| Index: mozilla/security/nss/lib/softoken/rsawrapr.c
|
| ===================================================================
|
| --- mozilla/security/nss/lib/softoken/rsawrapr.c (revision 191424)
|
| +++ mozilla/security/nss/lib/softoken/rsawrapr.c (working copy)
|
| @@ -1,1449 +0,0 @@
|
| -/*
|
| - * PKCS#1 encoding and decoding functions.
|
| - * This file is believed to contain no code licensed from other parties.
|
| - *
|
| - * This Source Code Form is subject to the terms of the Mozilla Public
|
| - * License, v. 2.0. If a copy of the MPL was not distributed with this
|
| - * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
| -/* $Id: rsawrapr.c,v 1.22 2013/02/05 02:19:52 ryan.sleevi%gmail.com Exp $ */
|
| -
|
| -#include "blapi.h"
|
| -#include "softoken.h"
|
| -
|
| -#include "lowkeyi.h"
|
| -#include "secerr.h"
|
| -
|
| -#define RSA_BLOCK_MIN_PAD_LEN 8
|
| -#define RSA_BLOCK_FIRST_OCTET 0x00
|
| -#define RSA_BLOCK_PRIVATE0_PAD_OCTET 0x00
|
| -#define RSA_BLOCK_PRIVATE_PAD_OCTET 0xff
|
| -#define RSA_BLOCK_AFTER_PAD_OCTET 0x00
|
| -
|
| -/* Needed for RSA-PSS functions */
|
| -static const unsigned char eightZeros[] = { 0, 0, 0, 0, 0, 0, 0, 0 };
|
| -
|
| -/* Constant time comparison of a single byte.
|
| - * Returns 1 iff a == b, otherwise returns 0.
|
| - * Note: For ranges of bytes, use constantTimeCompare.
|
| - */
|
| -static unsigned char constantTimeEQ8(unsigned char a, unsigned char b) {
|
| - unsigned char c = ~(a - b | b - a);
|
| - c >>= 7;
|
| - return c;
|
| -}
|
| -
|
| -/* Constant time comparison of a range of bytes.
|
| - * Returns 1 iff len bytes of a are identical to len bytes of b, otherwise
|
| - * returns 0.
|
| - */
|
| -static unsigned char constantTimeCompare(const unsigned char *a,
|
| - const unsigned char *b,
|
| - unsigned int len) {
|
| - unsigned char tmp = 0;
|
| - unsigned int i;
|
| - for (i = 0; i < len; ++i, ++a, ++b)
|
| - tmp |= *a ^ *b;
|
| - return constantTimeEQ8(0x00, tmp);
|
| -}
|
| -
|
| -/* Constant time conditional.
|
| - * Returns a if c is 1, or b if c is 0. The result is undefined if c is
|
| - * not 0 or 1.
|
| - */
|
| -static unsigned int constantTimeCondition(unsigned int c,
|
| - unsigned int a,
|
| - unsigned int b)
|
| -{
|
| - return (~(c - 1) & a) | ((c - 1) & b);
|
| -}
|
| -
|
| -/*
|
| - * Format one block of data for public/private key encryption using
|
| - * the rules defined in PKCS #1.
|
| - */
|
| -static unsigned char *
|
| -rsa_FormatOneBlock(unsigned modulusLen, RSA_BlockType blockType,
|
| - SECItem *data)
|
| -{
|
| - unsigned char *block;
|
| - unsigned char *bp;
|
| - int padLen;
|
| - int i, j;
|
| - SECStatus rv;
|
| -
|
| - block = (unsigned char *) PORT_Alloc(modulusLen);
|
| - if (block == NULL)
|
| - return NULL;
|
| -
|
| - bp = block;
|
| -
|
| - /*
|
| - * All RSA blocks start with two octets:
|
| - * 0x00 || BlockType
|
| - */
|
| - *bp++ = RSA_BLOCK_FIRST_OCTET;
|
| - *bp++ = (unsigned char) blockType;
|
| -
|
| - switch (blockType) {
|
| -
|
| - /*
|
| - * Blocks intended for private-key operation.
|
| - */
|
| - case RSA_BlockPrivate0: /* essentially unused */
|
| - case RSA_BlockPrivate: /* preferred method */
|
| - /*
|
| - * 0x00 || BT || Pad || 0x00 || ActualData
|
| - * 1 1 padLen 1 data->len
|
| - * Pad is either all 0x00 or all 0xff bytes, depending on blockType.
|
| - */
|
| - padLen = modulusLen - data->len - 3;
|
| - PORT_Assert (padLen >= RSA_BLOCK_MIN_PAD_LEN);
|
| - if (padLen < RSA_BLOCK_MIN_PAD_LEN) {
|
| - PORT_Free (block);
|
| - return NULL;
|
| - }
|
| - PORT_Memset (bp,
|
| - blockType == RSA_BlockPrivate0
|
| - ? RSA_BLOCK_PRIVATE0_PAD_OCTET
|
| - : RSA_BLOCK_PRIVATE_PAD_OCTET,
|
| - padLen);
|
| - bp += padLen;
|
| - *bp++ = RSA_BLOCK_AFTER_PAD_OCTET;
|
| - PORT_Memcpy (bp, data->data, data->len);
|
| - break;
|
| -
|
| - /*
|
| - * Blocks intended for public-key operation.
|
| - */
|
| - case RSA_BlockPublic:
|
| -
|
| - /*
|
| - * 0x00 || BT || Pad || 0x00 || ActualData
|
| - * 1 1 padLen 1 data->len
|
| - * Pad is all non-zero random bytes.
|
| - *
|
| - * Build the block left to right.
|
| - * Fill the entire block from Pad to the end with random bytes.
|
| - * Use the bytes after Pad as a supply of extra random bytes from
|
| - * which to find replacements for the zero bytes in Pad.
|
| - * If we need more than that, refill the bytes after Pad with
|
| - * new random bytes as necessary.
|
| - */
|
| - padLen = modulusLen - (data->len + 3);
|
| - PORT_Assert (padLen >= RSA_BLOCK_MIN_PAD_LEN);
|
| - if (padLen < RSA_BLOCK_MIN_PAD_LEN) {
|
| - PORT_Free (block);
|
| - return NULL;
|
| - }
|
| - j = modulusLen - 2;
|
| - rv = RNG_GenerateGlobalRandomBytes(bp, j);
|
| - if (rv == SECSuccess) {
|
| - for (i = 0; i < padLen; ) {
|
| - unsigned char repl;
|
| - /* Pad with non-zero random data. */
|
| - if (bp[i] != RSA_BLOCK_AFTER_PAD_OCTET) {
|
| - ++i;
|
| - continue;
|
| - }
|
| - if (j <= padLen) {
|
| - rv = RNG_GenerateGlobalRandomBytes(bp + padLen,
|
| - modulusLen - (2 + padLen));
|
| - if (rv != SECSuccess)
|
| - break;
|
| - j = modulusLen - 2;
|
| - }
|
| - do {
|
| - repl = bp[--j];
|
| - } while (repl == RSA_BLOCK_AFTER_PAD_OCTET && j > padLen);
|
| - if (repl != RSA_BLOCK_AFTER_PAD_OCTET) {
|
| - bp[i++] = repl;
|
| - }
|
| - }
|
| - }
|
| - if (rv != SECSuccess) {
|
| - sftk_fatalError = PR_TRUE;
|
| - PORT_Free (block);
|
| - return NULL;
|
| - }
|
| - bp += padLen;
|
| - *bp++ = RSA_BLOCK_AFTER_PAD_OCTET;
|
| - PORT_Memcpy (bp, data->data, data->len);
|
| - break;
|
| -
|
| - default:
|
| - PORT_Assert (0);
|
| - PORT_Free (block);
|
| - return NULL;
|
| - }
|
| -
|
| - return block;
|
| -}
|
| -
|
| -static SECStatus
|
| -rsa_FormatBlock(SECItem *result, unsigned modulusLen,
|
| - RSA_BlockType blockType, SECItem *data)
|
| -{
|
| - /*
|
| - * XXX For now assume that the data length fits in a single
|
| - * XXX encryption block; the ASSERTs below force this.
