OLD | NEW |
1 /* | 1 /* |
2 * Copyright 2012 Google Inc. | 2 * Copyright 2012 Google Inc. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
6 */ | 6 */ |
7 | 7 |
8 #ifndef SkChecksum_DEFINED | 8 #ifndef SkChecksum_DEFINED |
9 #define SkChecksum_DEFINED | 9 #define SkChecksum_DEFINED |
10 | 10 |
11 #include "SkString.h" | 11 #include "SkString.h" |
12 #include "SkTLogic.h" | 12 #include "SkTLogic.h" |
13 #include "SkTypes.h" | 13 #include "SkTypes.h" |
14 | 14 |
15 /** | |
16 * Computes a 32bit checksum from a blob of 32bit aligned data. This is meant | |
17 * to be very very fast, as it is used internally by the font cache, in | |
18 * conjuction with the entire raw key. This algorithm does not generate | |
19 * unique values as well as others (e.g. MD5) but it performs much faster. | |
20 * Skia's use cases can survive non-unique values (since the entire key is | |
21 * always available). Clients should only be used in circumstances where speed | |
22 * over uniqueness is at a premium. | |
23 */ | |
24 class SkChecksum : SkNoncopyable { | 15 class SkChecksum : SkNoncopyable { |
25 private: | |
26 /* | |
27 * Our Rotate and Mash helpers are meant to automatically do the right | |
28 * thing depending if sizeof(uintptr_t) is 4 or 8. | |
29 */ | |
30 enum { | |
31 ROTR = 17, | |
32 ROTL = sizeof(uintptr_t) * 8 - ROTR, | |
33 HALFBITS = sizeof(uintptr_t) * 4 | |
34 }; | |
35 | |
36 static inline uintptr_t Mash(uintptr_t total, uintptr_t value) { | |
37 return ((total >> ROTR) | (total << ROTL)) ^ value; | |
38 } | |
39 | |
40 public: | 16 public: |
41 /** | 17 /** |
42 * uint32_t -> uint32_t hash, useful for when you're about to trucate this h
ash but you | 18 * uint32_t -> uint32_t hash, useful for when you're about to trucate this h
ash but you |
43 * suspect its low bits aren't well mixed. | 19 * suspect its low bits aren't well mixed. |
44 * | 20 * |
45 * This is the Murmur3 finalizer. | 21 * This is the Murmur3 finalizer. |
46 */ | 22 */ |
47 static uint32_t Mix(uint32_t hash) { | 23 static uint32_t Mix(uint32_t hash) { |
48 hash ^= hash >> 16; | 24 hash ^= hash >> 16; |
49 hash *= 0x85ebca6b; | 25 hash *= 0x85ebca6b; |
(...skipping 11 matching lines...) Expand all Loading... |
61 */ | 37 */ |
62 static uint32_t CheapMix(uint32_t hash) { | 38 static uint32_t CheapMix(uint32_t hash) { |
63 hash ^= hash >> 16; | 39 hash ^= hash >> 16; |
64 hash *= 0x85ebca6b; | 40 hash *= 0x85ebca6b; |
65 hash ^= hash >> 16; | 41 hash ^= hash >> 16; |
66 return hash; | 42 return hash; |
67 } | 43 } |
68 | 44 |
69 /** | 45 /** |
70 * Calculate 32-bit Murmur hash (murmur3). | 46 * Calculate 32-bit Murmur hash (murmur3). |
71 * This should take 2-3x longer than SkChecksum::Compute, but is a considera
bly better hash. | |
72 * See en.wikipedia.org/wiki/MurmurHash. | 47 * See en.wikipedia.org/wiki/MurmurHash. |
73 * | 48 * |
74 * @param data Memory address of the data block to be processed. | 49 * @param data Memory address of the data block to be processed. |
75 * @param size Size of the data block in bytes. | 50 * @param size Size of the data block in bytes. |
76 * @param seed Initial hash seed. (optional) | 51 * @param seed Initial hash seed. (optional) |
77 * @return hash result | 52 * @return hash result |
78 */ | 53 */ |
79 static uint32_t Murmur3(const void* data, size_t bytes, uint32_t seed=0); | 54 static uint32_t Murmur3(const void* data, size_t bytes, uint32_t seed=0); |
80 | |
81 /** | |
82 * Compute a 32-bit checksum for a given data block | |
83 * | |
84 * WARNING: this algorithm is tuned for efficiency, not backward/forward | |
85 * compatibility. It may change at any time, so a checksum generated with | |
