| OLD | NEW |
| 1 // Copyright 2012 The Chromium Authors. All rights reserved. | 1 // Copyright 2014 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
| 4 | 4 |
| 5 #include "ui/gfx/geometry/cubic_bezier.h" |
| 6 |
| 5 #include <algorithm> | 7 #include <algorithm> |
| 6 #include <cmath> | 8 #include <cmath> |
| 7 | 9 |
| 8 #include "base/logging.h" | 10 #include "base/logging.h" |
| 9 #include "cc/animation/timing_function.h" | |
| 10 | 11 |
| 11 namespace cc { | 12 namespace gfx { |
| 12 | 13 |
| 13 namespace { | 14 namespace { |
| 14 | 15 |
| 15 static const double kBezierEpsilon = 1e-7; | 16 static const double kBezierEpsilon = 1e-7; |
| 16 static const int MAX_STEPS = 30; | 17 static const int MAX_STEPS = 30; |
| 17 | 18 |
| 18 static double eval_bezier(double x1, double x2, double t) { | 19 static double eval_bezier(double x1, double x2, double t) { |
| 19 const double x1_times_3 = 3.0 * x1; | 20 const double x1_times_3 = 3.0 * x1; |
| 20 const double x2_times_3 = 3.0 * x2; | 21 const double x2_times_3 = 3.0 * x2; |
| 21 const double h3 = x1_times_3; | 22 const double h3 = x1_times_3; |
| (...skipping 34 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 56 // We should have terminated the above loop because we got close to x, not | 57 // We should have terminated the above loop because we got close to x, not |
| 57 // because we exceeded MAX_STEPS. Do a DCHECK here to confirm. | 58 // because we exceeded MAX_STEPS. Do a DCHECK here to confirm. |
| 58 DCHECK_GT(kBezierEpsilon, std::abs(eval_bezier(x1, x2, t) - x)); | 59 DCHECK_GT(kBezierEpsilon, std::abs(eval_bezier(x1, x2, t) - x)); |
| 59 | 60 |
| 60 // Step 2. Return the interpolated y values at the t we computed above. | 61 // Step 2. Return the interpolated y values at the t we computed above. |
| 61 return eval_bezier(y1, y2, t); | 62 return eval_bezier(y1, y2, t); |
| 62 } | 63 } |
| 63 | 64 |
| 64 } // namespace | 65 } // namespace |
| 65 | 66 |
| 66 TimingFunction::TimingFunction() {} | 67 CubicBezier::CubicBezier(double x1, double y1, double x2, double y2) |
| 67 | 68 : x1_(x1), |
| 68 TimingFunction::~TimingFunction() {} | 69 y1_(y1), |
| 69 | 70 x2_(x2), |
| 70 double TimingFunction::Duration() const { | 71 y2_(y2) { |
| 71 return 1.0; | |
| 72 } | 72 } |
| 73 | 73 |
| 74 scoped_ptr<CubicBezierTimingFunction> CubicBezierTimingFunction::Create( | 74 CubicBezier::~CubicBezier() { |
| 75 double x1, double y1, double x2, double y2) { | |
| 76 return make_scoped_ptr(new CubicBezierTimingFunction(x1, y1, x2, y2)); | |
| 77 } | 75 } |
| 78 | 76 |
| 79 CubicBezierTimingFunction::CubicBezierTimingFunction(double x1, | 77 double CubicBezier::Solve(double x) const { |
| 80 double y1, | 78 return bezier_interp(x1_, y1_, x2_, y2_, x); |
| 81 double x2, | |
| 82 double y2) | |
| 83 : x1_(x1), y1_(y1), x2_(x2), y2_(y2) {} | |
| 84 | |
| 85 CubicBezierTimingFunction::~CubicBezierTimingFunction() {} | |
| 86 | |
| 87 float CubicBezierTimingFunction::GetValue(double x) const { | |
| 88 return static_cast<float>(bezier_interp(x1_, y1_, x2_, y2_, x)); | |
| 89 } | 79 } |
| 90 | 80 |
| 91 scoped_ptr<AnimationCurve> CubicBezierTimingFunction::Clone() const { | 81 void CubicBezier::Range(double* min, double* max) const { |
| 92 return make_scoped_ptr( | 82 *min = 0; |
| 93 new CubicBezierTimingFunction(*this)).PassAs<AnimationCurve>(); | 83 *max = 1; |
| 94 } | 84 if (0 <= y1_ && y1_ < 1 && 0 <= y2_ && y2_ <= 1) |
| 95 | |
| 96 void CubicBezierTimingFunction::Range(float* min, float* max) const { | |
| 97 *min = 0.f; | |
| 98 *max = 1.f; | |
| 99 if (0.f <= y1_ && y1_ < 1.f && 0.f <= y2_ && y2_ <= 1.f) | |