|
| - * XXX To fix it, each case will have to loop over chunks whose
|
| - * XXX lengths satisfy the assertions, until all data is handled.
|
| - * XXX (Unless RSA has more to say about how to handle data
|
| - * XXX which does not fit in a single encryption block?)
|
| - * XXX And I do not know what the result is supposed to be,
|
| - * XXX so the interface to this function may need to change
|
| - * XXX to allow for returning multiple blocks, if they are
|
| - * XXX not wanted simply concatenated one after the other.
|
| - */
|
| -
|
| - switch (blockType) {
|
| - case RSA_BlockPrivate0:
|
| - case RSA_BlockPrivate:
|
| - case RSA_BlockPublic:
|
| - /*
|
| - * 0x00 || BT || Pad || 0x00 || ActualData
|
| - *
|
| - * The "3" below is the first octet + the second octet + the 0x00
|
| - * octet that always comes just before the ActualData.
|
| - */
|
| - PORT_Assert (data->len <= (modulusLen - (3 + RSA_BLOCK_MIN_PAD_LEN)));
|
| -
|
| - result->data = rsa_FormatOneBlock(modulusLen, blockType, data);
|
| - if (result->data == NULL) {
|
| - result->len = 0;
|
| - return SECFailure;
|
| - }
|
| - result->len = modulusLen;
|
| -
|
| - break;
|
| -
|
| - case RSA_BlockRaw:
|
| - /*
|
| - * Pad || ActualData
|
| - * Pad is zeros. The application is responsible for recovering
|
| - * the actual data.
|
| - */
|
| - if (data->len > modulusLen ) {
|
| - return SECFailure;
|
| - }
|
| - result->data = (unsigned char*)PORT_ZAlloc(modulusLen);
|
| - result->len = modulusLen;
|
| - PORT_Memcpy(result->data+(modulusLen-data->len),data->data,data->len);
|
| - break;
|
| -
|
| - default:
|
| - PORT_Assert (0);
|
| - result->data = NULL;
|
| - result->len = 0;
|
| - return SECFailure;
|
| - }
|
| -
|
| - return SECSuccess;
|
| -}
|
| -
|
| -/* XXX Doesn't set error code */
|
| -SECStatus
|
| -RSA_Sign(NSSLOWKEYPrivateKey *key,
|
| - unsigned char * output,
|
| - unsigned int * output_len,
|
| - unsigned int maxOutputLen,
|
| - unsigned char * input,
|
| - unsigned int input_len)
|
| -{
|
| - SECStatus rv = SECSuccess;
|
| - unsigned int modulus_len = nsslowkey_PrivateModulusLen(key);
|
| - SECItem formatted;
|
| - SECItem unformatted;
|
| -
|
| - if (maxOutputLen < modulus_len)
|
| - return SECFailure;
|
| - PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
|
| - if (key->keyType != NSSLOWKEYRSAKey)
|
| - return SECFailure;
|
| -
|
| - unformatted.len = input_len;
|
| - unformatted.data = input;
|
| - formatted.data = NULL;
|
| - rv = rsa_FormatBlock(&formatted, modulus_len, RSA_BlockPrivate,
|
| - &unformatted);
|
| - if (rv != SECSuccess)
|
| - goto done;
|
| -
|
| - rv = RSA_PrivateKeyOpDoubleChecked(&key->u.rsa, output, formatted.data);
|
| - if (rv != SECSuccess && PORT_GetError() == SEC_ERROR_LIBRARY_FAILURE) {
|
| - sftk_fatalError = PR_TRUE;
|
| - }
|
| - *output_len = modulus_len;
|
| -
|
| - goto done;
|
| -
|
| -done:
|
| - if (formatted.data != NULL)
|
| - PORT_ZFree(formatted.data, modulus_len);
|
| - return rv;
|
| -}
|
| -
|
| -/* XXX Doesn't set error code */
|
| -SECStatus
|
| -RSA_CheckSign(NSSLOWKEYPublicKey *key,
|
| - unsigned char * sign,
|
| - unsigned int sign_len,
|
| - unsigned char * hash,
|
| - unsigned int hash_len)
|
| -{
|
| - SECStatus rv;
|
| - unsigned int modulus_len = nsslowkey_PublicModulusLen(key);
|
| - unsigned int i;
|
| - unsigned char * buffer;
|
| -
|
| - modulus_len = nsslowkey_PublicModulusLen(key);
|
| - if (sign_len != modulus_len)
|
| - goto failure;
|
| - /*
|
| - * 0x00 || BT || Pad || 0x00 || ActualData
|
| - *
|
| - * The "3" below is the first octet + the second octet + the 0x00
|
| - * octet that always comes just before the ActualData.
|
| - */
|
| - if (hash_len > modulus_len - (3 + RSA_BLOCK_MIN_PAD_LEN))
|
| - goto failure;
|
| - PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
|
| - if (key->keyType != NSSLOWKEYRSAKey)
|
| - goto failure;
|
| -
|
| - buffer = (unsigned char *)PORT_Alloc(modulus_len + 1);
|
| - if (!buffer)
|
| - goto failure;
|
| -
|
| - rv = RSA_PublicKeyOp(&key->u.rsa, buffer, sign);
|
| - if (rv != SECSuccess)
|
| - goto loser;
|
| -
|
| - /*
|
| - * check the padding that was used
|
| - */
|
| - if (buffer[0] != 0 || buffer[1] != 1)
|
| - goto loser;
|
| - for (i = 2; i < modulus_len - hash_len - 1; i++) {
|
| - if (buffer[i] != 0xff)
|
| - goto loser;
|
| - }
|
| - if (buffer[i] != 0)
|
| - goto loser;
|
| -
|
| - /*
|
| - * make sure we get the same results
|
| - */
|
| - if (PORT_Memcmp(buffer + modulus_len - hash_len, hash, hash_len) != 0)
|
| - goto loser;
|
| -
|
| - PORT_Free(buffer);
|
| - return SECSuccess;
|
| -
|
| -loser:
|
| - PORT_Free(buffer);
|
| -failure:
|
| - return SECFailure;
|
| -}
|
| -
|
| -/* XXX Doesn't set error code */
|
| -SECStatus
|
| -RSA_CheckSignRecover(NSSLOWKEYPublicKey *key,
|
| - unsigned char * data,
|
| - unsigned int * data_len,
|
| - unsigned int max_output_len,
|
| - unsigned char * sign,
|
| - unsigned int sign_len)
|
| -{
|
| - SECStatus rv;
|
| - unsigned int modulus_len = nsslowkey_PublicModulusLen(key);
|
| - unsigned int i;
|
| - unsigned char * buffer;
|
| -
|
| - if (sign_len != modulus_len)
|
| - goto failure;
|
| - PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
|
| - if (key->keyType != NSSLOWKEYRSAKey)
|
| - goto failure;
|
| -
|
| - buffer = (unsigned char *)PORT_Alloc(modulus_len + 1);
|
| - if (!buffer)
|
| - goto failure;
|
| -
|
| - rv = RSA_PublicKeyOp(&key->u.rsa, buffer, sign);
|
| - if (rv != SECSuccess)
|
| - goto loser;
|
| - *data_len = 0;
