Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(436)

Side by Side Diff: mozilla/security/nss/lib/freebl/mpi/mpmontg.c

Issue 14249009: Change the NSS and NSPR source tree to the new directory structure to be (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/deps/third_party/nss/
Patch Set: Created 7 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
OLDNEW
(Empty)
1 /* This Source Code Form is subject to the terms of the Mozilla Public
2 * License, v. 2.0. If a copy of the MPL was not distributed with this
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
4 /* $Id: mpmontg.c,v 1.25 2012/11/14 01:14:11 wtc%google.com Exp $ */
5
6 /* This file implements moduluar exponentiation using Montgomery's
7 * method for modular reduction. This file implements the method
8 * described as "Improvement 2" in the paper "A Cryptogrpahic Library for
9 * the Motorola DSP56000" by Stephen R. Dusse' and Burton S. Kaliski Jr.
10 * published in "Advances in Cryptology: Proceedings of EUROCRYPT '90"
11 * "Lecture Notes in Computer Science" volume 473, 1991, pg 230-244,
12 * published by Springer Verlag.
13 */
14
15 #define MP_USING_CACHE_SAFE_MOD_EXP 1
16 #include <string.h>
17 #include "mpi-priv.h"
18 #include "mplogic.h"
19 #include "mpprime.h"
20 #ifdef MP_USING_MONT_MULF
21 #include "montmulf.h"
22 #endif
23 #include <stddef.h> /* ptrdiff_t */
24
25 /* if MP_CHAR_STORE_SLOW is defined, we */
26 /* need to know endianness of this platform. */
27 #ifdef MP_CHAR_STORE_SLOW
28 #if !defined(MP_IS_BIG_ENDIAN) && !defined(MP_IS_LITTLE_ENDIAN)
29 #error "You must define MP_IS_BIG_ENDIAN or MP_IS_LITTLE_ENDIAN\n" \
30 " if you define MP_CHAR_STORE_SLOW."
31 #endif
32 #endif
33
34 #define STATIC
35
36 #define MAX_ODD_INTS 32 /* 2 ** (WINDOW_BITS - 1) */
37
38 /*! computes T = REDC(T), 2^b == R
39 \param T < RN
40 */
41 mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm)
42 {
43 mp_err res;
44 mp_size i;
45
46 i = (MP_USED(&mmm->N) << 1) + 1;
47 MP_CHECKOK( s_mp_pad(T, i) );
48 for (i = 0; i < MP_USED(&mmm->N); ++i ) {
49 mp_digit m_i = MP_DIGIT(T, i) * mmm->n0prime;
50 /* T += N * m_i * (MP_RADIX ** i); */
51 MP_CHECKOK( s_mp_mul_d_add_offset(&mmm->N, m_i, T, i) );
52 }
53 s_mp_clamp(T);
54
55 /* T /= R */
56 s_mp_rshd( T, MP_USED(&mmm->N) );
57
58 if ((res = s_mp_cmp(T, &mmm->N)) >= 0) {
59 /* T = T - N */
60 MP_CHECKOK( s_mp_sub(T, &mmm->N) );
61 #ifdef DEBUG
62 if ((res = mp_cmp(T, &mmm->N)) >= 0) {
63 res = MP_UNDEF;
64 goto CLEANUP;
65 }
66 #endif
67 }
68 res = MP_OKAY;
69 CLEANUP:
70 return res;
71 }
72
73 #if !defined(MP_MONT_USE_MP_MUL)
74
75 /*! c <- REDC( a * b ) mod N
76 \param a < N i.e. "reduced"
77 \param b < N i.e. "reduced"
78 \param mmm modulus N and n0' of N
79 */
80 mp_err s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c,
81 mp_mont_modulus *mmm)
82 {
83 mp_digit *pb;
84 mp_digit m_i;
85 mp_err res;
86 mp_size ib; /* "index b": index of current digit of B */
87 mp_size useda, usedb;
88
89 ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
90
91 if (MP_USED(a) < MP_USED(b)) {
92 const mp_int *xch = b; /* switch a and b, to do fewer outer loops */
93 b = a;
94 a = xch;
95 }
96
97 MP_USED(c) = 1; MP_DIGIT(c, 0) = 0;
98 ib = (MP_USED(&mmm->N) << 1) + 1;
99 if((res = s_mp_pad(c, ib)) != MP_OKAY)
100 goto CLEANUP;
101
102 useda = MP_USED(a);
103 pb = MP_DIGITS(b);
104 s_mpv_mul_d(MP_DIGITS(a), useda, *pb++, MP_DIGITS(c));
105 s_mp_setz(MP_DIGITS(c) + useda + 1, ib - (useda + 1));
106 m_i = MP_DIGIT(c, 0) * mmm->n0prime;
107 s_mp_mul_d_add_offset(&mmm->N, m_i, c, 0);
108
109 /* Outer loop: Digits of b */
110 usedb = MP_USED(b);
111 for (ib = 1; ib < usedb; ib++) {
112 mp_digit b_i = *pb++;
113
114 /* Inner product: Digits of a */
115 if (b_i)
116 s_mpv_mul_d_add_prop(MP_DIGITS(a), useda, b_i, MP_DIGITS(c) + ib);
117 m_i = MP_DIGIT(c, ib) * mmm->n0prime;
118 s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib);
119 }
120 if (usedb < MP_USED(&mmm->N)) {
121 for (usedb = MP_USED(&mmm->N); ib < usedb; ++ib ) {
122 m_i = MP_DIGIT(c, ib) * mmm->n0prime;
123 s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib);
124 }
125 }
126 s_mp_clamp(c);
127 s_mp_rshd( c, MP_USED(&mmm->N) ); /* c /= R */
128 if (s_mp_cmp(c, &mmm->N) >= 0) {
129 MP_CHECKOK( s_mp_sub(c, &mmm->N) );
130 }
131 res = MP_OKAY;
132
133 CLEANUP:
134 return res;
135 }
136 #endif
137
138 STATIC
139 mp_err s_mp_to_mont(const mp_int *x, mp_mont_modulus *mmm, mp_int *xMont)
140 {
141 mp_err res;
142
143 /* xMont = x * R mod N where N is modulus */
144 MP_CHECKOK( mp_copy( x, xMont ) );
145 MP_CHECKOK( s_mp_lshd( xMont, MP_USED(&mmm->N) ) ); /* xMont = x << b */
146 MP_CHECKOK( mp_div(xMont, &mmm->N, 0, xMont) ); /* mod N */
147 CLEANUP:
148 return res;
149 }
150
151 #ifdef MP_USING_MONT_MULF
152
153 /* the floating point multiply is already cache safe,
154 * don't turn on cache safe unless we specifically
155 * force it */
156 #ifndef MP_FORCE_CACHE_SAFE
157 #undef MP_USING_CACHE_SAFE_MOD_EXP
158 #endif
159
160 unsigned int mp_using_mont_mulf = 1;
161
162 /* computes montgomery square of the integer in mResult */
163 #define SQR \
