Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(872)

Side by Side Diff: ui/gfx/geometry/cubic_bezier_unittest.cc

Issue 143413020: Use a bezier timing function for the overview mode animation (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src
Patch Set: Created 6 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
OLDNEW
1 // Copyright 2011 The Chromium Authors. All rights reserved. 1 // Copyright 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be 2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. 3 // found in the LICENSE file.
4 4
5 #include "cc/animation/timing_function.h" 5 #include "ui/gfx/geometry/cubic_bezier.h"
6 6
7 #include "base/memory/scoped_ptr.h"
7 #include "testing/gtest/include/gtest/gtest.h" 8 #include "testing/gtest/include/gtest/gtest.h"
8 9
9 namespace cc { 10 namespace gfx {
10 namespace { 11 namespace {
11 12
12 TEST(TimingFunctionTest, CubicBezierTimingFunction) { 13 TEST(CubicBezierTest, Basic) {
13 scoped_ptr<CubicBezierTimingFunction> function = 14 CubicBezier function(0.25, 0.0, 0.75, 1.0);
14 CubicBezierTimingFunction::Create(0.25, 0.0, 0.75, 1.0);
15 15
16 double epsilon = 0.00015; 16 double epsilon = 0.00015;
17 17
18 EXPECT_NEAR(function->GetValue(0), 0, epsilon); 18 EXPECT_NEAR(function.Solve(0), 0, epsilon);
19 EXPECT_NEAR(function->GetValue(0.05), 0.01136, epsilon); 19 EXPECT_NEAR(function.Solve(0.05), 0.01136, epsilon);
20 EXPECT_NEAR(function->GetValue(0.1), 0.03978, epsilon); 20 EXPECT_NEAR(function.Solve(0.1), 0.03978, epsilon);
21 EXPECT_NEAR(function->GetValue(0.15), 0.079780, epsilon); 21 EXPECT_NEAR(function.Solve(0.15), 0.079780, epsilon);
22 EXPECT_NEAR(function->GetValue(0.2), 0.12803, epsilon); 22 EXPECT_NEAR(function.Solve(0.2), 0.12803, epsilon);
23 EXPECT_NEAR(function->GetValue(0.25), 0.18235, epsilon); 23 EXPECT_NEAR(function.Solve(0.25), 0.18235, epsilon);
24 EXPECT_NEAR(function->GetValue(0.3), 0.24115, epsilon); 24 EXPECT_NEAR(function.Solve(0.3), 0.24115, epsilon);
25 EXPECT_NEAR(function->GetValue(0.35), 0.30323, epsilon); 25 EXPECT_NEAR(function.Solve(0.35), 0.30323, epsilon);
26 EXPECT_NEAR(function->GetValue(0.4), 0.36761, epsilon); 26 EXPECT_NEAR(function.Solve(0.4), 0.36761, epsilon);
27 EXPECT_NEAR(function->GetValue(0.45), 0.43345, epsilon); 27 EXPECT_NEAR(function.Solve(0.45), 0.43345, epsilon);
28 EXPECT_NEAR(function->GetValue(0.5), 0.5, epsilon); 28 EXPECT_NEAR(function.Solve(0.5), 0.5, epsilon);
29 EXPECT_NEAR(function->GetValue(0.6), 0.63238, epsilon); 29 EXPECT_NEAR(function.Solve(0.6), 0.63238, epsilon);
30 EXPECT_NEAR(function->GetValue(0.65), 0.69676, epsilon); 30 EXPECT_NEAR(function.Solve(0.65), 0.69676, epsilon);
31 EXPECT_NEAR(function->GetValue(0.7), 0.75884, epsilon); 31 EXPECT_NEAR(function.Solve(0.7), 0.75884, epsilon);
32 EXPECT_NEAR(function->GetValue(0.75), 0.81764, epsilon); 32 EXPECT_NEAR(function.Solve(0.75), 0.81764, epsilon);
33 EXPECT_NEAR(function->GetValue(0.8), 0.87196, epsilon); 33 EXPECT_NEAR(function.Solve(0.8), 0.87196, epsilon);
34 EXPECT_NEAR(function->GetValue(0.85), 0.92021, epsilon); 34 EXPECT_NEAR(function.Solve(0.85), 0.92021, epsilon);
35 EXPECT_NEAR(function->GetValue(0.9), 0.96021, epsilon); 35 EXPECT_NEAR(function.Solve(0.9), 0.96021, epsilon);
36 EXPECT_NEAR(function->GetValue(0.95), 0.98863, epsilon); 36 EXPECT_NEAR(function.Solve(0.95), 0.98863, epsilon);
37 EXPECT_NEAR(function->GetValue(1), 1, epsilon); 37 EXPECT_NEAR(function.Solve(1), 1, epsilon);
38 } 38 }
39 39
40 // Tests that the bezier timing function works with knots with y not in (0, 1). 40 // Tests that solving the bezier works with knots with y not in (0, 1).
