OLD | NEW |
| (Empty) |
1 /* This Source Code Form is subject to the terms of the Mozilla Public | |
2 * License, v. 2.0. If a copy of the MPL was not distributed with this | |
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ | |
4 | |
5 /* A 32-bit implementation of the NIST P-256 elliptic curve. */ | |
6 | |
7 #include <string.h> | |
8 | |
9 #include "prtypes.h" | |
10 #include "mpi.h" | |
11 #include "mpi-priv.h" | |
12 #include "ecp.h" | |
13 #include "secport.h" | |
14 | |
15 typedef PRUint8 u8; | |
16 typedef PRUint32 u32; | |
17 typedef PRUint64 u64; | |
18 | |
19 /* Our field elements are represented as nine, unsigned 32-bit words. Freebl's | |
20 * MPI library calls them digits, but here they are called limbs, which is | |
21 * GMP's terminology. | |
22 * | |
23 * The value of an felem (field element) is: | |
24 * x[0] + (x[1] * 2**29) + (x[2] * 2**57) + ... + (x[8] * 2**228) | |
25 * | |
26 * That is, each limb is alternately 29 or 28-bits wide in little-endian | |
27 * order. | |
28 * | |
29 * This means that an felem hits 2**257, rather than 2**256 as we would like. A | |
30 * 28, 29, ... pattern would cause us to hit 2**256, but that causes problems | |
31 * when multiplying as terms end up one bit short of a limb which would require | |
32 * much bit-shifting to correct. | |
33 * | |
34 * Finally, the values stored in an felem are in Montgomery form. So the value | |
35 * |y| is stored as (y*R) mod p, where p is the P-256 prime and R is 2**257. | |
36 */ | |
37 typedef u32 limb; | |
38 #define NLIMBS 9 | |
39 typedef limb felem[NLIMBS]; | |
40 | |
41 static const limb kBottom28Bits = 0xfffffff; | |
42 static const limb kBottom29Bits = 0x1fffffff; | |
43 | |
44 /* kOne is the number 1 as an felem. It's 2**257 mod p split up into 29 and | |
45 * 28-bit words. | |
46 */ | |
47 static const felem kOne = { | |
48 2, 0, 0, 0xffff800, | |
49 0x1fffffff, 0xfffffff, 0x1fbfffff, 0x1ffffff, | |
50 0 | |
51 }; | |
52 static const felem kZero = {0}; | |
53 static const felem kP = { | |
54 0x1fffffff, 0xfffffff, 0x1fffffff, 0x3ff, | |
55 0, 0, 0x200000, 0xf000000, | |
56 0xfffffff | |
57 }; | |
58 static const felem k2P = { | |
59 0x1ffffffe, 0xfffffff, 0x1fffffff, 0x7ff, | |
60 0, 0, 0x400000, 0xe000000, | |
61 0x1fffffff | |
62 }; | |
63 | |
64 /* kPrecomputed contains precomputed values to aid the calculation of scalar | |
65 * multiples of the base point, G. It's actually two, equal length, tables | |
66 * concatenated. | |
67 * | |
68 * The first table contains (x,y) felem pairs for 16 multiples of the base | |
69 * point, G. | |
70 * | |
71 * Index | Index (binary) | Value | |
72 * 0 | 0000 | 0G (all zeros, omitted) | |
73 * 1 | 0001 | G | |
74 * 2 | 0010 | 2**64G | |
75 * 3 | 0011 | 2**64G + G | |
76 * 4 | 0100 | 2**128G | |
77 * 5 | 0101 | 2**128G + G | |
78 * 6 | 0110 | 2**128G + 2**64G | |
79 * 7 | 0111 | 2**128G + 2**64G + G | |
80 * 8 | 1000 | 2**192G | |
81 * 9 | 1001 | 2**192G + G | |
82 * 10 | 1010 | 2**192G + 2**64G | |
83 * 11 | 1011 | 2**192G + 2**64G + G | |
84 * 12 | 1100 | 2**192G + 2**128G | |
85 * 13 | 1101 | 2**192G + 2**128G + G | |
86 * 14 | 1110 | 2**192G + 2**128G + 2**64G | |
87 * 15 | 1111 | 2**192G + 2**128G + 2**64G + G | |
88 * | |
89 * The second table follows the same style, but the terms are 2**32G, | |
90 * 2**96G, 2**160G, 2**224G. | |
91 * | |
92 * This is ~2KB of data. | |
93 */ | |
94 static const limb kPrecomputed[NLIMBS * 2 * 15 * 2] = { | |
95 0x11522878, 0xe730d41, 0xdb60179, 0x4afe2ff, 0x12883add, 0xcaddd88, 0x119e7e
dc, 0xd4a6eab, 0x3120bee, | |
96 0x1d2aac15, 0xf25357c, 0x19e45cdd, 0x5c721d0, 0x1992c5a5, 0xa237487, 0x154ba
21, 0x14b10bb, 0xae3fe3, | |
97 0xd41a576, 0x922fc51, 0x234994f, 0x60b60d3, 0x164586ae, 0xce95f18, 0x1fe4907
3, 0x3fa36cc, 0x5ebcd2c, | |
98 0xb402f2f, 0x15c70bf, 0x1561925c, 0x5a26704, 0xda91e90, 0xcdc1c7f, 0x1ea1244
6, 0xe1ade1e, 0xec91f22, | |
99 0x26f7778, 0x566847e, 0xa0bec9e, 0x234f453, 0x1a31f21a, 0xd85e75c, 0x56c7109
, 0xa267a00, 0xb57c050, | |
100 0x98fb57, 0xaa837cc, 0x60c0792, 0xcfa5e19, 0x61bab9e, 0x589e39b, 0xa324c5, 0
x7d6dee7, 0x2976e4b, | |
101 0x1fc4124a, 0xa8c244b, 0x1ce86762, 0xcd61c7e, 0x1831c8e0, 0x75774e1, 0x1d96a
5a9, 0x843a649, 0xc3ab0fa, | |
102 0x6e2e7d5, 0x7673a2a, 0x178b65e8, 0x4003e9b, 0x1a1f11c2, 0x7816ea, 0xf643e11
, 0x58c43df, 0xf423fc2, | |
103 0x19633ffa, 0x891f2b2, 0x123c231c, 0x46add8c, 0x54700dd, 0x59e2b17, 0x172db4
0f, 0x83e277d, 0xb0dd609, | |
104 0xfd1da12, 0x35c6e52, 0x19ede20c, 0xd19e0c0, 0x97d0f40, 0xb015b19, 0x449e3f5
, 0xe10c9e, 0x33ab581, | |
105 0x56a67ab, 0x577734d, 0x1dddc062, 0xc57b10d, 0x149b39d, 0x26a9e7b, 0xc35df9f
, 0x48764cd, 0x76dbcca, | |
106 0xca4b366, 0xe9303ab, 0x1a7480e7, 0x57e9e81, 0x1e13eb50, 0xf466cf3, 0x6f16b2
0, 0x4ba3173, 0xc168c33, | |
107 0x15cb5439, 0x6a38e11, 0x73658bd, 0xb29564f, 0x3f6dc5b, 0x53b97e, 0x1322c4c0
, 0x65dd7ff, 0x3a1e4f6, | |
108 0x14e614aa, 0x9246317, 0x1bc83aca, 0xad97eed, 0xd38ce4a, 0xf82b006, 0x341f07
7, 0xa6add89, 0x4894acd, | |
109 0x9f162d5, 0xf8410ef, 0x1b266a56, 0xd7f223, 0x3e0cb92, 0xe39b672, 0x6a2901a,
0x69a8556, 0x7e7c0, | |
110 0x9b7d8d3, 0x309a80, 0x1ad05f7f, 0xc2fb5dd, 0xcbfd41d, 0x9ceb638, 0x1051825c
, 0xda0cf5b, 0x812e881, | |
111 0x6f35669, 0x6a56f2c, 0x1df8d184, 0x345820, 0x1477d477, 0x1645db1, 0xbe80c51
, 0xc22be3e, 0xe35e65a, | |
112 0x1aeb7aa0, 0xc375315, 0xf67bc99, 0x7fdd7b9, 0x191fc1be, 0x61235d, 0x2c184e9
, 0x1c5a839, 0x47a1e26, | |
113 0xb7cb456, 0x93e225d, 0x14f3c6ed, 0xccc1ac9, 0x17fe37f3, 0x4988989, 0x1a90c5
02, 0x2f32042, 0xa17769b, | |
114 0xafd8c7c, 0x8191c6e, 0x1dcdb237, 0x16200c0, 0x107b32a1, 0x66c08db, 0x10d06a
02, 0x3fc93, 0x5620023, | |
115 0x16722b27, 0x68b5c59, 0x270fcfc, 0xfad0ecc, 0xe5de1c2, 0xeab466b, 0x2fc513c
, 0x407f75c, 0xbaab133, | |
116 0x9705fe9, 0xb88b8e7, 0x734c993, 0x1e1ff8f, 0x19156970, 0xabd0f00, 0x10469ea
7, 0x3293ac0, 0xcdc98aa, | |
117 0x1d843fd, 0xe14bfe8, 0x15be825f, 0x8b5212, 0xeb3fb67, 0x81cbd29, 0xbc62f16,
0x2b6fcc7, 0xf5a4e29, | |
118 0x13560b66, 0xc0b6ac2, 0x51ae690, 0xd41e271, 0xf3e9bd4, 0x1d70aab, 0x1029f72
, 0x73e1c35, 0xee70fbc, | |
119 0xad81baf, 0x9ecc49a, 0x86c741e, 0xfe6be30, 0x176752e7, 0x23d416, 0x1f83de85
, 0x27de188, 0x66f70b8, | |
120 0x181cd51f, 0x96b6e4c, 0x188f2335, 0xa5df759, 0x17a77eb6, 0xfeb0e73, 0x154ae
914, 0x2f3ec51, 0x3826b59, | |
121 0xb91f17d, 0x1c72949, 0x1362bf0a, 0xe23fddf, 0xa5614b0, 0xf7d8f, 0x79061, 0x
823d9d2, 0x8213f39, | |
122 0x1128ae0b, 0xd095d05, 0xb85c0c2, 0x1ecb2ef, 0x24ddc84, 0xe35e901, 0x18411a4
a, 0xf5ddc3d, 0x3786689, | |
123 0x52260e8, 0x5ae3564, 0x542b10d, 0x8d93a45, 0x19952aa4, 0x996cc41, 0x1051a72
9, 0x4be3499, 0x52b23aa, | |
124 0x109f307e, 0x6f5b6bb, 0x1f84e1e7, 0x77a0cfa, 0x10c4df3f, 0x25a02ea, 0xb0480
35, 0xe31de66, 0xc6ecaa3, | |
125 0x28ea335, 0x2886024, 0x1372f020, 0xf55d35, 0x15e4684c, 0xf2a9e17, 0x1a4a752
9, 0xcb7beb1, 0xb2a78a1, | |
126 0x1ab21f1f, 0x6361ccf, 0x6c9179d, 0xb135627, 0x1267b974, 0x4408bad, 0x1cbff6
58, 0xe3d6511, 0xc7d76f, | |
127 0x1cc7a69, 0xe7ee31b, 0x54fab4f, 0x2b914f, 0x1ad27a30, 0xcd3579e, 0xc50124c,
0x50daa90, 0xb13f72, | |
128 0xb06aa75, 0x70f5cc6, 0x1649e5aa, 0x84a5312, 0x329043c, 0x41c4011, 0x13d3241
1, 0xb04a838, 0xd760d2d, | |
129 0x1713b532, 0xbaa0c03, 0x84022ab, 0x6bcf5c1, 0x2f45379, 0x18ae070, 0x18c9e11