164 conv_i32_to_d32_and_d16(dm1, d16Tmp, mResult, nLen); \
165 mont_mulf_noconv(mResult, dm1, d16Tmp, \
166 dTmp, dn, MP_DIGITS(modulus), nLen, dn0)
167
168 /* computes montgomery product of x and the integer in mResult */
169 #define MUL(x) \
170 conv_i32_to_d32(dm1, mResult, nLen); \
171 mont_mulf_noconv(mResult, dm1, oddPowers[x], \
172 dTmp, dn, MP_DIGITS(modulus), nLen, dn0)
173
174 /* Do modular exponentiation using floating point multiply code. */
175 mp_err mp_exptmod_f(const mp_int * montBase,
176 const mp_int * exponent,
177 const mp_int * modulus,
178 mp_int * result,
179 mp_mont_modulus *mmm,
180 int nLen,
181 mp_size bits_in_exponent,
182 mp_size window_bits,
183 mp_size odd_ints)
184 {
185 mp_digit *mResult;
186 double *dBuf = 0, *dm1, *dn, *dSqr, *d16Tmp, *dTmp;
187 double dn0;
188 mp_size i;
189 mp_err res;
190 int expOff;
191 int dSize = 0, oddPowSize, dTmpSize;
192 mp_int accum1;
193 double *oddPowers[MAX_ODD_INTS];
194
195 /* function for computing n0prime only works if n0 is odd */
196
197 MP_DIGITS(&accum1) = 0;
198
199 for (i = 0; i < MAX_ODD_INTS; ++i)
200 oddPowers[i] = 0;
201
202 MP_CHECKOK( mp_init_size(&accum1, 3 * nLen + 2) );
203
204 mp_set(&accum1, 1);
205 MP_CHECKOK( s_mp_to_mont(&accum1, mmm, &accum1) );
206 MP_CHECKOK( s_mp_pad(&accum1, nLen) );
207
208 oddPowSize = 2 * nLen + 1;
209 dTmpSize = 2 * oddPowSize;
210 dSize = sizeof(double) * (nLen * 4 + 1 +
211 ((odd_ints + 1) * oddPowSize) + dTmpSize);
212 dBuf = (double *)malloc(dSize);
213 dm1 = dBuf; /* array of d32 */
214 dn = dBuf + nLen; /* array of d32 */
215 dSqr = dn + nLen; /* array of d32 */
216 d16Tmp = dSqr + nLen; /* array of d16 */
217 dTmp = d16Tmp + oddPowSize;
218
219 for (i = 0; i < odd_ints; ++i) {
220 oddPowers[i] = dTmp;
221 dTmp += oddPowSize;
222 }
223 mResult = (mp_digit *)(dTmp + dTmpSize); /* size is nLen + 1 */
224
225 /* Make dn and dn0 */
226 conv_i32_to_d32(dn, MP_DIGITS(modulus), nLen);
227 dn0 = (double)(mmm->n0prime & 0xffff);
228
229 /* Make dSqr */
230 conv_i32_to_d32_and_d16(dm1, oddPowers[0], MP_DIGITS(montBase), nLen);
231 mont_mulf_noconv(mResult, dm1, oddPowers[0],
232 dTmp, dn, MP_DIGITS(modulus), nLen, dn0);
233 conv_i32_to_d32(dSqr, mResult, nLen);
234
235 for (i = 1; i < odd_ints; ++i) {
236 mont_mulf_noconv(mResult, dSqr, oddPowers[i - 1],
237 dTmp, dn, MP_DIGITS(modulus), nLen, dn0);
238 conv_i32_to_d16(oddPowers[i], mResult, nLen);
239 }
240
241 s_mp_copy(MP_DIGITS(&accum1), mResult, nLen); /* from, to, len */
242
243 for (expOff = bits_in_exponent - window_bits; expOff >= 0; expOff -= window_bi ts) {
244 mp_size smallExp;
245 MP_CHECKOK( mpl_get_bits(exponent, expOff, window_bits) );
246 smallExp = (mp_size)res;
247
248 if (window_bits == 1) {
249 if (!smallExp) {
250 SQR;
251 } else if (smallExp & 1) {
252 SQR; MUL(0);
253 } else {
254 abort();
255 }
256 } else if (window_bits == 4) {
257 if (!smallExp) {
258 SQR; SQR; SQR; SQR;
259 } else if (smallExp & 1) {
260 SQR; SQR; SQR; SQR; MUL(smallExp/2);
261 } else if (smallExp & 2) {
262 SQR; SQR; SQR; MUL(smallExp/4); SQR;
263 } else if (smallExp & 4) {
264 SQR; SQR; MUL(smallExp/8); SQR; SQR;
265 } else if (smallExp & 8) {
266 SQR; MUL(smallExp/16); SQR; SQR; SQR;
267 } else {
268 abort();
269 }
270 } else if (window_bits == 5) {
271 if (!smallExp) {
272 SQR; SQR; SQR; SQR; SQR;
273 } else if (smallExp & 1) {
274 SQR; SQR; SQR; SQR; SQR; MUL(smallExp/2);
275 } else if (smallExp & 2) {
276 SQR; SQR; SQR; SQR; MUL(smallExp/4); SQR;
277 } else if (smallExp & 4) {
278 SQR; SQR; SQR; MUL(smallExp/8); SQR; SQR;
279 } else if (smallExp & 8) {
280 SQR; SQR; MUL(smallExp/16); SQR; SQR; SQR;
281 } else if (smallExp & 0x10) {
282 SQR; MUL(smallExp/32); SQR; SQR; SQR; SQR;
283 } else {
284 abort();
285 }
286 } else if (window_bits == 6) {
287 if (!smallExp) {
288 SQR; SQR; SQR; SQR; SQR; SQR;
289 } else if (smallExp & 1) {
290 SQR; SQR; SQR; SQR; SQR; SQR; MUL(smallExp/2);
291 } else if (smallExp & 2) {
292 SQR; SQR; SQR; SQR; SQR; MUL(smallExp/4); SQR;
293 } else if (smallExp & 4) {
294 SQR; SQR; SQR; SQR; MUL(smallExp/8); SQR; SQR;
295 } else if (smallExp & 8) {
296 SQR; SQR; SQR; MUL(smallExp/16); SQR; SQR; SQR;
297 } else if (smallExp & 0x10) {
298 SQR; SQR; MUL(smallExp/32); SQR; SQR; SQR; SQR;
299 } else if (smallExp & 0x20) {
300 SQR; MUL(smallExp/64); SQR; SQR; SQR; SQR; SQR;
301 } else {
302 abort();
303 }
304 } else {
305 abort();
306 }
307 }
308
309 s_mp_copy(mResult, MP_DIGITS(&accum1), nLen); /* from, to, len */
310
311 res = s_mp_redc(&accum1, mmm);
312 mp_exch(&accum1, result);
313
314 CLEANUP:
315 mp_clear(&accum1);
316 if (dBuf) {
317 if (dSize)
318 memset(dBuf, 0, dSize);
319 free(dBuf);
320 }
321
322 return res;
323 }
324 #undef SQR
325 #undef MUL
326 #endif
327
328 #define SQR(a,b) \
329 MP_CHECKOK( mp_sqr(a, b) );\
330 MP_CHECKOK( s_mp_redc(b, mmm) )
331
332 #if defined(MP_MONT_USE_MP_MUL)
333 #define MUL(x,a,b) \
334 MP_CHECKOK( mp_mul(a, oddPowers + (x), b) ); \
335 MP_CHECKOK( s_mp_redc(b, mmm) )
336 #else
337 #define MUL(x,a,b) \
338 MP_CHECKOK( s_mp_mul_mont(a, oddPowers + (x), b, mmm) )
339 #endif
340
