OLD | NEW |
1 // Copyright 2011 The Chromium Authors. All rights reserved. | 1 // Copyright 2011 The Chromium Authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 #include "cc/animation/timing_function.h" | 5 #include "ui/gfx/geometry/cubic_bezier.h" |
6 | 6 |
| 7 #include "base/memory/scoped_ptr.h" |
7 #include "testing/gtest/include/gtest/gtest.h" | 8 #include "testing/gtest/include/gtest/gtest.h" |
8 | 9 |
9 namespace cc { | 10 namespace gfx { |
10 namespace { | 11 namespace { |
11 | 12 |
12 TEST(TimingFunctionTest, CubicBezierTimingFunction) { | 13 TEST(CubicBezierTest, Basic) { |
13 scoped_ptr<CubicBezierTimingFunction> function = | 14 CubicBezier function(0.25, 0.0, 0.75, 1.0); |
14 CubicBezierTimingFunction::Create(0.25, 0.0, 0.75, 1.0); | |
15 | 15 |
16 double epsilon = 0.00015; | 16 double epsilon = 0.00015; |
17 | 17 |
18 EXPECT_NEAR(function->GetValue(0), 0, epsilon); | 18 EXPECT_NEAR(function.Solve(0), 0, epsilon); |
19 EXPECT_NEAR(function->GetValue(0.05), 0.01136, epsilon); | 19 EXPECT_NEAR(function.Solve(0.05), 0.01136, epsilon); |
20 EXPECT_NEAR(function->GetValue(0.1), 0.03978, epsilon); | 20 EXPECT_NEAR(function.Solve(0.1), 0.03978, epsilon); |
21 EXPECT_NEAR(function->GetValue(0.15), 0.079780, epsilon); | 21 EXPECT_NEAR(function.Solve(0.15), 0.079780, epsilon); |
22 EXPECT_NEAR(function->GetValue(0.2), 0.12803, epsilon); | 22 EXPECT_NEAR(function.Solve(0.2), 0.12803, epsilon); |
23 EXPECT_NEAR(function->GetValue(0.25), 0.18235, epsilon); | 23 EXPECT_NEAR(function.Solve(0.25), 0.18235, epsilon); |
24 EXPECT_NEAR(function->GetValue(0.3), 0.24115, epsilon); | 24 EXPECT_NEAR(function.Solve(0.3), 0.24115, epsilon); |
25 EXPECT_NEAR(function->GetValue(0.35), 0.30323, epsilon); | 25 EXPECT_NEAR(function.Solve(0.35), 0.30323, epsilon); |
26 EXPECT_NEAR(function->GetValue(0.4), 0.36761, epsilon); | 26 EXPECT_NEAR(function.Solve(0.4), 0.36761, epsilon); |
27 EXPECT_NEAR(function->GetValue(0.45), 0.43345, epsilon); | 27 EXPECT_NEAR(function.Solve(0.45), 0.43345, epsilon); |
28 EXPECT_NEAR(function->GetValue(0.5), 0.5, epsilon); | 28 EXPECT_NEAR(function.Solve(0.5), 0.5, epsilon); |
29 EXPECT_NEAR(function->GetValue(0.6), 0.63238, epsilon); | 29 EXPECT_NEAR(function.Solve(0.6), 0.63238, epsilon); |
30 EXPECT_NEAR(function->GetValue(0.65), 0.69676, epsilon); | 30 EXPECT_NEAR(function.Solve(0.65), 0.69676, epsilon); |
31 EXPECT_NEAR(function->GetValue(0.7), 0.75884, epsilon); | 31 EXPECT_NEAR(function.Solve(0.7), 0.75884, epsilon); |
32 EXPECT_NEAR(function->GetValue(0.75), 0.81764, epsilon); | 32 EXPECT_NEAR(function.Solve(0.75), 0.81764, epsilon); |
33 EXPECT_NEAR(function->GetValue(0.8), 0.87196, epsilon); | 33 EXPECT_NEAR(function.Solve(0.8), 0.87196, epsilon); |
34 EXPECT_NEAR(function->GetValue(0.85), 0.92021, epsilon); | 34 EXPECT_NEAR(function.Solve(0.85), 0.92021, epsilon); |