e, 0x20bca9a, 0x66f496b, | |
130 0x3eef294, 0x67500d2, 0xd7f613c, 0x2dbbeb, 0xb741038, 0xe04133f, 0x1582968d,
0xbe985f7, 0x1acbc1a, | |
131 0x1a6a939f, 0x33e50f6, 0xd665ed4, 0xb4b7bd6, 0x1e5a3799, 0x6b33847, 0x17fa56
ff, 0x65ef930, 0x21dc4a, | |
132 0x2b37659, 0x450fe17, 0xb357b65, 0xdf5efac, 0x15397bef, 0x9d35a7f, 0x112ac15
f, 0x624e62e, 0xa90ae2f, | |
133 0x107eecd2, 0x1f69bbe, 0x77d6bce, 0x5741394, 0x13c684fc, 0x950c910, 0x725522
b, 0xdc78583, 0x40eeabb, | |
134 0x1fde328a, 0xbd61d96, 0xd28c387, 0x9e77d89, 0x12550c40, 0x759cb7d, 0x367ef3
4, 0xae2a960, 0x91b8bdc, | |
135 0x93462a9, 0xf469ef, 0xb2e9aef, 0xd2ca771, 0x54e1f42, 0x7aaa49, 0x6316abb, 0
x2413c8e, 0x5425bf9, | |
136 0x1bed3e3a, 0xf272274, 0x1f5e7326, 0x6416517, 0xea27072, 0x9cedea7, 0x6e7633
, 0x7c91952, 0xd806dce, | |
137 0x8e2a7e1, 0xe421e1a, 0x418c9e1, 0x1dbc890, 0x1b395c36, 0xa1dc175, 0x1dc4ef7
3, 0x8956f34, 0xe4b5cf2, | |
138 0x1b0d3a18, 0x3194a36, 0x6c2641f, 0xe44124c, 0xa2f4eaa, 0xa8c25ba, 0xf927ed7
, 0x627b614, 0x7371cca, | |
139 0xba16694, 0x417bc03, 0x7c0a7e3, 0x9c35c19, 0x1168a205, 0x8b6b00d, 0x10e3edc
9, 0x9c19bf2, 0x5882229, | |
140 0x1b2b4162, 0xa5cef1a, 0x1543622b, 0x9bd433e, 0x364e04d, 0x7480792, 0x5c9b5b
3, 0xe85ff25, 0x408ef57, | |
141 0x1814cfa4, 0x121b41b, 0xd248a0f, 0x3b05222, 0x39bb16a, 0xc75966d, 0xa038113
, 0xa4a1769, 0x11fbc6c, | |
142 0x917e50e, 0xeec3da8, 0x169d6eac, 0x10c1699, 0xa416153, 0xf724912, 0x15cd60b
7, 0x4acbad9, 0x5efc5fa, | |
143 0xf150ed7, 0x122b51, 0x1104b40a, 0xcb7f442, 0xfbb28ff, 0x6ac53ca, 0x196142cc
, 0x7bf0fa9, 0x957651, | |
144 0x4e0f215, 0xed439f8, 0x3f46bd5, 0x5ace82f, 0x110916b6, 0x6db078, 0xffd7d57,
0xf2ecaac, 0xca86dec, | |
145 0x15d6b2da, 0x965ecc9, 0x1c92b4c2, 0x1f3811, 0x1cb080f5, 0x2d8b804, 0x19d1c1
2d, 0xf20bd46, 0x1951fa7, | |
146 0xa3656c3, 0x523a425, 0xfcd0692, 0xd44ddc8, 0x131f0f5b, 0xaf80e4a, 0xcd9fc74
, 0x99bb618, 0x2db944c, | |
147 0xa673090, 0x1c210e1, 0x178c8d23, 0x1474383, 0x10b8743d, 0x985a55b, 0x2e7477
9, 0x576138, 0x9587927, | |
148 0x133130fa, 0xbe05516, 0x9f4d619, 0xbb62570, 0x99ec591, 0xd9468fe, 0x1d07782
d, 0xfc72e0b, 0x701b298, | |
149 0x1863863b, 0x85954b8, 0x121a0c36, 0x9e7fedf, 0xf64b429, 0x9b9d71e, 0x14e2f5
d8, 0xf858d3a, 0x942eea8, | |
150 0xda5b765, 0x6edafff, 0xa9d18cc, 0xc65e4ba, 0x1c747e86, 0xe4ea915, 0x1981d7a
1, 0x8395659, 0x52ed4e2, | |
151 0x87d43b7, 0x37ab11b, 0x19d292ce, 0xf8d4692, 0x18c3053f, 0x8863e13, 0x4c146c
0, 0x6bdf55a, 0x4e4457d, | |
152 0x16152289, 0xac78ec2, 0x1a59c5a2, 0x2028b97, 0x71c2d01, 0x295851f, 0x404747
b, 0x878558d, 0x7d29aa4, | |
153 0x13d8341f, 0x8daefd7, 0x139c972d, 0x6b7ea75, 0xd4a9dde, 0xff163d8, 0x81d55d
7, 0xa5bef68, 0xb7b30d8, | |
154 0xbe73d6f, 0xaa88141, 0xd976c81, 0x7e7a9cc, 0x18beb771, 0xd773cbd, 0x13f5195
1, 0x9d0c177, 0x1c49a78, | |
155 }; | |
156 | |
157 /* Field element operations: | |
158 */ | |
159 | |
160 /* NON_ZERO_TO_ALL_ONES returns: | |
161 * 0xffffffff for 0 < x <= 2**31 | |
162 * 0 for x == 0 or x > 2**31. | |
163 * | |
164 * x must be a u32 or an equivalent type such as limb. | |
165 */ | |
166 #define NON_ZERO_TO_ALL_ONES(x) ((((u32)(x) - 1) >> 31) - 1) | |
167 | |
168 /* felem_reduce_carry adds a multiple of p in order to cancel |carry|, | |
169 * which is a term at 2**257. | |
170 * | |
171 * On entry: carry < 2**3, inout[0,2,...] < 2**29, inout[1,3,...] < 2**28. | |
172 * On exit: inout[0,2,..] < 2**30, inout[1,3,...] < 2**29. | |
173 */ | |
174 static void felem_reduce_carry(felem inout, limb carry) | |
175 { | |
176 const u32 carry_mask = NON_ZERO_TO_ALL_ONES(carry); | |
177 | |
178 inout[0] += carry << 1; | |
179 inout[3] += 0x10000000 & carry_mask; | |
180 /* carry < 2**3 thus (carry << 11) < 2**14 and we added 2**28 in the | |
181 * previous line therefore this doesn't underflow. | |
182 */ | |
183 inout[3] -= carry << 11; | |
184 inout[4] += (0x20000000 - 1) & carry_mask; | |
185 inout[5] += (0x10000000 - 1) & carry_mask; | |
186 inout[6] += (0x20000000 - 1) & carry_mask; | |
187 inout[6] -= carry << 22; | |
188 /* This may underflow if carry is non-zero but, if so, we'll fix it in the | |
189 * next line. | |
190 */ | |
191 inout[7] -= 1 & carry_mask; | |
192 inout[7] += carry << 25; | |
193 } | |
194 | |
195 /* felem_sum sets out = in+in2. | |
196 * | |
197 * On entry, in[i]+in2[i] must not overflow a 32-bit word. | |
198 * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29 | |
199 */ | |
200 static void felem_sum(felem out, const felem in, const felem in2) | |
201 { | |
202 limb carry = 0; | |
203 unsigned int i; | |
204 for (i = 0;; i++) { | |
205 out[i] = in[i] + in2[i]; | |
206 out[i] += carry; | |
207 carry = out[i] >> 29; | |
208 out[i] &= kBottom29Bits; | |
209 | |
210 i++; | |
211 if (i == NLIMBS) | |
212 break; | |
213 | |
214 out[i] = in[i] + in2[i]; | |
215 out[i] += carry; | |
216 carry = out[i] >> 28; | |
217 out[i] &= kBottom28Bits; | |
218 } | |
219 | |
220 felem_reduce_carry(out, carry); | |
221 } | |
222 | |
223 #define two31m3 (((limb)1) << 31) - (((limb)1) << 3) | |
224 #define two30m2 (((limb)1) << 30) - (((limb)1) << 2) | |
225 #define two30p13m2 (((limb)1) << 30) + (((limb)1) << 13) - (((limb)1) << 2) | |
226 #define two31m2 (((limb)1) << 31) - (((limb)1) << 2) | |
227 #define two31p24m2 (((limb)1) << 31) + (((limb)1) << 24) - (((limb)1) << 2) | |
228 #define two30m27m2 (((limb)1) << 30) - (((limb)1) << 27) - (((limb)1) << 2) | |
229 | |
230 /* zero31 is 0 mod p. | |
231 */ | |
232 static const felem zero31 = { | |
233 two31m3, two30m2, two31m2, two30p13m2, | |
234 two31m2, two30m2, two31p24m2, two30m27m2, | |
235 two31m2 | |
236 }; | |
237 | |
238 /* felem_diff sets out = in-in2. | |
239 * | |
240 * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and | |
241 * in2[0,2,...] < 2**30, in2[1,3,...] < 2**29. | |
242 * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. | |
243 */ | |
244 static void felem_diff(felem out, const felem in, const felem in2) | |
245 { | |
246 limb carry = 0; | |
247 unsigned int i; | |
248 | |
249 for (i = 0;; i++) { | |
250 out[i] = in[i] - in2[i]; | |
251 out[i] += zero31[i]; | |
252 out[i] += carry; | |
253 carry = out[i] >> 29; | |
254 out[i] &= kBottom29Bits; | |
255 | |
256 i++; | |
257 if (i == NLIMBS) | |
258 break; | |
259 | |
260 out[i] = in[i] - in2[i]; | |
261 out[i] += zero31[i]; | |
262 out[i] += carry; | |
263 carry = out[i] >> 28; | |
264 out[i] &= kBottom28Bits; | |
265 } | |
266 | |
267 felem_reduce_carry(out, carry); | |
268 } | |
269 | |
270 /* felem_reduce_degree sets out = tmp/R mod p where tmp contains 64-bit words | |
271 * with the same 29,28,... bit positions as an felem. | |
272 * | |
273 * The values in felems are in Montgomery form: x*R mod p where R = 2**257. | |
274 * Since we just multiplied two Montgomery values together, the result is | |
275 * x*y*R*R mod p. We wish to divide by R in order for the result also to be | |
276 * in Montgomery form. | |
277 * | |
278 * On entry: tmp[i] < 2**64 | |
279 * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29 | |
280 */ | |
281 static void felem_reduce_degree(felem out, u64 tmp[17]) | |
282 { | |
283 /* The following table may be helpful when reading this code: | |
284 * | |