341 #define SWAPPA ptmp = pa1; pa1 = pa2; pa2 = ptmp
342
343 /* Do modular exponentiation using integer multiply code. */
344 mp_err mp_exptmod_i(const mp_int * montBase,
345 const mp_int * exponent,
346 const mp_int * modulus,
347 mp_int * result,
348 mp_mont_modulus *mmm,
349 int nLen,
350 mp_size bits_in_exponent,
351 mp_size window_bits,
352 mp_size odd_ints)
353 {
354 mp_int *pa1, *pa2, *ptmp;
355 mp_size i;
356 mp_err res;
357 int expOff;
358 mp_int accum1, accum2, power2, oddPowers[MAX_ODD_INTS];
359
360 /* power2 = base ** 2; oddPowers[i] = base ** (2*i + 1); */
361 /* oddPowers[i] = base ** (2*i + 1); */
362
363 MP_DIGITS(&accum1) = 0;
364 MP_DIGITS(&accum2) = 0;
365 MP_DIGITS(&power2) = 0;
366 for (i = 0; i < MAX_ODD_INTS; ++i) {
367 MP_DIGITS(oddPowers + i) = 0;
368 }
369
370 MP_CHECKOK( mp_init_size(&accum1, 3 * nLen + 2) );
371 MP_CHECKOK( mp_init_size(&accum2, 3 * nLen + 2) );
372
373 MP_CHECKOK( mp_init_copy(&oddPowers[0], montBase) );
374
375 mp_init_size(&power2, nLen + 2 * MP_USED(montBase) + 2);
376 MP_CHECKOK( mp_sqr(montBase, &power2) ); /* power2 = montBase ** 2 */
377 MP_CHECKOK( s_mp_redc(&power2, mmm) );
378
379 for (i = 1; i < odd_ints; ++i) {
380 mp_init_size(oddPowers + i, nLen + 2 * MP_USED(&power2) + 2);
381 MP_CHECKOK( mp_mul(oddPowers + (i - 1), &power2, oddPowers + i) );
382 MP_CHECKOK( s_mp_redc(oddPowers + i, mmm) );
383 }
384
385 /* set accumulator to montgomery residue of 1 */
386 mp_set(&accum1, 1);
387 MP_CHECKOK( s_mp_to_mont(&accum1, mmm, &accum1) );
388 pa1 = &accum1;
389 pa2 = &accum2;
390
391 for (expOff = bits_in_exponent - window_bits; expOff >= 0; expOff -= window_bi ts) {
392 mp_size smallExp;
393 MP_CHECKOK( mpl_get_bits(exponent, expOff, window_bits) );
394 smallExp = (mp_size)res;
395
396 if (window_bits == 1) {
397 if (!smallExp) {
398 SQR(pa1,pa2); SWAPPA;
399 } else if (smallExp & 1) {
400 SQR(pa1,pa2); MUL(0,pa2,pa1);
401 } else {
402 abort();
403 }
404 } else if (window_bits == 4) {
405 if (!smallExp) {
406 SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
407 } else if (smallExp & 1) {
408 SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
409 MUL(smallExp/2, pa1,pa2); SWAPPA;
410 } else if (smallExp & 2) {
411 SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2);
412 MUL(smallExp/4,pa2,pa1); SQR(pa1,pa2); SWAPPA;
413 } else if (smallExp & 4) {
414 SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/8,pa1,pa2);
415 SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
416 } else if (smallExp & 8) {
417 SQR(pa1,pa2); MUL(smallExp/16,pa2,pa1); SQR(pa1,pa2);
418 SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
419 } else {
420 abort();
421 }
422 } else if (window_bits == 5) {
423 if (!smallExp) {
424 SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
425 SQR(pa1,pa2); SWAPPA;
426 } else if (smallExp & 1) {
427 SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
428 SQR(pa1,pa2); MUL(smallExp/2,pa2,pa1);
429 } else if (smallExp & 2) {
430 SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
431 MUL(smallExp/4,pa1,pa2); SQR(pa2,pa1);
432 } else if (smallExp & 4) {
433 SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2);
434 MUL(smallExp/8,pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
435 } else if (smallExp & 8) {
436 SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/16,pa1,pa2);
437 SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
438 } else if (smallExp & 0x10) {
439 SQR(pa1,pa2); MUL(smallExp/32,pa2,pa1); SQR(pa1,pa2);
440 SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
441 } else {
442 abort();
443 }
444 } else if (window_bits == 6) {
445 if (!smallExp) {
446 SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
447 SQR(pa1,pa2); SQR(pa2,pa1);
448 } else if (smallExp & 1) {
449 SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
450 SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/2,pa1,pa2); SWAPPA;
451 } else if (smallExp & 2) {
452 SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
453 SQR(pa1,pa2); MUL(smallExp/4,pa2,pa1); SQR(pa1,pa2); SWAPPA;
454 } else if (smallExp & 4) {
455 SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
456 MUL(smallExp/8,pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
457 } else if (smallExp & 8) {
458 SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2);
459 MUL(smallExp/16,pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
460 SQR(pa1,pa2); SWAPPA;
461 } else if (smallExp & 0x10) {
462 SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/32,pa1,pa2);
463 SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
464 } else if (smallExp & 0x20) {
465 SQR(pa1,pa2); MUL(smallExp/64,pa2,pa1); SQR(pa1,pa2);
466 SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
467 } else {
468 abort();
469 }
470 } else {
471 abort();
472 }
473 }
474
475 res = s_mp_redc(pa1, mmm);
476 mp_exch(pa1, result);
477
478 CLEANUP:
479 mp_clear(&accum1);
480 mp_clear(&accum2);
481 mp_clear(&power2);
482 for (i = 0; i < odd_ints; ++i) {
483 mp_clear(oddPowers + i);
484 }
485 return res;
486 }
487 #undef SQR
488 #undef MUL
489
490 #ifdef MP_USING_CACHE_SAFE_MOD_EXP
