Index: mozilla/security/nss/lib/freebl/mpi/mp_gf2m.c |
=================================================================== |
--- mozilla/security/nss/lib/freebl/mpi/mp_gf2m.c (revision 191424) |
+++ mozilla/security/nss/lib/freebl/mpi/mp_gf2m.c (working copy) |
@@ -1,579 +0,0 @@ |
-/* This Source Code Form is subject to the terms of the Mozilla Public |
- * License, v. 2.0. If a copy of the MPL was not distributed with this |
- * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
- |
-#include "mp_gf2m.h" |
-#include "mp_gf2m-priv.h" |
-#include "mplogic.h" |
-#include "mpi-priv.h" |
- |
-const mp_digit mp_gf2m_sqr_tb[16] = |
-{ |
- 0, 1, 4, 5, 16, 17, 20, 21, |
- 64, 65, 68, 69, 80, 81, 84, 85 |
-}; |
- |
-/* Multiply two binary polynomials mp_digits a, b. |
- * Result is a polynomial with degree < 2 * MP_DIGIT_BITS - 1. |
- * Output in two mp_digits rh, rl. |
- */ |
-#if MP_DIGIT_BITS == 32 |
-void |
-s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b) |
-{ |
- register mp_digit h, l, s; |
- mp_digit tab[8], top2b = a >> 30; |
- register mp_digit a1, a2, a4; |
- |
- a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1; |
- |
- tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2; |
- tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4; |
- |
- s = tab[b & 0x7]; l = s; |
- s = tab[b >> 3 & 0x7]; l ^= s << 3; h = s >> 29; |
- s = tab[b >> 6 & 0x7]; l ^= s << 6; h ^= s >> 26; |
- s = tab[b >> 9 & 0x7]; l ^= s << 9; h ^= s >> 23; |
- s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20; |
- s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17; |
- s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14; |
- s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11; |
- s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >> 8; |
- s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >> 5; |
- s = tab[b >> 30 ]; l ^= s << 30; h ^= s >> 2; |
- |
- /* compensate for the top two bits of a */ |
- |
- if (top2b & 01) { l ^= b << 30; h ^= b >> 2; } |
- if (top2b & 02) { l ^= b << 31; h ^= b >> 1; } |
- |
- *rh = h; *rl = l; |
-} |
-#else |
-void |
-s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b) |
-{ |
- register mp_digit h, l, s; |
- mp_digit tab[16], top3b = a >> 61; |
- register mp_digit a1, a2, a4, a8; |
- |
- a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; |
- a4 = a2 << 1; a8 = a4 << 1; |
- tab[ 0] = 0; tab[ 1] = a1; tab[ 2] = a2; tab[ 3] = a1^a2; |
- tab[ 4] = a4; tab[ 5] = a1^a4; tab[ 6] = a2^a4; tab[ 7] = a1^a2^a4; |
- tab[ 8] = a8; tab[ 9] = a1^a8; tab[10] = a2^a8; tab[11] = a1^a2^a8; |
- tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8; |
- |
- s = tab[b & 0xF]; l = s; |
- s = tab[b >> 4 & 0xF]; l ^= s << 4; h = s >> 60; |
- s = tab[b >> 8 & 0xF]; l ^= s << 8; h ^= s >> 56; |
- s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52; |
- s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48; |
- s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44; |
- s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40; |
- s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36; |
- s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32; |
- s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28; |