41 TEST(TimingFunctionTest, CubicBezierTimingFunctionUnclampedYValues) { 41 TEST(CubicBezierTest, UnclampedYValues) {
42 scoped_ptr<CubicBezierTimingFunction> function = 42 CubicBezier function(0.5, -1.0, 0.5, 2.0);
43 CubicBezierTimingFunction::Create(0.5, -1.0, 0.5, 2.0);
44 43
45 double epsilon = 0.00015; 44 double epsilon = 0.00015;
46 45
47 EXPECT_NEAR(function->GetValue(0.0), 0.0, epsilon); 46 EXPECT_NEAR(function.Solve(0.0), 0.0, epsilon);
48 EXPECT_NEAR(function->GetValue(0.05), -0.08954, epsilon); 47 EXPECT_NEAR(function.Solve(0.05), -0.08954, epsilon);
49 EXPECT_NEAR(function->GetValue(0.1), -0.15613, epsilon); 48 EXPECT_NEAR(function.Solve(0.1), -0.15613, epsilon);
50 EXPECT_NEAR(function->GetValue(0.15), -0.19641, epsilon); 49 EXPECT_NEAR(function.Solve(0.15), -0.19641, epsilon);
51 EXPECT_NEAR(function->GetValue(0.2), -0.20651, epsilon); 50 EXPECT_NEAR(function.Solve(0.2), -0.20651, epsilon);
52 EXPECT_NEAR(function->GetValue(0.25), -0.18232, epsilon); 51 EXPECT_NEAR(function.Solve(0.25), -0.18232, epsilon);
53 EXPECT_NEAR(function->GetValue(0.3), -0.11992, epsilon); 52 EXPECT_NEAR(function.Solve(0.3), -0.11992, epsilon);
54 EXPECT_NEAR(function->GetValue(0.35), -0.01672, epsilon); 53 EXPECT_NEAR(function.Solve(0.35), -0.01672, epsilon);
55 EXPECT_NEAR(function->GetValue(0.4), 0.12660, epsilon); 54 EXPECT_NEAR(function.Solve(0.4), 0.12660, epsilon);
56 EXPECT_NEAR(function->GetValue(0.45), 0.30349, epsilon); 55 EXPECT_NEAR(function.Solve(0.45), 0.30349, epsilon);
57 EXPECT_NEAR(function->GetValue(0.5), 0.50000, epsilon); 56 EXPECT_NEAR(function.Solve(0.5), 0.50000, epsilon);
58 EXPECT_NEAR(function->GetValue(0.55), 0.69651, epsilon); 57 EXPECT_NEAR(function.Solve(0.55), 0.69651, epsilon);
59 EXPECT_NEAR(function->GetValue(0.6), 0.87340, epsilon); 58 EXPECT_NEAR(function.Solve(0.6), 0.87340, epsilon);
60 EXPECT_NEAR(function->GetValue(0.65), 1.01672, epsilon); 59 EXPECT_NEAR(function.Solve(0.65), 1.01672, epsilon);
61 EXPECT_NEAR(function->GetValue(0.7), 1.11992, epsilon); 60 EXPECT_NEAR(function.Solve(0.7), 1.11992, epsilon);
62 EXPECT_NEAR(function->GetValue(0.75), 1.18232, epsilon); 61 EXPECT_NEAR(function.Solve(0.75), 1.18232, epsilon);
63 EXPECT_NEAR(function->GetValue(0.8), 1.20651, epsilon); 62 EXPECT_NEAR(function.Solve(0.8), 1.20651, epsilon);