491 unsigned int mp_using_cache_safe_exp = 1;
492 #endif
493
494 mp_err mp_set_safe_modexp(int value)
495 {
496 #ifdef MP_USING_CACHE_SAFE_MOD_EXP
497 mp_using_cache_safe_exp = value;
498 return MP_OKAY;
499 #else
500 if (value == 0) {
501 return MP_OKAY;
502 }
503 return MP_BADARG;
504 #endif
505 }
506
507 #ifdef MP_USING_CACHE_SAFE_MOD_EXP
508 #define WEAVE_WORD_SIZE 4
509
510 #ifndef MP_CHAR_STORE_SLOW
511 /*
512 * mpi_to_weave takes an array of bignums, a matrix in which each bignum
513 * occupies all the columns of a row, and transposes it into a matrix in
514 * which each bignum occupies a column of every row. The first row of the
515 * input matrix becomes the first column of the output matrix. The n'th
516 * row of input becomes the n'th column of output. The input data is said
517 * to be "interleaved" or "woven" into the output matrix.
518 *
519 * The array of bignums is left in this woven form. Each time a single
520 * bignum value is needed, it is recreated by fetching the n'th column,
521 * forming a single row which is the new bignum.
522 *
523 * The purpose of this interleaving is make it impossible to determine which
524 * of the bignums is being used in any one operation by examining the pattern
525 * of cache misses.
526 *
527 * The weaving function does not transpose the entire input matrix in one call.
528 * It transposes 4 rows of mp_ints into their respective columns of output.
529 *
530 * There are two different implementations of the weaving and unweaving code
531 * in this file. One uses byte loads and stores. The second uses loads and
532 * stores of mp_weave_word size values. The weaved forms of these two
533 * implementations differ. Consequently, each one has its own explanation.
534 *
535 * Here is the explanation for the byte-at-a-time implementation.
536 *
537 * This implementation treats each mp_int bignum as an array of bytes,
538 * rather than as an array of mp_digits. It stores those bytes as a
539 * column of bytes in the output matrix. It doesn't care if the machine
540 * uses big-endian or little-endian byte ordering within mp_digits.
541 * The first byte of the mp_digit array becomes the first byte in the output
542 * column, regardless of whether that byte is the MSB or LSB of the mp_digit.
543 *
544 * "bignums" is an array of mp_ints.
545 * It points to four rows, four mp_ints, a subset of a larger array of mp_ints.
546 *
547 * "weaved" is the weaved output matrix.
548 * The first byte of bignums[0] is stored in weaved[0].
549 *
550 * "nBignums" is the total number of bignums in the array of which "bignums"
551 * is a part.
552 *
553 * "nDigits" is the size in mp_digits of each mp_int in the "bignums" array.
554 * mp_ints that use less than nDigits digits are logically padded with zeros
555 * while being stored in the weaved array.
556 */
557 mp_err mpi_to_weave(const mp_int *bignums,
558 unsigned char *weaved,
559 mp_size nDigits, /* in each mp_int of input */
560 mp_size nBignums) /* in the entire source array */
561 {
562 mp_size i;
563 unsigned char * endDest = weaved + (nDigits * nBignums * sizeof(mp_digit));
564
565 for (i=0; i < WEAVE_WORD_SIZE; i++) {
566 mp_size used = MP_USED(&bignums[i]);
567 unsigned char *pSrc = (unsigned char *)MP_DIGITS(&bignums[i]);
568 unsigned char *endSrc = pSrc + (used * sizeof(mp_digit));
569 unsigned char *pDest = weaved + i;
570
571 ARGCHK(MP_SIGN(&bignums[i]) == MP_ZPOS, MP_BADARG);
572 ARGCHK(used <= nDigits, MP_BADARG);
573
574 for (; pSrc < endSrc; pSrc++) {
575 *pDest = *pSrc;
576 pDest += nBignums;
577 }
578 while (pDest < endDest) {
579 *pDest = 0;
580 pDest += nBignums;
581 }
582 }
583
584 return MP_OKAY;
585 }
586
587 /* Reverse the operation above for one mp_int.
588 * Reconstruct one mp_int from its column in the weaved array.
589 * "pSrc" points to the offset into the weave array of the bignum we
590 * are going to reconstruct.
591 */
592 mp_err weave_to_mpi(mp_int *a, /* output, result */
593 const unsigned char *pSrc, /* input, byte matrix */
594 mp_size nDigits, /* per mp_int output */
595 mp_size nBignums) /* bignums in weaved matrix */
596 {
597 unsigned char *pDest = (unsigned char *)MP_DIGITS(a);
598 unsigned char *endDest = pDest + (nDigits * sizeof(mp_digit));
599
600 MP_SIGN(a) = MP_ZPOS;
601 MP_USED(a) = nDigits;
602
603 for (; pDest < endDest; pSrc += nBignums, pDest++) {
604 *pDest = *pSrc;
605 }
606 s_mp_clamp(a);
607 return MP_OKAY;
608 }
609
610 #else
611
612 /* Need a primitive that we know is 32 bits long... */
613 /* this is true on all modern processors we know of today*/
614 typedef unsigned int mp_weave_word;
615
616 /*
617 * on some platforms character stores into memory is very expensive since they
618 * generate a read/modify/write operation on the bus. On those platforms
619 * we need to do integer writes to the bus. Because of some unrolled code,
620 * in this current code the size of mp_weave_word must be four. The code that
621 * makes this assumption explicity is called out. (on some platforms a write
622 * of 4 bytes still requires a single read-modify-write operation.