|
| -
|
| - /*
|
| - * check the padding that was used
|
| - */
|
| - if (buffer[0] != 0 || buffer[1] != 1)
|
| - goto loser;
|
| - for (i = 2; i < modulus_len; i++) {
|
| - if (buffer[i] == 0) {
|
| - *data_len = modulus_len - i - 1;
|
| - break;
|
| - }
|
| - if (buffer[i] != 0xff)
|
| - goto loser;
|
| - }
|
| - if (*data_len == 0)
|
| - goto loser;
|
| - if (*data_len > max_output_len)
|
| - goto loser;
|
| -
|
| - /*
|
| - * make sure we get the same results
|
| - */
|
| - PORT_Memcpy(data,buffer + modulus_len - *data_len, *data_len);
|
| -
|
| - PORT_Free(buffer);
|
| - return SECSuccess;
|
| -
|
| -loser:
|
| - PORT_Free(buffer);
|
| -failure:
|
| - return SECFailure;
|
| -}
|
| -
|
| -/* XXX Doesn't set error code */
|
| -SECStatus
|
| -RSA_EncryptBlock(NSSLOWKEYPublicKey *key,
|
| - unsigned char * output,
|
| - unsigned int * output_len,
|
| - unsigned int max_output_len,
|
| - unsigned char * input,
|
| - unsigned int input_len)
|
| -{
|
| - SECStatus rv;
|
| - unsigned int modulus_len = nsslowkey_PublicModulusLen(key);
|
| - SECItem formatted;
|
| - SECItem unformatted;
|
| -
|
| - formatted.data = NULL;
|
| - if (max_output_len < modulus_len)
|
| - goto failure;
|
| - PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
|
| - if (key->keyType != NSSLOWKEYRSAKey)
|
| - goto failure;
|
| -
|
| - unformatted.len = input_len;
|
| - unformatted.data = input;
|
| - formatted.data = NULL;
|
| - rv = rsa_FormatBlock(&formatted, modulus_len, RSA_BlockPublic,
|
| - &unformatted);
|
| - if (rv != SECSuccess)
|
| - goto failure;
|
| -
|
| - rv = RSA_PublicKeyOp(&key->u.rsa, output, formatted.data);
|
| - if (rv != SECSuccess)
|
| - goto failure;
|
| -
|
| - PORT_ZFree(formatted.data, modulus_len);
|
| - *output_len = modulus_len;
|
| - return SECSuccess;
|
| -
|
| -failure:
|
| - if (formatted.data != NULL)
|
| - PORT_ZFree(formatted.data, modulus_len);
|
| - return SECFailure;
|
| -}
|
| -
|
| -/* XXX Doesn't set error code */
|
| -SECStatus
|
| -RSA_DecryptBlock(NSSLOWKEYPrivateKey *key,
|
| - unsigned char * output,
|
| - unsigned int * output_len,
|
| - unsigned int max_output_len,
|
| - unsigned char * input,
|
| - unsigned int input_len)
|
| -{
|
| - SECStatus rv;
|
| - unsigned int modulus_len = nsslowkey_PrivateModulusLen(key);
|
| - unsigned int i;
|
| - unsigned char * buffer;
|
| -
|
| - PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
|
| - if (key->keyType != NSSLOWKEYRSAKey)
|
| - goto failure;
|
| - if (input_len != modulus_len)
|
| - goto failure;
|
| -
|
| - buffer = (unsigned char *)PORT_Alloc(modulus_len + 1);
|
| - if (!buffer)
|
| - goto failure;
|
| -
|
| - rv = RSA_PrivateKeyOp(&key->u.rsa, buffer, input);
|
| - if (rv != SECSuccess) {
|
| - if (PORT_GetError() == SEC_ERROR_LIBRARY_FAILURE) {
|
| - sftk_fatalError = PR_TRUE;
|
| - }
|
| - goto loser;
|
| - }
|
| -
|
| - if (buffer[0] != 0 || buffer[1] != 2)
|
| - goto loser;
|
| - *output_len = 0;
|
| - for (i = 2; i < modulus_len; i++) {
|
| - if (buffer[i] == 0) {
|
| - *output_len = modulus_len - i - 1;
|
| - break;
|
| - }
|
| - }
|
| - if (*output_len == 0)
|
| - goto loser;
|
| - if (*output_len > max_output_len)
|
| - goto loser;
|
| -
|
| - PORT_Memcpy(output, buffer + modulus_len - *output_len, *output_len);
|
| -
|
| - PORT_Free(buffer);
|
| - return SECSuccess;
|
| -
|
| -loser:
|
| - PORT_Free(buffer);
|
| -failure:
|
| - return SECFailure;
|
| -}
|
| -
|
| -/* XXX Doesn't set error code */
|
| -/*
|
| - * added to make pkcs #11 happy
|
| - * RAW is RSA_X_509
|
| - */
|
| -SECStatus
|
| -RSA_SignRaw(NSSLOWKEYPrivateKey *key,
|
| - unsigned char * output,
|
| - unsigned int * output_len,
|
| - unsigned int maxOutputLen,
|
| - unsigned char * input,
|
| - unsigned int input_len)
|
| -{
|
| - SECStatus rv = SECSuccess;
|
| - unsigned int modulus_len = nsslowkey_PrivateModulusLen(key);
|
| - SECItem formatted;
|
| - SECItem unformatted;
|
| -
|
| - if (maxOutputLen < modulus_len)
|
| - return SECFailure;
|
| - PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
|
| - if (key->keyType != NSSLOWKEYRSAKey)
|
| - return SECFailure;
|
| -
|
| - unformatted.len = input_len;
|
| - unformatted.data = input;
|
| - formatted.data = NULL;
|
| - rv = rsa_FormatBlock(&formatted, modulus_len, RSA_BlockRaw, &unformatted);
|
| - if (rv != SECSuccess)
|
| - goto done;
|
| -
|
| - rv = RSA_PrivateKeyOpDoubleChecked(&key->u.rsa, output, formatted.data);
|
| - if (rv != SECSuccess && PORT_GetError() == SEC_ERROR_LIBRARY_FAILURE) {
|
| - sftk_fatalError = PR_TRUE;
|
| - }
|
| - *output_len = modulus_len;
|
| -
|
| -done:
|
| - if (formatted.data != NULL)
|
| - PORT_ZFree(formatted.data, modulus_len);
|
| - return rv;
|
| -}
|
| -
|
| -/* XXX Doesn't set error code */
|
| -SECStatus
|
| -RSA_CheckSignRaw(NSSLOWKEYPublicKey *key,
|
| - unsigned char * sign,
|
| - unsigned int sign_len,
|
| - unsigned char * hash,
|
| - unsigned int hash_len)
|
| -{
|
| - SECStatus rv;
|
| - unsigned int modulus_len = nsslowkey_PublicModulusLen(key);
|
| - unsigned char * buffer;
|
| -
|
| - if (sign_len != modulus_len)
|
| - goto failure;
|
| - if (hash_len > modulus_len)
|
| - goto failure;
|
| - PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
|
| - if (key->keyType != NSSLOWKEYRSAKey)
|
| - goto failure;
|
| -
|
| - buffer = (unsigned char *)PORT_Alloc(modulus_len + 1);
|
| - if (!buffer)
|
| - goto failure;
|
| -
|
| - rv = RSA_PublicKeyOp(&key->u.rsa, buffer, sign);
|
| - if (rv != SECSuccess)
|
| - goto loser;
