Index: mozilla/security/nss/lib/freebl/ecl/ecl-priv.h |
=================================================================== |
--- mozilla/security/nss/lib/freebl/ecl/ecl-priv.h (revision 191424) |
+++ mozilla/security/nss/lib/freebl/ecl/ecl-priv.h (working copy) |
@@ -1,249 +0,0 @@ |
-/* This Source Code Form is subject to the terms of the Mozilla Public |
- * License, v. 2.0. If a copy of the MPL was not distributed with this |
- * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
- |
-#ifndef __ecl_priv_h_ |
-#define __ecl_priv_h_ |
- |
-#include "ecl.h" |
-#include "mpi.h" |
-#include "mplogic.h" |
- |
-/* MAX_FIELD_SIZE_DIGITS is the maximum size of field element supported */ |
-/* the following needs to go away... */ |
-#if defined(MP_USE_LONG_LONG_DIGIT) || defined(MP_USE_LONG_DIGIT) |
-#define ECL_SIXTY_FOUR_BIT |
-#else |
-#define ECL_THIRTY_TWO_BIT |
-#endif |
- |
-#define ECL_CURVE_DIGITS(curve_size_in_bits) \ |
- (((curve_size_in_bits)+(sizeof(mp_digit)*8-1))/(sizeof(mp_digit)*8)) |
-#define ECL_BITS (sizeof(mp_digit)*8) |
-#define ECL_MAX_FIELD_SIZE_DIGITS (80/sizeof(mp_digit)) |
- |
-/* Gets the i'th bit in the binary representation of a. If i >= length(a), |
- * then return 0. (The above behaviour differs from mpl_get_bit, which |
- * causes an error if i >= length(a).) */ |
-#define MP_GET_BIT(a, i) \ |
- ((i) >= mpl_significant_bits((a))) ? 0 : mpl_get_bit((a), (i)) |
- |
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
-#define MP_ADD_CARRY(a1, a2, s, cin, cout) \ |
- { mp_word w; \ |
- w = ((mp_word)(cin)) + (a1) + (a2); \ |
- s = ACCUM(w); \ |
- cout = CARRYOUT(w); } |
- |
-#define MP_SUB_BORROW(a1, a2, s, bin, bout) \ |
- { mp_word w; \ |
- w = ((mp_word)(a1)) - (a2) - (bin); \ |
- s = ACCUM(w); \ |
- bout = (w >> MP_DIGIT_BIT) & 1; } |
- |
-#else |
-/* NOTE, |
- * cin and cout could be the same variable. |
- * bin and bout could be the same variable. |
- * a1 or a2 and s could be the same variable. |
- * don't trash those outputs until their respective inputs have |
- * been read. */ |
-#define MP_ADD_CARRY(a1, a2, s, cin, cout) \ |
- { mp_digit tmp,sum; \ |
- tmp = (a1); \ |
- sum = tmp + (a2); \ |
- tmp = (sum < tmp); /* detect overflow */ \ |
- s = sum += (cin); \ |
- cout = tmp + (sum < (cin)); } |
- |
-#define MP_SUB_BORROW(a1, a2, s, bin, bout) \ |
- { mp_digit tmp; \ |
- tmp = (a1); \ |
- s = tmp - (a2); \ |
- tmp = (s > tmp); /* detect borrow */ \ |
- if ((bin) && !s--) tmp++; \ |
- bout = tmp; } |
-#endif |
- |
- |
-struct GFMethodStr; |
-typedef struct GFMethodStr GFMethod; |
-struct GFMethodStr { |
- /* Indicates whether the structure was constructed from dynamic memory |
- * or statically created. */ |
- int constructed; |
- /* Irreducible that defines the field. For prime fields, this is the |
- * prime p. For binary polynomial fields, this is the bitstring |
- * representation of the irreducible polynomial. */ |
- mp_int irr; |
- /* For prime fields, the value irr_arr[0] is the number of bits in the |
- * field. For binary polynomial fields, the irreducible polynomial |
- * f(t) is represented as an array of unsigned int[], where f(t) is |
- * of the form: f(t) = t^p[0] + t^p[1] + ... + t^p[4] where m = p[0] |
- * > p[1] > ... > p[4] = 0. */ |
- unsigned int irr_arr[5]; |
- /* Field arithmetic methods. All methods (except field_enc and |
- * field_dec) are assumed to take field-encoded parameters and return |
- * field-encoded values. All methods (except field_enc and field_dec) |
- * are required to be implemented. */ |
- mp_err (*field_add) (const mp_int *a, const mp_int *b, mp_int *r, |
- const GFMethod *meth); |
- mp_err (*field_neg) (const mp_int *a, mp_int *r, const GFMethod *meth); |