64 EXPECT_NEAR(function->GetValue(0.85), 1.19641, epsilon); 63 EXPECT_NEAR(function.Solve(0.85), 1.19641, epsilon);
65 EXPECT_NEAR(function->GetValue(0.9), 1.15613, epsilon); 64 EXPECT_NEAR(function.Solve(0.9), 1.15613, epsilon);
66 EXPECT_NEAR(function->GetValue(0.95), 1.08954, epsilon); 65 EXPECT_NEAR(function.Solve(0.95), 1.08954, epsilon);
67 EXPECT_NEAR(function->GetValue(1.0), 1.0, epsilon); 66 EXPECT_NEAR(function.Solve(1.0), 1.0, epsilon);
68 } 67 }
69 68
70 TEST(TimingFunctionTest, CubicBezierTimingFunctionRange) { 69 TEST(CubicBezierTest, Range) {
71 double epsilon = 0.00015; 70 double epsilon = 0.00015;
72 float min, max; 71 double min, max;
73 72
74 // Derivative is a constant. 73 // Derivative is a constant.
75 scoped_ptr<CubicBezierTimingFunction> function = 74 scoped_ptr<CubicBezier> function(
76 CubicBezierTimingFunction::Create(0.25, (1.0 / 3.0), 0.75, (2.0 / 3.0)); 75 new CubicBezier(0.25, (1.0 / 3.0), 0.75, (2.0 / 3.0)));
77 function->Range(&min, &max); 76 function->Range(&min, &max);
78 EXPECT_EQ(0.f, min); 77 EXPECT_EQ(0, min);
79 EXPECT_EQ(1.f, max); 78 EXPECT_EQ(1, max);
80 79
81 // Derivative is linear. 80 // Derivative is linear.
82 function = CubicBezierTimingFunction::Create(0.25, -0.5, 0.75, (-1.0 / 6.0)); 81 function.reset(new CubicBezier(0.25, -0.5, 0.75, (-1.0 / 6.0)));
83 function->Range(&min, &max); 82 function->Range(&min, &max);
84 EXPECT_NEAR(min, -0.225, epsilon); 83 EXPECT_NEAR(min, -0.225, epsilon);
85 EXPECT_EQ(1.f, max); 84 EXPECT_EQ(1, max);
86 85
87 // Derivative has no real roots. 86 // Derivative has no real roots.
88 function = CubicBezierTimingFunction::Create(0.25, 0.25, 0.75, 0.5); 87 function.reset(new CubicBezier(0.25, 0.25, 0.75, 0.5));
89 function->Range(&min, &max); 88 function->Range(&min, &max);
90 EXPECT_EQ(0.f, min); 89 EXPECT_EQ(0, min);
91 EXPECT_EQ(1.f, max); 90 EXPECT_EQ(1, max);
92 91
93 // Derivative has exactly one real root. 92 // Derivative has exactly one real root.
94 function = CubicBezierTimingFunction::Create(0.0, 1.0, 1.0, 0.0); 93 function.reset(new CubicBezier(0.0, 1.0, 1.0, 0.0));
95 function->Range(&min, &max); 94 function->Range(&min, &max);
96 EXPECT_EQ(0.f, min); 95 EXPECT_EQ(0, min);
97 EXPECT_EQ(1.f, max); 96 EXPECT_EQ(1, max);
98 97
99 // Derivative has one root < 0 and one root > 1. 98 // Derivative has one root < 0 and one root > 1.