- s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24; |
- s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20; |
- s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16; |
- s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12; |
- s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >> 8; |
- s = tab[b >> 60 ]; l ^= s << 60; h ^= s >> 4; |
- |
- /* compensate for the top three bits of a */ |
- |
- if (top3b & 01) { l ^= b << 61; h ^= b >> 3; } |
- if (top3b & 02) { l ^= b << 62; h ^= b >> 2; } |
- if (top3b & 04) { l ^= b << 63; h ^= b >> 1; } |
- |
- *rh = h; *rl = l; |
-} |
-#endif |
- |
-/* Compute xor-multiply of two binary polynomials (a1, a0) x (b1, b0) |
- * result is a binary polynomial in 4 mp_digits r[4]. |
- * The caller MUST ensure that r has the right amount of space allocated. |
- */ |
-void |
-s_bmul_2x2(mp_digit *r, const mp_digit a1, const mp_digit a0, const mp_digit b1, |
- const mp_digit b0) |
-{ |
- mp_digit m1, m0; |
- /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */ |
- s_bmul_1x1(r+3, r+2, a1, b1); |
- s_bmul_1x1(r+1, r, a0, b0); |
- s_bmul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1); |
- /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */ |
- r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */ |
- r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */ |
-} |
- |
-/* Compute xor-multiply of two binary polynomials (a2, a1, a0) x (b2, b1, b0) |
- * result is a binary polynomial in 6 mp_digits r[6]. |
- * The caller MUST ensure that r has the right amount of space allocated. |
- */ |
-void |
-s_bmul_3x3(mp_digit *r, const mp_digit a2, const mp_digit a1, const mp_digit a0, |
- const mp_digit b2, const mp_digit b1, const mp_digit b0) |
-{ |
- mp_digit zm[4]; |
- |
- s_bmul_1x1(r+5, r+4, a2, b2); /* fill top 2 words */ |
- s_bmul_2x2(zm, a1, a2^a0, b1, b2^b0); /* fill middle 4 words */ |
- s_bmul_2x2(r, a1, a0, b1, b0); /* fill bottom 4 words */ |
- |
- zm[3] ^= r[3]; |
- zm[2] ^= r[2]; |
- zm[1] ^= r[1] ^ r[5]; |
- zm[0] ^= r[0] ^ r[4]; |
- |
- r[5] ^= zm[3]; |
- r[4] ^= zm[2]; |
- r[3] ^= zm[1]; |
- r[2] ^= zm[0]; |
-} |
- |
-/* Compute xor-multiply of two binary polynomials (a3, a2, a1, a0) x (b3, b2, b1, b0) |
- * result is a binary polynomial in 8 mp_digits r[8]. |
- * The caller MUST ensure that r has the right amount of space allocated. |
- */ |
-void s_bmul_4x4(mp_digit *r, const mp_digit a3, const mp_digit a2, const mp_digit a1, |
- const mp_digit a0, const mp_digit b3, const mp_digit b2, const mp_digit b1, |
- const mp_digit b0) |
-{ |
- mp_digit zm[4]; |
- |
- s_bmul_2x2(r+4, a3, a2, b3, b2); /* fill top 4 words */ |
- s_bmul_2x2(zm, a3^a1, a2^a0, b3^b1, b2^b0); /* fill middle 4 words */ |
- s_bmul_2x2(r, a1, a0, b1, b0); /* fill bottom 4 words */ |
- |
- zm[3] ^= r[3] ^ r[7]; |
- zm[2] ^= r[2] ^ r[6]; |
- zm[1] ^= r[1] ^ r[5]; |
- zm[0] ^= r[0] ^ r[4]; |
- |
- r[5] ^= zm[3]; |
- r[4] ^= zm[2]; |
- r[3] ^= zm[1]; |
- r[2] ^= zm[0]; |
-} |
- |
-/* Compute addition of two binary polynomials a and b, |
- * store result in c; c could be a or b, a and b could be equal; |
- * c is the bitwise XOR of a and b. |
- */ |
-mp_err |
