Index: mozilla/security/nss/lib/freebl/sha_fast.c |
=================================================================== |
--- mozilla/security/nss/lib/freebl/sha_fast.c (revision 191424) |
+++ mozilla/security/nss/lib/freebl/sha_fast.c (working copy) |
@@ -1,463 +0,0 @@ |
-/* This Source Code Form is subject to the terms of the Mozilla Public |
- * License, v. 2.0. If a copy of the MPL was not distributed with this |
- * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
- |
-#ifdef FREEBL_NO_DEPEND |
-#include "stubs.h" |
-#endif |
- |
-#include <memory.h> |
-#include "blapi.h" |
-#include "sha_fast.h" |
-#include "prerror.h" |
- |
-#ifdef TRACING_SSL |
-#include "ssl.h" |
-#include "ssltrace.h" |
-#endif |
- |
-static void shaCompress(volatile SHA_HW_t *X, const PRUint32 * datain); |
- |
-#define W u.w |
-#define B u.b |
- |
- |
-#define SHA_F1(X,Y,Z) ((((Y)^(Z))&(X))^(Z)) |
-#define SHA_F2(X,Y,Z) ((X)^(Y)^(Z)) |
-#define SHA_F3(X,Y,Z) (((X)&(Y))|((Z)&((X)|(Y)))) |
-#define SHA_F4(X,Y,Z) ((X)^(Y)^(Z)) |
- |
-#define SHA_MIX(n,a,b,c) XW(n) = SHA_ROTL(XW(a)^XW(b)^XW(c)^XW(n), 1) |
- |
-/* |
- * SHA: initialize context |
- */ |
-void |
-SHA1_Begin(SHA1Context *ctx) |
-{ |
- ctx->size = 0; |
- /* |
- * Initialize H with constants from FIPS180-1. |
- */ |
- ctx->H[0] = 0x67452301L; |
- ctx->H[1] = 0xefcdab89L; |
- ctx->H[2] = 0x98badcfeL; |
- ctx->H[3] = 0x10325476L; |
- ctx->H[4] = 0xc3d2e1f0L; |
-} |
- |
-/* Explanation of H array and index values: |
- * The context's H array is actually the concatenation of two arrays |
- * defined by SHA1, the H array of state variables (5 elements), |
- * and the W array of intermediate values, of which there are 16 elements. |
- * The W array starts at H[5], that is W[0] is H[5]. |
- * Although these values are defined as 32-bit values, we use 64-bit |
- * variables to hold them because the AMD64 stores 64 bit values in |
- * memory MUCH faster than it stores any smaller values. |
- * |
- * Rather than passing the context structure to shaCompress, we pass |
- * this combined array of H and W values. We do not pass the address |
- * of the first element of this array, but rather pass the address of an |
- * element in the middle of the array, element X. Presently X[0] is H[11]. |
- * So we pass the address of H[11] as the address of array X to shaCompress. |
- * Then shaCompress accesses the members of the array using positive AND |
- * negative indexes. |
- * |
- * Pictorially: (each element is 8 bytes) |
- * H | H0 H1 H2 H3 H4 W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 Wa Wb Wc Wd We Wf | |
- * X |-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 | |
- * |
- * The byte offset from X[0] to any member of H and W is always |
- * representable in a signed 8-bit value, which will be encoded |
- * as a single byte offset in the X86-64 instruction set. |
- * If we didn't pass the address of H[11], and instead passed the |
- * address of H[0], the offsets to elements H[16] and above would be |
- * greater than 127, not representable in a signed 8-bit value, and the |
- * x86-64 instruction set would encode every such offset as a 32-bit |