86 * one version of the Skia code may not match a checksum generated with | |
87 * a different version of the Skia code. | |
88 * | |
89 * @param data Memory address of the data block to be processed. Must be | |
90 * 32-bit aligned. | |
91 * @param size Size of the data block in bytes. Must be a multiple of 4. | |
92 * @return checksum result | |
93 */ | |
94 static uint32_t Compute(const uint32_t* data, size_t size) { | |
95 // Use may_alias to remind the compiler we're intentionally violating st
rict aliasing, | |
96 // and so not to apply strict-aliasing-based optimizations. | |
97 typedef uint32_t SK_ATTRIBUTE(may_alias) aliased_uint32_t; | |
98 const aliased_uint32_t* safe_data = (const aliased_uint32_t*)data; | |
99 | |
100 SkASSERT(SkIsAlign4(size)); | |
101 | |
102 /* | |
103 * We want to let the compiler use 32bit or 64bit addressing and math | |
104 * so we use uintptr_t as our magic type. This makes the code a little | |
105 * more obscure (we can't hard-code 32 or 64 anywhere, but have to use | |
106 * sizeof()). | |
107 */ | |
108 uintptr_t result = 0; | |
109 const uintptr_t* ptr = reinterpret_cast<const uintptr_t*>(safe_data); | |
110 | |
111 /* | |
112 * count the number of quad element chunks. This takes into account | |
113 * if we're on a 32bit or 64bit arch, since we use sizeof(uintptr_t) | |
114 * to compute how much to shift-down the size. | |
115 */ | |
116 size_t n4 = size / (sizeof(uintptr_t) << 2); | |
117 for (size_t i = 0; i < n4; ++i) { | |
118 result = Mash(result, *ptr++); | |
119 result = Mash(result, *ptr++); | |
120 result = Mash(result, *ptr++); | |
121 result = Mash(result, *ptr++); | |
122 } | |
123 size &= ((sizeof(uintptr_t) << 2) - 1); | |
124 | |
125 safe_data = reinterpret_cast<const aliased_uint32_t*>(ptr); | |
126 const aliased_uint32_t* stop = safe_data + (size >> 2); | |
127 while (safe_data < stop) { | |
128 result = Mash(result, *safe_data++); | |
129 } | |
130 | |
131 /* | |
132 * smash us down to 32bits if we were 64. Note that when uintptr_t is | |
133 * 32bits, this code-path should go away, but I still got a warning | |
134 * when I wrote | |
135 * result ^= result >> 32; | |
136 * since >>32 is undefined for 32bit ints, hence the wacky HALFBITS | |
137 * define. | |
138 */ | |
139 if (8 == sizeof(result)) { | |
140 result ^= result >> HALFBITS; | |
141 } | |
142 return static_cast<uint32_t>(result); | |
143 } | |
144 }; | 55 }; |
145 | 56 |
146 // SkGoodHash should usually be your first choice in hashing data. | 57 // SkGoodHash should usually be your first choice in hashing data. |
147 // It should be both reasonably fast and high quality. | 58 // It should be both reasonably fast and high quality. |
148 struct SkGoodHash { | 59 struct SkGoodHash { |
149 template <typename K> | 60 template <typename K> |
150 SK_WHEN(sizeof(K) == 4, uint32_t) operator()(const K& k) const { | 61 SK_WHEN(sizeof(K) == 4, uint32_t) operator()(const K& k) const { |
151 return SkChecksum::Mix(*(const uint32_t*)&k); | 62 return SkChecksum::Mix(*(const uint32_t*)&k); |
152 } | 63 } |
153 | 64 |
154 template <typename K> | 65 template <typename K> |
155 SK_WHEN(sizeof(K) != 4, uint32_t) operator()(const K& k) const { | 66 SK_WHEN(sizeof(K) != 4, uint32_t) operator()(const K& k) const { |
156 return SkChecksum::Murmur3(&k, sizeof(K)); | 67 return SkChecksum::Murmur3(&k, sizeof(K)); |
157 } | 68 } |
158 | 69 |
159 uint32_t operator()(const SkString& k) const { | 70 uint32_t operator()(const SkString& k) const { |
160 return SkChecksum::Murmur3(k.c_str(), k.size()); | 71 return SkChecksum::Murmur3(k.c_str(), k.size()); |
161 } | 72 } |
162 }; | 73 }; |
163 | 74 |
164 #endif | 75 #endif |
OLD | NEW |