| OLD | NEW |
| (Empty) |
| 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | |
| 2 // Use of this source code is governed by a BSD-style license that can be | |
| 3 // found in the LICENSE file. | |
| 4 | |
| 5 #include <malloc.h> | |
| 6 #include <new.h> | |
| 7 #include <windows.h> | |
| 8 | |
| 9 #include "base/basictypes.h" | |
| 10 | |
| 11 // This shim make it possible to perform additional checks on allocations | |
| 12 // before passing them to the Heap functions. | |
| 13 | |
| 14 // Heap functions are stripped from libcmt.lib using the prep_libc.py | |
| 15 // for each object file stripped, we re-implement them here to allow us to | |
| 16 // perform additional checks: | |
| 17 // 1. Enforcing the maximum size that can be allocated to 2Gb. | |
| 18 // 2. Calling new_handler if malloc fails. | |
| 19 | |
| 20 extern "C" { | |
| 21 // We set this to 1 because part of the CRT uses a check of _crtheap != 0 | |
| 22 // to test whether the CRT has been initialized. Once we've ripped out | |
| 23 // the allocators from libcmt, we need to provide this definition so that | |
| 24 // the rest of the CRT is still usable. | |
| 25 // heapinit.c | |
| 26 void* _crtheap = reinterpret_cast<void*>(1); | |
| 27 } | |
| 28 | |
| 29 namespace { | |
| 30 | |
| 31 const size_t kWindowsPageSize = 4096; | |
| 32 const size_t kMaxWindowsAllocation = INT_MAX - kWindowsPageSize; | |
| 33 int new_mode = 0; | |
| 34 | |
| 35 // VS2013 crt uses the process heap as its heap, so we do the same here. | |
| 36 // See heapinit.c in VS CRT sources. | |
| 37 bool win_heap_init() { | |
| 38 // Set the _crtheap global here. THis allows us to offload most of the | |
| 39 // memory management to the CRT, except the functions we need to shim. | |
| 40 _crtheap = GetProcessHeap(); | |
| 41 if (_crtheap == NULL) | |
| 42 return false; | |
| 43 | |
| 44 ULONG enable_lfh = 2; | |
| 45 // NOTE: Setting LFH may fail. Vista already has it enabled. | |
| 46 // And under the debugger, it won't use LFH. So we | |
| 47 // ignore any errors. | |
| 48 HeapSetInformation(_crtheap, HeapCompatibilityInformation, &enable_lfh, | |
| 49 sizeof(enable_lfh)); | |
| 50 | |
| 51 return true; | |
| 52 } | |
| 53 | |
| 54 void* win_heap_malloc(size_t size) { | |
| 55 if (size < kMaxWindowsAllocation) | |
| 56 return HeapAlloc(_crtheap, 0, size); | |
| 57 return NULL; | |
| 58 } | |
| 59 | |
| 60 void win_heap_free(void* size) { | |
| 61 HeapFree(_crtheap, 0, size); | |
| 62 } | |
| 63 | |
| 64 void* win_heap_realloc(void* ptr, size_t size) { | |
| 65 if (!ptr) | |
| 66 return win_heap_malloc(size); | |
| 67 if (!size) { | |
| 68 win_heap_free(ptr); | |
| 69 return NULL; | |
| 70 } | |
| 71 if (size < kMaxWindowsAllocation) | |
| 72 return HeapReAlloc(_crtheap, 0, ptr, size); | |
| 73 return NULL; | |
| 74 } | |
| 75 | |
| 76 void win_heap_term() { | |
| 77 _crtheap = NULL; | |
| 78 } | |
| 79 | |
| 80 // Call the new handler, if one has been set. | |
| 81 // Returns true on successfully calling the handler, false otherwise. | |
| 82 inline bool call_new_handler(bool nothrow, size_t size) { | |
| 83 // Get the current new handler. | |
| 84 _PNH nh = _query_new_handler(); | |
| 85 #if defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS | |
| 86 if (!nh) | |
| 87 return false; | |
| 88 // Since exceptions are disabled, we don't really know if new_handler | |