623 *
624 * This function is takes the identical parameters as the function above,
625 * however it lays out the final array differently. Where the previous function
626 * treats the mpi_int as an byte array, this function treats it as an array of
627 * mp_digits where each digit is stored in big endian order.
628 *
629 * since we need to interleave on a byte by byte basis, we need to collect
630 * several mpi structures together into a single uint32 before we write. We
631 * also need to make sure the uint32 is arranged so that the first value of
632 * the first array winds up in b[0]. This means construction of that uint32
633 * is endian specific (even though the layout of the mp_digits in the array
634 * is always big endian).
635 *
636 * The final data is stored as follows :
637 *
638 * Our same logical array p array, m is sizeof(mp_digit),
639 * N is still count and n is now b_size. If we define p[i].digit[j]0 as the
640 * most significant byte of the word p[i].digit[j], p[i].digit[j]1 as
641 * the next most significant byte of p[i].digit[j], ... and p[i].digit[j]m-1
642 * is the least significant byte.
643 * Our array would look like:
644 * p[0].digit[0]0 p[1].digit[0]0 ... p[N-2].digit[0]0 p[N-1].digit[0] 0
645 * p[0].digit[0]1 p[1].digit[0]1 ... p[N-2].digit[0]1 p[N-1].digit[0] 1
646 * . .
647 * p[0].digit[0]m-1 p[1].digit[0]m-1 ... p[N-2].digit[0]m-1 p[N-1].digit[0] m-1
648 * p[0].digit[1]0 p[1].digit[1]0 ... p[N-2].digit[1]0 p[N-1].digit[1] 0
649 * . .
650 * . .
651 * p[0].digit[n-1]m-2 p[1].digit[n-1]m-2 ... p[N-2].digit[n-1]m-2 p[N-1].digit[n -1]m-2
652 * p[0].digit[n-1]m-1 p[1].digit[n-1]m-1 ... p[N-2].digit[n-1]m-1 p[N-1].digit[n -1]m-1
653 *
654 */
655 mp_err mpi_to_weave(const mp_int *a, unsigned char *b,
656 mp_size b_size, mp_size count)
657 {
658 mp_size i;
659 mp_digit *digitsa0;
660 mp_digit *digitsa1;
661 mp_digit *digitsa2;
662 mp_digit *digitsa3;
663 mp_size useda0;
664 mp_size useda1;
665 mp_size useda2;
666 mp_size useda3;
667 mp_weave_word *weaved = (mp_weave_word *)b;
668
669 count = count/sizeof(mp_weave_word);
670
671 /* this code pretty much depends on this ! */
672 #if MP_ARGCHK == 2
673 assert(WEAVE_WORD_SIZE == 4);
674 assert(sizeof(mp_weave_word) == 4);
675 #endif
676
677 digitsa0 = MP_DIGITS(&a[0]);
678 digitsa1 = MP_DIGITS(&a[1]);
679 digitsa2 = MP_DIGITS(&a[2]);
680 digitsa3 = MP_DIGITS(&a[3]);
681 useda0 = MP_USED(&a[0]);
682 useda1 = MP_USED(&a[1]);
683 useda2 = MP_USED(&a[2]);
684 useda3 = MP_USED(&a[3]);
685
686 ARGCHK(MP_SIGN(&a[0]) == MP_ZPOS, MP_BADARG);
687 ARGCHK(MP_SIGN(&a[1]) == MP_ZPOS, MP_BADARG);
688 ARGCHK(MP_SIGN(&a[2]) == MP_ZPOS, MP_BADARG);
689 ARGCHK(MP_SIGN(&a[3]) == MP_ZPOS, MP_BADARG);
690 ARGCHK(useda0 <= b_size, MP_BADARG);
691 ARGCHK(useda1 <= b_size, MP_BADARG);
692 ARGCHK(useda2 <= b_size, MP_BADARG);
693 ARGCHK(useda3 <= b_size, MP_BADARG);
694
695 #define SAFE_FETCH(digit, used, word) ((word) < (used) ? (digit[word]) : 0)
696
697 for (i=0; i < b_size; i++) {
698 mp_digit d0 = SAFE_FETCH(digitsa0,useda0,i);
699 mp_digit d1 = SAFE_FETCH(digitsa1,useda1,i);
700 mp_digit d2 = SAFE_FETCH(digitsa2,useda2,i);
701 mp_digit d3 = SAFE_FETCH(digitsa3,useda3,i);
702 register mp_weave_word acc;
703
704 /*
705 * ONE_STEP takes the MSB of each of our current digits and places that
706 * byte in the appropriate position for writing to the weaved array.
707 * On little endian:
708 * b3 b2 b1 b0
709 * On big endian:
710 * b0 b1 b2 b3
711 * When the data is written it would always wind up:
712 * b[0] = b0
713 * b[1] = b1
714 * b[2] = b2
715 * b[3] = b3
716 *
717 * Once we've written the MSB, we shift the whole digit up left one
718 * byte, putting the Next Most Significant Byte in the MSB position,
719 * so we we repeat the next one step that byte will be written.
720 * NOTE: This code assumes sizeof(mp_weave_word) and MP_WEAVE_WORD_SIZE
721 * is 4.