285 * Limb number: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10... | |
286 * Width (bits): 29| 28| 29| 28| 29| 28| 29| 28| 29| 28| 29 | |
287 * Start bit: 0 | 29| 57| 86|114|143|171|200|228|257|285 | |
288 * (odd phase): 0 | 28| 57| 85|114|142|171|199|228|256|285 | |
289 */ | |
290 limb tmp2[18], carry, x, xMask; | |
291 unsigned int i; | |
292 | |
293 /* tmp contains 64-bit words with the same 29,28,29-bit positions as an | |
294 * felem. So the top of an element of tmp might overlap with another | |
295 * element two positions down. The following loop eliminates this | |
296 * overlap. | |
297 */ | |
298 tmp2[0] = tmp[0] & kBottom29Bits; | |
299 | |
300 /* In the following we use "(limb) tmp[x]" and "(limb) (tmp[x]>>32)" to try | |
301 * and hint to the compiler that it can do a single-word shift by selecting | |
302 * the right register rather than doing a double-word shift and truncating | |
303 * afterwards. | |
304 */ | |
305 tmp2[1] = ((limb) tmp[0]) >> 29; | |
306 tmp2[1] |= (((limb) (tmp[0] >> 32)) << 3) & kBottom28Bits; | |
307 tmp2[1] += ((limb) tmp[1]) & kBottom28Bits; | |
308 carry = tmp2[1] >> 28; | |
309 tmp2[1] &= kBottom28Bits; | |
310 | |
311 for (i = 2; i < 17; i++) { | |
312 tmp2[i] = ((limb) (tmp[i - 2] >> 32)) >> 25; | |
313 tmp2[i] += ((limb) (tmp[i - 1])) >> 28; | |
314 tmp2[i] += (((limb) (tmp[i - 1] >> 32)) << 4) & kBottom29Bits; | |
315 tmp2[i] += ((limb) tmp[i]) & kBottom29Bits; | |
316 tmp2[i] += carry; | |
317 carry = tmp2[i] >> 29; | |
318 tmp2[i] &= kBottom29Bits; | |
319 | |
320 i++; | |
321 if (i == 17) | |
322 break; | |
323 tmp2[i] = ((limb) (tmp[i - 2] >> 32)) >> 25; | |
324 tmp2[i] += ((limb) (tmp[i - 1])) >> 29; | |
325 tmp2[i] += (((limb) (tmp[i - 1] >> 32)) << 3) & kBottom28Bits; | |
326 tmp2[i] += ((limb) tmp[i]) & kBottom28Bits; | |
327 tmp2[i] += carry; | |
328 carry = tmp2[i] >> 28; | |
329 tmp2[i] &= kBottom28Bits; | |
330 } | |
331 | |
332 tmp2[17] = ((limb) (tmp[15] >> 32)) >> 25; | |
333 tmp2[17] += ((limb) (tmp[16])) >> 29; | |
334 tmp2[17] += (((limb) (tmp[16] >> 32)) << 3); | |
335 tmp2[17] += carry; | |
336 | |
337 /* Montgomery elimination of terms: | |
338 * | |
339 * Since R is 2**257, we can divide by R with a bitwise shift if we can | |
340 * ensure that the right-most 257 bits are all zero. We can make that true | |
341 * by adding multiplies of p without affecting the value. | |
342 * | |
343 * So we eliminate limbs from right to left. Since the bottom 29 bits of p | |
344 * are all ones, then by adding tmp2[0]*p to tmp2 we'll make tmp2[0] == 0. | |
345 * We can do that for 8 further limbs and then right shift to eliminate the | |
346 * extra factor of R. | |
347 */ | |
348 for (i = 0;; i += 2) { | |
349 tmp2[i + 1] += tmp2[i] >> 29; | |
350 x = tmp2[i] & kBottom29Bits; | |
351 xMask = NON_ZERO_TO_ALL_ONES(x); | |
352 tmp2[i] = 0; | |
353 | |
354 /* The bounds calculations for this loop are tricky. Each iteration of | |
355 * the loop eliminates two words by adding values to words to their | |
356 * right. | |
357 * | |
358 * The following table contains the amounts added to each word (as an | |
359 * offset from the value of i at the top of the loop). The amounts are | |
360 * accounted for from the first and second half of the loop separately | |
361 * and are written as, for example, 28 to mean a value <2**28. | |
362 * | |
363 * Word: 3 4 5 6 7 8 9 10 | |
364 * Added in top half: 28 11 29 21 29 28 | |
365 * 28 29 | |
366 * 29 | |
367 * Added in bottom half: 29 10 28 21 28 28 | |
368 * 29 | |
369 * | |
370 * The value that is currently offset 7 will be offset 5 for the next | |
371 * iteration and then offset 3 for the iteration after that. Therefore | |
372 * the total value added will be the values added at 7, 5 and 3. | |
373 * | |
374 * The following table accumulates these values. The sums at the bottom | |
375 * are written as, for example, 29+28, to mean a value < 2**29+2**28. | |
376 * | |
377 * Word: 3 4 5 6 7 8 9 10 11 12 13 | |
378 * 28 11 10 29 21 29 28 28 28 28 28 | |
379 * 29 28 11 28 29 28 29 28 29 28 | |
380 * 29 28 21 21 29 21 29 21 | |
381 * 10 29 28 21 28 21 28 | |
382 * 28 29 28 29 28 29 28 | |
383 * 11 10 29 10 29 10 | |
384 * 29 28 11 28 11 | |
385 * 29 29 | |
386 * -------------------------------------------- | |
387 * 30+ 31+ 30+ 31+ 30+ | |
388 * 28+ 29+ 28+ 29+ 21+ | |
389 * 21+ 28+ 21+ 28+ 10 | |
390 * 10 21+ 10 21+ | |
391 * 11 11 | |
392 * | |
393 * So the greatest amount is added to tmp2[10] and tmp2[12]. If | |
394 * tmp2[10/12] has an initial value of <2**29, then the maximum value | |
395 * will be < 2**31 + 2**30 + 2**28 + 2**21 + 2**11, which is < 2**32, | |
396 * as required. | |
397 */ | |
398 tmp2[i + 3] += (x << 10) & kBottom28Bits; | |
399 tmp2[i + 4] += (x >> 18); | |
400 | |
401 tmp2[i + 6] += (x << 21) & kBottom29Bits; | |
402 tmp2[i + 7] += x >> 8; | |
403 | |
404 /* At position 200, which is the starting bit position for word 7, we | |
405 * have a factor of 0xf000000 = 2**28 - 2**24. | |
406 */ | |
407 tmp2[i + 7] += 0x10000000 & xMask; | |
408 /* Word 7 is 28 bits wide, so the 2**28 term exactly hits word 8. */ | |
409 tmp2[i + 8] += (x - 1) & xMask; | |
410 tmp2[i + 7] -= (x << 24) & kBottom28Bits; | |
411 tmp2[i + 8] -= x >> 4; | |
412 | |
413 tmp2[i + 8] += 0x20000000 & xMask; | |
414 tmp2[i + 8] -= x; | |
415 tmp2[i + 8] += (x << 28) & kBottom29Bits; | |
416 tmp2[i + 9] += ((x >> 1) - 1) & xMask; | |
417 | |
418 if (i+1 == NLIMBS) | |
419 break; | |
420 tmp2[i + 2] += tmp2[i + 1] >> 28; | |
421 x = tmp2[i + 1] & kBottom28Bits; | |
422 xMask = NON_ZERO_TO_ALL_ONES(x); | |
423 tmp2[i + 1] = 0; | |
424 | |
425 tmp2[i + 4] += (x << 11) & kBottom29Bits; | |
426 tmp2[i + 5] += (x >> 18); | |
427 | |
428 tmp2[i + 7] += (x << 21) & kBottom28Bits; | |
429 tmp2[i + 8] += x >> 7; | |
430 | |
431 /* At position 199, which is the starting bit of the 8th word when | |
432 * dealing with a context starting on an odd word, we have a factor of | |
433 * 0x1e000000 = 2**29 - 2**25. Since we have not updated i, the 8th | |
434 * word from i+1 is i+8. | |
435 */ | |
436 tmp2[i + 8] += 0x20000000 & xMask; | |
437 tmp2[i + 9] += (x - 1) & xMask; | |
438 tmp2[i + 8] -= (x << 25) & kBottom29Bits; | |
439 tmp2[i + 9] -= x >> 4; | |
440 | |
441 tmp2[i + 9] += 0x10000000 & xMask; | |
442 tmp2[i + 9] -= x; | |
443 tmp2[i + 10] += (x - 1) & xMask; | |
444 } | |
445 | |
446 /* We merge the right shift with a carry chain. The words above 2**257 have | |
447 * widths of 28,29,... which we need to correct when copying them down. | |
448 */ | |
449 carry = 0; | |
450 for (i = 0; i < 8; i++) { | |
451 /* The maximum value of tmp2[i + 9] occurs on the first iteration and | |
452 * is < 2**30+2**29+2**28. Adding 2**29 (from tmp2[i + 10]) is | |
453 * therefore safe. | |
454 */ | |
455 out[i] = tmp2[i + 9]; | |
456 out[i] += carry; | |
457 out[i] += (tmp2[i + 10] << 28) & kBottom29Bits; | |
458 carry = out[i] >> 29; | |
459 out[i] &= kBottom29Bits; | |
460 | |
461 i++; | |
462 out[i] = tmp2[i + 9] >> 1; | |
463 out[i] += carry; | |
464 carry = out[i] >> 28; | |
465 out[i] &= kBottom28Bits; | |
466 } | |
467 | |
468 out[8] = tmp2[17]; | |
469 out[8] += carry; | |
470 carry = out[8] >> 29; | |
471 out[8] &= kBottom29Bits; | |