| 89 // failed. Assume it will abort if it fails. | |
| 90 return nh(size); | |
| 91 #else | |
| 92 #error "Exceptions in allocator shim are not supported!" | |
| 93 #endif // defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS | |
| 94 return false; | |
| 95 } | |
| 96 | |
| 97 // Implement a C++ style allocation, which always calls the new_handler | |
| 98 // on failure. | |
| 99 inline void* generic_cpp_alloc(size_t size, bool nothrow) { | |
| 100 void* ptr; | |
| 101 for (;;) { | |
| 102 ptr = malloc(size); | |
| 103 if (ptr) | |
| 104 return ptr; | |
| 105 if (!call_new_handler(nothrow, size)) | |
| 106 break; | |
| 107 } | |
| 108 return ptr; | |
| 109 } | |
| 110 | |
| 111 } // namespace | |
| 112 | |
| 113 // new.cpp | |
| 114 void* operator new(size_t size) { | |
| 115 return generic_cpp_alloc(size, false); | |
| 116 } | |
| 117 | |
| 118 // delete.cpp | |
| 119 void operator delete(void* p) throw() { | |
| 120 free(p); | |
| 121 } | |
| 122 | |
| 123 // new2.cpp | |
| 124 void* operator new[](size_t size) { | |
| 125 return generic_cpp_alloc(size, false); | |
| 126 } | |
| 127 | |
| 128 // delete2.cpp | |
| 129 void operator delete[](void* p) throw() { | |
| 130 free(p); | |
| 131 } | |
| 132 | |
| 133 // newopnt.cpp | |
| 134 void* operator new(size_t size, const std::nothrow_t& nt) { | |
| 135 return generic_cpp_alloc(size, true); | |
| 136 } | |
| 137 | |
| 138 // newaopnt.cpp | |
| 139 void* operator new[](size_t size, const std::nothrow_t& nt) { | |
| 140 return generic_cpp_alloc(size, true); | |
| 141 } | |
| 142 | |
| 143 // This function behaves similarly to MSVC's _set_new_mode. | |
| 144 // If flag is 0 (default), calls to malloc will behave normally. | |
| 145 // If flag is 1, calls to malloc will behave like calls to new, | |
| 146 // and the std_new_handler will be invoked on failure. | |
| 147 // Returns the previous mode. | |
| 148 // new_mode.cpp | |
| 149 int _set_new_mode(int flag) throw() { | |
| 150 int old_mode = new_mode; | |
| 151 new_mode = flag; | |
| 152 return old_mode; | |
| 153 } | |
| 154 | |
| 155 // new_mode.cpp | |
| 156 int _query_new_mode() { | |
| 157 return new_mode; | |
| 158 } | |
| 159 | |
| 160 extern "C" { | |
| 161 // malloc.c | |
| 162 void* malloc(size_t size) { | |
| 163 void* ptr; | |
| 164 for (;;) { | |
| 165 ptr = win_heap_malloc(size); | |
| 166 if (ptr) | |
| 167 return ptr; | |
| 168 | |
| 169 if (!new_mode || !call_new_handler(true, size)) | |
| 170 break; | |
| 171 } | |
| 172 return ptr; | |
| 173 } | |
| 174 | |
| 175 // free.c | |
| 176 void free(void* p) { | |
| 177 win_heap_free(p); | |
| 178 return; | |
| 179 } | |
| 180 | |
| 181 // realloc.c | |
| 182 void* realloc(void* ptr, size_t size) { | |
| 183 // Webkit is brittle for allocators that return NULL for malloc(0). The | |
| 184 // realloc(0, 0) code path does not guarantee a non-NULL return, so be sure | |
| 185 // to call malloc for this case. | |
| 186 if (!ptr) | |
| 187 return malloc(size); | |
| 188 | |
| 189 void* new_ptr; | |
| 190 for (;;) { | |
| 191 new_ptr = win_heap_realloc(ptr, size); | |
| 192 | |
| 193 // Subtle warning: NULL return does not alwas indicate out-of-memory. If | |
| 194 // the requested new size is zero, realloc should free the ptr and return | |
| 195 // NULL. | |
| 196 if (new_ptr || !size) | |
| 197 return new_ptr; | |
| 198 if (!new_mode || !call_new_handler(true, size)) | |
