OLD | NEW |
| (Empty) |
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include <malloc.h> | |
6 #include <new.h> | |
7 #include <windows.h> | |
8 | |
9 #include "base/basictypes.h" | |
10 | |
11 // This shim make it possible to perform additional checks on allocations | |
12 // before passing them to the Heap functions. | |
13 | |
14 // Heap functions are stripped from libcmt.lib using the prep_libc.py | |
15 // for each object file stripped, we re-implement them here to allow us to | |
16 // perform additional checks: | |
17 // 1. Enforcing the maximum size that can be allocated to 2Gb. | |
18 // 2. Calling new_handler if malloc fails. | |
19 | |
20 extern "C" { | |
21 // We set this to 1 because part of the CRT uses a check of _crtheap != 0 | |
22 // to test whether the CRT has been initialized. Once we've ripped out | |
23 // the allocators from libcmt, we need to provide this definition so that | |
24 // the rest of the CRT is still usable. | |
25 // heapinit.c | |
26 void* _crtheap = reinterpret_cast<void*>(1); | |
27 } | |
28 | |
29 namespace { | |
30 | |
31 const size_t kWindowsPageSize = 4096; | |
32 const size_t kMaxWindowsAllocation = INT_MAX - kWindowsPageSize; | |
33 int new_mode = 0; | |
34 | |
35 // VS2013 crt uses the process heap as its heap, so we do the same here. | |
36 // See heapinit.c in VS CRT sources. | |
37 bool win_heap_init() { | |
38 // Set the _crtheap global here. THis allows us to offload most of the | |
39 // memory management to the CRT, except the functions we need to shim. | |
40 _crtheap = GetProcessHeap(); | |
41 if (_crtheap == NULL) | |
42 return false; | |
43 | |
44 ULONG enable_lfh = 2; | |
45 // NOTE: Setting LFH may fail. Vista already has it enabled. | |
46 // And under the debugger, it won't use LFH. So we | |
47 // ignore any errors. | |
48 HeapSetInformation(_crtheap, HeapCompatibilityInformation, &enable_lfh, | |
49 sizeof(enable_lfh)); | |
50 | |
51 return true; | |
52 } | |
53 | |
54 void* win_heap_malloc(size_t size) { | |
55 if (size < kMaxWindowsAllocation) | |
56 return HeapAlloc(_crtheap, 0, size); | |
57 return NULL; | |
58 } | |
59 | |
60 void win_heap_free(void* size) { | |
61 HeapFree(_crtheap, 0, size); | |
62 } | |
63 | |
64 void* win_heap_realloc(void* ptr, size_t size) { | |
65 if (!ptr) | |
66 return win_heap_malloc(size); | |
67 if (!size) { | |
68 win_heap_free(ptr); | |
69 return NULL; | |
70 } | |
71 if (size < kMaxWindowsAllocation) | |
72 return HeapReAlloc(_crtheap, 0, ptr, size); | |
73 return NULL; | |
74 } | |
75 | |
76 void win_heap_term() { | |
77 _crtheap = NULL; | |
78 } | |
79 | |
80 // Call the new handler, if one has been set. | |
81 // Returns true on successfully calling the handler, false otherwise. | |
82 inline bool call_new_handler(bool nothrow, size_t size) { | |
83 // Get the current new handler. | |
84 _PNH nh = _query_new_handler(); | |
85 #if defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS | |
86 if (!nh) | |
87 return false; | |
88 // Since exceptions are disabled, we don't really know if new_handler | |
89 // failed. Assume it will abort if it fails. | |
90 return nh(size); | |
91 #else | |
92 #error "Exceptions in allocator shim are not supported!" | |
93 #endif // defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS | |
94 return false; | |
95 } | |
96 | |
97 // Implement a C++ style allocation, which always calls the new_handler | |
98 // on failure. | |
99 inline void* generic_cpp_alloc(size_t size, bool nothrow) { | |
100 void* ptr; | |
101 for (;;) { | |
102 ptr = malloc(size); | |
103 if (ptr) | |
104 return ptr; | |
105 if (!call_new_handler(nothrow, size)) | |
106 break; | |
107 } | |
108 return ptr; | |
109 } | |
110 | |
111 } // namespace | |
112 | |
113 // new.cpp | |
114 void* operator new(size_t size) { | |
115 return generic_cpp_alloc(size, false); | |
116 } | |
117 | |
118 // delete.cpp | |
119 void operator delete(void* p) throw() { | |
120 free(p); | |
121 } | |
122 | |
123 // new2.cpp | |
124 void* operator new[](size_t size) { | |
125 return generic_cpp_alloc(size, false); | |
126 } | |
127 | |
128 // delete2.cpp | |
129 void operator delete[](void* p) throw() { | |
130 free(p); | |
131 } | |
132 | |
133 // newopnt.cpp | |
134 void* operator new(size_t size, const std::nothrow_t& nt) { | |
135 return generic_cpp_alloc(size, true); | |
136 } | |
137 | |
138 // newaopnt.cpp | |
139 void* operator new[](size_t size, const std::nothrow_t& nt) { | |
140 return generic_cpp_alloc(size, true); | |
141 } | |
142 | |
143 // This function behaves similarly to MSVC's _set_new_mode. | |
144 // If flag is 0 (default), calls to malloc will behave normally. | |