472 | |
473 felem_reduce_carry(out, carry); | |
474 } | |
475 | |
476 /* felem_square sets out=in*in. | |
477 * | |
478 * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29. | |
479 * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. | |
480 */ | |
481 static void felem_square(felem out, const felem in) | |
482 { | |
483 u64 tmp[17]; | |
484 | |
485 tmp[0] = ((u64) in[0]) * in[0]; | |
486 tmp[1] = ((u64) in[0]) * (in[1] << 1); | |
487 tmp[2] = ((u64) in[0]) * (in[2] << 1) + | |
488 ((u64) in[1]) * (in[1] << 1); | |
489 tmp[3] = ((u64) in[0]) * (in[3] << 1) + | |
490 ((u64) in[1]) * (in[2] << 1); | |
491 tmp[4] = ((u64) in[0]) * (in[4] << 1) + | |
492 ((u64) in[1]) * (in[3] << 2) + | |
493 ((u64) in[2]) * in[2]; | |
494 tmp[5] = ((u64) in[0]) * (in[5] << 1) + | |
495 ((u64) in[1]) * (in[4] << 1) + | |
496 ((u64) in[2]) * (in[3] << 1); | |
497 tmp[6] = ((u64) in[0]) * (in[6] << 1) + | |
498 ((u64) in[1]) * (in[5] << 2) + | |
499 ((u64) in[2]) * (in[4] << 1) + | |
500 ((u64) in[3]) * (in[3] << 1); | |
501 tmp[7] = ((u64) in[0]) * (in[7] << 1) + | |
502 ((u64) in[1]) * (in[6] << 1) + | |
503 ((u64) in[2]) * (in[5] << 1) + | |
504 ((u64) in[3]) * (in[4] << 1); | |
505 /* tmp[8] has the greatest value of 2**61 + 2**60 + 2**61 + 2**60 + 2**60, | |
506 * which is < 2**64 as required. | |
507 */ | |
508 tmp[8] = ((u64) in[0]) * (in[8] << 1) + | |
509 ((u64) in[1]) * (in[7] << 2) + | |
510 ((u64) in[2]) * (in[6] << 1) + | |
511 ((u64) in[3]) * (in[5] << 2) + | |
512 ((u64) in[4]) * in[4]; | |
513 tmp[9] = ((u64) in[1]) * (in[8] << 1) + | |
514 ((u64) in[2]) * (in[7] << 1) + | |
515 ((u64) in[3]) * (in[6] << 1) + | |
516 ((u64) in[4]) * (in[5] << 1); | |
517 tmp[10] = ((u64) in[2]) * (in[8] << 1) + | |
518 ((u64) in[3]) * (in[7] << 2) + | |
519 ((u64) in[4]) * (in[6] << 1) + | |
520 ((u64) in[5]) * (in[5] << 1); | |
521 tmp[11] = ((u64) in[3]) * (in[8] << 1) + | |
522 ((u64) in[4]) * (in[7] << 1) + | |
523 ((u64) in[5]) * (in[6] << 1); | |
524 tmp[12] = ((u64) in[4]) * (in[8] << 1) + | |
525 ((u64) in[5]) * (in[7] << 2) + | |
526 ((u64) in[6]) * in[6]; | |
527 tmp[13] = ((u64) in[5]) * (in[8] << 1) + | |
528 ((u64) in[6]) * (in[7] << 1); | |
529 tmp[14] = ((u64) in[6]) * (in[8] << 1) + | |
530 ((u64) in[7]) * (in[7] << 1); | |
531 tmp[15] = ((u64) in[7]) * (in[8] << 1); | |
532 tmp[16] = ((u64) in[8]) * in[8]; | |
533 | |
534 felem_reduce_degree(out, tmp); | |
535 } | |
536 | |
537 /* felem_mul sets out=in*in2. | |
538 * | |
539 * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and | |
540 * in2[0,2,...] < 2**30, in2[1,3,...] < 2**29. | |
541 * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. | |
542 */ | |
543 static void felem_mul(felem out, const felem in, const felem in2) | |
544 { | |
545 u64 tmp[17]; | |
546 | |
547 tmp[0] = ((u64) in[0]) * in2[0]; | |
548 tmp[1] = ((u64) in[0]) * (in2[1] << 0) + | |
549 ((u64) in[1]) * (in2[0] << 0); | |
550 tmp[2] = ((u64) in[0]) * (in2[2] << 0) + | |
551 ((u64) in[1]) * (in2[1] << 1) + | |
552 ((u64) in[2]) * (in2[0] << 0); | |
553 tmp[3] = ((u64) in[0]) * (in2[3] << 0) + | |
554 ((u64) in[1]) * (in2[2] << 0) + | |
555 ((u64) in[2]) * (in2[1] << 0) + | |
556 ((u64) in[3]) * (in2[0] << 0); | |
557 tmp[4] = ((u64) in[0]) * (in2[4] << 0) + | |
558 ((u64) in[1]) * (in2[3] << 1) + | |
559 ((u64) in[2]) * (in2[2] << 0) + | |
560 ((u64) in[3]) * (in2[1] << 1) + | |
561 ((u64) in[4]) * (in2[0] << 0); | |
562 tmp[5] = ((u64) in[0]) * (in2[5] << 0) + | |
563 ((u64) in[1]) * (in2[4] << 0) + | |
564 ((u64) in[2]) * (in2[3] << 0) + | |
565 ((u64) in[3]) * (in2[2] << 0) + | |
566 ((u64) in[4]) * (in2[1] << 0) + | |
567 ((u64) in[5]) * (in2[0] << 0); | |
568 tmp[6] = ((u64) in[0]) * (in2[6] << 0) + | |
569 ((u64) in[1]) * (in2[5] << 1) + | |
570 ((u64) in[2]) * (in2[4] << 0) + | |
571 ((u64) in[3]) * (in2[3] << 1) + | |
572 ((u64) in[4]) * (in2[2] << 0) + | |
573 ((u64) in[5]) * (in2[1] << 1) + | |
574 ((u64) in[6]) * (in2[0] << 0); | |
575 tmp[7] = ((u64) in[0]) * (in2[7] << 0) + | |
576 ((u64) in[1]) * (in2[6] << 0) + | |
577 ((u64) in[2]) * (in2[5] << 0) + | |
578 ((u64) in[3]) * (in2[4] << 0) + | |
579 ((u64) in[4]) * (in2[3] << 0) + | |
580 ((u64) in[5]) * (in2[2] << 0) + | |
581 ((u64) in[6]) * (in2[1] << 0) + | |
582 ((u64) in[7]) * (in2[0] << 0); | |
583 /* tmp[8] has the greatest value but doesn't overflow. See logic in | |
584 * felem_square. | |
585 */ | |
586 tmp[8] = ((u64) in[0]) * (in2[8] << 0) + | |
587 ((u64) in[1]) * (in2[7] << 1) + | |
588 ((u64) in[2]) * (in2[6] << 0) + | |
589 ((u64) in[3]) * (in2[5] << 1) + | |
590 ((u64) in[4]) * (in2[4] << 0) + | |
591 ((u64) in[5]) * (in2[3] << 1) + | |
592 ((u64) in[6]) * (in2[2] << 0) + | |
593 ((u64) in[7]) * (in2[1] << 1) + | |
594 ((u64) in[8]) * (in2[0] << 0); | |
595 tmp[9] = ((u64) in[1]) * (in2[8] << 0) + | |
596 ((u64) in[2]) * (in2[7] << 0) + | |
597 ((u64) in[3]) * (in2[6] << 0) + | |
598 ((u64) in[4]) * (in2[5] << 0) + | |
599 ((u64) in[5]) * (in2[4] << 0) + | |
600 ((u64) in[6]) * (in2[3] << 0) + | |
601 ((u64) in[7]) * (in2[2] << 0) + | |
602 ((u64) in[8]) * (in2[1] << 0); | |
603 tmp[10] = ((u64) in[2]) * (in2[8] << 0) + | |
604 ((u64) in[3]) * (in2[7] << 1) + | |
605 ((u64) in[4]) * (in2[6] << 0) + | |
606 ((u64) in[5]) * (in2[5] << 1) + | |
607 ((u64) in[6]) * (in2[4] << 0) + | |
608 ((u64) in[7]) * (in2[3] << 1) + | |
609 ((u64) in[8]) * (in2[2] << 0); | |
610 tmp[11] = ((u64) in[3]) * (in2[8] << 0) + | |
611 ((u64) in[4]) * (in2[7] << 0) + | |
612 ((u64) in[5]) * (in2[6] << 0) + | |
613 ((u64) in[6]) * (in2[5] << 0) + | |
614 ((u64) in[7]) * (in2[4] << 0) + | |
615 ((u64) in[8]) * (in2[3] << 0); | |
616 tmp[12] = ((u64) in[4]) * (in2[8] << 0) + | |
617 ((u64) in[5]) * (in2[7] << 1) + | |
618 ((u64) in[6]) * (in2[6] << 0) + | |
619 ((u64) in[7]) * (in2[5] << 1) + | |
620 ((u64) in[8]) * (in2[4] << 0); | |
621 tmp[13] = ((u64) in[5]) * (in2[8] << 0) + | |
622 ((u64) in[6]) * (in2[7] << 0) + | |
623 ((u64) in[7]) * (in2[6] << 0) + | |
624 ((u64) in[8]) * (in2[5] << 0); | |
625 tmp[14] = ((u64) in[6]) * (in2[8] << 0) + | |
626 ((u64) in[7]) * (in2[7] << 1) + | |
627 ((u64) in[8]) * (in2[6] << 0); | |
628 tmp[15] = ((u64) in[7]) * (in2[8] << 0) + | |
629 ((u64) in[8]) * (in2[7] << 0); | |
630 tmp[16] = ((u64) in[8]) * (in2[8] << 0); | |
631 | |
632 felem_reduce_degree(out, tmp); | |
633 } | |
634 | |
635 static void felem_assign(felem out, const felem in) | |
636 { | |
637 memcpy(out, in, sizeof(felem)); | |
638 } | |
639 | |
640 /* felem_inv calculates |out| = |in|^{-1} | |
641 * | |
642 * Based on Fermat's Little Theorem: | |
643 * a^p = a (mod p) | |
644 * a^{p-1} = 1 (mod p) | |
645 * a^{p-2} = a^{-1} (mod p) | |
646 */ | |
647 static void felem_inv(felem out, const felem in) | |
648 { | |
649 felem ftmp, ftmp2; | |
650 /* each e_I will hold |in|^{2^I - 1} */ | |
651 felem e2, e4, e8, e16, e32, e64; | |
652 unsigned int i; | |
653 | |
654 felem_square(ftmp, in); /* 2^1 */ | |
655 felem_mul(ftmp, in, ftmp); /* 2^2 - 2^0 */ | |
656 felem_assign(e2, ftmp); | |
657 felem_square(ftmp, ftmp); /* 2^3 - 2^1 */ | |
658 felem_square(ftmp, ftmp); /* 2^4 - 2^2 */ | |
659 felem_mul(ftmp, ftmp, e2); /* 2^4 - 2^0 */ | |
660 felem_assign(e4, ftmp); | |
661 felem_square(ftmp, ftmp); /* 2^5 - 2^1 */ | |