722 */
723 #ifdef MP_IS_LITTLE_ENDIAN
724 #define MPI_WEAVE_ONE_STEP \
725 acc = (d0 >> (MP_DIGIT_BIT-8)) & 0x000000ff; d0 <<= 8; /*b0*/ \
726 acc |= (d1 >> (MP_DIGIT_BIT-16)) & 0x0000ff00; d1 <<= 8; /*b1*/ \
727 acc |= (d2 >> (MP_DIGIT_BIT-24)) & 0x00ff0000; d2 <<= 8; /*b2*/ \
728 acc |= (d3 >> (MP_DIGIT_BIT-32)) & 0xff000000; d3 <<= 8; /*b3*/ \
729 *weaved = acc; weaved += count;
730 #else
731 #define MPI_WEAVE_ONE_STEP \
732 acc = (d0 >> (MP_DIGIT_BIT-32)) & 0xff000000; d0 <<= 8; /*b0*/ \
733 acc |= (d1 >> (MP_DIGIT_BIT-24)) & 0x00ff0000; d1 <<= 8; /*b1*/ \
734 acc |= (d2 >> (MP_DIGIT_BIT-16)) & 0x0000ff00; d2 <<= 8; /*b2*/ \
735 acc |= (d3 >> (MP_DIGIT_BIT-8)) & 0x000000ff; d3 <<= 8; /*b3*/ \
736 *weaved = acc; weaved += count;
737 #endif
738 switch (sizeof(mp_digit)) {
739 case 32:
740 MPI_WEAVE_ONE_STEP
741 MPI_WEAVE_ONE_STEP
742 MPI_WEAVE_ONE_STEP
743 MPI_WEAVE_ONE_STEP
744 MPI_WEAVE_ONE_STEP
745 MPI_WEAVE_ONE_STEP
746 MPI_WEAVE_ONE_STEP
747 MPI_WEAVE_ONE_STEP
748 MPI_WEAVE_ONE_STEP
749 MPI_WEAVE_ONE_STEP
750 MPI_WEAVE_ONE_STEP
751 MPI_WEAVE_ONE_STEP
752 MPI_WEAVE_ONE_STEP
753 MPI_WEAVE_ONE_STEP
754 MPI_WEAVE_ONE_STEP
755 MPI_WEAVE_ONE_STEP
756 case 16:
757 MPI_WEAVE_ONE_STEP
758 MPI_WEAVE_ONE_STEP
759 MPI_WEAVE_ONE_STEP
760 MPI_WEAVE_ONE_STEP
761 MPI_WEAVE_ONE_STEP
762 MPI_WEAVE_ONE_STEP
763 MPI_WEAVE_ONE_STEP
764 MPI_WEAVE_ONE_STEP
765 case 8:
766 MPI_WEAVE_ONE_STEP
767 MPI_WEAVE_ONE_STEP
768 MPI_WEAVE_ONE_STEP
769 MPI_WEAVE_ONE_STEP
770 case 4:
771 MPI_WEAVE_ONE_STEP
772 MPI_WEAVE_ONE_STEP
773 case 2:
774 MPI_WEAVE_ONE_STEP
775 case 1:
776 MPI_WEAVE_ONE_STEP
777 break;
778 }
779 }
780
781 return MP_OKAY;
782 }
783
784 /* reverse the operation above for one entry.
785 * b points to the offset into the weave array of the power we are
786 * calculating */
787 mp_err weave_to_mpi(mp_int *a, const unsigned char *b,
788 mp_size b_size, mp_size count)
789 {
790 mp_digit *pb = MP_DIGITS(a);
791 mp_digit *end = &pb[b_size];
792
793 MP_SIGN(a) = MP_ZPOS;
794 MP_USED(a) = b_size;
795
796 for (; pb < end; pb++) {
797 register mp_digit digit;
798
799 digit = *b << 8; b += count;
800 #define MPI_UNWEAVE_ONE_STEP digit |= *b; b += count; digit = digit << 8;
801 switch (sizeof(mp_digit)) {
802 case 32:
803 MPI_UNWEAVE_ONE_STEP
804 MPI_UNWEAVE_ONE_STEP
805 MPI_UNWEAVE_ONE_STEP
806 MPI_UNWEAVE_ONE_STEP
807 MPI_UNWEAVE_ONE_STEP
808 MPI_UNWEAVE_ONE_STEP
809 MPI_UNWEAVE_ONE_STEP
810 MPI_UNWEAVE_ONE_STEP
811 MPI_UNWEAVE_ONE_STEP
812 MPI_UNWEAVE_ONE_STEP
813 MPI_UNWEAVE_ONE_STEP
814 MPI_UNWEAVE_ONE_STEP
815 MPI_UNWEAVE_ONE_STEP
816 MPI_UNWEAVE_ONE_STEP
817 MPI_UNWEAVE_ONE_STEP
818 MPI_UNWEAVE_ONE_STEP
819 case 16:
820 MPI_UNWEAVE_ONE_STEP
821 MPI_UNWEAVE_ONE_STEP
822 MPI_UNWEAVE_ONE_STEP
823 MPI_UNWEAVE_ONE_STEP
824 MPI_UNWEAVE_ONE_STEP
825 MPI_UNWEAVE_ONE_STEP
826 MPI_UNWEAVE_ONE_STEP
827 MPI_UNWEAVE_ONE_STEP
828 case 8:
829 MPI_UNWEAVE_ONE_STEP
830 MPI_UNWEAVE_ONE_STEP
831 MPI_UNWEAVE_ONE_STEP
832 MPI_UNWEAVE_ONE_STEP
833 case 4:
834 MPI_UNWEAVE_ONE_STEP
835 MPI_UNWEAVE_ONE_STEP
836 case 2:
837 break;
838 }
839 digit |= *b; b += count;
840
841 *pb = digit;
842 }
843 s_mp_clamp(a);
844 return MP_OKAY;
845 }
846 #endif
847
848
849 #define SQR(a,b) \
850 MP_CHECKOK( mp_sqr(a, b) );\
851 MP_CHECKOK( s_mp_redc(b, mmm) )
852
853 #if defined(MP_MONT_USE_MP_MUL)
854 #define MUL_NOWEAVE(x,a,b) \
855 MP_CHECKOK( mp_mul(a, x, b) ); \
856 MP_CHECKOK( s_mp_redc(b, mmm) )
857 #else
858 #define MUL_NOWEAVE(x,a,b) \
859 MP_CHECKOK( s_mp_mul_mont(a, x, b, mmm) )
860 #endif
861
862 #define MUL(x,a,b) \
863 MP_CHECKOK( weave_to_mpi(&tmp, powers + (x), nLen, num_powers) ); \
864 MUL_NOWEAVE(&tmp,a,b)
865
866 #define SWAPPA ptmp = pa1; pa1 = pa2; pa2 = ptmp
867 #define MP_ALIGN(x,y) ((((ptrdiff_t)(x))+((y)-1))&(((ptrdiff_t)0)-(y)))
868
869 /* Do modular exponentiation using integer multiply code. */
870 mp_err mp_exptmod_safe_i(const mp_int * montBase,
871 const mp_int * exponent,
872 const mp_int * modulus,
873 mp_int * result,
874 mp_mont_modulus *mmm,
875 int nLen,
