Index: Source/core/html/canvas/CanvasPathMethods.cpp |
diff --git a/Source/core/html/canvas/CanvasPathMethods.cpp b/Source/core/html/canvas/CanvasPathMethods.cpp |
index d4b9c784d9a542386b58a5adfaf627133cf777a6..90dc9e74f34bead2aaf867ea581e2684dff42c40 100644 |
--- a/Source/core/html/canvas/CanvasPathMethods.cpp |
+++ b/Source/core/html/canvas/CanvasPathMethods.cpp |
@@ -38,6 +38,7 @@ |
#include "bindings/v8/ExceptionState.h" |
#include "core/dom/ExceptionCode.h" |
#include "core/platform/graphics/FloatRect.h" |
+#include "core/platform/graphics/transforms/AffineTransform.h" |
#include "wtf/MathExtras.h" |
namespace WebCore { |
@@ -186,6 +187,114 @@ void CanvasPathMethods::arc(float x, float y, float radius, float startAngle, fl |
m_path.addArc(FloatPoint(x, y), radius, startAngle, adjustedEndAngle, anticlockwise); |
} |
+inline static void lineToFloatPoint(CanvasPathMethods* path, const FloatPoint& p) |
+{ |
+ path->lineTo(p.x(), p.y()); |
+} |
+ |
+inline static FloatPoint getPointOnEllipse(float radiusX, float radiusY, float theta) |
+{ |
+ return FloatPoint(radiusX * cosf(theta), radiusY * sinf(theta)); |
+} |
+ |
+inline static void canonicalizeAngle(float* startAngle, float* endAngle) |
+{ |
+ // Make 0 <= startAngle < 2*PI |
+ float twoPi = 2 * piFloat; |
+ float newStartAngle = *startAngle; |
+ if (newStartAngle < 0) |
+ newStartAngle = twoPi + fmodf(newStartAngle, -twoPi); |
+ else |
+ newStartAngle = fmodf(newStartAngle, twoPi); |
+ |
+ float delta = newStartAngle - *startAngle; |
+ *startAngle = newStartAngle; |
+ *endAngle = *endAngle + delta; |
+} |
+ |
+/* |
+ * degenerateEllipse() handles a degenerated ellipse using several lines. |
+ * |
+ * Let's see a following example: line to ellipse to line. |
+ * _--^\ |
+ * ( ) |
+ * -----( ) |
+ * ) |
+ * /-------- |
+ * |
+ * If radiusX becomes zero, the ellipse of the example is degenerated. |
+ * _ |
+ * // P |
+ * // |
+ * -----// |
+ * / |
+ * /-------- |
+ * |
+ * To draw the above example, need to get P that is a local maximum point. |
+ * Angles for P are 0.5Pi and 1.5Pi in the ellipse coordinates. |
+ * |
+ * If radiusY becomes zero, the result is as follows. |
+ * -----__ |
+ * --_ |
+ * ---------- |
+ * ``P |
+ * Angles for P are 0 and Pi in the ellipse coordinates. |
+ * |
+ * To handle both cases, degenerateEllipse() lines to start angle, local maximum points(every 0.5Pi), and end angle. |
+ * NOTE: Before ellipse() calls this function, adjustEndAngle() is called, so endAngle - startAngle must be less than 4Pi. |
+ */ |
+static void degenerateEllipse(CanvasPathMethods* path, float x, float y, float radiusX, float radiusY, float rotation, float startAngle, float endAngle, bool anticlockwise) |
+{ |
+ ASSERT(std::abs(endAngle - startAngle) < 4 * piFloat); |
+ |
+ FloatPoint center(x, y); |
+ AffineTransform rotationMatrix; |
+ rotationMatrix.rotate(rad2deg(rotation)); |
+ // First, if the object's path has any subpaths, then the method must add a straight line from the last point in the subpath to the start point of the arc. |
+ lineToFloatPoint(path, center + rotationMatrix.mapPoint(getPointOnEllipse(radiusX, radiusY, startAngle))); |
+ if ((!radiusX && !radiusY) || startAngle == endAngle) |
+ return; |
+ |
+ canonicalizeAngle(&startAngle, &endAngle); |
+ ASSERT(std::abs(endAngle - startAngle) < 4 * piFloat); |
+ |
+ float halfPiFloat = piFloat * 0.5; |
+ if (!anticlockwise) { |
+ // startAngle - fmodf(startAngle, halfPiFloat) + halfPiFloat is the one of (0, 0.5Pi, Pi, 1.5Pi, 2Pi) |
+ // that is the closest to startAngle on the clockwise direction. |
+ for (float angle = startAngle - fmodf(startAngle, halfPiFloat) + halfPiFloat; angle < endAngle; angle += halfPiFloat) |
+ lineToFloatPoint(path, center + rotationMatrix.mapPoint(getPointOnEllipse(radiusX, radiusY, angle))); |
+ } else { |
+ for (float angle = startAngle - fmodf(startAngle, halfPiFloat); angle > endAngle; angle -= halfPiFloat) |
+ lineToFloatPoint(path, center + rotationMatrix.mapPoint(getPointOnEllipse(radiusX, radiusY, angle))); |
+ } |
+ |
+ lineToFloatPoint(path, center + rotationMatrix.mapPoint(getPointOnEllipse(radiusX, radiusY, endAngle))); |
+} |
+ |
+void CanvasPathMethods::ellipse(float x, float y, float radiusX, float radiusY, float rotation, float startAngle, float endAngle, bool anticlockwise, ExceptionState& es) |
+{ |
+ if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(radiusX) || !std::isfinite(radiusY) || !std::isfinite(rotation) || !std::isfinite(startAngle) || !std::isfinite(endAngle)) |
+ return; |
+ |
+ if (radiusX < 0 || radiusY < 0) { |
+ es.throwDOMException(IndexSizeError); |
+ return; |
+ } |
+ |
+ if (!isTransformInvertible()) |
+ return; |
+ |
+ float adjustedEndAngle = adjustEndAngle(startAngle, endAngle, anticlockwise); |
+ if (!radiusX || !radiusY || startAngle == adjustedEndAngle) { |
+ // The ellipse is empty but we still need to draw the connecting line to start point. |
+ degenerateEllipse(this, x, y, radiusX, radiusY, rotation, startAngle, adjustedEndAngle, anticlockwise); |
+ return; |
+ } |
+ |
+ m_path.addEllipse(FloatPoint(x, y), radiusX, radiusY, rotation, startAngle, adjustedEndAngle, anticlockwise); |
+} |
+ |
void CanvasPathMethods::rect(float x, float y, float width, float height) |
{ |
if (!isTransformInvertible()) |