|
| -
|
| - /*
|
| - * make sure we get the same results
|
| - */
|
| - /* NOTE: should we verify the leading zeros? */
|
| - if (PORT_Memcmp(buffer + (modulus_len-hash_len), hash, hash_len) != 0)
|
| - goto loser;
|
| -
|
| - PORT_Free(buffer);
|
| - return SECSuccess;
|
| -
|
| -loser:
|
| - PORT_Free(buffer);
|
| -failure:
|
| - return SECFailure;
|
| -}
|
| -
|
| -/* XXX Doesn't set error code */
|
| -SECStatus
|
| -RSA_CheckSignRecoverRaw(NSSLOWKEYPublicKey *key,
|
| - unsigned char * data,
|
| - unsigned int * data_len,
|
| - unsigned int max_output_len,
|
| - unsigned char * sign,
|
| - unsigned int sign_len)
|
| -{
|
| - SECStatus rv;
|
| - unsigned int modulus_len = nsslowkey_PublicModulusLen(key);
|
| -
|
| - if (sign_len != modulus_len)
|
| - goto failure;
|
| - if (max_output_len < modulus_len)
|
| - goto failure;
|
| - PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
|
| - if (key->keyType != NSSLOWKEYRSAKey)
|
| - goto failure;
|
| -
|
| - rv = RSA_PublicKeyOp(&key->u.rsa, data, sign);
|
| - if (rv != SECSuccess)
|
| - goto failure;
|
| -
|
| - *data_len = modulus_len;
|
| - return SECSuccess;
|
| -
|
| -failure:
|
| - return SECFailure;
|
| -}
|
| -
|
| -
|
| -/* XXX Doesn't set error code */
|
| -SECStatus
|
| -RSA_EncryptRaw(NSSLOWKEYPublicKey *key,
|
| - unsigned char * output,
|
| - unsigned int * output_len,
|
| - unsigned int max_output_len,
|
| - unsigned char * input,
|
| - unsigned int input_len)
|
| -{
|
| - SECStatus rv;
|
| - unsigned int modulus_len = nsslowkey_PublicModulusLen(key);
|
| - SECItem formatted;
|
| - SECItem unformatted;
|
| -
|
| - formatted.data = NULL;
|
| - if (max_output_len < modulus_len)
|
| - goto failure;
|
| - PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
|
| - if (key->keyType != NSSLOWKEYRSAKey)
|
| - goto failure;
|
| -
|
| - unformatted.len = input_len;
|
| - unformatted.data = input;
|
| - formatted.data = NULL;
|
| - rv = rsa_FormatBlock(&formatted, modulus_len, RSA_BlockRaw, &unformatted);
|
| - if (rv != SECSuccess)
|
| - goto failure;
|
| -
|
| - rv = RSA_PublicKeyOp(&key->u.rsa, output, formatted.data);
|
| - if (rv != SECSuccess)
|
| - goto failure;
|
| -
|
| - PORT_ZFree(formatted.data, modulus_len);
|
| - *output_len = modulus_len;
|
| - return SECSuccess;
|
| -
|
| -failure:
|
| - if (formatted.data != NULL)
|
| - PORT_ZFree(formatted.data, modulus_len);
|
| - return SECFailure;
|
| -}
|
| -
|
| -/* XXX Doesn't set error code */
|
| -SECStatus
|
| -RSA_DecryptRaw(NSSLOWKEYPrivateKey *key,
|
| - unsigned char * output,
|
| - unsigned int * output_len,
|
| - unsigned int max_output_len,
|
| - unsigned char * input,
|
| - unsigned int input_len)
|
| -{
|
| - SECStatus rv;
|
| - unsigned int modulus_len = nsslowkey_PrivateModulusLen(key);
|
| -
|
| - if (modulus_len <= 0)
|
| - goto failure;
|
| - if (modulus_len > max_output_len)
|
| - goto failure;
|
| - PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
|
| - if (key->keyType != NSSLOWKEYRSAKey)
|
| - goto failure;
|
| - if (input_len != modulus_len)
|
| - goto failure;
|
| -
|
| - rv = RSA_PrivateKeyOp(&key->u.rsa, output, input);
|
| - if (rv != SECSuccess) {
|
| - if (PORT_GetError() == SEC_ERROR_LIBRARY_FAILURE) {
|
| - sftk_fatalError = PR_TRUE;
|
| - }
|
| - goto failure;
|
| - }
|
| -
|
| - *output_len = modulus_len;
|
| - return SECSuccess;
|
| -
|
| -failure:
|
| - return SECFailure;
|
| -}
|
| -
|
| -/*
|
| - * Mask generation function MGF1 as defined in PKCS #1 v2.1 / RFC 3447.
|
| - */
|
| -static SECStatus
|
| -MGF1(HASH_HashType hashAlg, unsigned char *mask, unsigned int maskLen,
|
| - const unsigned char *mgfSeed, unsigned int mgfSeedLen)
|
| -{
|
| - unsigned int digestLen;
|
| - PRUint32 counter, rounds;
|
| - unsigned char *tempHash, *temp;
|
| - const SECHashObject *hash;
|
| - void *hashContext;
|
| - unsigned char C[4];
|
| -
|
| - hash = HASH_GetRawHashObject(hashAlg);
|
| - if (hash == NULL)
|
| - return SECFailure;
|
| -
|
| - hashContext = (*hash->create)();
|
| - rounds = (maskLen + hash->length - 1) / hash->length;
|
| - for (counter = 0; counter < rounds; counter++) {
|
| - C[0] = (unsigned char)((counter >> 24) & 0xff);
|
| - C[1] = (unsigned char)((counter >> 16) & 0xff);
|
| - C[2] = (unsigned char)((counter >> 8) & 0xff);
|
| - C[3] = (unsigned char)(counter & 0xff);
|
| -
|
| - /* This could be optimized when the clone functions in
|
| - * rawhash.c are implemented. */
|
| - (*hash->begin)(hashContext);
|
| - (*hash->update)(hashContext, mgfSeed, mgfSeedLen);
|
| - (*hash->update)(hashContext, C, sizeof C);
|
| -
|
| - tempHash = mask + counter * hash->length;
|
| - if (counter != (rounds-1)) {
|
| - (*hash->end)(hashContext, tempHash, &digestLen, hash->length);
|
| - } else { /* we're in the last round and need to cut the hash */
|
| - temp = PORT_Alloc(hash->length);
|
| - (*hash->end)(hashContext, temp, &digestLen, hash->length);
|
| - PORT_Memcpy(tempHash, temp, maskLen - counter * hash->length);
|
| - PORT_Free(temp);
|
| - }
|
| - }
|
| - (*hash->destroy)(hashContext, PR_TRUE);
|
| -
|
| - return SECSuccess;
|
| -}
|
| -
|
| -/*
|
| - * Decodes an EME-OAEP encoded block, validating the encoding in constant
|
| - * time.
|
| - * Described in RFC 3447, section 7.1.2.
|
| - * input contains the encoded block, after decryption.
|
| - * label is the optional value L that was associated with the message.
|
| - * On success, the original message and message length will be stored in
|
| - * output and outputLen.