| 100 return; | 85 return; |
| 101 | 86 |
| 102 // Represent the function's derivative in the form at^2 + bt + c. | 87 // Represent the function's derivative in the form at^2 + bt + c. |
| 103 float a = 3.f * (y1_ - y2_) + 1.f; | 88 double a = 3 * (y1_ - y2_) + 1; |
| 104 float b = 2.f * (y2_ - 2.f * y1_); | 89 double b = 2 * (y2_ - 2 * y1_); |
| 105 float c = y1_; | 90 double c = y1_; |
| 106 | 91 |
| 107 // Check if the derivative is constant. | 92 // Check if the derivative is constant. |
| 108 if (std::abs(a) < kBezierEpsilon && | 93 if (std::abs(a) < kBezierEpsilon && |
| 109 std::abs(b) < kBezierEpsilon) | 94 std::abs(b) < kBezierEpsilon) |
| 110 return; | 95 return; |
| 111 | 96 |
| 112 // Zeros of the function's derivative. | 97 // Zeros of the function's derivative. |
| 113 float t_1 = 0.f; | 98 double t_1 = 0; |
| 114 float t_2 = 0.f; | 99 double t_2 = 0; |
| 115 | 100 |
| 116 if (std::abs(a) < kBezierEpsilon) { | 101 if (std::abs(a) < kBezierEpsilon) { |
| 117 // The function's derivative is linear. | 102 // The function's derivative is linear. |
| 118 t_1 = -c / b; | 103 t_1 = -c / b; |
| 119 } else { | 104 } else { |
| 120 // The function's derivative is a quadratic. We find the zeros of this | 105 // The function's derivative is a quadratic. We find the zeros of this |
| 121 // quadratic using the quadratic formula. | 106 // quadratic using the quadratic formula. |
| 122 float discriminant = b * b - 4 * a * c; | 107 double discriminant = b * b - 4 * a * c; |
| 123 if (discriminant < 0.f) | 108 if (discriminant < 0) |
| 124 return; | 109 return; |
| 125 float discriminant_sqrt = sqrt(discriminant); | 110 double discriminant_sqrt = sqrt(discriminant); |
| 126 t_1 = (-b + discriminant_sqrt) / (2.f * a); | 111 t_1 = (-b + discriminant_sqrt) / (2 * a); |
| 127 t_2 = (-b - discriminant_sqrt) / (2.f * a); | 112 t_2 = (-b - discriminant_sqrt) / (2 * a); |
| 128 } | 113 } |
| 129 | 114 |
| 130 float sol_1 = 0.f; | 115 double sol_1 = 0; |
| 131 float sol_2 = 0.f; | 116 double sol_2 = 0; |
| 132 | 117 |
| 133 if (0.f < t_1 && t_1 < 1.f) | 118 if (0 < t_1 && t_1 < 1) |
| 134 sol_1 = eval_bezier(y1_, y2_, t_1); | 119 sol_1 = eval_bezier(y1_, y2_, t_1); |
| 135 | 120 |
| 136 if (0.f < t_2 && t_2 < 1.f) | 121 if (0 < t_2 && t_2 < 1) |
| 137 sol_2 = eval_bezier(y1_, y2_, t_2); | 122 sol_2 = eval_bezier(y1_, y2_, t_2); |
| 138 | 123 |
| 139 *min = std::min(std::min(*min, sol_1), sol_2); | 124 *min = std::min(std::min(*min, sol_1), sol_2); |
| 140 *max = std::max(std::max(*max, sol_1), sol_2); | 125 *max = std::max(std::max(*max, sol_1), sol_2); |
| 141 } | 126 } |
| 142 | 127 |
| 143 // These numbers come from | 128 } // namespace gfx |
| 144 // http://www.w3.org/TR/css3-transitions/#transition-timing-function_tag. | |
| 145 scoped_ptr<TimingFunction> EaseTimingFunction::Create() { | |
| 146 return CubicBezierTimingFunction::Create( | |
| 147 0.25, 0.1, 0.25, 1.0).PassAs<TimingFunction>(); | |
| 148 } | |
| 149 | |
| 150 scoped_ptr<TimingFunction> EaseInTimingFunction::Create() { | |
| 151 return CubicBezierTimingFunction::Create( | |
| 152 0.42, 0.0, 1.0, 1.0).PassAs<TimingFunction>(); | |
| 153 } | |
| 154 | |
| 155 scoped_ptr<TimingFunction> EaseOutTimingFunction::Create() { | |
| 156 return CubicBezierTimingFunction::Create( | |
| 157 0.0, 0.0, 0.58, 1.0).PassAs<TimingFunction>(); | |
| 158 } | |
| 159 | |
| 160 scoped_ptr<TimingFunction> EaseInOutTimingFunction::Create() { | |
| 161 return CubicBezierTimingFunction::Create( | |
| 162 0.42, 0.0, 0.58, 1).PassAs<TimingFunction>(); | |
| 163 } | |
| 164 | |
| 165 } // namespace cc | |
| OLD | NEW |