OLD | NEW |
(Empty) | |
| 1 // Copyright 2014 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 #include "ui/gfx/geometry/cubic_bezier.h" |
| 6 |
| 7 #include "base/memory/scoped_ptr.h" |
| 8 #include "testing/gtest/include/gtest/gtest.h" |
| 9 |
| 10 namespace gfx { |
| 11 namespace { |
| 12 |
| 13 TEST(CubicBezierTest, Basic) { |
| 14 CubicBezier function(0.25, 0.0, 0.75, 1.0); |
| 15 |
| 16 double epsilon = 0.00015; |
| 17 |
| 18 EXPECT_NEAR(function.Solve(0), 0, epsilon); |
| 19 EXPECT_NEAR(function.Solve(0.05), 0.01136, epsilon); |
| 20 EXPECT_NEAR(function.Solve(0.1), 0.03978, epsilon); |
| 21 EXPECT_NEAR(function.Solve(0.15), 0.079780, epsilon); |
| 22 EXPECT_NEAR(function.Solve(0.2), 0.12803, epsilon); |
| 23 EXPECT_NEAR(function.Solve(0.25), 0.18235, epsilon); |
| 24 EXPECT_NEAR(function.Solve(0.3), 0.24115, epsilon); |
| 25 EXPECT_NEAR(function.Solve(0.35), 0.30323, epsilon); |
| 26 EXPECT_NEAR(function.Solve(0.4), 0.36761, epsilon); |
| 27 EXPECT_NEAR(function.Solve(0.45), 0.43345, epsilon); |
| 28 EXPECT_NEAR(function.Solve(0.5), 0.5, epsilon); |
| 29 EXPECT_NEAR(function.Solve(0.6), 0.63238, epsilon); |
| 30 EXPECT_NEAR(function.Solve(0.65), 0.69676, epsilon); |
| 31 EXPECT_NEAR(function.Solve(0.7), 0.75884, epsilon); |
| 32 EXPECT_NEAR(function.Solve(0.75), 0.81764, epsilon); |
| 33 EXPECT_NEAR(function.Solve(0.8), 0.87196, epsilon); |
| 34 EXPECT_NEAR(function.Solve(0.85), 0.92021, epsilon); |
| 35 EXPECT_NEAR(function.Solve(0.9), 0.96021, epsilon); |
| 36 EXPECT_NEAR(function.Solve(0.95), 0.98863, epsilon); |
| 37 EXPECT_NEAR(function.Solve(1), 1, epsilon); |
| 38 } |
| 39 |
| 40 // Tests that solving the bezier works with knots with y not in (0, 1). |
| 41 TEST(CubicBezierTest, UnclampedYValues) { |
| 42 CubicBezier function(0.5, -1.0, 0.5, 2.0); |
| 43 |
| 44 double epsilon = 0.00015; |
| 45 |
| 46 EXPECT_NEAR(function.Solve(0.0), 0.0, epsilon); |
| 47 EXPECT_NEAR(function.Solve(0.05), -0.08954, epsilon); |
| 48 EXPECT_NEAR(function.Solve(0.1), -0.15613, epsilon); |
| 49 EXPECT_NEAR(function.Solve(0.15), -0.19641, epsilon); |
| 50 EXPECT_NEAR(function.Solve(0.2), -0.20651, epsilon); |
| 51 EXPECT_NEAR(function.Solve(0.25), -0.18232, epsilon); |
| 52 EXPECT_NEAR(function.Solve(0.3), -0.11992, epsilon); |
| 53 EXPECT_NEAR(function.Solve(0.35), -0.01672, epsilon); |
| 54 EXPECT_NEAR(function.Solve(0.4), 0.12660, epsilon); |
| 55 EXPECT_NEAR(function.Solve(0.45), 0.30349, epsilon); |
| 56 EXPECT_NEAR(function.Solve(0.5), 0.50000, epsilon); |
| 57 EXPECT_NEAR(function.Solve(0.55), 0.69651, epsilon); |
| 58 EXPECT_NEAR(function.Solve(0.6), 0.87340, epsilon); |
| 59 EXPECT_NEAR(function.Solve(0.65), 1.01672, epsilon); |
| 60 EXPECT_NEAR(function.Solve(0.7), 1.11992, epsilon); |
| 61 EXPECT_NEAR(function.Solve(0.75), 1.18232, epsilon); |