|
| - */
|
| -static SECStatus
|
| -eme_oaep_decode(unsigned char *output, unsigned int *outputLen,
|
| - unsigned int maxOutputLen,
|
| - const unsigned char *input, unsigned int inputLen,
|
| - HASH_HashType hashAlg, HASH_HashType maskHashAlg,
|
| - const unsigned char *label, unsigned int labelLen)
|
| -{
|
| - const SECHashObject *hash;
|
| - void *hashContext;
|
| - SECStatus rv = SECFailure;
|
| - unsigned char labelHash[HASH_LENGTH_MAX];
|
| - unsigned int i, maskLen, paddingOffset;
|
| - unsigned char *mask = NULL, *tmpOutput = NULL;
|
| - unsigned char isGood, foundPaddingEnd;
|
| -
|
| - hash = HASH_GetRawHashObject(hashAlg);
|
| -
|
| - /* 1.c */
|
| - if (inputLen < (hash->length * 2) + 2) {
|
| - PORT_SetError(SEC_ERROR_INPUT_LEN);
|
| - return SECFailure;
|
| - }
|
| -
|
| - /* Step 3.a - Generate lHash */
|
| - hashContext = (*hash->create)();
|
| - if (hashContext == NULL) {
|
| - PORT_SetError(SEC_ERROR_NO_MEMORY);
|
| - return SECFailure;
|
| - }
|
| - (*hash->begin)(hashContext);
|
| - if (labelLen > 0)
|
| - (*hash->update)(hashContext, label, labelLen);
|
| - (*hash->end)(hashContext, labelHash, &i, sizeof(labelHash));
|
| - (*hash->destroy)(hashContext, PR_TRUE);
|
| -
|
| - tmpOutput = (unsigned char*)PORT_Alloc(inputLen);
|
| - if (tmpOutput == NULL) {
|
| - PORT_SetError(SEC_ERROR_NO_MEMORY);
|
| - goto done;
|
| - }
|
| -
|
| - maskLen = inputLen - hash->length - 1;
|
| - mask = (unsigned char*)PORT_Alloc(maskLen);
|
| - if (mask == NULL) {
|
| - PORT_SetError(SEC_ERROR_NO_MEMORY);
|
| - goto done;
|
| - }
|
| -
|
| - PORT_Memcpy(tmpOutput, input, inputLen);
|
| -
|
| - /* 3.c - Generate seedMask */
|
| - MGF1(maskHashAlg, mask, hash->length, &tmpOutput[1 + hash->length],
|
| - inputLen - hash->length - 1);
|
| - /* 3.d - Unmask seed */
|
| - for (i = 0; i < hash->length; ++i)
|
| - tmpOutput[1 + i] ^= mask[i];
|
| -
|
| - /* 3.e - Generate dbMask */
|
| - MGF1(maskHashAlg, mask, maskLen, &tmpOutput[1], hash->length);
|
| - /* 3.f - Unmask DB */
|
| - for (i = 0; i < maskLen; ++i)
|
| - tmpOutput[1 + hash->length + i] ^= mask[i];
|
| -
|
| - /* 3.g - Compare Y, lHash, and PS in constant time
|
| - * Warning: This code is timing dependent and must not disclose which of
|
| - * these were invalid.
|
| - */
|
| - paddingOffset = 0;
|
| - isGood = 1;
|
| - foundPaddingEnd = 0;
|
| -
|
| - /* Compare Y */
|
| - isGood &= constantTimeEQ8(0x00, tmpOutput[0]);
|
| -
|
| - /* Compare lHash and lHash' */
|
| - isGood &= constantTimeCompare(&labelHash[0],
|
| - &tmpOutput[1 + hash->length],
|
| - hash->length);
|
| -
|
| - /* Compare that the padding is zero or more zero octets, followed by a
|
| - * 0x01 octet */
|
| - for (i = 1 + (hash->length * 2); i < inputLen; ++i) {
|
| - unsigned char isZero = constantTimeEQ8(0x00, tmpOutput[i]);
|
| - unsigned char isOne = constantTimeEQ8(0x01, tmpOutput[i]);
|
| - /* non-constant time equivalent:
|
| - * if (tmpOutput[i] == 0x01 && !foundPaddingEnd)
|
| - * paddingOffset = i;
|
| - */
|
| - paddingOffset = constantTimeCondition(isOne & ~foundPaddingEnd, i,
|
| - paddingOffset);
|
| - /* non-constant time equivalent:
|
| - * if (tmpOutput[i] == 0x01)
|
| - * foundPaddingEnd = true;
|
| - *
|
| - * Note: This may yield false positives, as it will be set whenever
|
| - * a 0x01 byte is encountered. If there was bad padding (eg:
|
| - * 0x03 0x02 0x01), foundPaddingEnd will still be set to true, and
|
| - * paddingOffset will still be set to 2.
|
| - */
|
| - foundPaddingEnd = constantTimeCondition(isOne, 1, foundPaddingEnd);
|
| - /* non-constant time equivalent:
|
| - * if (tmpOutput[i] != 0x00 && tmpOutput[i] != 0x01 &&
|
| - * !foundPaddingEnd) {
|
| - * isGood = false;
|
| - * }
|
| - *
|
| - * Note: This may yield false positives, as a message (and padding)
|
| - * that is entirely zeros will result in isGood still being true. Thus
|
| - * it's necessary to check foundPaddingEnd is positive below.
|
| - */
|
| - isGood = constantTimeCondition(~foundPaddingEnd & ~isZero, 0, isGood);
|
| - }
|
| -
|
| - /* While both isGood and foundPaddingEnd may have false positives, they
|
| - * cannot BOTH have false positives. If both are not true, then an invalid
|
| - * message was received. Note, this comparison must still be done in constant
|
| - * time so as not to leak either condition.
|
| - */
|
| - if (!(isGood & foundPaddingEnd)) {
|
| - PORT_SetError(SEC_ERROR_BAD_DATA);
|
| - goto done;
|
| - }
|
| -
|
| - /* End timing dependent code */
|
| -
|
| - ++paddingOffset; /* Skip the 0x01 following the end of PS */
|
| -
|
| - *outputLen = inputLen - paddingOffset;
|
| - if (*outputLen > maxOutputLen) {
|
| - PORT_SetError(SEC_ERROR_OUTPUT_LEN);
|
| - goto done;
|
| - }
|
| -
|
| - if (*outputLen)
|
| - PORT_Memcpy(output, &tmpOutput[paddingOffset], *outputLen);
|
| - rv = SECSuccess;
|
| -
|
| -done:
|
| - if (mask)
|
| - PORT_ZFree(mask, maskLen);
|
| - if (tmpOutput)
|
| - PORT_ZFree(tmpOutput, inputLen);
|
| - return rv;
|
| -}
|
| -
|
| -/*
|
| - * Generate an EME-OAEP encoded block for encryption
|
| - * Described in RFC 3447, section 7.1.1
|
| - * We use input instead of M for the message to be encrypted
|
| - * label is the optional value L to be associated with the message.
|
| - */
|
| -static SECStatus
|
| -eme_oaep_encode(unsigned char *em, unsigned int emLen,
|
| - const unsigned char *input, unsigned int inputLen,
|
| - HASH_HashType hashAlg, HASH_HashType maskHashAlg,
|
| - const unsigned char *label, unsigned int labelLen)
|
| -{
|
| - const SECHashObject *hash;
|
| - void *hashContext;
|
| - SECStatus rv;
|
| - unsigned char *mask;
|
| - unsigned int reservedLen, dbMaskLen, i;
|
| -
|
| - hash = HASH_GetRawHashObject(hashAlg);
|
| -
|
| - /* Step 1.b */
|
| - reservedLen = (2 * hash->length) + 2;
|
| - if (emLen < reservedLen || inputLen > (emLen - reservedLen)) {
|
| - PORT_SetError(SEC_ERROR_INPUT_LEN);
|
| - return SECFailure;
|
| - }
|
| -
|
| - /*
|
| - * From RFC 3447, Section 7.1
|
| - * +----------+---------+-------+
|
| - * DB = | lHash | PS | M |
|
| - * +----------+---------+-------+
|
| - * |
|
| - * +----------+ V
|
| - * | seed |--> MGF ---> xor
|
| - * +----------+ |
|
| - * | |
|
| - * +--+ V |
|
| - * |00| xor <----- MGF <-----|
|
| - * +--+ | |
|
| - * | | |
|
| - * V V V
|
| - * +--+----------+----------------------------+
|
| - * EM = |00|maskedSeed| maskedDB |
|
| - * +--+----------+----------------------------+
|
| - *
|
| - * We use mask to hold the result of the MGF functions, and all other
|
| - * values are generated in their final resting place.