- mp_err (*field_sub) (const mp_int *a, const mp_int *b, mp_int *r, |
- const GFMethod *meth); |
- mp_err (*field_mod) (const mp_int *a, mp_int *r, const GFMethod *meth); |
- mp_err (*field_mul) (const mp_int *a, const mp_int *b, mp_int *r, |
- const GFMethod *meth); |
- mp_err (*field_sqr) (const mp_int *a, mp_int *r, const GFMethod *meth); |
- mp_err (*field_div) (const mp_int *a, const mp_int *b, mp_int *r, |
- const GFMethod *meth); |
- mp_err (*field_enc) (const mp_int *a, mp_int *r, const GFMethod *meth); |
- mp_err (*field_dec) (const mp_int *a, mp_int *r, const GFMethod *meth); |
- /* Extra storage for implementation-specific data. Any memory |
- * allocated to these extra fields will be cleared by extra_free. */ |
- void *extra1; |
- void *extra2; |
- void (*extra_free) (GFMethod *meth); |
-}; |
- |
-/* Construct generic GFMethods. */ |
-GFMethod *GFMethod_consGFp(const mp_int *irr); |
-GFMethod *GFMethod_consGFp_mont(const mp_int *irr); |
-GFMethod *GFMethod_consGF2m(const mp_int *irr, |
- const unsigned int irr_arr[5]); |
-/* Free the memory allocated (if any) to a GFMethod object. */ |
-void GFMethod_free(GFMethod *meth); |
- |
-struct ECGroupStr { |
- /* Indicates whether the structure was constructed from dynamic memory |
- * or statically created. */ |
- int constructed; |
- /* Field definition and arithmetic. */ |
- GFMethod *meth; |
- /* Textual representation of curve name, if any. */ |
- char *text; |
- /* Curve parameters, field-encoded. */ |
- mp_int curvea, curveb; |
- /* x and y coordinates of the base point, field-encoded. */ |
- mp_int genx, geny; |
- /* Order and cofactor of the base point. */ |
- mp_int order; |
- int cofactor; |
- /* Point arithmetic methods. All methods are assumed to take |
- * field-encoded parameters and return field-encoded values. All |
- * methods (except base_point_mul and points_mul) are required to be |
- * implemented. */ |
- mp_err (*point_add) (const mp_int *px, const mp_int *py, |
- const mp_int *qx, const mp_int *qy, mp_int *rx, |
- mp_int *ry, const ECGroup *group); |
- mp_err (*point_sub) (const mp_int *px, const mp_int *py, |
- const mp_int *qx, const mp_int *qy, mp_int *rx, |
- mp_int *ry, const ECGroup *group); |
- mp_err (*point_dbl) (const mp_int *px, const mp_int *py, mp_int *rx, |
- mp_int *ry, const ECGroup *group); |
- mp_err (*point_mul) (const mp_int *n, const mp_int *px, |
- const mp_int *py, mp_int *rx, mp_int *ry, |
- const ECGroup *group); |
- mp_err (*base_point_mul) (const mp_int *n, mp_int *rx, mp_int *ry, |
- const ECGroup *group); |
- mp_err (*points_mul) (const mp_int *k1, const mp_int *k2, |
- const mp_int *px, const mp_int *py, mp_int *rx, |
- mp_int *ry, const ECGroup *group); |
- mp_err (*validate_point) (const mp_int *px, const mp_int *py, const ECGroup *group); |
- /* Extra storage for implementation-specific data. Any memory |
- * allocated to these extra fields will be cleared by extra_free. */ |
- void *extra1; |
- void *extra2; |
- void (*extra_free) (ECGroup *group); |
-}; |
- |
-/* Wrapper functions for generic prime field arithmetic. */ |
-mp_err ec_GFp_add(const mp_int *a, const mp_int *b, mp_int *r, |
- const GFMethod *meth); |
-mp_err ec_GFp_neg(const mp_int *a, mp_int *r, const GFMethod *meth); |
-mp_err ec_GFp_sub(const mp_int *a, const mp_int *b, mp_int *r, |
- const GFMethod *meth); |
- |
-/* fixed length in-line adds. Count is in words */ |
-mp_err ec_GFp_add_3(const mp_int *a, const mp_int *b, mp_int *r, |
- const GFMethod *meth); |
-mp_err ec_GFp_add_4(const mp_int *a, const mp_int *b, mp_int *r, |
- const GFMethod *meth); |
-mp_err ec_GFp_add_5(const mp_int *a, const mp_int *b, mp_int *r, |
- const GFMethod *meth); |