| 62 EXPECT_NEAR(function.Solve(0.8), 1.20651, epsilon); |
| 63 EXPECT_NEAR(function.Solve(0.85), 1.19641, epsilon); |
| 64 EXPECT_NEAR(function.Solve(0.9), 1.15613, epsilon); |
| 65 EXPECT_NEAR(function.Solve(0.95), 1.08954, epsilon); |
| 66 EXPECT_NEAR(function.Solve(1.0), 1.0, epsilon); |
| 67 } |
| 68 |
| 69 TEST(CubicBezierTest, Range) { |
| 70 double epsilon = 0.00015; |
| 71 double min, max; |
| 72 |
| 73 // Derivative is a constant. |
| 74 scoped_ptr<CubicBezier> function( |
| 75 new CubicBezier(0.25, (1.0 / 3.0), 0.75, (2.0 / 3.0))); |
| 76 function->Range(&min, &max); |
| 77 EXPECT_EQ(0, min); |
| 78 EXPECT_EQ(1, max); |
| 79 |
| 80 // Derivative is linear. |
| 81 function.reset(new CubicBezier(0.25, -0.5, 0.75, (-1.0 / 6.0))); |
| 82 function->Range(&min, &max); |
| 83 EXPECT_NEAR(min, -0.225, epsilon); |
| 84 EXPECT_EQ(1, max); |
| 85 |
| 86 // Derivative has no real roots. |
| 87 function.reset(new CubicBezier(0.25, 0.25, 0.75, 0.5)); |
| 88 function->Range(&min, &max); |
| 89 EXPECT_EQ(0, min); |
| 90 EXPECT_EQ(1, max); |
| 91 |
| 92 // Derivative has exactly one real root. |
| 93 function.reset(new CubicBezier(0.0, 1.0, 1.0, 0.0)); |
| 94 function->Range(&min, &max); |
| 95 EXPECT_EQ(0, min); |
| 96 EXPECT_EQ(1, max); |
| 97 |
| 98 // Derivative has one root < 0 and one root > 1. |
| 99 function.reset(new CubicBezier(0.25, 0.1, 0.75, 0.9)); |
| 100 function->Range(&min, &max); |
| 101 EXPECT_EQ(0, min); |
| 102 EXPECT_EQ(1, max); |
| 103 |
| 104 // Derivative has two roots in [0,1]. |
| 105 function.reset(new CubicBezier(0.25, 2.5, 0.75, 0.5)); |
| 106 function->Range(&min, &max); |
| 107 EXPECT_EQ(0, min); |
| 108 EXPECT_NEAR(max, 1.28818, epsilon); |
| 109 function.reset(new CubicBezier(0.25, 0.5, 0.75, -1.5)); |
| 110 function->Range(&min, &max); |
| 111 EXPECT_NEAR(min, -0.28818, epsilon); |
| 112 EXPECT_EQ(1, max); |
| 113 |
| 114 // Derivative has one root < 0 and one root in [0,1]. |
| 115 function.reset(new CubicBezier(0.25, 0.1, 0.75, 1.5)); |
| 116 function->Range(&min, &max); |
| 117 EXPECT_EQ(0, min); |
| 118 EXPECT_NEAR(max, 1.10755, epsilon); |
| 119 |
| 120 // Derivative has one root in [0,1] and one root > 1. |
| 121 function.reset(new CubicBezier(0.25, -0.5, 0.75, 0.9)); |
| 122 function->Range(&min, &max); |
| 123 EXPECT_NEAR(min, -0.10755, epsilon); |
| 124 EXPECT_EQ(1, max); |
| 125 |
| 126 // Derivative has two roots < 0. |
| 127 function.reset(new CubicBezier(0.25, 0.3, 0.75, 0.633)); |
| 128 function->Range(&min, &max); |
| 129 EXPECT_EQ(0, min); |
| 130 EXPECT_EQ(1, max); |
| 131 |
| 132 // Derivative has two roots > 1. |
| 133 function.reset(new CubicBezier(0.25, 0.367, 0.75, 0.7)); |
| 134 function->Range(&min, &max); |
| 135 EXPECT_EQ(0.f, min); |
| 136 EXPECT_EQ(1.f, max); |
| 137 } |
| 138 |
| 139 } // namespace |
| 140 } // namespace gfx |
OLD | NEW |