| Index: Source/WTF/wtf/dtoa.cpp
|
| diff --git a/Source/WTF/wtf/dtoa.cpp b/Source/WTF/wtf/dtoa.cpp
|
| deleted file mode 100644
|
| index 7de4172c4bb1b9572e8916b7897e4d84f677a245..0000000000000000000000000000000000000000
|
| --- a/Source/WTF/wtf/dtoa.cpp
|
| +++ /dev/null
|
| @@ -1,1313 +0,0 @@
|
| -/****************************************************************
|
| - *
|
| - * The author of this software is David M. Gay.
|
| - *
|
| - * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
|
| - * Copyright (C) 2002, 2005, 2006, 2007, 2008, 2010, 2012 Apple Inc. All rights reserved.
|
| - *
|
| - * Permission to use, copy, modify, and distribute this software for any
|
| - * purpose without fee is hereby granted, provided that this entire notice
|
| - * is included in all copies of any software which is or includes a copy
|
| - * or modification of this software and in all copies of the supporting
|
| - * documentation for such software.
|
| - *
|
| - * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
|
| - * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
|
| - * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
|
| - * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
|
| - *
|
| - ***************************************************************/
|
| -
|
| -/* Please send bug reports to David M. Gay (dmg at acm dot org,
|
| - * with " at " changed at "@" and " dot " changed to "."). */
|
| -
|
| -/* On a machine with IEEE extended-precision registers, it is
|
| - * necessary to specify double-precision (53-bit) rounding precision
|
| - * before invoking strtod or dtoa. If the machine uses (the equivalent
|
| - * of) Intel 80x87 arithmetic, the call
|
| - * _control87(PC_53, MCW_PC);
|
| - * does this with many compilers. Whether this or another call is
|
| - * appropriate depends on the compiler; for this to work, it may be
|
| - * necessary to #include "float.h" or another system-dependent header
|
| - * file.
|
| - */
|
| -
|
| -#include "config.h"
|
| -#include "dtoa.h"
|
| -
|
| -#include <stdio.h>
|
| -#include <wtf/MathExtras.h>
|
| -#include <wtf/Threading.h>
|
| -#include <wtf/Vector.h>
|
| -
|
| -#if COMPILER(MSVC)
|
| -#pragma warning(disable: 4244)
|
| -#pragma warning(disable: 4245)
|
| -#pragma warning(disable: 4554)
|
| -#endif
|
| -
|
| -namespace WTF {
|
| -
|
| -Mutex* s_dtoaP5Mutex;
|
| -
|
| -typedef union {
|
| - double d;
|
| - uint32_t L[2];
|
| -} U;
|
| -
|
| -#if CPU(BIG_ENDIAN) || CPU(MIDDLE_ENDIAN)
|
| -#define word0(x) (x)->L[0]
|
| -#define word1(x) (x)->L[1]
|
| -#else
|
| -#define word0(x) (x)->L[1]
|
| -#define word1(x) (x)->L[0]
|
| -#endif
|
| -#define dval(x) (x)->d
|
| -
|
| -/* The following definition of Storeinc is appropriate for MIPS processors.