876 mp_size bits_in_exponent,
877 mp_size window_bits,
878 mp_size num_powers)
879 {
880 mp_int *pa1, *pa2, *ptmp;
881 mp_size i;
882 mp_size first_window;
883 mp_err res;
884 int expOff;
885 mp_int accum1, accum2, accum[WEAVE_WORD_SIZE];
886 mp_int tmp;
887 unsigned char *powersArray;
888 unsigned char *powers;
889
890 MP_DIGITS(&accum1) = 0;
891 MP_DIGITS(&accum2) = 0;
892 MP_DIGITS(&accum[0]) = 0;
893 MP_DIGITS(&accum[1]) = 0;
894 MP_DIGITS(&accum[2]) = 0;
895 MP_DIGITS(&accum[3]) = 0;
896 MP_DIGITS(&tmp) = 0;
897
898 powersArray = (unsigned char *)malloc(num_powers*(nLen*sizeof(mp_digit)+1));
899 if (powersArray == NULL) {
900 res = MP_MEM;
901 goto CLEANUP;
902 }
903
904 /* powers[i] = base ** (i); */
905 powers = (unsigned char *)MP_ALIGN(powersArray,num_powers);
906
907 /* grab the first window value. This allows us to preload accumulator1
908 * and save a conversion, some squares and a multiple*/
909 MP_CHECKOK( mpl_get_bits(exponent,
910 bits_in_exponent-window_bits, window_bits) );
911 first_window = (mp_size)res;
912
913 MP_CHECKOK( mp_init_size(&accum1, 3 * nLen + 2) );
914 MP_CHECKOK( mp_init_size(&accum2, 3 * nLen + 2) );
915 MP_CHECKOK( mp_init_size(&tmp, 3 * nLen + 2) );
916
917 /* build the first WEAVE_WORD powers inline */
918 /* if WEAVE_WORD_SIZE is not 4, this code will have to change */
919 if (num_powers > 2) {
920 MP_CHECKOK( mp_init_size(&accum[0], 3 * nLen + 2) );
921 MP_CHECKOK( mp_init_size(&accum[1], 3 * nLen + 2) );
922 MP_CHECKOK( mp_init_size(&accum[2], 3 * nLen + 2) );
923 MP_CHECKOK( mp_init_size(&accum[3], 3 * nLen + 2) );
924 mp_set(&accum[0], 1);
925 MP_CHECKOK( s_mp_to_mont(&accum[0], mmm, &accum[0]) );
926 MP_CHECKOK( mp_copy(montBase, &accum[1]) );
927 SQR(montBase, &accum[2]);
928 MUL_NOWEAVE(montBase, &accum[2], &accum[3]);
929 MP_CHECKOK( mpi_to_weave(accum, powers, nLen, num_powers) );
930 if (first_window < 4) {
931 MP_CHECKOK( mp_copy(&accum[first_window], &accum1) );
932 first_window = num_powers;
933 }
934 } else {
935 if (first_window == 0) {
936 mp_set(&accum1, 1);
937 MP_CHECKOK( s_mp_to_mont(&accum1, mmm, &accum1) );
938 } else {
939 /* assert first_window == 1? */
940 MP_CHECKOK( mp_copy(montBase, &accum1) );
941 }
942 }
943
944 /*
945 * calculate all the powers in the powers array.
946 * this adds 2**(k-1)-2 square operations over just calculating the
947 * odd powers where k is the window size in the two other mp_modexpt
948 * implementations in this file. We will get some of that
949 * back by not needing the first 'k' squares and one multiply for the
950 * first window */
951 for (i = WEAVE_WORD_SIZE; i < num_powers; i++) {
952 int acc_index = i & (WEAVE_WORD_SIZE-1); /* i % WEAVE_WORD_SIZE */
953 if ( i & 1 ) {
954 MUL_NOWEAVE(montBase, &accum[acc_index-1] , &accum[acc_index]);
955 /* we've filled the array do our 'per array' processing */
956 if (acc_index == (WEAVE_WORD_SIZE-1)) {
957 MP_CHECKOK( mpi_to_weave(accum, powers + i - (WEAVE_WORD_SIZE-1),
958 nLen, num_powers) );
959
960 if (first_window <= i) {
961 MP_CHECKOK( mp_copy(&accum[first_window & (WEAVE_WORD_SIZE-1)],
962 &accum1) );
963 first_window = num_powers;
964 }
965 }
966 } else {
967 /* up to 8 we can find 2^i-1 in the accum array, but at 8 we our source
968 * and target are the same so we need to copy.. After that, the
969 * value is overwritten, so we need to fetch it from the stored
970 * weave array */
971 if (i > 2* WEAVE_WORD_SIZE) {
972 MP_CHECKOK(weave_to_mpi(&accum2, powers+i/2, nLen, num_powers));
973 SQR(&accum2, &accum[acc_index]);
974 } else {
975 int half_power_index = (i/2) & (WEAVE_WORD_SIZE-1);
976 if (half_power_index == acc_index) {
977 /* copy is cheaper than weave_to_mpi */
978 MP_CHECKOK(mp_copy(&accum[half_power_index], &accum2));
979 SQR(&accum2,&accum[acc_index]);
980 } else {
981 SQR(&accum[half_power_index],&accum[acc_index]);
982 }
983 }
984 }
985 }
986 /* if the accum1 isn't set, Then there is something wrong with our logic
987 * above and is an internal programming error.