- * signed number in each instruction that accessed element H[16] or |
- * higher. This results in much bigger and slower code. |
- */ |
-#if !defined(SHA_PUT_W_IN_STACK) |
-#define H2X 11 /* X[0] is H[11], and H[0] is X[-11] */ |
-#define W2X 6 /* X[0] is W[6], and W[0] is X[-6] */ |
-#else |
-#define H2X 0 |
-#endif |
- |
-/* |
- * SHA: Add data to context. |
- */ |
-void |
-SHA1_Update(SHA1Context *ctx, const unsigned char *dataIn, unsigned int len) |
-{ |
- register unsigned int lenB; |
- register unsigned int togo; |
- |
- if (!len) |
- return; |
- |
- /* accumulate the byte count. */ |
- lenB = (unsigned int)(ctx->size) & 63U; |
- |
- ctx->size += len; |
- |
- /* |
- * Read the data into W and process blocks as they get full |
- */ |
- if (lenB > 0) { |
- togo = 64U - lenB; |
- if (len < togo) |
- togo = len; |
- memcpy(ctx->B + lenB, dataIn, togo); |
- len -= togo; |
- dataIn += togo; |
- lenB = (lenB + togo) & 63U; |
- if (!lenB) { |
- shaCompress(&ctx->H[H2X], ctx->W); |
- } |
- } |
-#if !defined(SHA_ALLOW_UNALIGNED_ACCESS) |
- if ((ptrdiff_t)dataIn % sizeof(PRUint32)) { |
- while (len >= 64U) { |
- memcpy(ctx->B, dataIn, 64); |
- len -= 64U; |
- shaCompress(&ctx->H[H2X], ctx->W); |
- dataIn += 64U; |
- } |
- } else |
-#endif |
- { |
- while (len >= 64U) { |
- len -= 64U; |
- shaCompress(&ctx->H[H2X], (PRUint32 *)dataIn); |
- dataIn += 64U; |
- } |
- } |
- if (len) { |
- memcpy(ctx->B, dataIn, len); |
- } |
-} |
- |
- |
-/* |
- * SHA: Generate hash value from context |
- */ |
-void |
-SHA1_End(SHA1Context *ctx, unsigned char *hashout, |
- unsigned int *pDigestLen, unsigned int maxDigestLen) |
-{ |
- register PRUint64 size; |
- register PRUint32 lenB; |
- PRUint32 tmpbuf[5]; |
- |
- static const unsigned char bulk_pad[64] = { 0x80,0,0,0,0,0,0,0,0,0, |
- 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
- 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }; |
-#define tmp lenB |
- |
- PORT_Assert (maxDigestLen >= SHA1_LENGTH); |
- |
- /* |
- * Pad with a binary 1 (e.g. 0x80), then zeroes, then length in bits |
- */ |
- size = ctx->size; |
- |
- lenB = (PRUint32)size & 63; |
- SHA1_Update(ctx, bulk_pad, (((55+64) - lenB) & 63) + 1); |
- PORT_Assert(((PRUint32)ctx->size & 63) == 56); |
- /* Convert size from bytes to bits. */ |
- size <<= 3; |
- ctx->W[14] = SHA_HTONL((PRUint32)(size >> 32)); |
- ctx->W[15] = SHA_HTONL((PRUint32)size); |
- shaCompress(&ctx->H[H2X], ctx->W); |
- |
- /* |
- * Output hash |
- */ |
- SHA_STORE_RESULT; |
- if (pDigestLen) { |
- *pDigestLen = SHA1_LENGTH; |
- } |
-#undef tmp |
-} |
- |
-void |
-SHA1_EndRaw(SHA1Context *ctx, unsigned char *hashout, |
- unsigned int *pDigestLen, unsigned int maxDigestLen) |
-{ |
-#if defined(SHA_NEED_TMP_VARIABLE) |
- register PRUint32 tmp; |
-#endif |
- PRUint32 tmpbuf[5]; |
- PORT_Assert (maxDigestLen >= SHA1_LENGTH); |
- |
- SHA_STORE_RESULT; |
- if (pDigestLen) |
- *pDigestLen = SHA1_LENGTH; |
-} |
- |
-#undef B |
-/* |
- * SHA: Compression function, unrolled. |
- * |
- * Some operations in shaCompress are done as 5 groups of 16 operations. |
- * Others are done as 4 groups of 20 operations. |
- * The code below shows that structure. |