-mp_badd(const mp_int *a, const mp_int *b, mp_int *c) |
-{ |
- mp_digit *pa, *pb, *pc; |
- mp_size ix; |
- mp_size used_pa, used_pb; |
- mp_err res = MP_OKAY; |
- |
- /* Add all digits up to the precision of b. If b had more |
- * precision than a initially, swap a, b first |
- */ |
- if (MP_USED(a) >= MP_USED(b)) { |
- pa = MP_DIGITS(a); |
- pb = MP_DIGITS(b); |
- used_pa = MP_USED(a); |
- used_pb = MP_USED(b); |
- } else { |
- pa = MP_DIGITS(b); |
- pb = MP_DIGITS(a); |
- used_pa = MP_USED(b); |
- used_pb = MP_USED(a); |
- } |
- |
- /* Make sure c has enough precision for the output value */ |
- MP_CHECKOK( s_mp_pad(c, used_pa) ); |
- |
- /* Do word-by-word xor */ |
- pc = MP_DIGITS(c); |
- for (ix = 0; ix < used_pb; ix++) { |
- (*pc++) = (*pa++) ^ (*pb++); |
- } |
- |
- /* Finish the rest of digits until we're actually done */ |
- for (; ix < used_pa; ++ix) { |
- *pc++ = *pa++; |
- } |
- |
- MP_USED(c) = used_pa; |
- MP_SIGN(c) = ZPOS; |
- s_mp_clamp(c); |
- |
-CLEANUP: |
- return res; |
-} |
- |
-#define s_mp_div2(a) MP_CHECKOK( mpl_rsh((a), (a), 1) ); |
- |
-/* Compute binary polynomial multiply d = a * b */ |
-static void |
-s_bmul_d(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d) |
-{ |
- mp_digit a_i, a0b0, a1b1, carry = 0; |
- while (a_len--) { |
- a_i = *a++; |
- s_bmul_1x1(&a1b1, &a0b0, a_i, b); |
- *d++ = a0b0 ^ carry; |
- carry = a1b1; |
- } |
- *d = carry; |
-} |
- |
-/* Compute binary polynomial xor multiply accumulate d ^= a * b */ |
-static void |
-s_bmul_d_add(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d) |
-{ |
- mp_digit a_i, a0b0, a1b1, carry = 0; |
- while (a_len--) { |
- a_i = *a++; |
- s_bmul_1x1(&a1b1, &a0b0, a_i, b); |
- *d++ ^= a0b0 ^ carry; |
- carry = a1b1; |
- } |
- *d ^= carry; |
-} |
- |
-/* Compute binary polynomial xor multiply c = a * b. |
- * All parameters may be identical. |
- */ |
-mp_err |
-mp_bmul(const mp_int *a, const mp_int *b, mp_int *c) |
-{ |
- mp_digit *pb, b_i; |
- mp_int tmp; |
- mp_size ib, a_used, b_used; |
- mp_err res = MP_OKAY; |
- |
- MP_DIGITS(&tmp) = 0; |
- |
- ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
- |
- if (a == c) { |
- MP_CHECKOK( mp_init_copy(&tmp, a) ); |
- if (a == b) |
- b = &tmp; |
- a = &tmp; |
- } else if (b == c) { |
- MP_CHECKOK( mp_init_copy(&tmp, b) ); |
- b = &tmp; |
- } |
- |
- if (MP_USED(a) < MP_USED(b)) { |
- const mp_int *xch = b; /* switch a and b if b longer */ |
- b = a; |
- a = xch; |
- } |
- |
- MP_USED(c) = 1; MP_DIGIT(c, 0) = 0; |
- MP_CHECKOK( s_mp_pad(c, USED(a) + USED(b)) ); |
- |
- pb = MP_DIGITS(b); |
- s_bmul_d(MP_DIGITS(a), MP_USED(a), *pb++, MP_DIGITS(c)); |
- |
- /* Outer loop: Digits of b */ |
- a_used = MP_USED(a); |
- b_used = MP_USED(b); |
- MP_USED(c) = a_used + b_used; |
- for (ib = 1; ib < b_used; ib++) { |
- b_i = *pb++; |
- |
- /* Inner product: Digits of a */ |
- if (b_i) |
- s_bmul_d_add(MP_DIGITS(a), a_used, b_i, MP_DIGITS(c) + ib); |
- else |
- MP_DIGIT(c, ib + a_used) = b_i; |
- } |
- |
- s_mp_clamp(c); |
- |
- SIGN(c) = ZPOS; |
- |
-CLEANUP: |
- mp_clear(&tmp); |
- return res; |
-} |
- |
- |
-/* Compute modular reduction of a and store result in r. |
- * r could be a. |
- * For modular arithmetic, the irreducible polynomial f(t) is represented |