|
| - */
|
| - *em = 0x00;
|
| -
|
| - /* Step 2.a - Generate lHash */
|
| - hashContext = (*hash->create)();
|
| - if (hashContext == NULL) {
|
| - PORT_SetError(SEC_ERROR_NO_MEMORY);
|
| - return SECFailure;
|
| - }
|
| - (*hash->begin)(hashContext);
|
| - if (labelLen > 0)
|
| - (*hash->update)(hashContext, label, labelLen);
|
| - (*hash->end)(hashContext, &em[1 + hash->length], &i, hash->length);
|
| - (*hash->destroy)(hashContext, PR_TRUE);
|
| -
|
| - /* Step 2.b - Generate PS */
|
| - if (emLen - reservedLen - inputLen > 0) {
|
| - PORT_Memset(em + 1 + (hash->length * 2), 0x00,
|
| - emLen - reservedLen - inputLen);
|
| - }
|
| -
|
| - /* Step 2.c. - Generate DB
|
| - * DB = lHash || PS || 0x01 || M
|
| - * Note that PS and lHash have already been placed into em at their
|
| - * appropriate offsets. This just copies M into place
|
| - */
|
| - em[emLen - inputLen - 1] = 0x01;
|
| - if (inputLen)
|
| - PORT_Memcpy(em + emLen - inputLen, input, inputLen);
|
| -
|
| - /* Step 2.d - Generate seed */
|
| - rv = RNG_GenerateGlobalRandomBytes(em + 1, hash->length);
|
| - if (rv != SECSuccess) {
|
| - return rv;
|
| - }
|
| -
|
| - /* Step 2.e - Generate dbMask*/
|
| - dbMaskLen = emLen - hash->length - 1;
|
| - mask = (unsigned char*)PORT_Alloc(dbMaskLen);
|
| - if (mask == NULL) {
|
| - PORT_SetError(SEC_ERROR_NO_MEMORY);
|
| - return SECFailure;
|
| - }
|
| - MGF1(maskHashAlg, mask, dbMaskLen, em + 1, hash->length);
|
| - /* Step 2.f - Compute maskedDB*/
|
| - for (i = 0; i < dbMaskLen; ++i)
|
| - em[1 + hash->length + i] ^= mask[i];
|
| -
|
| - /* Step 2.g - Generate seedMask */
|
| - MGF1(maskHashAlg, mask, hash->length, &em[1 + hash->length], dbMaskLen);
|
| - /* Step 2.h - Compute maskedSeed */
|
| - for (i = 0; i < hash->length; ++i)
|
| - em[1 + i] ^= mask[i];
|
| -
|
| - PORT_ZFree(mask, dbMaskLen);
|
| - return SECSuccess;
|
| -}
|
| -
|
| -/*
|
| - * Encode a RSA-PSS signature.
|
| - * Described in RFC 3447, section 9.1.1.
|
| - * We use mHash instead of M as input.
|
| - * emBits from the RFC is just modBits - 1, see section 8.1.1.
|
| - * We only support MGF1 as the MGF.
|
| - *
|
| - * NOTE: this code assumes modBits is a multiple of 8.
|
| - */
|
| -static SECStatus
|
| -emsa_pss_encode(unsigned char *em, unsigned int emLen,
|
| - const unsigned char *mHash, HASH_HashType hashAlg,
|
| - HASH_HashType maskHashAlg, unsigned int sLen)
|
| -{
|
| - const SECHashObject *hash;
|
| - void *hash_context;
|
| - unsigned char *dbMask;
|
| - unsigned int dbMaskLen, i;
|
| - SECStatus rv;
|
| -
|
| - hash = HASH_GetRawHashObject(hashAlg);
|
| - dbMaskLen = emLen - hash->length - 1;
|
| -
|
| - /* Step 3 */
|
| - if (emLen < hash->length + sLen + 2) {
|
| - PORT_SetError(SEC_ERROR_OUTPUT_LEN);
|
| - return SECFailure;
|
| - }
|
| -
|
| - /* Step 4 */
|
| - rv = RNG_GenerateGlobalRandomBytes(&em[dbMaskLen - sLen], sLen);
|
| - if (rv != SECSuccess) {
|
| - return rv;
|
| - }
|
| -
|
| - /* Step 5 + 6 */
|
| - /* Compute H and store it at its final location &em[dbMaskLen]. */
|
| - hash_context = (*hash->create)();
|
| - if (hash_context == NULL) {
|
| - PORT_SetError(SEC_ERROR_NO_MEMORY);
|
| - return SECFailure;
|
| - }
|
| - (*hash->begin)(hash_context);
|
| - (*hash->update)(hash_context, eightZeros, 8);
|
| - (*hash->update)(hash_context, mHash, hash->length);
|
| - (*hash->update)(hash_context, &em[dbMaskLen - sLen], sLen);
|
| - (*hash->end)(hash_context, &em[dbMaskLen], &i, hash->length);
|
| - (*hash->destroy)(hash_context, PR_TRUE);
|
| -
|
| - /* Step 7 + 8 */
|
| - PORT_Memset(em, 0, dbMaskLen - sLen - 1);
|
| - em[dbMaskLen - sLen - 1] = 0x01;
|
| -
|
| - /* Step 9 */
|
| - dbMask = (unsigned char *)PORT_Alloc(dbMaskLen);
|
| - if (dbMask == NULL) {
|
| - PORT_SetError(SEC_ERROR_NO_MEMORY);
|
| - return SECFailure;
|
| - }
|
| - MGF1(maskHashAlg, dbMask, dbMaskLen, &em[dbMaskLen], hash->length);
|
| -
|
| - /* Step 10 */
|
| - for (i = 0; i < dbMaskLen; i++)
|
| - em[i] ^= dbMask[i];
|
| - PORT_Free(dbMask);
|
| -
|
| - /* Step 11 */
|
| - em[0] &= 0x7f;
|
| -
|
| - /* Step 12 */
|
| - em[emLen - 1] = 0xbc;
|
| -
|
| - return SECSuccess;
|
| -}
|
| -
|
| -/*
|
| - * Verify a RSA-PSS signature.
|
| - * Described in RFC 3447, section 9.1.2.
|
| - * We use mHash instead of M as input.
|
| - * emBits from the RFC is just modBits - 1, see section 8.1.2.
|
| - * We only support MGF1 as the MGF.
|
| - *
|
| - * NOTE: this code assumes modBits is a multiple of 8.