662 felem_square(ftmp, ftmp); /* 2^6 - 2^2 */ | |
663 felem_square(ftmp, ftmp); /* 2^7 - 2^3 */ | |
664 felem_square(ftmp, ftmp); /* 2^8 - 2^4 */ | |
665 felem_mul(ftmp, ftmp, e4); /* 2^8 - 2^0 */ | |
666 felem_assign(e8, ftmp); | |
667 for (i = 0; i < 8; i++) { | |
668 felem_square(ftmp, ftmp); | |
669 } /* 2^16 - 2^8 */ | |
670 felem_mul(ftmp, ftmp, e8); /* 2^16 - 2^0 */ | |
671 felem_assign(e16, ftmp); | |
672 for (i = 0; i < 16; i++) { | |
673 felem_square(ftmp, ftmp); | |
674 } /* 2^32 - 2^16 */ | |
675 felem_mul(ftmp, ftmp, e16); /* 2^32 - 2^0 */ | |
676 felem_assign(e32, ftmp); | |
677 for (i = 0; i < 32; i++) { | |
678 felem_square(ftmp, ftmp); | |
679 } /* 2^64 - 2^32 */ | |
680 felem_assign(e64, ftmp); | |
681 felem_mul(ftmp, ftmp, in); /* 2^64 - 2^32 + 2^0 */ | |
682 for (i = 0; i < 192; i++) { | |
683 felem_square(ftmp, ftmp); | |
684 } /* 2^256 - 2^224 + 2^192 */ | |
685 | |
686 felem_mul(ftmp2, e64, e32); /* 2^64 - 2^0 */ | |
687 for (i = 0; i < 16; i++) { | |
688 felem_square(ftmp2, ftmp2); | |
689 } /* 2^80 - 2^16 */ | |
690 felem_mul(ftmp2, ftmp2, e16); /* 2^80 - 2^0 */ | |
691 for (i = 0; i < 8; i++) { | |
692 felem_square(ftmp2, ftmp2); | |
693 } /* 2^88 - 2^8 */ | |
694 felem_mul(ftmp2, ftmp2, e8); /* 2^88 - 2^0 */ | |
695 for (i = 0; i < 4; i++) { | |
696 felem_square(ftmp2, ftmp2); | |
697 } /* 2^92 - 2^4 */ | |
698 felem_mul(ftmp2, ftmp2, e4); /* 2^92 - 2^0 */ | |
699 felem_square(ftmp2, ftmp2); /* 2^93 - 2^1 */ | |
700 felem_square(ftmp2, ftmp2); /* 2^94 - 2^2 */ | |
701 felem_mul(ftmp2, ftmp2, e2); /* 2^94 - 2^0 */ | |
702 felem_square(ftmp2, ftmp2); /* 2^95 - 2^1 */ | |
703 felem_square(ftmp2, ftmp2); /* 2^96 - 2^2 */ | |
704 felem_mul(ftmp2, ftmp2, in); /* 2^96 - 3 */ | |
705 | |
706 felem_mul(out, ftmp2, ftmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */ | |
707 } | |
708 | |
709 /* felem_scalar_3 sets out=3*out. | |
710 * | |
711 * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29. | |
712 * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. | |
713 */ | |
714 static void felem_scalar_3(felem out) | |
715 { | |
716 limb carry = 0; | |
717 unsigned int i; | |
718 | |
719 for (i = 0;; i++) { | |
720 out[i] *= 3; | |
721 out[i] += carry; | |
722 carry = out[i] >> 29; | |
723 out[i] &= kBottom29Bits; | |
724 | |
725 i++; | |
726 if (i == NLIMBS) | |
727 break; | |
728 | |
729 out[i] *= 3; | |
730 out[i] += carry; | |
731 carry = out[i] >> 28; | |
732 out[i] &= kBottom28Bits; | |
733 } | |
734 | |
735 felem_reduce_carry(out, carry); | |
736 } | |
737 | |
738 /* felem_scalar_4 sets out=4*out. | |
739 * | |
740 * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29. | |
741 * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. | |
742 */ | |
743 static void felem_scalar_4(felem out) | |
744 { | |
745 limb carry = 0, next_carry; | |
746 unsigned int i; | |
747 | |
748 for (i = 0;; i++) { | |
749 next_carry = out[i] >> 27; | |
750 out[i] <<= 2; | |
751 out[i] &= kBottom29Bits; | |
752 out[i] += carry; | |
753 carry = next_carry + (out[i] >> 29); | |
754 out[i] &= kBottom29Bits; | |
755 | |
756 i++; | |
757 if (i == NLIMBS) | |
758 break; | |
759 next_carry = out[i] >> 26; | |
760 out[i] <<= 2; | |
761 out[i] &= kBottom28Bits; | |
762 out[i] += carry; | |
763 carry = next_carry + (out[i] >> 28); | |
764 out[i] &= kBottom28Bits; | |
765 } | |
766 | |
767 felem_reduce_carry(out, carry); | |
768 } | |
769 | |
770 /* felem_scalar_8 sets out=8*out. | |
771 * | |
772 * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29. | |
773 * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. | |
774 */ | |
775 static void felem_scalar_8(felem out) | |
776 { | |
777 limb carry = 0, next_carry; | |
778 unsigned int i; | |
779 | |
780 for (i = 0;; i++) { | |
781 next_carry = out[i] >> 26; | |
782 out[i] <<= 3; | |
783 out[i] &= kBottom29Bits; | |
784 out[i] += carry; | |
785 carry = next_carry + (out[i] >> 29); | |
786 out[i] &= kBottom29Bits; | |
787 | |
788 i++; | |
789 if (i == NLIMBS) | |
790 break; | |
791 next_carry = out[i] >> 25; | |
792 out[i] <<= 3; | |
793 out[i] &= kBottom28Bits; | |
794 out[i] += carry; | |
795 carry = next_carry + (out[i] >> 28); | |
796 out[i] &= kBottom28Bits; | |
797 } | |
798 | |
799 felem_reduce_carry(out, carry); | |
800 } | |
801 | |
802 /* felem_is_zero_vartime returns 1 iff |in| == 0. It takes a variable amount of | |
803 * time depending on the value of |in|. | |
804 */ | |
805 static char felem_is_zero_vartime(const felem in) | |
806 { | |
807 limb carry; | |
808 int i; | |
809 limb tmp[NLIMBS]; | |
810 felem_assign(tmp, in); | |
811 | |
812 /* First, reduce tmp to a minimal form. | |
813 */ | |
814 do { | |
815 carry = 0; | |
816 for (i = 0;; i++) { | |
817 tmp[i] += carry; | |
818 carry = tmp[i] >> 29; | |
819 tmp[i] &= kBottom29Bits; | |
820 | |
821 i++; | |
822 if (i == NLIMBS) | |
823 break; | |
824 | |
825 tmp[i] += carry; | |
826 carry = tmp[i] >> 28; | |
827 tmp[i] &= kBottom28Bits; | |
828 } | |
829 | |
830 felem_reduce_carry(tmp, carry); | |
831 } while (carry); | |
832 | |
833 /* tmp < 2**257, so the only possible zero values are 0, p and 2p. | |
834 */ | |
835 return memcmp(tmp, kZero, sizeof(tmp)) == 0 || | |
836 memcmp(tmp, kP, sizeof(tmp)) == 0 || | |
837 memcmp(tmp, k2P, sizeof(tmp)) == 0; | |
838 } | |
839 | |
840 /* Group operations: | |
841 * | |
842 * Elements of the elliptic curve group are represented in Jacobian | |
843 * coordinates: (x, y, z). An affine point (x', y') is x'=x/z**2, y'=y/z**3 in | |
844 * Jacobian form. | |
845 */ | |
846 | |
847 /* point_double sets {x_out,y_out,z_out} = 2*{x,y,z}. | |
848 * | |
849 * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling
-dbl-2009-l | |
850 */ | |
851 static void point_double(felem x_out, felem y_out, felem z_out, | |
852 const felem x, const felem y, const felem z) | |
853 { | |
854 felem delta, gamma, alpha, beta, tmp, tmp2; | |
855 | |
856 felem_square(delta, z); | |
857 felem_square(gamma, y); | |
858 felem_mul(beta, x, gamma); | |
859 | |
860 felem_sum(tmp, x, delta); | |
861 felem_diff(tmp2, x, delta); | |
862 felem_mul(alpha, tmp, tmp2); | |
863 felem_scalar_3(alpha); | |
864 | |
865 felem_sum(tmp, y, z); | |
866 felem_square(tmp, tmp); | |
867 felem_diff(tmp, tmp, gamma); | |
868 felem_diff(z_out, tmp, delta); | |
869 | |
870 felem_scalar_4(beta); | |
871 felem_square(x_out, alpha); | |
872 felem_diff(x_out, x_out, beta); | |
873 felem_diff(x_out, x_out, beta); | |
874 | |
875 felem_diff(tmp, beta, x_out); | |
876 felem_mul(tmp, alpha, tmp); | |
877 felem_square(tmp2, gamma); | |
878 felem_scalar_8(tmp2); | |
879 felem_diff(y_out, tmp, tmp2); | |
880 } | |
881 | |
882 /* point_add_mixed sets {x_out,y_out,z_out} = {x1,y1,z1} + {x2,y2,1}. | |
883 * (i.e. the second point is affine.) | |
884 * | |
885 * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition
-add-2007-bl | |
886 * | |
887 * Note that this function does not handle P+P, infinity+P nor P+infinity | |
888 * correctly. | |
889 */ | |
890 static void point_add_mixed(felem x_out, felem y_out, felem z_out, | |
891 const felem x1, const felem y1, const felem z1, | |
892 const felem x2, const felem y2) | |
893 { | |
894 felem z1z1, z1z1z1, s2, u2, h, i, j, r, rr, v, tmp; | |