- * |
- * The functions that compute the new values of the 5 state variables |
- * A-E are done in 4 groups of 20 operations (or you may also think |
- * of them as being done in 16 groups of 5 operations). They are |
- * done by the SHA_RNDx macros below, in the right column. |
- * |
- * The functions that set the 16 values of the W array are done in |
- * 5 groups of 16 operations. The first group is done by the |
- * LOAD macros below, the latter 4 groups are done by SHA_MIX below, |
- * in the left column. |
- * |
- * gcc's optimizer observes that each member of the W array is assigned |
- * a value 5 times in this code. It reduces the number of store |
- * operations done to the W array in the context (that is, in the X array) |
- * by creating a W array on the stack, and storing the W values there for |
- * the first 4 groups of operations on W, and storing the values in the |
- * context's W array only in the fifth group. This is undesirable. |
- * It is MUCH bigger code than simply using the context's W array, because |
- * all the offsets to the W array in the stack are 32-bit signed offsets, |
- * and it is no faster than storing the values in the context's W array. |
- * |
- * The original code for sha_fast.c prevented this creation of a separate |
- * W array in the stack by creating a W array of 80 members, each of |
- * whose elements is assigned only once. It also separated the computations |
- * of the W array values and the computations of the values for the 5 |
- * state variables into two separate passes, W's, then A-E's so that the |
- * second pass could be done all in registers (except for accessing the W |
- * array) on machines with fewer registers. The method is suboptimal |
- * for machines with enough registers to do it all in one pass, and it |
- * necessitates using many instructions with 32-bit offsets. |
- * |
- * This code eliminates the separate W array on the stack by a completely |
- * different means: by declaring the X array volatile. This prevents |
- * the optimizer from trying to reduce the use of the X array by the |
- * creation of a MORE expensive W array on the stack. The result is |
- * that all instructions use signed 8-bit offsets and not 32-bit offsets. |
- * |
- * The combination of this code and the -O3 optimizer flag on GCC 3.4.3 |
- * results in code that is 3 times faster than the previous NSS sha_fast |
- * code on AMD64. |
- */ |
-static void |
-shaCompress(volatile SHA_HW_t *X, const PRUint32 *inbuf) |
-{ |
- register SHA_HW_t A, B, C, D, E; |
- |
-#if defined(SHA_NEED_TMP_VARIABLE) |
- register PRUint32 tmp; |
-#endif |
- |
-#if !defined(SHA_PUT_W_IN_STACK) |
-#define XH(n) X[n-H2X] |
-#define XW(n) X[n-W2X] |
-#else |
- SHA_HW_t w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7, |
- w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15; |
-#define XW(n) w_ ## n |
-#define XH(n) X[n] |
-#endif |
- |
-#define K0 0x5a827999L |
-#define K1 0x6ed9eba1L |
-#define K2 0x8f1bbcdcL |
-#define K3 0xca62c1d6L |
- |
-#define SHA_RND1(a,b,c,d,e,n) \ |
- a = SHA_ROTL(b,5)+SHA_F1(c,d,e)+a+XW(n)+K0; c=SHA_ROTL(c,30) |