35 EXPECT_NEAR(function->GetValue(0.9), 0.96021, epsilon); | 35 EXPECT_NEAR(function.Solve(0.9), 0.96021, epsilon); |
36 EXPECT_NEAR(function->GetValue(0.95), 0.98863, epsilon); | 36 EXPECT_NEAR(function.Solve(0.95), 0.98863, epsilon); |
37 EXPECT_NEAR(function->GetValue(1), 1, epsilon); | 37 EXPECT_NEAR(function.Solve(1), 1, epsilon); |
38 } | 38 } |
39 | 39 |
40 // Tests that the bezier timing function works with knots with y not in (0, 1). | 40 // Tests that solving the bezier works with knots with y not in (0, 1). |
41 TEST(TimingFunctionTest, CubicBezierTimingFunctionUnclampedYValues) { | 41 TEST(CubicBezierTest, UnclampedYValues) { |
42 scoped_ptr<CubicBezierTimingFunction> function = | 42 CubicBezier function(0.5, -1.0, 0.5, 2.0); |
43 CubicBezierTimingFunction::Create(0.5, -1.0, 0.5, 2.0); | |
44 | 43 |
45 double epsilon = 0.00015; | 44 double epsilon = 0.00015; |
46 | 45 |
47 EXPECT_NEAR(function->GetValue(0.0), 0.0, epsilon); | 46 EXPECT_NEAR(function.Solve(0.0), 0.0, epsilon); |
48 EXPECT_NEAR(function->GetValue(0.05), -0.08954, epsilon); | 47 EXPECT_NEAR(function.Solve(0.05), -0.08954, epsilon); |
49 EXPECT_NEAR(function->GetValue(0.1), -0.15613, epsilon); | 48 EXPECT_NEAR(function.Solve(0.1), -0.15613, epsilon); |
50 EXPECT_NEAR(function->GetValue(0.15), -0.19641, epsilon); | 49 EXPECT_NEAR(function.Solve(0.15), -0.19641, epsilon); |
51 EXPECT_NEAR(function->GetValue(0.2), -0.20651, epsilon); | 50 EXPECT_NEAR(function.Solve(0.2), -0.20651, epsilon); |
52 EXPECT_NEAR(function->GetValue(0.25), -0.18232, epsilon); | 51 EXPECT_NEAR(function.Solve(0.25), -0.18232, epsilon); |
53 EXPECT_NEAR(function->GetValue(0.3), -0.11992, epsilon); | 52 EXPECT_NEAR(function.Solve(0.3), -0.11992, epsilon); |
54 EXPECT_NEAR(function->GetValue(0.35), -0.01672, epsilon); | 53 EXPECT_NEAR(function.Solve(0.35), -0.01672, epsilon); |
55 EXPECT_NEAR(function->GetValue(0.4), 0.12660, epsilon); | 54 EXPECT_NEAR(function.Solve(0.4), 0.12660, epsilon); |
56 EXPECT_NEAR(function->GetValue(0.45), 0.30349, epsilon); | 55 EXPECT_NEAR(function.Solve(0.45), 0.30349, epsilon); |
57 EXPECT_NEAR(function->GetValue(0.5), 0.50000, epsilon); | 56 EXPECT_NEAR(function.Solve(0.5), 0.50000, epsilon); |
58 EXPECT_NEAR(function->GetValue(0.55), 0.69651, epsilon); | 57 EXPECT_NEAR(function.Solve(0.55), 0.69651, epsilon); |
59 EXPECT_NEAR(function->GetValue(0.6), 0.87340, epsilon); | 58 EXPECT_NEAR(function.Solve(0.6), 0.87340, epsilon); |
60 EXPECT_NEAR(function->GetValue(0.65), 1.01672, epsilon); | 59 EXPECT_NEAR(function.Solve(0.65), 1.01672, epsilon); |
61 EXPECT_NEAR(function->GetValue(0.7), 1.11992, epsilon); | 60 EXPECT_NEAR(function.Solve(0.7), 1.11992, epsilon); |
62 EXPECT_NEAR(function->GetValue(0.75), 1.18232, epsilon); | 61 EXPECT_NEAR(function.Solve(0.75), 1.18232, epsilon); |