895 | |
896 felem_square(z1z1, z1); | |
897 felem_sum(tmp, z1, z1); | |
898 | |
899 felem_mul(u2, x2, z1z1); | |
900 felem_mul(z1z1z1, z1, z1z1); | |
901 felem_mul(s2, y2, z1z1z1); | |
902 felem_diff(h, u2, x1); | |
903 felem_sum(i, h, h); | |
904 felem_square(i, i); | |
905 felem_mul(j, h, i); | |
906 felem_diff(r, s2, y1); | |
907 felem_sum(r, r, r); | |
908 felem_mul(v, x1, i); | |
909 | |
910 felem_mul(z_out, tmp, h); | |
911 felem_square(rr, r); | |
912 felem_diff(x_out, rr, j); | |
913 felem_diff(x_out, x_out, v); | |
914 felem_diff(x_out, x_out, v); | |
915 | |
916 felem_diff(tmp, v, x_out); | |
917 felem_mul(y_out, tmp, r); | |
918 felem_mul(tmp, y1, j); | |
919 felem_diff(y_out, y_out, tmp); | |
920 felem_diff(y_out, y_out, tmp); | |
921 } | |
922 | |
923 /* point_add sets {x_out,y_out,z_out} = {x1,y1,z1} + {x2,y2,z2}. | |
924 * | |
925 * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition
-add-2007-bl | |
926 * | |
927 * Note that this function does not handle P+P, infinity+P nor P+infinity | |
928 * correctly. | |
929 */ | |
930 static void point_add(felem x_out, felem y_out, felem z_out, | |
931 const felem x1, const felem y1, const felem z1, | |
932 const felem x2, const felem y2, const felem z2) | |
933 { | |
934 felem z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp; | |
935 | |
936 felem_square(z1z1, z1); | |
937 felem_square(z2z2, z2); | |
938 felem_mul(u1, x1, z2z2); | |
939 | |
940 felem_sum(tmp, z1, z2); | |
941 felem_square(tmp, tmp); | |
942 felem_diff(tmp, tmp, z1z1); | |
943 felem_diff(tmp, tmp, z2z2); | |
944 | |
945 felem_mul(z2z2z2, z2, z2z2); | |
946 felem_mul(s1, y1, z2z2z2); | |
947 | |
948 felem_mul(u2, x2, z1z1); | |
949 felem_mul(z1z1z1, z1, z1z1); | |
950 felem_mul(s2, y2, z1z1z1); | |
951 felem_diff(h, u2, u1); | |
952 felem_sum(i, h, h); | |
953 felem_square(i, i); | |
954 felem_mul(j, h, i); | |
955 felem_diff(r, s2, s1); | |
956 felem_sum(r, r, r); | |
957 felem_mul(v, u1, i); | |
958 | |
959 felem_mul(z_out, tmp, h); | |
960 felem_square(rr, r); | |
961 felem_diff(x_out, rr, j); | |
962 felem_diff(x_out, x_out, v); | |
963 felem_diff(x_out, x_out, v); | |
964 | |
965 felem_diff(tmp, v, x_out); | |
966 felem_mul(y_out, tmp, r); | |
967 felem_mul(tmp, s1, j); | |
968 felem_diff(y_out, y_out, tmp); | |
969 felem_diff(y_out, y_out, tmp); | |
970 } | |
971 | |
972 /* point_add_or_double_vartime sets {x_out,y_out,z_out} = {x1,y1,z1} + | |
973 * {x2,y2,z2}. | |
974 * | |
975 * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition
-add-2007-bl | |
976 * | |
977 * This function handles the case where {x1,y1,z1}={x2,y2,z2}. | |
978 */ | |
979 static void point_add_or_double_vartime( | |
980 felem x_out, felem y_out, felem z_out, | |
981 const felem x1, const felem y1, const felem z1, | |
982 const felem x2, const felem y2, const felem z2) | |
983 { | |
984 felem z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp; | |
985 char x_equal, y_equal; | |
986 | |
987 felem_square(z1z1, z1); | |
988 felem_square(z2z2, z2); | |
989 felem_mul(u1, x1, z2z2); | |
990 | |
991 felem_sum(tmp, z1, z2); | |
992 felem_square(tmp, tmp); | |
993 felem_diff(tmp, tmp, z1z1); | |
994 felem_diff(tmp, tmp, z2z2); | |
995 | |
996 felem_mul(z2z2z2, z2, z2z2); | |
997 felem_mul(s1, y1, z2z2z2); | |
998 | |
999 felem_mul(u2, x2, z1z1); | |
1000 felem_mul(z1z1z1, z1, z1z1); | |
1001 felem_mul(s2, y2, z1z1z1); | |
1002 felem_diff(h, u2, u1); | |
1003 x_equal = felem_is_zero_vartime(h); | |
1004 felem_sum(i, h, h); | |
1005 felem_square(i, i); | |
1006 felem_mul(j, h, i); | |
1007 felem_diff(r, s2, s1); | |
1008 y_equal = felem_is_zero_vartime(r); | |
1009 if (x_equal && y_equal) { | |
1010 point_double(x_out, y_out, z_out, x1, y1, z1); | |
1011 return; | |
1012 } | |
1013 felem_sum(r, r, r); | |
1014 felem_mul(v, u1, i); | |
1015 | |
1016 felem_mul(z_out, tmp, h); | |
1017 felem_square(rr, r); | |
1018 felem_diff(x_out, rr, j); | |
1019 felem_diff(x_out, x_out, v); | |
1020 felem_diff(x_out, x_out, v); | |
1021 | |
1022 felem_diff(tmp, v, x_out); | |
1023 felem_mul(y_out, tmp, r); | |
1024 felem_mul(tmp, s1, j); | |
1025 felem_diff(y_out, y_out, tmp); | |
1026 felem_diff(y_out, y_out, tmp); | |
1027 } | |
1028 | |
1029 /* copy_conditional sets out=in if mask = 0xffffffff in constant time. | |
1030 * | |
1031 * On entry: mask is either 0 or 0xffffffff. | |
1032 */ | |
1033 static void copy_conditional(felem out, const felem in, limb mask) | |
1034 { | |
1035 int i; | |
1036 | |
1037 for (i = 0; i < NLIMBS; i++) { | |
1038 const limb tmp = mask & (in[i] ^ out[i]); | |
1039 out[i] ^= tmp; | |
1040 } | |
1041 } | |
1042 | |
1043 /* select_affine_point sets {out_x,out_y} to the index'th entry of table. | |
1044 * On entry: index < 16, table[0] must be zero. | |
1045 */ | |
1046 static void select_affine_point(felem out_x, felem out_y, | |
1047 const limb *table, limb index) | |
1048 { | |
1049 limb i, j; | |
1050 | |
1051 memset(out_x, 0, sizeof(felem)); | |
1052 memset(out_y, 0, sizeof(felem)); | |
1053 | |
1054 for (i = 1; i < 16; i++) { | |
1055 limb mask = i ^ index; | |
1056 mask |= mask >> 2; | |
1057 mask |= mask >> 1; | |
1058 mask &= 1; | |
1059 mask--; | |
1060 for (j = 0; j < NLIMBS; j++, table++) { | |
1061 out_x[j] |= *table & mask; | |
1062 } | |
1063 for (j = 0; j < NLIMBS; j++, table++) { | |
1064 out_y[j] |= *table & mask; | |
1065 } | |
1066 } | |
1067 } | |
1068 | |
1069 /* select_jacobian_point sets {out_x,out_y,out_z} to the index'th entry of | |
1070 * table. On entry: index < 16, table[0] must be zero. | |
1071 */ | |
1072 static void select_jacobian_point(felem out_x, felem out_y, felem out_z, | |
1073 const limb *table, limb index) | |
1074 { | |
1075 limb i, j; | |
1076 | |
1077 memset(out_x, 0, sizeof(felem)); | |
1078 memset(out_y, 0, sizeof(felem)); | |
1079 memset(out_z, 0, sizeof(felem)); | |
1080 | |
1081 /* The implicit value at index 0 is all zero. We don't need to perform that | |
1082 * iteration of the loop because we already set out_* to zero. | |
1083 */ | |
1084 table += 3*NLIMBS; | |
1085 | |
1086 for (i = 1; i < 16; i++) { | |
1087 limb mask = i ^ index; | |
1088 mask |= mask >> 2; | |
1089 mask |= mask >> 1; | |
1090 mask &= 1; | |
1091 mask--; | |
1092 for (j = 0; j < NLIMBS; j++, table++) { | |
1093 out_x[j] |= *table & mask; | |
1094 } | |
1095 for (j = 0; j < NLIMBS; j++, table++) { | |
1096 out_y[j] |= *table & mask; | |
1097 } | |
1098 for (j = 0; j < NLIMBS; j++, table++) { | |
1099 out_z[j] |= *table & mask; | |
1100 } | |
1101 } | |
1102 } | |
1103 | |
1104 /* get_bit returns the bit'th bit of scalar. */ | |
1105 static char get_bit(const u8 scalar[32], int bit) | |
1106 { | |
1107 return ((scalar[bit >> 3]) >> (bit & 7)) & 1; | |
1108 } | |
1109 | |
1110 /* scalar_base_mult sets {nx,ny,nz} = scalar*G where scalar is a little-endian | |
1111 * number. Note that the value of scalar must be less than the order of the | |
1112 * group. | |
1113 */ | |
1114 static void scalar_base_mult(felem nx, felem ny, felem nz, const u8 scalar[32]) | |
1115 { | |
1116 int i, j; | |
1117 limb n_is_infinity_mask = -1, p_is_noninfinite_mask, mask; | |
1118 u32 table_offset; | |
1119 | |
1120 felem px, py; | |