-#define SHA_RND2(a,b,c,d,e,n) \ |
- a = SHA_ROTL(b,5)+SHA_F2(c,d,e)+a+XW(n)+K1; c=SHA_ROTL(c,30) |
-#define SHA_RND3(a,b,c,d,e,n) \ |
- a = SHA_ROTL(b,5)+SHA_F3(c,d,e)+a+XW(n)+K2; c=SHA_ROTL(c,30) |
-#define SHA_RND4(a,b,c,d,e,n) \ |
- a = SHA_ROTL(b,5)+SHA_F4(c,d,e)+a+XW(n)+K3; c=SHA_ROTL(c,30) |
- |
-#define LOAD(n) XW(n) = SHA_HTONL(inbuf[n]) |
- |
- A = XH(0); |
- B = XH(1); |
- C = XH(2); |
- D = XH(3); |
- E = XH(4); |
- |
- LOAD(0); SHA_RND1(E,A,B,C,D, 0); |
- LOAD(1); SHA_RND1(D,E,A,B,C, 1); |
- LOAD(2); SHA_RND1(C,D,E,A,B, 2); |
- LOAD(3); SHA_RND1(B,C,D,E,A, 3); |
- LOAD(4); SHA_RND1(A,B,C,D,E, 4); |
- LOAD(5); SHA_RND1(E,A,B,C,D, 5); |
- LOAD(6); SHA_RND1(D,E,A,B,C, 6); |
- LOAD(7); SHA_RND1(C,D,E,A,B, 7); |
- LOAD(8); SHA_RND1(B,C,D,E,A, 8); |
- LOAD(9); SHA_RND1(A,B,C,D,E, 9); |
- LOAD(10); SHA_RND1(E,A,B,C,D,10); |
- LOAD(11); SHA_RND1(D,E,A,B,C,11); |
- LOAD(12); SHA_RND1(C,D,E,A,B,12); |
- LOAD(13); SHA_RND1(B,C,D,E,A,13); |
- LOAD(14); SHA_RND1(A,B,C,D,E,14); |
- LOAD(15); SHA_RND1(E,A,B,C,D,15); |
- |
- SHA_MIX( 0, 13, 8, 2); SHA_RND1(D,E,A,B,C, 0); |
- SHA_MIX( 1, 14, 9, 3); SHA_RND1(C,D,E,A,B, 1); |
- SHA_MIX( 2, 15, 10, 4); SHA_RND1(B,C,D,E,A, 2); |
- SHA_MIX( 3, 0, 11, 5); SHA_RND1(A,B,C,D,E, 3); |
- |
- SHA_MIX( 4, 1, 12, 6); SHA_RND2(E,A,B,C,D, 4); |
- SHA_MIX( 5, 2, 13, 7); SHA_RND2(D,E,A,B,C, 5); |
- SHA_MIX( 6, 3, 14, 8); SHA_RND2(C,D,E,A,B, 6); |
- SHA_MIX( 7, 4, 15, 9); SHA_RND2(B,C,D,E,A, 7); |
- SHA_MIX( 8, 5, 0, 10); SHA_RND2(A,B,C,D,E, 8); |
- SHA_MIX( 9, 6, 1, 11); SHA_RND2(E,A,B,C,D, 9); |
- SHA_MIX(10, 7, 2, 12); SHA_RND2(D,E,A,B,C,10); |
- SHA_MIX(11, 8, 3, 13); SHA_RND2(C,D,E,A,B,11); |
- SHA_MIX(12, 9, 4, 14); SHA_RND2(B,C,D,E,A,12); |
- SHA_MIX(13, 10, 5, 15); SHA_RND2(A,B,C,D,E,13); |
- SHA_MIX(14, 11, 6, 0); SHA_RND2(E,A,B,C,D,14); |
- SHA_MIX(15, 12, 7, 1); SHA_RND2(D,E,A,B,C,15); |
- |
- SHA_MIX( 0, 13, 8, 2); SHA_RND2(C,D,E,A,B, 0); |
- SHA_MIX( 1, 14, 9, 3); SHA_RND2(B,C,D,E,A, 1); |
- SHA_MIX( 2, 15, 10, 4); SHA_RND2(A,B,C,D,E, 2); |
- SHA_MIX( 3, 0, 11, 5); SHA_RND2(E,A,B,C,D, 3); |
- SHA_MIX( 4, 1, 12, 6); SHA_RND2(D,E,A,B,C, 4); |
- SHA_MIX( 5, 2, 13, 7); SHA_RND2(C,D,E,A,B, 5); |
- SHA_MIX( 6, 3, 14, 8); SHA_RND2(B,C,D,E,A, 6); |
- SHA_MIX( 7, 4, 15, 9); SHA_RND2(A,B,C,D,E, 7); |
- |
- SHA_MIX( 8, 5, 0, 10); SHA_RND3(E,A,B,C,D, 8); |
- SHA_MIX( 9, 6, 1, 11); SHA_RND3(D,E,A,B,C, 9); |
- SHA_MIX(10, 7, 2, 12); SHA_RND3(C,D,E,A,B,10); |
- SHA_MIX(11, 8, 3, 13); SHA_RND3(B,C,D,E,A,11); |
- SHA_MIX(12, 9, 4, 14); SHA_RND3(A,B,C,D,E,12); |
- SHA_MIX(13, 10, 5, 15); SHA_RND3(E,A,B,C,D,13); |
- SHA_MIX(14, 11, 6, 0); SHA_RND3(D,E,A,B,C,14); |
- SHA_MIX(15, 12, 7, 1); SHA_RND3(C,D,E,A,B,15); |
- |
- SHA_MIX( 0, 13, 8, 2); SHA_RND3(B,C,D,E,A, 0); |
- SHA_MIX( 1, 14, 9, 3); SHA_RND3(A,B,C,D,E, 1); |
- SHA_MIX( 2, 15, 10, 4); SHA_RND3(E,A,B,C,D, 2); |
- SHA_MIX( 3, 0, 11, 5); SHA_RND3(D,E,A,B,C, 3); |
- SHA_MIX( 4, 1, 12, 6); SHA_RND3(C,D,E,A,B, 4); |
- SHA_MIX( 5, 2, 13, 7); SHA_RND3(B,C,D,E,A, 5); |
- SHA_MIX( 6, 3, 14, 8); SHA_RND3(A,B,C,D,E, 6); |
- SHA_MIX( 7, 4, 15, 9); SHA_RND3(E,A,B,C,D, 7); |
- SHA_MIX( 8, 5, 0, 10); SHA_RND3(D,E,A,B,C, 8); |