- * as an array of int[], where f(t) is of the form: |
- * f(t) = t^p[0] + t^p[1] + ... + t^p[k] |
- * where m = p[0] > p[1] > ... > p[k] = 0. |
- */ |
-mp_err |
-mp_bmod(const mp_int *a, const unsigned int p[], mp_int *r) |
-{ |
- int j, k; |
- int n, dN, d0, d1; |
- mp_digit zz, *z, tmp; |
- mp_size used; |
- mp_err res = MP_OKAY; |
- |
- /* The algorithm does the reduction in place in r, |
- * if a != r, copy a into r first so reduction can be done in r |
- */ |
- if (a != r) { |
- MP_CHECKOK( mp_copy(a, r) ); |
- } |
- z = MP_DIGITS(r); |
- |
- /* start reduction */ |
- /*dN = p[0] / MP_DIGIT_BITS; */ |
- dN = p[0] >> MP_DIGIT_BITS_LOG_2; |
- used = MP_USED(r); |
- |
- for (j = used - 1; j > dN;) { |
- |
- zz = z[j]; |
- if (zz == 0) { |
- j--; continue; |
- } |
- z[j] = 0; |
- |
- for (k = 1; p[k] > 0; k++) { |
- /* reducing component t^p[k] */ |
- n = p[0] - p[k]; |
- /*d0 = n % MP_DIGIT_BITS; */ |
- d0 = n & MP_DIGIT_BITS_MASK; |
- d1 = MP_DIGIT_BITS - d0; |
- /*n /= MP_DIGIT_BITS; */ |
- n >>= MP_DIGIT_BITS_LOG_2; |
- z[j-n] ^= (zz>>d0); |
- if (d0) |
- z[j-n-1] ^= (zz<<d1); |
- } |
- |
- /* reducing component t^0 */ |
- n = dN; |
- /*d0 = p[0] % MP_DIGIT_BITS;*/ |
- d0 = p[0] & MP_DIGIT_BITS_MASK; |
- d1 = MP_DIGIT_BITS - d0; |
- z[j-n] ^= (zz >> d0); |
- if (d0) |
- z[j-n-1] ^= (zz << d1); |
- |
- } |
- |
- /* final round of reduction */ |
- while (j == dN) { |
- |
- /* d0 = p[0] % MP_DIGIT_BITS; */ |
- d0 = p[0] & MP_DIGIT_BITS_MASK; |
- zz = z[dN] >> d0; |
- if (zz == 0) break; |
- d1 = MP_DIGIT_BITS - d0; |
- |
- /* clear up the top d1 bits */ |
- if (d0) { |
- z[dN] = (z[dN] << d1) >> d1; |
- } else { |
- z[dN] = 0; |
- } |
- *z ^= zz; /* reduction t^0 component */ |
- |
- for (k = 1; p[k] > 0; k++) { |
- /* reducing component t^p[k]*/ |
- /* n = p[k] / MP_DIGIT_BITS; */ |
- n = p[k] >> MP_DIGIT_BITS_LOG_2; |
- /* d0 = p[k] % MP_DIGIT_BITS; */ |
- d0 = p[k] & MP_DIGIT_BITS_MASK; |
- d1 = MP_DIGIT_BITS - d0; |
- z[n] ^= (zz << d0); |
- tmp = zz >> d1; |
- if (d0 && tmp) |
- z[n+1] ^= tmp; |
- } |
- } |
- |
- s_mp_clamp(r); |
-CLEANUP: |
- return res; |
-} |
- |
-/* Compute the product of two polynomials a and b, reduce modulo p, |
- * Store the result in r. r could be a or b; a could be b. |
- */ |
-mp_err |
-mp_bmulmod(const mp_int *a, const mp_int *b, const unsigned int p[], mp_int *r) |
-{ |
- mp_err res; |
- |
- if (a == b) return mp_bsqrmod(a, p, r); |
- if ((res = mp_bmul(a, b, r) ) != MP_OKAY) |
- return res; |
- return mp_bmod(r, p, r); |
-} |
- |
-/* Compute binary polynomial squaring c = a*a mod p . |
- * Parameter r and a can be identical. |
- */ |
- |
-mp_err |
-mp_bsqrmod(const mp_int *a, const unsigned int p[], mp_int *r) |
-{ |
- mp_digit *pa, *pr, a_i; |
- mp_int tmp; |
- mp_size ia, a_used; |
- mp_err res; |
- |
- ARGCHK(a != NULL && r != NULL, MP_BADARG); |
- MP_DIGITS(&tmp) = 0; |
- |
- if (a == r) { |
- MP_CHECKOK( mp_init_copy(&tmp, a) ); |
- a = &tmp; |
- } |
- |
- MP_USED(r) = 1; MP_DIGIT(r, 0) = 0; |
- MP_CHECKOK( s_mp_pad(r, 2*USED(a)) ); |
- |
- pa = MP_DIGITS(a); |
- pr = MP_DIGITS(r); |
- a_used = MP_USED(a); |
- MP_USED(r) = 2 * a_used; |
- |
- for (ia = 0; ia < a_used; ia++) { |