|
| - */
|
| -static SECStatus
|
| -emsa_pss_verify(const unsigned char *mHash,
|
| - const unsigned char *em, unsigned int emLen,
|
| - HASH_HashType hashAlg, HASH_HashType maskHashAlg,
|
| - unsigned int sLen)
|
| -{
|
| - const SECHashObject *hash;
|
| - void *hash_context;
|
| - unsigned char *db;
|
| - unsigned char *H_; /* H' from the RFC */
|
| - unsigned int i, dbMaskLen;
|
| - SECStatus rv;
|
| -
|
| - hash = HASH_GetRawHashObject(hashAlg);
|
| - dbMaskLen = emLen - hash->length - 1;
|
| -
|
| - /* Step 3 + 4 + 6 */
|
| - if ((emLen < (hash->length + sLen + 2)) ||
|
| - (em[emLen - 1] != 0xbc) ||
|
| - ((em[0] & 0x80) != 0)) {
|
| - PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
|
| - return SECFailure;
|
| - }
|
| -
|
| - /* Step 7 */
|
| - db = (unsigned char *)PORT_Alloc(dbMaskLen);
|
| - if (db == NULL) {
|
| - PORT_SetError(SEC_ERROR_NO_MEMORY);
|
| - return SECFailure;
|
| - }
|
| - /* &em[dbMaskLen] points to H, used as mgfSeed */
|
| - MGF1(maskHashAlg, db, dbMaskLen, &em[dbMaskLen], hash->length);
|
| -
|
| - /* Step 8 */
|
| - for (i = 0; i < dbMaskLen; i++) {
|
| - db[i] ^= em[i];
|
| - }
|
| -
|
| - /* Step 9 */
|
| - db[0] &= 0x7f;
|
| -
|
| - /* Step 10 */
|
| - for (i = 0; i < (dbMaskLen - sLen - 1); i++) {
|
| - if (db[i] != 0) {
|
| - PORT_Free(db);
|
| - PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
|
| - return SECFailure;
|
| - }
|
| - }
|
| - if (db[dbMaskLen - sLen - 1] != 0x01) {
|
| - PORT_Free(db);
|
| - PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
|
| - return SECFailure;
|
| - }
|
| -
|
| - /* Step 12 + 13 */
|
| - H_ = (unsigned char *)PORT_Alloc(hash->length);
|
| - if (H_ == NULL) {
|
| - PORT_Free(db);
|
| - PORT_SetError(SEC_ERROR_NO_MEMORY);
|
| - return SECFailure;
|
| - }
|
| - hash_context = (*hash->create)();
|
| - if (hash_context == NULL) {
|
| - PORT_Free(db);
|
| - PORT_Free(H_);
|
| - PORT_SetError(SEC_ERROR_NO_MEMORY);
|
| - return SECFailure;
|
| - }
|
| - (*hash->begin)(hash_context);
|
| - (*hash->update)(hash_context, eightZeros, 8);
|
| - (*hash->update)(hash_context, mHash, hash->length);
|
| - (*hash->update)(hash_context, &db[dbMaskLen - sLen], sLen);
|
| - (*hash->end)(hash_context, H_, &i, hash->length);
|
| - (*hash->destroy)(hash_context, PR_TRUE);
|
| -
|
| - PORT_Free(db);
|
| -
|
| - /* Step 14 */
|
| - if (PORT_Memcmp(H_, &em[dbMaskLen], hash->length) != 0) {
|
| - PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
|
| - rv = SECFailure;
|
| - } else {
|
| - rv = SECSuccess;
|
| - }
|
| -
|
| - PORT_Free(H_);
|
| - return rv;
|
| -}
|
| -
|
| -static HASH_HashType
|
| -GetHashTypeFromMechanism(CK_MECHANISM_TYPE mech)
|
| -{
|
| - switch (mech) {
|
| - case CKM_SHA_1:
|
| - case CKG_MGF1_SHA1:
|
| - return HASH_AlgSHA1;
|
| - case CKM_SHA224:
|
| - case CKG_MGF1_SHA224:
|
| - return HASH_AlgSHA224;
|
| - case CKM_SHA256:
|
| - case CKG_MGF1_SHA256:
|
| - return HASH_AlgSHA256;
|
| - case CKM_SHA384:
|
| - case CKG_MGF1_SHA384:
|
| - return HASH_AlgSHA384;
|
| - case CKM_SHA512:
|
| - case CKG_MGF1_SHA512:
|
| - return HASH_AlgSHA512;
|
| - default:
|
| - return HASH_AlgNULL;
|
| - }
|
| -}
|
| -
|
| -/* MGF1 is the only supported MGF. */
|
| -SECStatus
|
| -RSA_CheckSignPSS(CK_RSA_PKCS_PSS_PARAMS *pss_params,
|
| - NSSLOWKEYPublicKey *key,
|
| - const unsigned char *sign, unsigned int sign_len,
|
| - const unsigned char *hash, unsigned int hash_len)
|
| -{
|
| - HASH_HashType hashAlg;
|
| - HASH_HashType maskHashAlg;
|
| - SECStatus rv;
|
| - unsigned int modulus_len = nsslowkey_PublicModulusLen(key);
|
| - unsigned char *buffer;
|
| -
|
| - if (sign_len != modulus_len) {
|
| - PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
|
| - return SECFailure;
|
| - }
|
| -
|
| - hashAlg = GetHashTypeFromMechanism(pss_params->hashAlg);
|
| - maskHashAlg = GetHashTypeFromMechanism(pss_params->mgf);
|
| - if ((hashAlg == HASH_AlgNULL) || (maskHashAlg == HASH_AlgNULL)) {
|
| - PORT_SetError(SEC_ERROR_INVALID_ALGORITHM);
|
| - return SECFailure;
|
| - }
|
| -
|
| - buffer = (unsigned char *)PORT_Alloc(modulus_len);
|
| - if (!buffer) {
|
| - PORT_SetError(SEC_ERROR_NO_MEMORY);
|
| - return SECFailure;
|
| - }
|
| -
|
| - rv = RSA_PublicKeyOp(&key->u.rsa, buffer, sign);
|
| - if (rv != SECSuccess) {
|
| - PORT_Free(buffer);
|
| - PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
|
| - return SECFailure;
|
| - }
|
| -
|
| - rv = emsa_pss_verify(hash, buffer, modulus_len, hashAlg,
|
| - maskHashAlg, pss_params->sLen);
|
| - PORT_Free(buffer);
|
| -
|
| - return rv;
|
| -}
|
| -
|
| -/* MGF1 is the only supported MGF. */
|
| -SECStatus
|
| -RSA_SignPSS(CK_RSA_PKCS_PSS_PARAMS *pss_params, NSSLOWKEYPrivateKey *key,
|
| - unsigned char *output, unsigned int *output_len,
|
| - unsigned int max_output_len,
|
| - const unsigned char *input, unsigned int input_len)
|
| -{
|
| - SECStatus rv = SECSuccess;
|
| - unsigned int modulus_len = nsslowkey_PrivateModulusLen(key);
|
| - unsigned char *pss_encoded = NULL;
|
| - HASH_HashType hashAlg;
|
| - HASH_HashType maskHashAlg;
|
| -
|
| - if (max_output_len < modulus_len) {
|
| - PORT_SetError(SEC_ERROR_OUTPUT_LEN);
|
| - return SECFailure;
|
| - }
|
| - PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
|
| - if (key->keyType != NSSLOWKEYRSAKey) {
|
| - PORT_SetError(SEC_ERROR_INVALID_KEY);
|
| - return SECFailure;
|
| - }
|
| -
|
| - hashAlg = GetHashTypeFromMechanism(pss_params->hashAlg);
|
| - maskHashAlg = GetHashTypeFromMechanism(pss_params->mgf);
|
| - if ((hashAlg == HASH_AlgNULL) || (maskHashAlg == HASH_AlgNULL)) {
|
| - PORT_SetError(SEC_ERROR_INVALID_ALGORITHM);
|
| - return SECFailure;
|
| - }
|
| -
|
| - pss_encoded = (unsigned char *)PORT_Alloc(modulus_len);
|
| - if (pss_encoded == NULL) {
|
| - PORT_SetError(SEC_ERROR_NO_MEMORY);
|
| - return SECFailure;
|
| - }
|
| - rv = emsa_pss_encode(pss_encoded, modulus_len, input, hashAlg,
|
| - maskHashAlg, pss_params->sLen);
|
| - if (rv != SECSuccess)
|
| - goto done;
|
| -
|
| - rv = RSA_PrivateKeyOpDoubleChecked(&key->u.rsa, output, pss_encoded);
|
| - if (rv != SECSuccess && PORT_GetError() == SEC_ERROR_LIBRARY_FAILURE) {
|
| - sftk_fatalError = PR_TRUE;
|
| - }
|
| - *output_len = modulus_len;
|
| -
|
| -done:
|
| - PORT_Free(pss_encoded);
|
| - return rv;
|
| -}
|
| -
|
| -/* MGF1 is the only supported MGF. */
|
| -SECStatus
|
| -RSA_EncryptOAEP(CK_RSA_PKCS_OAEP_PARAMS *oaepParams,
|
| - NSSLOWKEYPublicKey *key,
|
| - unsigned char *output, unsigned int *outputLen,
|
| - unsigned int maxOutputLen,
|
| - const unsigned char *input, unsigned int inputLen)
|
| -{
|
| - SECStatus rv = SECFailure;
|
| - unsigned int modulusLen = nsslowkey_PublicModulusLen(key);
|
| - unsigned char *oaepEncoded = NULL;
|
| - unsigned char *sourceData = NULL;
|
| - unsigned int sourceDataLen = 0;
|
| -
|
| - HASH_HashType hashAlg;
|
| - HASH_HashType maskHashAlg;
|
| -
|
| - if (maxOutputLen < modulusLen) {
|
| - PORT_SetError(SEC_ERROR_OUTPUT_LEN);
|
| - return SECFailure;
|
| - }
|
| - PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
|
| - if (key->keyType != NSSLOWKEYRSAKey) {
|
| - PORT_SetError(SEC_ERROR_INVALID_KEY);
|
| - return SECFailure;
|
| - }
|
| -
|
| - hashAlg = GetHashTypeFromMechanism(oaepParams->hashAlg);
|
| - maskHashAlg = GetHashTypeFromMechanism(oaepParams->mgf);
|
| - if ((hashAlg == HASH_AlgNULL) || (maskHashAlg == HASH_AlgNULL)) {
|
| - PORT_SetError(SEC_ERROR_INVALID_ALGORITHM);
|
| - return SECFailure;
|
| - }
|
| -
|
| - /* The PKCS#11 source parameter is the "source" of the label parameter.