|
| - * An alternative that might be better on some machines is
|
| - * *p++ = high << 16 | low & 0xffff;
|
| - */
|
| -static ALWAYS_INLINE uint32_t* storeInc(uint32_t* p, uint16_t high, uint16_t low)
|
| -{
|
| - uint16_t* p16 = reinterpret_cast<uint16_t*>(p);
|
| -#if CPU(BIG_ENDIAN)
|
| - p16[0] = high;
|
| - p16[1] = low;
|
| -#else
|
| - p16[1] = high;
|
| - p16[0] = low;
|
| -#endif
|
| - return p + 1;
|
| -}
|
| -
|
| -#define Exp_shift 20
|
| -#define Exp_shift1 20
|
| -#define Exp_msk1 0x100000
|
| -#define Exp_msk11 0x100000
|
| -#define Exp_mask 0x7ff00000
|
| -#define P 53
|
| -#define Bias 1023
|
| -#define Emin (-1022)
|
| -#define Exp_1 0x3ff00000
|
| -#define Exp_11 0x3ff00000
|
| -#define Ebits 11
|
| -#define Frac_mask 0xfffff
|
| -#define Frac_mask1 0xfffff
|
| -#define Ten_pmax 22
|
| -#define Bletch 0x10
|
| -#define Bndry_mask 0xfffff
|
| -#define Bndry_mask1 0xfffff
|
| -#define LSB 1
|
| -#define Sign_bit 0x80000000
|
| -#define Log2P 1
|
| -#define Tiny0 0
|
| -#define Tiny1 1
|
| -#define Quick_max 14
|
| -#define Int_max 14
|
| -
|
| -#define rounded_product(a, b) a *= b
|
| -#define rounded_quotient(a, b) a /= b
|
| -
|
| -#define Big0 (Frac_mask1 | Exp_msk1 * (DBL_MAX_EXP + Bias - 1))
|
| -#define Big1 0xffffffff
|
| -
|
| -#if CPU(PPC64) || CPU(X86_64)
|
| -// FIXME: should we enable this on all 64-bit CPUs?
|
| -// 64-bit emulation provided by the compiler is likely to be slower than dtoa own code on 32-bit hardware.
|
| -#define USE_LONG_LONG
|
| -#endif
|
| -
|
| -struct BigInt {
|
| - BigInt() : sign(0) { }
|
| - int sign;
|
| -
|
| - void clear()
|
| - {
|
| - sign = 0;
|
| - m_words.clear();
|
| - }
|
| -
|
| - size_t size() const
|
| - {
|
| - return m_words.size();
|
| - }
|
| -
|
| - void resize(size_t s)
|
| - {
|
| - m_words.resize(s);
|
| - }
|
| -
|
| - uint32_t* words()
|
| - {
|
| - return m_words.data();
|
| - }
|
| -
|
| - const uint32_t* words() const
|
| - {
|
| - return m_words.data();
|
| - }
|
| -
|
| - void append(uint32_t w)
|
| - {
|
| - m_words.append(w);
|
| - }
|
| -
|
| - Vector<uint32_t, 16> m_words;
|
| -};
|
| -
|
| -static void multadd(BigInt& b, int m, int a) /* multiply by m and add a */
|
| -{
|
| -#ifdef USE_LONG_LONG
|
| - unsigned long long carry;
|
| -#else
|
| - uint32_t carry;
|
| -#endif
|
| -
|
| - int wds = b.size();
|
| - uint32_t* x = b.words();
|
| - int i = 0;
|
| - carry = a;
|
| - do {
|
| -#ifdef USE_LONG_LONG
|
| - unsigned long long y = *x * (unsigned long long)m + carry;
|
| - carry = y >> 32;
|
| - *x++ = (uint32_t)y & 0xffffffffUL;
|
| -#else
|
| - uint32_t xi = *x;
|
| - uint32_t y = (xi & 0xffff) * m + carry;
|
| - uint32_t z = (xi >> 16) * m + (y >> 16);
|
| - carry = z >> 16;
|
| - *x++ = (z << 16) + (y & 0xffff);
|
| -#endif
|
| - } while (++i < wds);
|
| -
|
| - if (carry)
|
| - b.append((uint32_t)carry);
|
| -}
|
| -
|
| -static int hi0bits(uint32_t x)
|
| -{
|
| - int k = 0;
|
| -
|
| - if (!(x & 0xffff0000)) {