100 function = CubicBezierTimingFunction::Create(0.25, 0.1, 0.75, 0.9); 99 function.reset(new CubicBezier(0.25, 0.1, 0.75, 0.9));
101 function->Range(&min, &max); 100 function->Range(&min, &max);
102 EXPECT_EQ(0.f, min); 101 EXPECT_EQ(0, min);
103 EXPECT_EQ(1.f, max); 102 EXPECT_EQ(1, max);
104 103
105 // Derivative has two roots in [0,1]. 104 // Derivative has two roots in [0,1].
106 function = CubicBezierTimingFunction::Create(0.25, 2.5, 0.75, 0.5); 105 function.reset(new CubicBezier(0.25, 2.5, 0.75, 0.5));
107 function->Range(&min, &max); 106 function->Range(&min, &max);
108 EXPECT_EQ(0.f, min); 107 EXPECT_EQ(0, min);
109 EXPECT_NEAR(max, 1.28818, epsilon); 108 EXPECT_NEAR(max, 1.28818, epsilon);
110 function = CubicBezierTimingFunction::Create(0.25, 0.5, 0.75, -1.5); 109 function.reset(new CubicBezier(0.25, 0.5, 0.75, -1.5));
111 function->Range(&min, &max); 110 function->Range(&min, &max);
112 EXPECT_NEAR(min, -0.28818, epsilon); 111 EXPECT_NEAR(min, -0.28818, epsilon);
113 EXPECT_EQ(1.f, max); 112 EXPECT_EQ(1, max);
114 113
115 // Derivative has one root < 0 and one root in [0,1]. 114 // Derivative has one root < 0 and one root in [0,1].
116 function = CubicBezierTimingFunction::Create(0.25, 0.1, 0.75, 1.5); 115 function.reset(new CubicBezier(0.25, 0.1, 0.75, 1.5));
117 function->Range(&min, &max); 116 function->Range(&min, &max);
118 EXPECT_EQ(0.f, min); 117 EXPECT_EQ(0, min);
119 EXPECT_NEAR(max, 1.10755, epsilon); 118 EXPECT_NEAR(max, 1.10755, epsilon);
120 119
121 // Derivative has one root in [0,1] and one root > 1. 120 // Derivative has one root in [0,1] and one root > 1.
122 function = CubicBezierTimingFunction::Create(0.25, -0.5, 0.75, 0.9); 121 function.reset(new CubicBezier(0.25, -0.5, 0.75, 0.9));
123 function->Range(&min, &max); 122 function->Range(&min, &max);
124 EXPECT_NEAR(min, -0.10755, epsilon); 123 EXPECT_NEAR(min, -0.10755, epsilon);
125 EXPECT_EQ(1.f, max); 124 EXPECT_EQ(1, max);
126 125
127 // Derivative has two roots < 0. 126 // Derivative has two roots < 0.
128 function = CubicBezierTimingFunction::Create(0.25, 0.3, 0.75, 0.633); 127 function.reset(new CubicBezier(0.25, 0.3, 0.75, 0.633));
129 function->Range(&min, &max); 128 function->Range(&min, &max);
130 EXPECT_EQ(0.f, min); 129 EXPECT_EQ(0, min);
131 EXPECT_EQ(1.f, max); 130 EXPECT_EQ(1, max);
132 131
133 // Derivative has two roots > 1. 132 // Derivative has two roots > 1.
134 function = CubicBezierTimingFunction::Create(0.25, 0.367, 0.75, 0.7); 133 function.reset(new CubicBezier(0.25, 0.367, 0.75, 0.7));
135 function->Range(&min, &max); 134 function->Range(&min, &max);
136 EXPECT_EQ(0.f, min); 135 EXPECT_EQ(0.f, min);
137 EXPECT_EQ(1.f, max); 136 EXPECT_EQ(1.f, max);
138 } 137 }
139 138
140 } // namespace 139 } // namespace
141 } // namespace cc 140 } // namespace gfx
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698