- SHA_MIX( 9, 6, 1, 11); SHA_RND3(C,D,E,A,B, 9); |
- SHA_MIX(10, 7, 2, 12); SHA_RND3(B,C,D,E,A,10); |
- SHA_MIX(11, 8, 3, 13); SHA_RND3(A,B,C,D,E,11); |
- |
- SHA_MIX(12, 9, 4, 14); SHA_RND4(E,A,B,C,D,12); |
- SHA_MIX(13, 10, 5, 15); SHA_RND4(D,E,A,B,C,13); |
- SHA_MIX(14, 11, 6, 0); SHA_RND4(C,D,E,A,B,14); |
- SHA_MIX(15, 12, 7, 1); SHA_RND4(B,C,D,E,A,15); |
- |
- SHA_MIX( 0, 13, 8, 2); SHA_RND4(A,B,C,D,E, 0); |
- SHA_MIX( 1, 14, 9, 3); SHA_RND4(E,A,B,C,D, 1); |
- SHA_MIX( 2, 15, 10, 4); SHA_RND4(D,E,A,B,C, 2); |
- SHA_MIX( 3, 0, 11, 5); SHA_RND4(C,D,E,A,B, 3); |
- SHA_MIX( 4, 1, 12, 6); SHA_RND4(B,C,D,E,A, 4); |
- SHA_MIX( 5, 2, 13, 7); SHA_RND4(A,B,C,D,E, 5); |
- SHA_MIX( 6, 3, 14, 8); SHA_RND4(E,A,B,C,D, 6); |
- SHA_MIX( 7, 4, 15, 9); SHA_RND4(D,E,A,B,C, 7); |
- SHA_MIX( 8, 5, 0, 10); SHA_RND4(C,D,E,A,B, 8); |
- SHA_MIX( 9, 6, 1, 11); SHA_RND4(B,C,D,E,A, 9); |
- SHA_MIX(10, 7, 2, 12); SHA_RND4(A,B,C,D,E,10); |
- SHA_MIX(11, 8, 3, 13); SHA_RND4(E,A,B,C,D,11); |
- SHA_MIX(12, 9, 4, 14); SHA_RND4(D,E,A,B,C,12); |
- SHA_MIX(13, 10, 5, 15); SHA_RND4(C,D,E,A,B,13); |
- SHA_MIX(14, 11, 6, 0); SHA_RND4(B,C,D,E,A,14); |
- SHA_MIX(15, 12, 7, 1); SHA_RND4(A,B,C,D,E,15); |
- |
- XH(0) += A; |
- XH(1) += B; |
- XH(2) += C; |
- XH(3) += D; |
- XH(4) += E; |
-} |
- |
-/************************************************************************* |
-** Code below this line added to make SHA code support BLAPI interface |
-*/ |
- |
-SHA1Context * |
-SHA1_NewContext(void) |
-{ |
- SHA1Context *cx; |
- |
- /* no need to ZNew, SHA1_Begin will init the context */ |
- cx = PORT_New(SHA1Context); |
- return cx; |
-} |
- |
-/* Zero and free the context */ |
-void |
-SHA1_DestroyContext(SHA1Context *cx, PRBool freeit) |
-{ |
- memset(cx, 0, sizeof *cx); |
- if (freeit) { |
- PORT_Free(cx); |
- } |
-} |
- |
-SECStatus |
-SHA1_HashBuf(unsigned char *dest, const unsigned char *src, uint32 src_length) |
-{ |
- SHA1Context ctx; |
- unsigned int outLen; |
- |
- SHA1_Begin(&ctx); |
- SHA1_Update(&ctx, src, src_length); |
- SHA1_End(&ctx, dest, &outLen, SHA1_LENGTH); |
- memset(&ctx, 0, sizeof ctx); |
- return SECSuccess; |
-} |
- |
-/* Hash a null-terminated character string. */ |
-SECStatus |
-SHA1_Hash(unsigned char *dest, const char *src) |
-{ |
- return SHA1_HashBuf(dest, (const unsigned char *)src, PORT_Strlen (src)); |
-} |
- |
-/* |
- * need to support save/restore state in pkcs11. Stores all the info necessary |
- * for a structure into just a stream of bytes. |
- */ |
-unsigned int |
-SHA1_FlattenSize(SHA1Context *cx) |
-{ |
- return sizeof(SHA1Context); |
-} |
- |
-SECStatus |
-SHA1_Flatten(SHA1Context *cx,unsigned char *space) |
-{ |
- PORT_Memcpy(space,cx, sizeof(SHA1Context)); |
- return SECSuccess; |
-} |
- |
-SHA1Context * |
-SHA1_Resurrect(unsigned char *space,void *arg) |
-{ |
- SHA1Context *cx = SHA1_NewContext(); |
- if (cx == NULL) return NULL; |
- |
- PORT_Memcpy(cx,space, sizeof(SHA1Context)); |
- return cx; |
-} |
- |
-void SHA1_Clone(SHA1Context *dest, SHA1Context *src) |
-{ |
- memcpy(dest, src, sizeof *dest); |
-} |
- |
-void |
-SHA1_TraceState(SHA1Context *ctx) |
-{ |
- PORT_SetError(PR_NOT_IMPLEMENTED_ERROR); |
-} |