- a_i = *pa++; |
- *pr++ = gf2m_SQR0(a_i); |
- *pr++ = gf2m_SQR1(a_i); |
- } |
- |
- MP_CHECKOK( mp_bmod(r, p, r) ); |
- s_mp_clamp(r); |
- SIGN(r) = ZPOS; |
- |
-CLEANUP: |
- mp_clear(&tmp); |
- return res; |
-} |
- |
-/* Compute binary polynomial y/x mod p, y divided by x, reduce modulo p. |
- * Store the result in r. r could be x or y, and x could equal y. |
- * Uses algorithm Modular_Division_GF(2^m) from |
- * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to |
- * the Great Divide". |
- */ |
-int |
-mp_bdivmod(const mp_int *y, const mp_int *x, const mp_int *pp, |
- const unsigned int p[], mp_int *r) |
-{ |
- mp_int aa, bb, uu; |
- mp_int *a, *b, *u, *v; |
- mp_err res = MP_OKAY; |
- |
- MP_DIGITS(&aa) = 0; |
- MP_DIGITS(&bb) = 0; |
- MP_DIGITS(&uu) = 0; |
- |
- MP_CHECKOK( mp_init_copy(&aa, x) ); |
- MP_CHECKOK( mp_init_copy(&uu, y) ); |
- MP_CHECKOK( mp_init_copy(&bb, pp) ); |
- MP_CHECKOK( s_mp_pad(r, USED(pp)) ); |
- MP_USED(r) = 1; MP_DIGIT(r, 0) = 0; |
- |
- a = &aa; b= &bb; u=&uu; v=r; |
- /* reduce x and y mod p */ |
- MP_CHECKOK( mp_bmod(a, p, a) ); |
- MP_CHECKOK( mp_bmod(u, p, u) ); |
- |
- while (!mp_isodd(a)) { |
- s_mp_div2(a); |
- if (mp_isodd(u)) { |
- MP_CHECKOK( mp_badd(u, pp, u) ); |
- } |
- s_mp_div2(u); |
- } |
- |
- do { |
- if (mp_cmp_mag(b, a) > 0) { |
- MP_CHECKOK( mp_badd(b, a, b) ); |
- MP_CHECKOK( mp_badd(v, u, v) ); |
- do { |
- s_mp_div2(b); |
- if (mp_isodd(v)) { |
- MP_CHECKOK( mp_badd(v, pp, v) ); |
- } |
- s_mp_div2(v); |
- } while (!mp_isodd(b)); |
- } |
- else if ((MP_DIGIT(a,0) == 1) && (MP_USED(a) == 1)) |
- break; |
- else { |
- MP_CHECKOK( mp_badd(a, b, a) ); |
- MP_CHECKOK( mp_badd(u, v, u) ); |
- do { |
- s_mp_div2(a); |
- if (mp_isodd(u)) { |
- MP_CHECKOK( mp_badd(u, pp, u) ); |
- } |
- s_mp_div2(u); |
- } while (!mp_isodd(a)); |
- } |
- } while (1); |
- |
- MP_CHECKOK( mp_copy(u, r) ); |
- |
-CLEANUP: |
- mp_clear(&aa); |
- mp_clear(&bb); |
- mp_clear(&uu); |
- return res; |
- |
-} |
- |
-/* Convert the bit-string representation of a polynomial a into an array |
- * of integers corresponding to the bits with non-zero coefficient. |
- * Up to max elements of the array will be filled. Return value is total |
- * number of coefficients that would be extracted if array was large enough. |
- */ |
-int |
-mp_bpoly2arr(const mp_int *a, unsigned int p[], int max) |
-{ |
- int i, j, k; |
- mp_digit top_bit, mask; |
- |
- top_bit = 1; |
- top_bit <<= MP_DIGIT_BIT - 1; |
- |
- for (k = 0; k < max; k++) p[k] = 0; |
- k = 0; |
- |
- for (i = MP_USED(a) - 1; i >= 0; i--) { |
- mask = top_bit; |
- for (j = MP_DIGIT_BIT - 1; j >= 0; j--) { |
- if (MP_DIGITS(a)[i] & mask) { |
- if (k < max) p[k] = MP_DIGIT_BIT * i + j; |
- k++; |
- } |
- mask >>= 1; |
- } |
- } |
- |
- return k; |
-} |
- |
-/* Convert the coefficient array representation of a polynomial to a |
- * bit-string. The array must be terminated by 0. |
- */ |
-mp_err |
-mp_barr2poly(const unsigned int p[], mp_int *a) |
-{ |
- |
- mp_err res = MP_OKAY; |
- int i; |
- |
- mp_zero(a); |
- for (i = 0; p[i] > 0; i++) { |
- MP_CHECKOK( mpl_set_bit(a, p[i], 1) ); |
- } |
- MP_CHECKOK( mpl_set_bit(a, 0, 1) ); |
- |
-CLEANUP: |
- return res; |
-} |