|
| - k = 16;
|
| - x <<= 16;
|
| - }
|
| - if (!(x & 0xff000000)) {
|
| - k += 8;
|
| - x <<= 8;
|
| - }
|
| - if (!(x & 0xf0000000)) {
|
| - k += 4;
|
| - x <<= 4;
|
| - }
|
| - if (!(x & 0xc0000000)) {
|
| - k += 2;
|
| - x <<= 2;
|
| - }
|
| - if (!(x & 0x80000000)) {
|
| - k++;
|
| - if (!(x & 0x40000000))
|
| - return 32;
|
| - }
|
| - return k;
|
| -}
|
| -
|
| -static int lo0bits(uint32_t* y)
|
| -{
|
| - int k;
|
| - uint32_t x = *y;
|
| -
|
| - if (x & 7) {
|
| - if (x & 1)
|
| - return 0;
|
| - if (x & 2) {
|
| - *y = x >> 1;
|
| - return 1;
|
| - }
|
| - *y = x >> 2;
|
| - return 2;
|
| - }
|
| - k = 0;
|
| - if (!(x & 0xffff)) {
|
| - k = 16;
|
| - x >>= 16;
|
| - }
|
| - if (!(x & 0xff)) {
|
| - k += 8;
|
| - x >>= 8;
|
| - }
|
| - if (!(x & 0xf)) {
|
| - k += 4;
|
| - x >>= 4;
|
| - }
|
| - if (!(x & 0x3)) {
|
| - k += 2;
|
| - x >>= 2;
|
| - }
|
| - if (!(x & 1)) {
|
| - k++;
|
| - x >>= 1;
|
| - if (!x)
|
| - return 32;
|
| - }
|
| - *y = x;
|
| - return k;
|
| -}
|
| -
|
| -static void i2b(BigInt& b, int i)
|
| -{
|
| - b.sign = 0;
|
| - b.resize(1);
|
| - b.words()[0] = i;
|
| -}
|
| -
|
| -static void mult(BigInt& aRef, const BigInt& bRef)
|
| -{
|
| - const BigInt* a = &aRef;
|
| - const BigInt* b = &bRef;
|
| - BigInt c;
|
| - int wa, wb, wc;
|
| - const uint32_t* x = 0;
|
| - const uint32_t* xa;
|
| - const uint32_t* xb;
|
| - const uint32_t* xae;
|
| - const uint32_t* xbe;
|
| - uint32_t* xc;
|
| - uint32_t* xc0;
|
| - uint32_t y;
|
| -#ifdef USE_LONG_LONG
|
| - unsigned long long carry, z;
|
| -#else
|
| - uint32_t carry, z;
|
| -#endif
|
| -
|
| - if (a->size() < b->size()) {
|
| - const BigInt* tmp = a;
|
| - a = b;
|
| - b = tmp;
|
| - }
|
| -
|
| - wa = a->size();
|
| - wb = b->size();
|
| - wc = wa + wb;
|
| - c.resize(wc);
|
| -
|
| - for (xc = c.words(), xa = xc + wc; xc < xa; xc++)
|
| - *xc = 0;
|
| - xa = a->words();
|
| - xae = xa + wa;
|
| - xb = b->words();
|
| - xbe = xb + wb;
|
| - xc0 = c.words();
|
| -#ifdef USE_LONG_LONG
|
| - for (; xb < xbe; xc0++) {
|
| - if ((y = *xb++)) {
|
| - x = xa;
|
| - xc = xc0;
|
| - carry = 0;
|
| - do {
|
| - z = *x++ * (unsigned long long)y + *xc + carry;
|
| - carry = z >> 32;
|
| - *xc++ = (uint32_t)z & 0xffffffffUL;
|
| - } while (x < xae);
|
| - *xc = (uint32_t)carry;
|
| - }
|
| - }
|
| -#else
|
| - for (; xb < xbe; xb++, xc0++) {
|
| - if ((y = *xb & 0xffff)) {
|
| - x = xa;
|
| - xc = xc0;
|
| - carry = 0;
|
| - do {
|
| - z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
|
| - carry = z >> 16;
|
| - uint32_t z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
|
| - carry = z2 >> 16;
|
| - xc = storeInc(xc, z2, z);
|
| - } while (x < xae);
|
| - *xc = carry;
|
| - }
|
| - if ((y = *xb >> 16)) {
|
| - x = xa;
|
| - xc = xc0;
|
| - carry = 0;
|
| - uint32_t z2 = *xc;
|
| - do {
|
| - z = (*x & 0xffff) * y + (*xc >> 16) + carry;
|
| - carry = z >> 16;
|
| - xc = storeInc(xc, z, z2);
|