63 EXPECT_NEAR(function->GetValue(0.8), 1.20651, epsilon); | 62 EXPECT_NEAR(function.Solve(0.8), 1.20651, epsilon); |
64 EXPECT_NEAR(function->GetValue(0.85), 1.19641, epsilon); | 63 EXPECT_NEAR(function.Solve(0.85), 1.19641, epsilon); |
65 EXPECT_NEAR(function->GetValue(0.9), 1.15613, epsilon); | 64 EXPECT_NEAR(function.Solve(0.9), 1.15613, epsilon); |
66 EXPECT_NEAR(function->GetValue(0.95), 1.08954, epsilon); | 65 EXPECT_NEAR(function.Solve(0.95), 1.08954, epsilon); |
67 EXPECT_NEAR(function->GetValue(1.0), 1.0, epsilon); | 66 EXPECT_NEAR(function.Solve(1.0), 1.0, epsilon); |
68 } | 67 } |
69 | 68 |
70 TEST(TimingFunctionTest, CubicBezierTimingFunctionRange) { | 69 TEST(CubicBezierTest, Range) { |
71 double epsilon = 0.00015; | 70 double epsilon = 0.00015; |
72 float min, max; | 71 double min, max; |
73 | 72 |
74 // Derivative is a constant. | 73 // Derivative is a constant. |
75 scoped_ptr<CubicBezierTimingFunction> function = | 74 scoped_ptr<CubicBezier> function( |
76 CubicBezierTimingFunction::Create(0.25, (1.0 / 3.0), 0.75, (2.0 / 3.0)); | 75 new CubicBezier(0.25, (1.0 / 3.0), 0.75, (2.0 / 3.0))); |
77 function->Range(&min, &max); | 76 function->Range(&min, &max); |
78 EXPECT_EQ(0.f, min); | 77 EXPECT_EQ(0, min); |
79 EXPECT_EQ(1.f, max); | 78 EXPECT_EQ(1, max); |
80 | 79 |
81 // Derivative is linear. | 80 // Derivative is linear. |
82 function = CubicBezierTimingFunction::Create(0.25, -0.5, 0.75, (-1.0 / 6.0)); | 81 function.reset(new CubicBezier(0.25, -0.5, 0.75, (-1.0 / 6.0))); |
83 function->Range(&min, &max); | 82 function->Range(&min, &max); |
84 EXPECT_NEAR(min, -0.225, epsilon); | 83 EXPECT_NEAR(min, -0.225, epsilon); |
85 EXPECT_EQ(1.f, max); | 84 EXPECT_EQ(1, max); |
86 | 85 |
87 // Derivative has no real roots. | 86 // Derivative has no real roots. |
88 function = CubicBezierTimingFunction::Create(0.25, 0.25, 0.75, 0.5); | 87 function.reset(new CubicBezier(0.25, 0.25, 0.75, 0.5)); |
89 function->Range(&min, &max); | 88 function->Range(&min, &max); |
90 EXPECT_EQ(0.f, min); | 89 EXPECT_EQ(0, min); |
91 EXPECT_EQ(1.f, max); | 90 EXPECT_EQ(1, max); |
92 | 91 |
93 // Derivative has exactly one real root. | 92 // Derivative has exactly one real root. |
94 function = CubicBezierTimingFunction::Create(0.0, 1.0, 1.0, 0.0); | 93 function.reset(new CubicBezier(0.0, 1.0, 1.0, 0.0)); |
95 function->Range(&min, &max); | 94 function->Range(&min, &max); |
96 EXPECT_EQ(0.f, min); | 95 EXPECT_EQ(0, min); |
97 EXPECT_EQ(1.f, max); | 96 EXPECT_EQ(1, max); |
98 | 97 |
99 // Derivative has one root < 0 and one root > 1. | 98 // Derivative has one root < 0 and one root > 1. |
100 function = CubicBezierTimingFunction::Create(0.25, 0.1, 0.75, 0.9); | 99 function.reset(new CubicBezier(0.25, 0.1, 0.75, 0.9)); |
101 function->Range(&min, &max); | 100 function->Range(&min, &max); |