988 */
989 #if MP_ARGCHK == 2
990 assert(MP_USED(&accum1) != 0);
991 #endif
992
993 /* set accumulator to montgomery residue of 1 */
994 pa1 = &accum1;
995 pa2 = &accum2;
996
997 for (expOff = bits_in_exponent - window_bits*2; expOff >= 0; expOff -= window_ bits) {
998 mp_size smallExp;
999 MP_CHECKOK( mpl_get_bits(exponent, expOff, window_bits) );
1000 smallExp = (mp_size)res;
1001
1002 /* handle unroll the loops */
1003 switch (window_bits) {
1004 case 1:
1005 if (!smallExp) {
1006 SQR(pa1,pa2); SWAPPA;
1007 } else if (smallExp & 1) {
1008 SQR(pa1,pa2); MUL_NOWEAVE(montBase,pa2,pa1);
1009 } else {
1010 abort();
1011 }
1012 break;
1013 case 6:
1014 SQR(pa1,pa2); SQR(pa2,pa1);
1015 /* fall through */
1016 case 4:
1017 SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
1018 MUL(smallExp, pa1,pa2); SWAPPA;
1019 break;
1020 case 5:
1021 SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
1022 SQR(pa1,pa2); MUL(smallExp,pa2,pa1);
1023 break;
1024 default:
1025 abort(); /* could do a loop? */
1026 }
1027 }
1028
1029 res = s_mp_redc(pa1, mmm);
1030 mp_exch(pa1, result);
1031
1032 CLEANUP:
1033 mp_clear(&accum1);
1034 mp_clear(&accum2);
1035 mp_clear(&accum[0]);
1036 mp_clear(&accum[1]);
1037 mp_clear(&accum[2]);
1038 mp_clear(&accum[3]);
1039 mp_clear(&tmp);
1040 /* PORT_Memset(powers,0,num_powers*nLen*sizeof(mp_digit)); */
1041 free(powersArray);
1042 return res;
1043 }
1044 #undef SQR
1045 #undef MUL
1046 #endif
1047
1048 mp_err mp_exptmod(const mp_int *inBase, const mp_int *exponent,
1049 const mp_int *modulus, mp_int *result)
1050 {
1051 const mp_int *base;
1052 mp_size bits_in_exponent, i, window_bits, odd_ints;
1053 mp_err res;
1054 int nLen;
1055 mp_int montBase, goodBase;
1056 mp_mont_modulus mmm;
1057 #ifdef MP_USING_CACHE_SAFE_MOD_EXP
1058 static unsigned int max_window_bits;
1059 #endif
1060
1061 /* function for computing n0prime only works if n0 is odd */
1062 if (!mp_isodd(modulus))
1063 return s_mp_exptmod(inBase, exponent, modulus, result);
1064
1065 MP_DIGITS(&montBase) = 0;
1066 MP_DIGITS(&goodBase) = 0;
1067
1068 if (mp_cmp(inBase, modulus) < 0) {
1069 base = inBase;
1070 } else {
1071 MP_CHECKOK( mp_init(&goodBase) );
1072 base = &goodBase;
1073 MP_CHECKOK( mp_mod(inBase, modulus, &goodBase) );
1074 }
1075
1076 nLen = MP_USED(modulus);
1077 MP_CHECKOK( mp_init_size(&montBase, 2 * nLen + 2) );
1078
1079 mmm.N = *modulus; /* a copy of the mp_int struct */
1080
1081 /* compute n0', given n0, n0' = -(n0 ** -1) mod MP_RADIX
1082 ** where n0 = least significant mp_digit of N, the modulus.
1083 */
1084 mmm.n0prime = 0 - s_mp_invmod_radix( MP_DIGIT(modulus, 0) );
1085
1086 MP_CHECKOK( s_mp_to_mont(base, &mmm, &montBase) );
1087
1088 bits_in_exponent = mpl_significant_bits(exponent);
1089 #ifdef MP_USING_CACHE_SAFE_MOD_EXP
1090 if (mp_using_cache_safe_exp) {
1091 if (bits_in_exponent > 780)
1092 window_bits = 6;
1093 else if (bits_in_exponent > 256)
1094 window_bits = 5;
1095 else if (bits_in_exponent > 20)
1096 window_bits = 4;
1097 /* RSA public key exponents are typically under 20 bits (common values
1098 * are: 3, 17, 65537) and a 4-bit window is inefficient
1099 */
1100 else
1101 window_bits = 1;
1102 } else
1103 #endif
1104 if (bits_in_exponent > 480)
1105 window_bits = 6;
1106 else if (bits_in_exponent > 160)
1107 window_bits = 5;
1108 else if (bits_in_exponent > 20)
1109 window_bits = 4;
1110 /* RSA public key exponents are typically under 20 bits (common values
1111 * are: 3, 17, 65537) and a 4-bit window is inefficient
1112 */
1113 else
1114 window_bits = 1;
1115
1116 #ifdef MP_USING_CACHE_SAFE_MOD_EXP
1117 /*
1118 * clamp the window size based on
1119 * the cache line size.
1120 */
1121 if (!max_window_bits) {
1122 unsigned long cache_size = s_mpi_getProcessorLineSize();
1123 /* processor has no cache, use 'fast' code always */
1124 if (cache_size == 0) {
1125 mp_using_cache_safe_exp = 0;
1126 }
1127 if ((cache_size == 0) || (cache_size >= 64)) {
1128 max_window_bits = 6;
1129 } else if (cache_size >= 32) {
1130 max_window_bits = 5;
1131 } else if (cache_size >= 16) {
1132 max_window_bits = 4;
1133 } else max_window_bits = 1; /* should this be an assert? */
1134 }
1135
1136 /* clamp the window size down before we caclulate bits_in_exponent */
1137 if (mp_using_cache_safe_exp) {
1138 if (window_bits > max_window_bits) {
1139 window_bits = max_window_bits;
1140 }
1141 }
1142 #endif
1143
1144 odd_ints = 1 << (window_bits - 1);
1145 i = bits_in_exponent % window_bits;
1146 if (i != 0) {
1147 bits_in_exponent += window_bits - i;
1148 }
1149
1150 #ifdef MP_USING_MONT_MULF
1151 if (mp_using_mont_mulf) {
1152 MP_CHECKOK( s_mp_pad(&montBase, nLen) );
1153 res = mp_exptmod_f(&montBase, exponent, modulus, result, &mmm, nLen,
1154 bits_in_exponent, window_bits, odd_ints);
1155 } else
1156 #endif
1157 #ifdef MP_USING_CACHE_SAFE_MOD_EXP
1158 if (mp_using_cache_safe_exp) {
1159 res = mp_exptmod_safe_i(&montBase, exponent, modulus, result, &mmm, nLen,
1160 bits_in_exponent, window_bits, 1 << window_bits);
1161 } else
1162 #endif
1163 res = mp_exptmod_i(&montBase, exponent, modulus, result, &mmm, nLen,
1164 bits_in_exponent, window_bits, odd_ints);
1165
1166 CLEANUP:
1167 mp_clear(&montBase);
1168 mp_clear(&goodBase);
1169 /* Don't mp_clear mmm.N because it is merely a copy of modulus.
1170 ** Just zap it.
1171 */
1172 memset(&mmm, 0, sizeof mmm);
1173 return res;
1174 }
OLDNEW
« no previous file with comments | « mozilla/security/nss/lib/freebl/mpi/mplogic.c ('k') | mozilla/security/nss/lib/freebl/mpi/mpprime.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698