145 // If flag is 1, calls to malloc will behave like calls to new, | |
146 // and the std_new_handler will be invoked on failure. | |
147 // Returns the previous mode. | |
148 // new_mode.cpp | |
149 int _set_new_mode(int flag) throw() { | |
150 int old_mode = new_mode; | |
151 new_mode = flag; | |
152 return old_mode; | |
153 } | |
154 | |
155 // new_mode.cpp | |
156 int _query_new_mode() { | |
157 return new_mode; | |
158 } | |
159 | |
160 extern "C" { | |
161 // malloc.c | |
162 void* malloc(size_t size) { | |
163 void* ptr; | |
164 for (;;) { | |
165 ptr = win_heap_malloc(size); | |
166 if (ptr) | |
167 return ptr; | |
168 | |
169 if (!new_mode || !call_new_handler(true, size)) | |
170 break; | |
171 } | |
172 return ptr; | |
173 } | |
174 | |
175 // free.c | |
176 void free(void* p) { | |
177 win_heap_free(p); | |
178 return; | |
179 } | |
180 | |
181 // realloc.c | |
182 void* realloc(void* ptr, size_t size) { | |
183 // Webkit is brittle for allocators that return NULL for malloc(0). The | |
184 // realloc(0, 0) code path does not guarantee a non-NULL return, so be sure | |
185 // to call malloc for this case. | |
186 if (!ptr) | |
187 return malloc(size); | |
188 | |
189 void* new_ptr; | |
190 for (;;) { | |
191 new_ptr = win_heap_realloc(ptr, size); | |
192 | |
193 // Subtle warning: NULL return does not alwas indicate out-of-memory. If | |
194 // the requested new size is zero, realloc should free the ptr and return | |
195 // NULL. | |
196 if (new_ptr || !size) | |
197 return new_ptr; | |
198 if (!new_mode || !call_new_handler(true, size)) | |
199 break; | |
200 } | |
201 return new_ptr; | |
202 } | |
203 | |
204 // heapinit.c | |
205 intptr_t _get_heap_handle() { | |
206 return reinterpret_cast<intptr_t>(_crtheap); | |
207 } | |
208 | |
209 // heapinit.c | |
210 int _heap_init() { | |
211 return win_heap_init() ? 1 : 0; | |
212 } | |
213 | |
214 // heapinit.c | |
215 void _heap_term() { | |
216 win_heap_term(); | |
217 } | |
218 | |
219 // calloc.c | |
220 void* calloc(size_t n, size_t elem_size) { | |
221 // Overflow check. | |
222 const size_t size = n * elem_size; | |
223 if (elem_size != 0 && size / elem_size != n) | |
224 return NULL; | |
225 | |
226 void* result = malloc(size); | |
227 if (result != NULL) { | |
228 memset(result, 0, size); | |
229 } | |
230 return result; | |
231 } | |
232 | |
233 // recalloc.c | |
234 void* _recalloc(void* p, size_t n, size_t elem_size) { | |
235 if (!p) | |
236 return calloc(n, elem_size); | |
237 | |
238 // This API is a bit odd. | |
239 // Note: recalloc only guarantees zeroed memory when p is NULL. | |
240 // Generally, calls to malloc() have padding. So a request | |
241 // to malloc N bytes actually malloc's N+x bytes. Later, if | |
242 // that buffer is passed to recalloc, we don't know what N | |
243 // was anymore. We only know what N+x is. As such, there is | |
244 // no way to know what to zero out. | |
245 const size_t size = n * elem_size; | |
246 if (elem_size != 0 && size / elem_size != n) | |
247 return NULL; | |
248 return realloc(p, size); | |
249 } | |
250 | |
251 // calloc_impl.c | |
252 void* _calloc_impl(size_t n, size_t size) { | |
253 return calloc(n, size); | |
254 } | |
255 | |
256 #ifndef NDEBUG | |
257 #undef malloc | |
258 #undef free | |
259 #undef calloc | |
260 | |
261 static int error_handler(int reportType) { | |
262 switch (reportType) { | |
263 case 0: // _CRT_WARN | |
264 __debugbreak(); | |
265 return 0; | |
266 | |
267 case 1: // _CRT_ERROR | |
268 __debugbreak(); | |
269 return 0; | |
270 | |
271 case 2: // _CRT_ASSERT | |
272 __debugbreak(); | |
273 return 0; | |
274 } | |
275 char* p = NULL; | |
276 *p = '\0'; | |
277 return 0; | |
278 } | |
279 | |
280 int _CrtDbgReport(int reportType, | |
281 const char*, | |
282 int, | |
283 const char*, | |
284 const char*, | |
285 ...) { | |
286 return error_handler(reportType); | |
287 } | |
288 | |
289 int _CrtDbgReportW(int reportType, | |
290 const wchar_t*, | |
291 int, | |
292 const wchar_t*, | |
293 const wchar_t*, | |
294 ...) { | |
295 return error_handler(reportType); | |
296 } | |
297 | |
298 int _CrtSetReportMode(int, int) { | |
299 return 0; | |
300 } | |
301 | |
302 void* _malloc_dbg(size_t size, int, const char*, int) { | |
303 return malloc(size); | |
304 } | |
305 | |
306 void* _realloc_dbg(void* ptr, size_t size, int, const char*, int) { | |
307 return realloc(ptr, size); | |
308 } | |
309 | |
310 void _free_dbg(void* ptr, int) { | |
311 free(ptr); | |
312 } | |
313 | |
314 void* _calloc_dbg(size_t n, size_t size, int, const char*, int) { | |
315 return calloc(n, size); | |
316 } | |
317 #endif // NDEBUG | |
318 | |
319 } // extern C | |
OLD | NEW |