| - z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
|
| - carry = z2 >> 16;
|
| - } while (x < xae);
|
| - *xc = z2;
|
| - }
|
| - }
|
| -#endif
|
| - for (xc0 = c.words(), xc = xc0 + wc; wc > 0 && !*--xc; --wc) { }
|
| - c.resize(wc);
|
| - aRef = c;
|
| -}
|
| -
|
| -struct P5Node {
|
| - WTF_MAKE_NONCOPYABLE(P5Node); WTF_MAKE_FAST_ALLOCATED;
|
| -public:
|
| - P5Node() { }
|
| - BigInt val;
|
| - P5Node* next;
|
| -};
|
| -
|
| -static P5Node* p5s;
|
| -static int p5sCount;
|
| -
|
| -static ALWAYS_INLINE void pow5mult(BigInt& b, int k)
|
| -{
|
| - static int p05[3] = { 5, 25, 125 };
|
| -
|
| - if (int i = k & 3)
|
| - multadd(b, p05[i - 1], 0);
|
| -
|
| - if (!(k >>= 2))
|
| - return;
|
| -
|
| - s_dtoaP5Mutex->lock();
|
| - P5Node* p5 = p5s;
|
| -
|
| - if (!p5) {
|
| - /* first time */
|
| - p5 = new P5Node;
|
| - i2b(p5->val, 625);
|
| - p5->next = 0;
|
| - p5s = p5;
|
| - p5sCount = 1;
|
| - }
|
| -
|
| - int p5sCountLocal = p5sCount;
|
| - s_dtoaP5Mutex->unlock();
|
| - int p5sUsed = 0;
|
| -
|
| - for (;;) {
|
| - if (k & 1)
|
| - mult(b, p5->val);
|
| -
|
| - if (!(k >>= 1))
|
| - break;
|
| -
|
| - if (++p5sUsed == p5sCountLocal) {
|
| - s_dtoaP5Mutex->lock();
|
| - if (p5sUsed == p5sCount) {
|
| - ASSERT(!p5->next);
|
| - p5->next = new P5Node;
|
| - p5->next->next = 0;
|
| - p5->next->val = p5->val;
|
| - mult(p5->next->val, p5->next->val);
|
| - ++p5sCount;
|
| - }
|
| -
|
| - p5sCountLocal = p5sCount;
|
| - s_dtoaP5Mutex->unlock();
|
| - }
|
| - p5 = p5->next;
|
| - }
|
| -}
|
| -
|
| -static ALWAYS_INLINE void lshift(BigInt& b, int k)
|
| -{
|
| - int n = k >> 5;
|
| -
|
| - int origSize = b.size();
|
| - int n1 = n + origSize + 1;
|
| -
|
| - if (k &= 0x1f)
|
| - b.resize(b.size() + n + 1);
|
| - else
|
| - b.resize(b.size() + n);
|
| -
|
| - const uint32_t* srcStart = b.words();
|
| - uint32_t* dstStart = b.words();
|
| - const uint32_t* src = srcStart + origSize - 1;
|
| - uint32_t* dst = dstStart + n1 - 1;
|
| - if (k) {
|
| - uint32_t hiSubword = 0;
|
| - int s = 32 - k;
|
| - for (; src >= srcStart; --src) {
|
| - *dst-- = hiSubword | *src >> s;
|
| - hiSubword = *src << k;
|
| - }
|
| - *dst = hiSubword;
|
| - ASSERT(dst == dstStart + n);
|
| -
|
| - b.resize(origSize + n + !!b.words()[n1 - 1]);
|
| - }
|
| - else {
|
| - do {
|
| - *--dst = *src--;
|
| - } while (src >= srcStart);
|
| - }
|
| - for (dst = dstStart + n; dst != dstStart; )
|
| - *--dst = 0;
|
| -
|
| - ASSERT(b.size() <= 1 || b.words()[b.size() - 1]);
|
| -}
|
| -
|
| -static int cmp(const BigInt& a, const BigInt& b)
|
| -{
|
| - const uint32_t *xa, *xa0, *xb, *xb0;
|
| - int i, j;
|
| -
|
| - i = a.size();
|
| - j = b.size();
|
| - ASSERT(i <= 1 || a.words()[i - 1]);
|
| - ASSERT(j <= 1 || b.words()[j - 1]);
|
| - if (i -= j)
|
| - return i;
|
| - xa0 = a.words();
|
| - xa = xa0 + j;
|
| - xb0 = b.words();
|
| - xb = xb0 + j;
|
| - for (;;) {
|
| - if (*--xa != *--xb)
|
| - return *xa < *xb ? -1 : 1;
|
| - if (xa <= xa0)