102 EXPECT_EQ(0.f, min); | 101 EXPECT_EQ(0, min); |
103 EXPECT_EQ(1.f, max); | 102 EXPECT_EQ(1, max); |
104 | 103 |
105 // Derivative has two roots in [0,1]. | 104 // Derivative has two roots in [0,1]. |
106 function = CubicBezierTimingFunction::Create(0.25, 2.5, 0.75, 0.5); | 105 function.reset(new CubicBezier(0.25, 2.5, 0.75, 0.5)); |
107 function->Range(&min, &max); | 106 function->Range(&min, &max); |
108 EXPECT_EQ(0.f, min); | 107 EXPECT_EQ(0, min); |
109 EXPECT_NEAR(max, 1.28818, epsilon); | 108 EXPECT_NEAR(max, 1.28818, epsilon); |
110 function = CubicBezierTimingFunction::Create(0.25, 0.5, 0.75, -1.5); | 109 function.reset(new CubicBezier(0.25, 0.5, 0.75, -1.5)); |
111 function->Range(&min, &max); | 110 function->Range(&min, &max); |
112 EXPECT_NEAR(min, -0.28818, epsilon); | 111 EXPECT_NEAR(min, -0.28818, epsilon); |
113 EXPECT_EQ(1.f, max); | 112 EXPECT_EQ(1, max); |
114 | 113 |
115 // Derivative has one root < 0 and one root in [0,1]. | 114 // Derivative has one root < 0 and one root in [0,1]. |
116 function = CubicBezierTimingFunction::Create(0.25, 0.1, 0.75, 1.5); | 115 function.reset(new CubicBezier(0.25, 0.1, 0.75, 1.5)); |
117 function->Range(&min, &max); | 116 function->Range(&min, &max); |
118 EXPECT_EQ(0.f, min); | 117 EXPECT_EQ(0, min); |
119 EXPECT_NEAR(max, 1.10755, epsilon); | 118 EXPECT_NEAR(max, 1.10755, epsilon); |
120 | 119 |
121 // Derivative has one root in [0,1] and one root > 1. | 120 // Derivative has one root in [0,1] and one root > 1. |
122 function = CubicBezierTimingFunction::Create(0.25, -0.5, 0.75, 0.9); | 121 function.reset(new CubicBezier(0.25, -0.5, 0.75, 0.9)); |
123 function->Range(&min, &max); | 122 function->Range(&min, &max); |
124 EXPECT_NEAR(min, -0.10755, epsilon); | 123 EXPECT_NEAR(min, -0.10755, epsilon); |
125 EXPECT_EQ(1.f, max); | 124 EXPECT_EQ(1, max); |
126 | 125 |
127 // Derivative has two roots < 0. | 126 // Derivative has two roots < 0. |
128 function = CubicBezierTimingFunction::Create(0.25, 0.3, 0.75, 0.633); | 127 function.reset(new CubicBezier(0.25, 0.3, 0.75, 0.633)); |
129 function->Range(&min, &max); | 128 function->Range(&min, &max); |
130 EXPECT_EQ(0.f, min); | 129 EXPECT_EQ(0, min); |
131 EXPECT_EQ(1.f, max); | 130 EXPECT_EQ(1, max); |
132 | 131 |
133 // Derivative has two roots > 1. | 132 // Derivative has two roots > 1. |
134 function = CubicBezierTimingFunction::Create(0.25, 0.367, 0.75, 0.7); | 133 function.reset(new CubicBezier(0.25, 0.367, 0.75, 0.7)); |
135 function->Range(&min, &max); | 134 function->Range(&min, &max); |
136 EXPECT_EQ(0.f, min); | 135 EXPECT_EQ(0.f, min); |
137 EXPECT_EQ(1.f, max); | 136 EXPECT_EQ(1.f, max); |
138 } | 137 } |
139 | 138 |
140 } // namespace | 139 } // namespace |
141 } // namespace cc | 140 } // namespace gfx |
OLD | NEW |