFile() { | |
| 197 // ... | |
| 198 // message_pump->RegisterIOHandler(file_, this); | |
| 199 // } | |
| 200 // // Plus some code to make sure that this destructor is not called | |
| 201 // // while there are pending IO operations. | |
| 202 // ~MyFile() { | |
| 203 // } | |
| 204 // virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered, | |
| 205 // DWORD error) { | |
| 206 // ... | |
| 207 // delete context; | |
| 208 // } | |
| 209 // void DoSomeIo() { | |
| 210 // ... | |
| 211 // IOContext* context = new IOContext; | |
| 212 // // This is not used for anything. It just prevents the context from | |
| 213 // // being considered "abandoned". | |
| 214 // context->handler = this; | |
| 215 // ReadFile(file_, buffer, num_bytes, &read, &context->overlapped); | |
| 216 // } | |
| 217 // HANDLE file_; | |
| 218 // }; | |
| 219 // | |
| 220 // Typical use #3: | |
| 221 // Same as the previous example, except that in order to deal with the | |
| 222 // requirement stated for the destructor, the class calls WaitForIOCompletion | |
| 223 // from the destructor to block until all IO finishes. | |
| 224 // ~MyFile() { | |
| 225 // while(pending_) | |
| 226 // message_pump->WaitForIOCompletion(INFINITE, this); | |
| 227 // } | |
| 228 // | |
| 229 class IOHandler { | |
| 230 public: | |
| 231 virtual ~IOHandler() {} | |
| 232 // This will be called once the pending IO operation associated with | |
| 233 // |context| completes. |error| is the Win32 error code of the IO operation | |
| 234 // (ERROR_SUCCESS if there was no error). |bytes_transfered| will be zero | |
| 235 // on error. | |
| 236 virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered, | |
| 237 DWORD error) = 0; | |
| 238 }; | |
| 239 | |
| 240 // An IOObserver is an object that receives IO notifications from the | |
| 241 // MessagePump. | |
| 242 // | |
| 243 // NOTE: An IOObserver implementation should be extremely fast! | |
| 244 class IOObserver { | |
| 245 public: | |
| 246 IOObserver() {} | |
| 247 | |
| 248 virtual void WillProcessIOEvent() = 0; | |
| 249 virtual void DidProcessIOEvent() = 0; | |
| 250 | |
| 251 protected: | |
| 252 virtual ~IOObserver() {} | |
| 253 }; | |
| 254 | |
| 255 // The extended context that should be used as the base structure on every | |
| 256 // overlapped IO operation. |handler| must be set to the registered IOHandler | |
| 257 // for the given file when the operation is started, and it can be set to NULL | |
| 258 // before the operation completes to indicate that the handler should not be | |
| 259 // called anymore, and instead, the IOContext should be deleted when the OS | |
| 260 // notifies the completion of this operation. Please remember that any buffers | |
| 261 // involved with an IO operation should be around until the callback is | |
| 262 // received, so this technique can only be used for IO that do not involve | |
| 263 // additional buffers (other than the overlapped structure itself). | |
| 264 struct IOContext { | |
| 265 OVERLAPPED overlapped; | |
| 266 IOHandler* handler; | |
| 267 }; | |
| 268 | |
| 269 MessagePumpForIO(); | |
| 270 ~MessagePumpForIO() override; | |
| 271 | |
| 272 // MessagePump methods: | |
| 273 void ScheduleWork() override; | |
| 274 void ScheduleDelayedWork(const TimeTicks& delayed_work_time) override; | |
| 275 | |
| 276 // Register the handler to be used when asynchronous IO for the given file | |
| 277 // completes. The registration persists as long as |file_handle| is valid, so | |
| 278 // |handler| must be valid as long as there is pending IO for the given file. | |
| 279 void RegisterIOHandler(HANDLE file_handle, IOHandler* handler); | |
| 280 | |
| 281 // Register the handler to be used to process job events. The registration | |
| 282 // persists as long as the job object is live, so |handler| must be valid | |
| 283 // until the job object is destroyed. Returns true if the registration | |
| 284 // succeeded, and false otherwise. | |
| 285 bool RegisterJobObject(HANDLE job_handle, IOHandler* handler); | |
| 286 | |
| 287 // Waits for the next IO completion that should be processed by |filter|, for | |
| 288 // up to |timeout| milliseconds. Return true if any IO operation completed, | |
| 289 // regardless of the involved handler, and false if the timeout expired. If | |
| 290 // the completion port received any message and the involved IO handler | |
| 291 // matches |filter|, the callback is called before returning from this code; | |
| 292 // if the handler is not the one that we are looking for, the callback will | |
| 293 // be postponed for another time, so reentrancy problems can be avoided. | |
| 294 // External use of this method should be reserved for the rare case when the | |
| 295 // caller is willing to allow pausing regular task dispatching on this thread. | |
| 296 bool WaitForIOCompletion(DWORD timeout, IOHandler* filter); | |
| 297 | |
| 298 void AddIOObserver(IOObserver* obs); | |
| 299 void RemoveIOObserver(IOObserver* obs); | |
| 300 | |
| 301 private: | |
| 302 struct IOItem { | |
| 303 IOHandler* handler; | |
| 304 IOContext* context; | |
| 305 DWORD bytes_transfered; | |
| 306 DWORD error; | |
| 307 | |
| 308 // In some cases |context| can be a non-pointer value casted to a pointer. | |
| 309 // |has_valid_io_context| is true if |context| is a valid IOContext | |
| 310 // pointer, and false otherwise. | |
| 311 bool has_valid_io_context; | |
| 312 }; | |
| 313 | |
| 314 void DoRunLoop() override; | |
| 315 void WaitForWork(); | |
| 316 bool MatchCompletedIOItem(IOHandler* filter, IOItem* item); | |
| 317 bool GetIOItem(DWORD timeout, IOItem* item); | |
| 318 bool ProcessInternalIOItem(const IOItem& item); | |
| 319 void WillProcessIOEvent(); | |
| 320 void DidProcessIOEvent(); | |
| 321 | |
| 322 // Converts an IOHandler pointer to a completion port key. | |
| 323 // |has_valid_io_context| specifies whether completion packets posted to | |
| 324 // |handler| will have valid OVERLAPPED pointers. | |
| 325 static ULONG_PTR HandlerToKey(IOHandler* handler, bool has_valid_io_context); | |
| 326 | |
| 327 // Converts a completion port key to an IOHandler pointer. | |
| 328 static IOHandler* KeyToHandler(ULONG_PTR key, bool* has_valid_io_context); | |
| 329 | |
| 330 // The completion port associated with this thread. | |
| 331 win::ScopedHandle port_; | |
| 332 // This list will be empty almost always. It stores IO completions that have | |
| 333 // not been delivered yet because somebody was doing cleanup. | |
| 334 std::list<IOItem> completed_io_; | |
| 335 | |
| 336 ObserverList<IOObserver> io_observers_; | |
| 337 }; | |
| 338 | |
| 339 } // namespace base | |
| 340 | |
| 341 #endif // BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_ | |
| OLD | NEW |