|
| - break;
|
| - }
|
| - return 0;
|
| -}
|
| -
|
| -static ALWAYS_INLINE void diff(BigInt& c, const BigInt& aRef, const BigInt& bRef)
|
| -{
|
| - const BigInt* a = &aRef;
|
| - const BigInt* b = &bRef;
|
| - int i, wa, wb;
|
| - uint32_t* xc;
|
| -
|
| - i = cmp(*a, *b);
|
| - if (!i) {
|
| - c.sign = 0;
|
| - c.resize(1);
|
| - c.words()[0] = 0;
|
| - return;
|
| - }
|
| - if (i < 0) {
|
| - const BigInt* tmp = a;
|
| - a = b;
|
| - b = tmp;
|
| - i = 1;
|
| - } else
|
| - i = 0;
|
| -
|
| - wa = a->size();
|
| - const uint32_t* xa = a->words();
|
| - const uint32_t* xae = xa + wa;
|
| - wb = b->size();
|
| - const uint32_t* xb = b->words();
|
| - const uint32_t* xbe = xb + wb;
|
| -
|
| - c.resize(wa);
|
| - c.sign = i;
|
| - xc = c.words();
|
| -#ifdef USE_LONG_LONG
|
| - unsigned long long borrow = 0;
|
| - do {
|
| - unsigned long long y = (unsigned long long)*xa++ - *xb++ - borrow;
|
| - borrow = y >> 32 & (uint32_t)1;
|
| - *xc++ = (uint32_t)y & 0xffffffffUL;
|
| - } while (xb < xbe);
|
| - while (xa < xae) {
|
| - unsigned long long y = *xa++ - borrow;
|
| - borrow = y >> 32 & (uint32_t)1;
|
| - *xc++ = (uint32_t)y & 0xffffffffUL;
|
| - }
|
| -#else
|
| - uint32_t borrow = 0;
|
| - do {
|
| - uint32_t y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
|
| - borrow = (y & 0x10000) >> 16;
|
| - uint32_t z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
|
| - borrow = (z & 0x10000) >> 16;
|
| - xc = storeInc(xc, z, y);
|
| - } while (xb < xbe);
|
| - while (xa < xae) {
|
| - uint32_t y = (*xa & 0xffff) - borrow;
|
| - borrow = (y & 0x10000) >> 16;
|
| - uint32_t z = (*xa++ >> 16) - borrow;
|
| - borrow = (z & 0x10000) >> 16;
|
| - xc = storeInc(xc, z, y);
|
| - }
|
| -#endif
|
| - while (!*--xc)
|
| - wa--;
|
| - c.resize(wa);
|
| -}
|
| -
|
| -static ALWAYS_INLINE void d2b(BigInt& b, U* d, int* e, int* bits)
|
| -{
|
| - int de, k;
|
| - uint32_t* x;
|
| - uint32_t y, z;
|
| - int i;
|
| -#define d0 word0(d)
|
| -#define d1 word1(d)
|
| -
|
| - b.sign = 0;
|
| - b.resize(1);
|
| - x = b.words();
|
| -
|
| - z = d0 & Frac_mask;
|
| - d0 &= 0x7fffffff; /* clear sign bit, which we ignore */
|
| - if ((de = (int)(d0 >> Exp_shift)))
|
| - z |= Exp_msk1;
|
| - if ((y = d1)) {
|
| - if ((k = lo0bits(&y))) {
|
| - x[0] = y | (z << (32 - k));
|
| - z >>= k;
|
| - } else
|
| - x[0] = y;
|
| - if (z) {
|
| - b.resize(2);
|
| - x[1] = z;
|
| - }
|
| -
|
| - i = b.size();
|
| - } else {
|
| - k = lo0bits(&z);
|
| - x[0] = z;
|
| - i = 1;
|
| - b.resize(1);
|
| - k += 32;
|
| - }
|
| - if (de) {
|
| - *e = de - Bias - (P - 1) + k;
|
| - *bits = P - k;
|
| - } else {
|
| - *e = 0 - Bias - (P - 1) + 1 + k;
|
| - *bits = (32 * i) - hi0bits(x[i - 1]);
|
| - }
|
| -}
|
| -#undef d0
|
| -#undef d1
|
| -
|
| -static const double tens[] = {
|
| - 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
|
| - 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
|
| - 1e20, 1e21, 1e22
|
| -};
|
| -
|