|
| - * The only defined source is explicitly specified, in which case, the
|
| - * label is an optional byte string in pSourceData. If ulSourceDataLen is
|
| - * zero, then pSourceData MUST be NULL - otherwise, it must be non-NULL.
|
| - */
|
| - if (oaepParams->source != CKZ_DATA_SPECIFIED) {
|
| - PORT_SetError(SEC_ERROR_INVALID_ALGORITHM);
|
| - return SECFailure;
|
| - }
|
| - sourceData = (unsigned char*)oaepParams->pSourceData;
|
| - sourceDataLen = oaepParams->ulSourceDataLen;
|
| - if ((sourceDataLen == 0 && sourceData != NULL) ||
|
| - (sourceDataLen > 0 && sourceData == NULL)) {
|
| - PORT_SetError(SEC_ERROR_INVALID_ALGORITHM);
|
| - return SECFailure;
|
| - }
|
| -
|
| - oaepEncoded = (unsigned char *)PORT_Alloc(modulusLen);
|
| - if (oaepEncoded == NULL) {
|
| - PORT_SetError(SEC_ERROR_NO_MEMORY);
|
| - return SECFailure;
|
| - }
|
| - rv = eme_oaep_encode(oaepEncoded, modulusLen, input, inputLen,
|
| - hashAlg, maskHashAlg, sourceData, sourceDataLen);
|
| - if (rv != SECSuccess)
|
| - goto done;
|
| -
|
| - rv = RSA_PublicKeyOp(&key->u.rsa, output, oaepEncoded);
|
| - if (rv != SECSuccess)
|
| - goto done;
|
| - *outputLen = modulusLen;
|
| -
|
| -done:
|
| - PORT_Free(oaepEncoded);
|
| - return rv;
|
| -}
|
| -
|
| -/* MGF1 is the only supported MGF. */
|
| -SECStatus
|
| -RSA_DecryptOAEP(CK_RSA_PKCS_OAEP_PARAMS *oaepParams,
|
| - NSSLOWKEYPrivateKey *key,
|
| - unsigned char *output, unsigned int *outputLen,
|
| - unsigned int maxOutputLen,
|
| - const unsigned char *input, unsigned int inputLen)
|
| -{
|
| - SECStatus rv = SECFailure;
|
| - unsigned int modulusLen = nsslowkey_PrivateModulusLen(key);
|
| - unsigned char *oaepEncoded = NULL;
|
| - unsigned char *sourceData = NULL;
|
| - unsigned int sourceDataLen = 0;
|
| -
|
| - HASH_HashType hashAlg = GetHashTypeFromMechanism(oaepParams->hashAlg);
|
| - HASH_HashType maskHashAlg = GetHashTypeFromMechanism(oaepParams->mgf);
|
| -
|
| - if ((hashAlg == HASH_AlgNULL) || (maskHashAlg == HASH_AlgNULL)) {
|
| - PORT_SetError(SEC_ERROR_INVALID_ALGORITHM);
|
| - return SECFailure;
|
| - }
|
| -
|
| - if (inputLen != modulusLen) {
|
| - PORT_SetError(SEC_ERROR_INPUT_LEN);
|
| - return SECFailure;
|
| - }
|
| - PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
|
| - if (key->keyType != NSSLOWKEYRSAKey) {
|
| - PORT_SetError(SEC_ERROR_INVALID_KEY);
|
| - return SECFailure;
|
| - }
|
| -
|
| - /* The PKCS#11 source parameter is the "source" of the label parameter.
|
| - * The only defined source is explicitly specified, in which case, the
|
| - * label is an optional byte string in pSourceData. If ulSourceDataLen is
|
| - * zero, then pSourceData MUST be NULL - otherwise, it must be non-NULL.
|
| - */
|
| - if (oaepParams->source != CKZ_DATA_SPECIFIED) {
|
| - PORT_SetError(SEC_ERROR_INVALID_ALGORITHM);
|
| - return SECFailure;
|
| - }
|
| - sourceData = (unsigned char*)oaepParams->pSourceData;
|
| - sourceDataLen = oaepParams->ulSourceDataLen;
|
| - if ((sourceDataLen == 0 && sourceData != NULL) ||
|
| - (sourceDataLen > 0 && sourceData == NULL)) {
|
| - PORT_SetError(SEC_ERROR_INVALID_ALGORITHM);
|
| - return SECFailure;
|
| - }
|
| -
|
| - oaepEncoded = (unsigned char *)PORT_Alloc(modulusLen);
|
| - if (oaepEncoded == NULL) {
|
| - PORT_SetError(SEC_ERROR_NO_MEMORY);
|
| - return SECFailure;
|
| - }
|
| -
|
| - rv = RSA_PrivateKeyOpDoubleChecked(&key->u.rsa, oaepEncoded, input);
|
| - if (rv != SECSuccess && PORT_GetError() == SEC_ERROR_LIBRARY_FAILURE) {
|
| - sftk_fatalError = PR_TRUE;
|
| - goto done;
|
| - }
|
| -
|
| - rv = eme_oaep_decode(output, outputLen, maxOutputLen, oaepEncoded,
|
| - modulusLen, hashAlg, maskHashAlg, sourceData,
|
| - sourceDataLen);
|
| -
|
| -done:
|
| - if (oaepEncoded)
|
| - PORT_ZFree(oaepEncoded, modulusLen);
|
| - return rv;
|
| -}
|
|
|