1121 felem tx, ty, tz; | |
1122 | |
1123 memset(nx, 0, sizeof(felem)); | |
1124 memset(ny, 0, sizeof(felem)); | |
1125 memset(nz, 0, sizeof(felem)); | |
1126 | |
1127 /* The loop adds bits at positions 0, 64, 128 and 192, followed by | |
1128 * positions 32,96,160 and 224 and does this 32 times. | |
1129 */ | |
1130 for (i = 0; i < 32; i++) { | |
1131 if (i) { | |
1132 point_double(nx, ny, nz, nx, ny, nz); | |
1133 } | |
1134 table_offset = 0; | |
1135 for (j = 0; j <= 32; j += 32) { | |
1136 char bit0 = get_bit(scalar, 31 - i + j); | |
1137 char bit1 = get_bit(scalar, 95 - i + j); | |
1138 char bit2 = get_bit(scalar, 159 - i + j); | |
1139 char bit3 = get_bit(scalar, 223 - i + j); | |
1140 limb index = bit0 | (bit1 << 1) | (bit2 << 2) | (bit3 << 3); | |
1141 | |
1142 select_affine_point(px, py, kPrecomputed + table_offset, index); | |
1143 table_offset += 30 * NLIMBS; | |
1144 | |
1145 /* Since scalar is less than the order of the group, we know that | |
1146 * {nx,ny,nz} != {px,py,1}, unless both are zero, which we handle | |
1147 * below. | |
1148 */ | |
1149 point_add_mixed(tx, ty, tz, nx, ny, nz, px, py); | |
1150 /* The result of point_add_mixed is incorrect if {nx,ny,nz} is zero | |
1151 * (a.k.a. the point at infinity). We handle that situation by | |
1152 * copying the point from the table. | |
1153 */ | |
1154 copy_conditional(nx, px, n_is_infinity_mask); | |
1155 copy_conditional(ny, py, n_is_infinity_mask); | |
1156 copy_conditional(nz, kOne, n_is_infinity_mask); | |
1157 | |
1158 /* Equally, the result is also wrong if the point from the table is | |
1159 * zero, which happens when the index is zero. We handle that by | |
1160 * only copying from {tx,ty,tz} to {nx,ny,nz} if index != 0. | |
1161 */ | |
1162 p_is_noninfinite_mask = NON_ZERO_TO_ALL_ONES(index); | |
1163 mask = p_is_noninfinite_mask & ~n_is_infinity_mask; | |
1164 copy_conditional(nx, tx, mask); | |
1165 copy_conditional(ny, ty, mask); | |
1166 copy_conditional(nz, tz, mask); | |
1167 /* If p was not zero, then n is now non-zero. */ | |
1168 n_is_infinity_mask &= ~p_is_noninfinite_mask; | |
1169 } | |
1170 } | |
1171 } | |
1172 | |
1173 /* point_to_affine converts a Jacobian point to an affine point. If the input | |
1174 * is the point at infinity then it returns (0, 0) in constant time. | |
1175 */ | |
1176 static void point_to_affine(felem x_out, felem y_out, | |
1177 const felem nx, const felem ny, const felem nz) { | |
1178 felem z_inv, z_inv_sq; | |
1179 felem_inv(z_inv, nz); | |
1180 felem_square(z_inv_sq, z_inv); | |
1181 felem_mul(x_out, nx, z_inv_sq); | |
1182 felem_mul(z_inv, z_inv, z_inv_sq); | |
1183 felem_mul(y_out, ny, z_inv); | |
1184 } | |
1185 | |
1186 /* scalar_mult sets {nx,ny,nz} = scalar*{x,y}. */ | |
1187 static void scalar_mult(felem nx, felem ny, felem nz, | |
1188 const felem x, const felem y, const u8 scalar[32]) | |
1189 { | |
1190 int i; | |
1191 felem px, py, pz, tx, ty, tz; | |
1192 felem precomp[16][3]; | |
1193 limb n_is_infinity_mask, index, p_is_noninfinite_mask, mask; | |
1194 | |
1195 /* We precompute 0,1,2,... times {x,y}. */ | |
1196 memset(precomp, 0, sizeof(felem) * 3); | |
1197 memcpy(&precomp[1][0], x, sizeof(felem)); | |
1198 memcpy(&precomp[1][1], y, sizeof(felem)); | |
1199 memcpy(&precomp[1][2], kOne, sizeof(felem)); | |
1200 | |
1201 for (i = 2; i < 16; i += 2) { | |
1202 point_double(precomp[i][0], precomp[i][1], precomp[i][2], | |
1203 precomp[i / 2][0], precomp[i / 2][1], precomp[i / 2][2]); | |
1204 | |
1205 point_add_mixed(precomp[i + 1][0], precomp[i + 1][1], precomp[i + 1][2], | |
1206 precomp[i][0], precomp[i][1], precomp[i][2], x, y); | |
1207 } | |
1208 | |
1209 memset(nx, 0, sizeof(felem)); | |
1210 memset(ny, 0, sizeof(felem)); | |
1211 memset(nz, 0, sizeof(felem)); | |
1212 n_is_infinity_mask = -1; | |
1213 | |
1214 /* We add in a window of four bits each iteration and do this 64 times. */ | |
1215 for (i = 0; i < 64; i++) { | |
1216 if (i) { | |
1217 point_double(nx, ny, nz, nx, ny, nz); | |
1218 point_double(nx, ny, nz, nx, ny, nz); | |
1219 point_double(nx, ny, nz, nx, ny, nz); | |
1220 point_double(nx, ny, nz, nx, ny, nz); | |
1221 } | |
1222 | |
1223 index = scalar[31 - i / 2]; | |
1224 if ((i & 1) == 1) { | |
1225 index &= 15; | |
1226 } else { | |
1227 index >>= 4; | |
1228 } | |
1229 | |
1230 /* See the comments in scalar_base_mult about handling infinities. */ | |
1231 select_jacobian_point(px, py, pz, precomp[0][0], index); | |
1232 point_add(tx, ty, tz, nx, ny, nz, px, py, pz); | |
1233 copy_conditional(nx, px, n_is_infinity_mask); | |
1234 copy_conditional(ny, py, n_is_infinity_mask); | |
1235 copy_conditional(nz, pz, n_is_infinity_mask); | |
1236 | |
1237 p_is_noninfinite_mask = NON_ZERO_TO_ALL_ONES(index); | |
1238 mask = p_is_noninfinite_mask & ~n_is_infinity_mask; | |
1239 copy_conditional(nx, tx, mask); | |
1240 copy_conditional(ny, ty, mask); | |
1241 copy_conditional(nz, tz, mask); | |
1242 n_is_infinity_mask &= ~p_is_noninfinite_mask; | |
1243 } | |
1244 } | |
1245 | |
1246 /* Interface with Freebl: */ | |
1247 | |
1248 /* BYTESWAP_MP_DIGIT_TO_LE swaps the bytes of a mp_digit to | |
1249 * little-endian order. | |
1250 */ | |
1251 #ifdef IS_BIG_ENDIAN | |
1252 #ifdef __APPLE__ | |
1253 #include <libkern/OSByteOrder.h> | |
1254 #define BYTESWAP32(x) OSSwapInt32(x) | |
1255 #define BYTESWAP64(x) OSSwapInt64(x) | |
1256 #else | |
1257 #define BYTESWAP32(x) \ | |
1258 ((x) >> 24 | (x) >> 8 & 0xff00 | ((x) & 0xff00) << 8 | (x) << 24) | |
1259 #define BYTESWAP64(x) \ | |
1260 ((x) >> 56 | (x) >> 40 & 0xff00 | \ | |
1261 (x) >> 24 & 0xff0000 | (x) >> 8 & 0xff000000 | \ | |
1262 ((x) & 0xff000000) << 8 | ((x) & 0xff0000) << 24 | \ | |
1263 ((x) & 0xff00) << 40 | (x) << 56) | |
1264 #endif | |
1265 | |
1266 #ifdef MP_USE_UINT_DIGIT | |
1267 #define BYTESWAP_MP_DIGIT_TO_LE(x) BYTESWAP32(x) | |
1268 #else | |
1269 #define BYTESWAP_MP_DIGIT_TO_LE(x) BYTESWAP64(x) | |
1270 #endif | |
1271 #endif /* IS_BIG_ENDIAN */ | |
1272 | |
1273 #ifdef MP_USE_UINT_DIGIT | |
1274 static const mp_digit kRInvDigits[8] = { | |
1275 0x80000000, 1, 0xffffffff, 0, | |
1276 0x80000001, 0xfffffffe, 1, 0x7fffffff | |
1277 }; | |
1278 #else | |
1279 static const mp_digit kRInvDigits[4] = { | |
1280 PR_UINT64(0x180000000), 0xffffffff, | |
1281 PR_UINT64(0xfffffffe80000001), PR_UINT64(0x7fffffff00000001) | |
1282 }; | |
1283 #endif | |
1284 #define MP_DIGITS_IN_256_BITS (32/sizeof(mp_digit)) | |
1285 static const mp_int kRInv = { | |
1286 MP_ZPOS, | |
1287 MP_DIGITS_IN_256_BITS, | |
1288 MP_DIGITS_IN_256_BITS, | |
1289 (mp_digit*) kRInvDigits | |
1290 }; | |
1291 | |
1292 static const limb kTwo28 = 0x10000000; | |
1293 static const limb kTwo29 = 0x20000000; | |
1294 | |
1295 /* to_montgomery sets out = R*in. */ | |
1296 static mp_err to_montgomery(felem out, const mp_int *in, const ECGroup *group) | |
1297 { | |
1298 /* There are no MPI functions for bitshift operations and we wish to shift | |
1299 * in 257 bits left so we move the digits 256-bits left and then multiply | |
1300 * by two. | |
1301 */ | |
1302 mp_int in_shifted; | |
1303 int i; | |
1304 mp_err res; | |
1305 | |
1306 mp_init(&in_shifted); | |
1307 s_mp_pad(&in_shifted, MP_USED(in) + MP_DIGITS_IN_256_BITS); | |