| -static const double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
|
| -static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
|
| - 9007199254740992. * 9007199254740992.e-256
|
| - /* = 2^106 * 1e-256 */
|
| -};
|
| -
|
| -/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
|
| -/* flag unnecessarily. It leads to a song and dance at the end of strtod. */
|
| -#define Scale_Bit 0x10
|
| -#define n_bigtens 5
|
| -
|
| -static ALWAYS_INLINE int quorem(BigInt& b, BigInt& S)
|
| -{
|
| - size_t n;
|
| - uint32_t* bx;
|
| - uint32_t* bxe;
|
| - uint32_t q;
|
| - uint32_t* sx;
|
| - uint32_t* sxe;
|
| -#ifdef USE_LONG_LONG
|
| - unsigned long long borrow, carry, y, ys;
|
| -#else
|
| - uint32_t borrow, carry, y, ys;
|
| - uint32_t si, z, zs;
|
| -#endif
|
| - ASSERT(b.size() <= 1 || b.words()[b.size() - 1]);
|
| - ASSERT(S.size() <= 1 || S.words()[S.size() - 1]);
|
| -
|
| - n = S.size();
|
| - ASSERT_WITH_MESSAGE(b.size() <= n, "oversize b in quorem");
|
| - if (b.size() < n)
|
| - return 0;
|
| - sx = S.words();
|
| - sxe = sx + --n;
|
| - bx = b.words();
|
| - bxe = bx + n;
|
| - q = *bxe / (*sxe + 1); /* ensure q <= true quotient */
|
| - ASSERT_WITH_MESSAGE(q <= 9, "oversized quotient in quorem");
|
| - if (q) {
|
| - borrow = 0;
|
| - carry = 0;
|
| - do {
|
| -#ifdef USE_LONG_LONG
|
| - ys = *sx++ * (unsigned long long)q + carry;
|
| - carry = ys >> 32;
|
| - y = *bx - (ys & 0xffffffffUL) - borrow;
|
| - borrow = y >> 32 & (uint32_t)1;
|
| - *bx++ = (uint32_t)y & 0xffffffffUL;
|
| -#else
|
| - si = *sx++;
|
| - ys = (si & 0xffff) * q + carry;
|
| - zs = (si >> 16) * q + (ys >> 16);
|
| - carry = zs >> 16;
|
| - y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
|
| - borrow = (y & 0x10000) >> 16;
|
| - z = (*bx >> 16) - (zs & 0xffff) - borrow;
|
| - borrow = (z & 0x10000) >> 16;
|
| - bx = storeInc(bx, z, y);
|
| -#endif
|
| - } while (sx <= sxe);
|
| - if (!*bxe) {
|
| - bx = b.words();
|
| - while (--bxe > bx && !*bxe)
|
| - --n;
|
| - b.resize(n);
|
| - }
|
| - }
|
| - if (cmp(b, S) >= 0) {
|
| - q++;
|
| - borrow = 0;
|
| - carry = 0;
|
| - bx = b.words();
|
| - sx = S.words();
|
| - do {
|
| -#ifdef USE_LONG_LONG
|
| - ys = *sx++ + carry;
|
| - carry = ys >> 32;
|
| - y = *bx - (ys & 0xffffffffUL) - borrow;
|
| - borrow = y >> 32 & (uint32_t)1;
|
| - *bx++ = (uint32_t)y & 0xffffffffUL;
|
| -#else
|
| - si = *sx++;
|
| - ys = (si & 0xffff) + carry;
|
| - zs = (si >> 16) + (ys >> 16);
|
| - carry = zs >> 16;
|
| - y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
|
| - borrow = (y & 0x10000) >> 16;
|
| - z = (*bx >> 16) - (zs & 0xffff) - borrow;
|
| - borrow = (z & 0x10000) >> 16;
|
| - bx = storeInc(bx, z, y);
|
| -#endif
|
| - } while (sx <= sxe);
|
| - bx = b.words();
|
| - bxe = bx + n;
|
| - if (!*bxe) {
|
| - while (--bxe > bx && !*bxe)
|
| - --n;
|
| - b.resize(n);
|
| - }
|
| - }
|
| - return q;
|
| -}
|
| -
|
| -/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
