| Index: Source/core/html/canvas/CanvasPathMethods.cpp
|
| diff --git a/Source/core/html/canvas/CanvasPathMethods.cpp b/Source/core/html/canvas/CanvasPathMethods.cpp
|
| index d4b9c784d9a542386b58a5adfaf627133cf777a6..90dc9e74f34bead2aaf867ea581e2684dff42c40 100644
|
| --- a/Source/core/html/canvas/CanvasPathMethods.cpp
|
| +++ b/Source/core/html/canvas/CanvasPathMethods.cpp
|
| @@ -38,6 +38,7 @@
|
| #include "bindings/v8/ExceptionState.h"
|
| #include "core/dom/ExceptionCode.h"
|
| #include "core/platform/graphics/FloatRect.h"
|
| +#include "core/platform/graphics/transforms/AffineTransform.h"
|
| #include "wtf/MathExtras.h"
|
|
|
| namespace WebCore {
|
| @@ -186,6 +187,114 @@ void CanvasPathMethods::arc(float x, float y, float radius, float startAngle, fl
|
| m_path.addArc(FloatPoint(x, y), radius, startAngle, adjustedEndAngle, anticlockwise);
|
| }
|
|
|
| +inline static void lineToFloatPoint(CanvasPathMethods* path, const FloatPoint& p)
|
| +{
|
| + path->lineTo(p.x(), p.y());
|
| +}
|
| +
|
| +inline static FloatPoint getPointOnEllipse(float radiusX, float radiusY, float theta)
|
| +{
|
| + return FloatPoint(radiusX * cosf(theta), radiusY * sinf(theta));
|
| +}
|
| +
|
| +inline static void canonicalizeAngle(float* startAngle, float* endAngle)
|
| +{
|
| + // Make 0 <= startAngle < 2*PI
|
| + float twoPi = 2 * piFloat;
|
| + float newStartAngle = *startAngle;
|
| + if (newStartAngle < 0)
|
| + newStartAngle = twoPi + fmodf(newStartAngle, -twoPi);
|
| + else
|
| + newStartAngle = fmodf(newStartAngle, twoPi);
|
| +
|
| + float delta = newStartAngle - *startAngle;
|
| + *startAngle = newStartAngle;
|
| + *endAngle = *endAngle + delta;
|
| +}
|
| +
|
| +/*
|
| + * degenerateEllipse() handles a degenerated ellipse using several lines.
|
| + *
|
| + * Let's see a following example: line to ellipse to line.
|
| + * _--^\
|
| + * ( )
|
| + * -----( )
|
| + * )
|
| + * /--------
|
| + *
|
| + * If radiusX becomes zero, the ellipse of the example is degenerated.
|
| + * _
|
| + * // P
|
| + * //
|
| + * -----//
|
| + * /
|
| + * /--------
|
| + *
|
| + * To draw the above example, need to get P that is a local maximum point.
|
| + * Angles for P are 0.5Pi and 1.5Pi in the ellipse coordinates.
|
| + *
|
| + * If radiusY becomes zero, the result is as follows.
|
| + * -----__
|
| + * --_
|
| + * ----------
|
| + * ``P
|
| + * Angles for P are 0 and Pi in the ellipse coordinates.
|
| + *
|
| + * To handle both cases, degenerateEllipse() lines to start angle, local maximum points(every 0.5Pi), and end angle.
|
| + * NOTE: Before ellipse() calls this function, adjustEndAngle() is called, so endAngle - startAngle must be less than 4Pi.
|
| + */
|
| +static void degenerateEllipse(CanvasPathMethods* path, float x, float y, float radiusX, float radiusY, float rotation, float startAngle, float endAngle, bool anticlockwise)
|
| +{
|
| + ASSERT(std::abs(endAngle - startAngle) < 4 * piFloat);
|
| +
|
| + FloatPoint center(x, y);
|
| + AffineTransform rotationMatrix;
|
| + rotationMatrix.rotate(rad2deg(rotation));
|
| + // First, if the object's path has any subpaths, then the method must add a straight line from the last point in the subpath to the start point of the arc.
|
| + lineToFloatPoint(path, center + rotationMatrix.mapPoint(getPointOnEllipse(radiusX, radiusY, startAngle)));
|
| + if ((!radiusX && !radiusY) || startAngle == endAngle)
|
| + return;
|
| +
|
| + canonicalizeAngle(&startAngle, &endAngle);
|
| + ASSERT(std::abs(endAngle - startAngle) < 4 * piFloat);
|
| +
|
| + float halfPiFloat = piFloat * 0.5;
|
| + if (!anticlockwise) {
|
| + // startAngle - fmodf(startAngle, halfPiFloat) + halfPiFloat is the one of (0, 0.5Pi, Pi, 1.5Pi, 2Pi)
|
| + // that is the closest to startAngle on the clockwise direction.
|
| + for (float angle = startAngle - fmodf(startAngle, halfPiFloat) + halfPiFloat; angle < endAngle; angle += halfPiFloat)
|
| + lineToFloatPoint(path, center + rotationMatrix.mapPoint(getPointOnEllipse(radiusX, radiusY, angle)));
|
| + } else {
|
| + for (float angle = startAngle - fmodf(startAngle, halfPiFloat); angle > endAngle; angle -= halfPiFloat)
|
| + lineToFloatPoint(path, center + rotationMatrix.mapPoint(getPointOnEllipse(radiusX, radiusY, angle)));
|
| + }
|
| +
|
| + lineToFloatPoint(path, center + rotationMatrix.mapPoint(getPointOnEllipse(radiusX, radiusY, endAngle)));
|
| +}
|
| +
|
| +void CanvasPathMethods::ellipse(float x, float y, float radiusX, float radiusY, float rotation, float startAngle, float endAngle, bool anticlockwise, ExceptionState& es)
|
| +{
|
| + if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(radiusX) || !std::isfinite(radiusY) || !std::isfinite(rotation) || !std::isfinite(startAngle) || !std::isfinite(endAngle))
|
| + return;
|
| +
|
| + if (radiusX < 0 || radiusY < 0) {
|
| + es.throwDOMException(IndexSizeError);
|
| + return;
|
| + }
|
| +
|
| + if (!isTransformInvertible())
|
| + return;
|
| +
|
| + float adjustedEndAngle = adjustEndAngle(startAngle, endAngle, anticlockwise);
|
| + if (!radiusX || !radiusY || startAngle == adjustedEndAngle) {
|
| + // The ellipse is empty but we still need to draw the connecting line to start point.
|
| + degenerateEllipse(this, x, y, radiusX, radiusY, rotation, startAngle, adjustedEndAngle, anticlockwise);
|
| + return;
|
| + }
|
| +
|
| + m_path.addEllipse(FloatPoint(x, y), radiusX, radiusY, rotation, startAngle, adjustedEndAngle, anticlockwise);
|
| +}
|
| +
|
| void CanvasPathMethods::rect(float x, float y, float width, float height)
|
| {
|
| if (!isTransformInvertible())
|
|
|