-mp_err ec_GFp_add_6(const mp_int *a, const mp_int *b, mp_int *r, |
- const GFMethod *meth); |
-mp_err ec_GFp_sub_3(const mp_int *a, const mp_int *b, mp_int *r, |
- const GFMethod *meth); |
-mp_err ec_GFp_sub_4(const mp_int *a, const mp_int *b, mp_int *r, |
- const GFMethod *meth); |
-mp_err ec_GFp_sub_5(const mp_int *a, const mp_int *b, mp_int *r, |
- const GFMethod *meth); |
-mp_err ec_GFp_sub_6(const mp_int *a, const mp_int *b, mp_int *r, |
- const GFMethod *meth); |
- |
-mp_err ec_GFp_mod(const mp_int *a, mp_int *r, const GFMethod *meth); |
-mp_err ec_GFp_mul(const mp_int *a, const mp_int *b, mp_int *r, |
- const GFMethod *meth); |
-mp_err ec_GFp_sqr(const mp_int *a, mp_int *r, const GFMethod *meth); |
-mp_err ec_GFp_div(const mp_int *a, const mp_int *b, mp_int *r, |
- const GFMethod *meth); |
-/* Wrapper functions for generic binary polynomial field arithmetic. */ |
-mp_err ec_GF2m_add(const mp_int *a, const mp_int *b, mp_int *r, |
- const GFMethod *meth); |
-mp_err ec_GF2m_neg(const mp_int *a, mp_int *r, const GFMethod *meth); |
-mp_err ec_GF2m_mod(const mp_int *a, mp_int *r, const GFMethod *meth); |
-mp_err ec_GF2m_mul(const mp_int *a, const mp_int *b, mp_int *r, |
- const GFMethod *meth); |
-mp_err ec_GF2m_sqr(const mp_int *a, mp_int *r, const GFMethod *meth); |
-mp_err ec_GF2m_div(const mp_int *a, const mp_int *b, mp_int *r, |
- const GFMethod *meth); |
- |
-/* Montgomery prime field arithmetic. */ |
-mp_err ec_GFp_mul_mont(const mp_int *a, const mp_int *b, mp_int *r, |
- const GFMethod *meth); |
-mp_err ec_GFp_sqr_mont(const mp_int *a, mp_int *r, const GFMethod *meth); |
-mp_err ec_GFp_div_mont(const mp_int *a, const mp_int *b, mp_int *r, |
- const GFMethod *meth); |
-mp_err ec_GFp_enc_mont(const mp_int *a, mp_int *r, const GFMethod *meth); |
-mp_err ec_GFp_dec_mont(const mp_int *a, mp_int *r, const GFMethod *meth); |
-void ec_GFp_extra_free_mont(GFMethod *meth); |
- |
-/* point multiplication */ |
-mp_err ec_pts_mul_basic(const mp_int *k1, const mp_int *k2, |
- const mp_int *px, const mp_int *py, mp_int *rx, |
- mp_int *ry, const ECGroup *group); |
-mp_err ec_pts_mul_simul_w2(const mp_int *k1, const mp_int *k2, |
- const mp_int *px, const mp_int *py, mp_int *rx, |
- mp_int *ry, const ECGroup *group); |
- |
-/* Computes the windowed non-adjacent-form (NAF) of a scalar. Out should |
- * be an array of signed char's to output to, bitsize should be the number |
- * of bits of out, in is the original scalar, and w is the window size. |
- * NAF is discussed in the paper: D. Hankerson, J. Hernandez and A. |
- * Menezes, "Software implementation of elliptic curve cryptography over |
- * binary fields", Proc. CHES 2000. */ |
-mp_err ec_compute_wNAF(signed char *out, int bitsize, const mp_int *in, |
- int w); |
- |
-/* Optimized field arithmetic */ |
-mp_err ec_group_set_gfp192(ECGroup *group, ECCurveName); |
-mp_err ec_group_set_gfp224(ECGroup *group, ECCurveName); |
-mp_err ec_group_set_gfp256(ECGroup *group, ECCurveName); |
-mp_err ec_group_set_gfp384(ECGroup *group, ECCurveName); |
-mp_err ec_group_set_gfp521(ECGroup *group, ECCurveName); |
-mp_err ec_group_set_gf2m163(ECGroup *group, ECCurveName name); |
-mp_err ec_group_set_gf2m193(ECGroup *group, ECCurveName name); |
-mp_err ec_group_set_gf2m233(ECGroup *group, ECCurveName name); |
- |
-/* Optimized point multiplication */ |
-mp_err ec_group_set_gfp256_32(ECGroup *group, ECCurveName name); |
- |
-/* Optimized floating-point arithmetic */ |
-#ifdef ECL_USE_FP |
-mp_err ec_group_set_secp160r1_fp(ECGroup *group); |
-mp_err ec_group_set_nistp192_fp(ECGroup *group); |
-mp_err ec_group_set_nistp224_fp(ECGroup *group); |
-#endif |
- |
-#endif /* __ecl_priv_h_ */ |