| 199 break; | |
| 200 } | |
| 201 return new_ptr; | |
| 202 } | |
| 203 | |
| 204 // heapinit.c | |
| 205 intptr_t _get_heap_handle() { | |
| 206 return reinterpret_cast<intptr_t>(_crtheap); | |
| 207 } | |
| 208 | |
| 209 // heapinit.c | |
| 210 int _heap_init() { | |
| 211 return win_heap_init() ? 1 : 0; | |
| 212 } | |
| 213 | |
| 214 // heapinit.c | |
| 215 void _heap_term() { | |
| 216 win_heap_term(); | |
| 217 } | |
| 218 | |
| 219 // calloc.c | |
| 220 void* calloc(size_t n, size_t elem_size) { | |
| 221 // Overflow check. | |
| 222 const size_t size = n * elem_size; | |
| 223 if (elem_size != 0 && size / elem_size != n) | |
| 224 return NULL; | |
| 225 | |
| 226 void* result = malloc(size); | |
| 227 if (result != NULL) { | |
| 228 memset(result, 0, size); | |
| 229 } | |
| 230 return result; | |
| 231 } | |
| 232 | |
| 233 // recalloc.c | |
| 234 void* _recalloc(void* p, size_t n, size_t elem_size) { | |
| 235 if (!p) | |
| 236 return calloc(n, elem_size); | |
| 237 | |
| 238 // This API is a bit odd. | |
| 239 // Note: recalloc only guarantees zeroed memory when p is NULL. | |
| 240 // Generally, calls to malloc() have padding. So a request | |
| 241 // to malloc N bytes actually malloc's N+x bytes. Later, if | |
| 242 // that buffer is passed to recalloc, we don't know what N | |
| 243 // was anymore. We only know what N+x is. As such, there is | |
| 244 // no way to know what to zero out. | |
| 245 const size_t size = n * elem_size; | |
| 246 if (elem_size != 0 && size / elem_size != n) | |
| 247 return NULL; | |
| 248 return realloc(p, size); | |
| 249 } | |
| 250 | |
| 251 // calloc_impl.c | |
| 252 void* _calloc_impl(size_t n, size_t size) { | |
| 253 return calloc(n, size); | |
| 254 } | |
| 255 | |
| 256 #ifndef NDEBUG | |
| 257 #undef malloc | |
| 258 #undef free | |
| 259 #undef calloc | |
| 260 | |
| 261 static int error_handler(int reportType) { | |
| 262 switch (reportType) { | |
| 263 case 0: // _CRT_WARN | |
| 264 __debugbreak(); | |
| 265 return 0; | |
| 266 | |
| 267 case 1: // _CRT_ERROR | |
| 268 __debugbreak(); | |
| 269 return 0; | |
| 270 | |
| 271 case 2: // _CRT_ASSERT | |
| 272 __debugbreak(); | |
| 273 return 0; | |
| 274 } | |
| 275 char* p = NULL; | |
| 276 *p = '\0'; | |
| 277 return 0; | |
| 278 } | |
| 279 | |
| 280 int _CrtDbgReport(int reportType, | |
| 281 const char*, | |
| 282 int, | |
| 283 const char*, | |
| 284 const char*, | |
| 285 ...) { | |
| 286 return error_handler(reportType); | |
| 287 } | |
| 288 | |
| 289 int _CrtDbgReportW(int reportType, | |
| 290 const wchar_t*, | |
| 291 int, | |
| 292 const wchar_t*, | |
| 293 const wchar_t*, | |
| 294 ...) { | |
| 295 return error_handler(reportType); | |
| 296 } | |
| 297 | |
| 298 int _CrtSetReportMode(int, int) { | |
| 299 return 0; | |
| 300 } | |
| 301 | |
| 302 void* _malloc_dbg(size_t size, int, const char*, int) { | |
| 303 return malloc(size); | |
| 304 } | |
| 305 | |
| 306 void* _realloc_dbg(void* ptr, size_t size, int, const char*, int) { | |
| 307 return realloc(ptr, size); | |
| 308 } | |
| 309 | |
| 310 void _free_dbg(void* ptr, int) { | |
| 311 free(ptr); | |
| 312 } | |
| 313 | |
| 314 void* _calloc_dbg(size_t n, size_t size, int, const char*, int) { | |
| 315 return calloc(n, size); | |
| 316 } | |
| 317 #endif // NDEBUG | |
| 318 | |
| 319 } // extern C | |
| OLD | NEW |