1308 memcpy(&MP_DIGIT(&in_shifted, MP_DIGITS_IN_256_BITS), | |
1309 MP_DIGITS(in), | |
1310 MP_USED(in)*sizeof(mp_digit)); | |
1311 mp_mul_2(&in_shifted, &in_shifted); | |
1312 MP_CHECKOK(group->meth->field_mod(&in_shifted, &in_shifted, group->meth)); | |
1313 | |
1314 for (i = 0;; i++) { | |
1315 out[i] = MP_DIGIT(&in_shifted, 0) & kBottom29Bits; | |
1316 mp_div_d(&in_shifted, kTwo29, &in_shifted, NULL); | |
1317 | |
1318 i++; | |
1319 if (i == NLIMBS) | |
1320 break; | |
1321 out[i] = MP_DIGIT(&in_shifted, 0) & kBottom28Bits; | |
1322 mp_div_d(&in_shifted, kTwo28, &in_shifted, NULL); | |
1323 } | |
1324 | |
1325 CLEANUP: | |
1326 mp_clear(&in_shifted); | |
1327 return res; | |
1328 } | |
1329 | |
1330 /* from_montgomery sets out=in/R. */ | |
1331 static mp_err from_montgomery(mp_int *out, const felem in, | |
1332 const ECGroup *group) | |
1333 { | |
1334 mp_int result, tmp; | |
1335 mp_err res; | |
1336 int i; | |
1337 | |
1338 mp_init(&result); | |
1339 mp_init(&tmp); | |
1340 | |
1341 MP_CHECKOK(mp_add_d(&tmp, in[NLIMBS-1], &result)); | |
1342 for (i = NLIMBS-2; i >= 0; i--) { | |
1343 if ((i & 1) == 0) { | |
1344 MP_CHECKOK(mp_mul_d(&result, kTwo29, &tmp)); | |
1345 } else { | |
1346 MP_CHECKOK(mp_mul_d(&result, kTwo28, &tmp)); | |
1347 } | |
1348 MP_CHECKOK(mp_add_d(&tmp, in[i], &result)); | |
1349 } | |
1350 | |
1351 MP_CHECKOK(mp_mul(&result, &kRInv, out)); | |
1352 MP_CHECKOK(group->meth->field_mod(out, out, group->meth)); | |
1353 | |
1354 CLEANUP: | |
1355 mp_clear(&result); | |
1356 mp_clear(&tmp); | |
1357 return res; | |
1358 } | |
1359 | |
1360 /* scalar_from_mp_int sets out_scalar=n, where n < the group order. */ | |
1361 static void scalar_from_mp_int(u8 out_scalar[32], const mp_int *n) | |
1362 { | |
1363 /* We require that |n| is less than the order of the group and therefore it | |
1364 * will fit into |out_scalar|. However, these is a timing side-channel here | |
1365 * that we cannot avoid: if |n| is sufficiently small it may be one or more | |
1366 * words too short and we'll copy less data. | |
1367 */ | |
1368 PORT_Assert(MP_USED(n) * sizeof(mp_digit) <= 32); | |
1369 memset(out_scalar, 0, 32); | |
1370 #ifdef IS_LITTLE_ENDIAN | |
1371 memcpy(out_scalar, MP_DIGITS(n), MP_USED(n) * sizeof(mp_digit)); | |
1372 #else | |
1373 { | |
1374 mp_size i; | |
1375 mp_digit swapped[MP_DIGITS_IN_256_BITS]; | |
1376 for (i = 0; i < MP_USED(n); i++) { | |
1377 swapped[i] = BYTESWAP_MP_DIGIT_TO_LE(MP_DIGIT(n, i)); | |
1378 } | |
1379 memcpy(out_scalar, swapped, MP_USED(n) * sizeof(mp_digit)); | |
1380 } | |
1381 #endif | |
1382 } | |
1383 | |
1384 /* ec_GFp_nistp256_base_point_mul sets {out_x,out_y} = nG, where n is < the | |
1385 * order of the group. | |
1386 */ | |
1387 static mp_err ec_GFp_nistp256_base_point_mul(const mp_int *n, | |
1388 mp_int *out_x, mp_int *out_y, | |
1389 const ECGroup *group) | |
1390 { | |
1391 u8 scalar[32]; | |
1392 felem x, y, z, x_affine, y_affine; | |
1393 mp_err res; | |
1394 | |
1395 /* FIXME(agl): test that n < order. */ | |
1396 | |
1397 scalar_from_mp_int(scalar, n); | |
1398 scalar_base_mult(x, y, z, scalar); | |
1399 point_to_affine(x_affine, y_affine, x, y, z); | |
1400 MP_CHECKOK(from_montgomery(out_x, x_affine, group)); | |
1401 MP_CHECKOK(from_montgomery(out_y, y_affine, group)); | |
1402 | |
1403 CLEANUP: | |
1404 return res; | |
1405 } | |
1406 | |
1407 /* ec_GFp_nistp256_point_mul sets {out_x,out_y} = n*{in_x,in_y}, where n is < | |
1408 * the order of the group. | |
1409 */ | |
1410 static mp_err ec_GFp_nistp256_point_mul(const mp_int *n, | |
1411 const mp_int *in_x, const mp_int *in_y, | |
1412 mp_int *out_x, mp_int *out_y, | |
1413 const ECGroup *group) | |
1414 { | |
1415 u8 scalar[32]; | |
1416 felem x, y, z, x_affine, y_affine, px, py; | |
1417 mp_err res; | |
1418 | |
1419 scalar_from_mp_int(scalar, n); | |
1420 | |
1421 MP_CHECKOK(to_montgomery(px, in_x, group)); | |
1422 MP_CHECKOK(to_montgomery(py, in_y, group)); | |
1423 | |
1424 scalar_mult(x, y, z, px, py, scalar); | |
1425 point_to_affine(x_affine, y_affine, x, y, z); | |
1426 MP_CHECKOK(from_montgomery(out_x, x_affine, group)); | |
1427 MP_CHECKOK(from_montgomery(out_y, y_affine, group)); | |
1428 | |
1429 CLEANUP: | |
1430 return res; | |
1431 } | |
1432 | |
1433 /* ec_GFp_nistp256_point_mul_vartime sets {out_x,out_y} = n1*G + | |
1434 * n2*{in_x,in_y}, where n1 and n2 are < the order of the group. | |
1435 * | |
1436 * As indicated by the name, this function operates in variable time. This | |
1437 * is safe because it's used for signature validation which doesn't deal | |
1438 * with secrets. | |
1439 */ | |
1440 static mp_err ec_GFp_nistp256_points_mul_vartime( | |
1441 const mp_int *n1, const mp_int *n2, | |
1442 const mp_int *in_x, const mp_int *in_y, | |
1443 mp_int *out_x, mp_int *out_y, | |
1444 const ECGroup *group) | |
1445 { | |
1446 u8 scalar1[32], scalar2[32]; | |
1447 felem x1, y1, z1, x2, y2, z2, x_affine, y_affine, px, py; | |
1448 mp_err res = MP_OKAY; | |
1449 | |
1450 /* If n2 == NULL, this is just a base-point multiplication. */ | |
1451 if (n2 == NULL) { | |
1452 return ec_GFp_nistp256_base_point_mul(n1, out_x, out_y, group); | |
1453 } | |
1454 | |
1455 /* If n1 == nULL, this is just an arbitary-point multiplication. */ | |
1456 if (n1 == NULL) { | |
1457 return ec_GFp_nistp256_point_mul(n2, in_x, in_y, out_x, out_y, group); | |
1458 } | |
1459 | |
1460 /* If both scalars are zero, then the result is the point at infinity. */ | |
1461 if (mp_cmp_z(n1) == 0 && mp_cmp_z(n2) == 0) { | |
1462 mp_zero(out_x); | |
1463 mp_zero(out_y); | |
1464 return res; | |
1465 } | |
1466 | |
1467 scalar_from_mp_int(scalar1, n1); | |
1468 scalar_from_mp_int(scalar2, n2); | |
1469 | |
1470 MP_CHECKOK(to_montgomery(px, in_x, group)); | |
1471 MP_CHECKOK(to_montgomery(py, in_y, group)); | |
1472 scalar_base_mult(x1, y1, z1, scalar1); | |
1473 scalar_mult(x2, y2, z2, px, py, scalar2); | |
1474 | |
1475 if (mp_cmp_z(n2) == 0) { | |
1476 /* If n2 == 0, then {x2,y2,z2} is zero and the result is just | |
1477 * {x1,y1,z1}. */ | |
1478 } else if (mp_cmp_z(n1) == 0) { | |
1479 /* If n1 == 0, then {x1,y1,z1} is zero and the result is just | |
1480 * {x2,y2,z2}. */ | |
1481 memcpy(x1, x2, sizeof(x2)); | |
1482 memcpy(y1, y2, sizeof(y2)); | |
1483 memcpy(z1, z2, sizeof(z2)); | |
1484 } else { | |
1485 /* This function handles the case where {x1,y1,z1} == {x2,y2,z2}. */ | |
1486 point_add_or_double_vartime(x1, y1, z1, x1, y1, z1, x2, y2, z2); | |
1487 } | |
1488 | |
1489 point_to_affine(x_affine, y_affine, x1, y1, z1); | |
1490 MP_CHECKOK(from_montgomery(out_x, x_affine, group)); | |
1491 MP_CHECKOK(from_montgomery(out_y, y_affine, group)); | |
1492 | |
1493 CLEANUP: | |
1494 return res; | |
1495 } | |
1496 | |
1497 /* Wire in fast point multiplication for named curves. */ | |
1498 mp_err ec_group_set_gfp256_32(ECGroup *group, ECCurveName name) | |
1499 { | |
1500 if (name == ECCurve_NIST_P256) { | |
1501 group->base_point_mul = &ec_GFp_nistp256_base_point_mul; | |
1502 group->point_mul = &ec_GFp_nistp256_point_mul; | |
1503 group->points_mul = &ec_GFp_nistp256_points_mul_vartime; | |
1504 } | |
1505 return MP_OKAY; | |
1506 } | |
OLD | NEW |