|
| - *
|
| - * Inspired by "How to Print Floating-Point Numbers Accurately" by
|
| - * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
|
| - *
|
| - * Modifications:
|
| - * 1. Rather than iterating, we use a simple numeric overestimate
|
| - * to determine k = floor(log10(d)). We scale relevant
|
| - * quantities using O(log2(k)) rather than O(k) multiplications.
|
| - * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
|
| - * try to generate digits strictly left to right. Instead, we
|
| - * compute with fewer bits and propagate the carry if necessary
|
| - * when rounding the final digit up. This is often faster.
|
| - * 3. Under the assumption that input will be rounded nearest,
|
| - * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
|
| - * That is, we allow equality in stopping tests when the
|
| - * round-nearest rule will give the same floating-point value
|
| - * as would satisfaction of the stopping test with strict
|
| - * inequality.
|
| - * 4. We remove common factors of powers of 2 from relevant
|
| - * quantities.
|
| - * 5. When converting floating-point integers less than 1e16,
|
| - * we use floating-point arithmetic rather than resorting
|
| - * to multiple-precision integers.
|
| - * 6. When asked to produce fewer than 15 digits, we first try
|
| - * to get by with floating-point arithmetic; we resort to
|
| - * multiple-precision integer arithmetic only if we cannot
|
| - * guarantee that the floating-point calculation has given
|
| - * the correctly rounded result. For k requested digits and
|
| - * "uniformly" distributed input, the probability is
|
| - * something like 10^(k-15) that we must resort to the int32_t
|
| - * calculation.
|
| - *
|
| - * Note: 'leftright' translates to 'generate shortest possible string'.
|
| - */
|
| -template<bool roundingNone, bool roundingSignificantFigures, bool roundingDecimalPlaces, bool leftright>
|
| -void dtoa(DtoaBuffer result, double dd, int ndigits, bool& signOut, int& exponentOut, unsigned& precisionOut)
|
| -{
|
| - // Exactly one rounding mode must be specified.
|
| - ASSERT(roundingNone + roundingSignificantFigures + roundingDecimalPlaces == 1);
|
| - // roundingNone only allowed (only sensible?) with leftright set.
|
| - ASSERT(!roundingNone || leftright);
|
| -
|
| - ASSERT(std::isfinite(dd));
|
| -
|
| - int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1 = 0,
|
| - j, j1, k, k0, k_check, m2, m5, s2, s5,
|
| - spec_case;
|
| - int32_t L;
|
| - int denorm;
|
| - uint32_t x;
|
| - BigInt b, delta, mlo, mhi, S;
|
| - U d2, eps, u;
|
| - double ds;
|
| - char* s;
|
| - char* s0;
|
| -
|
| - u.d = dd;
|
| -
|
| - /* Infinity or NaN */
|
| - ASSERT((word0(&u) & Exp_mask) != Exp_mask);
|
| -
|
| - // JavaScript toString conversion treats -0 as 0.
|
| - if (!dval(&u)) {
|
| - signOut = false;
|
| - exponentOut = 0;
|
| - precisionOut = 1;
|
| - result[0] = '0';
|
| - result[1] = '\0';
|
| - return;
|
| - }
|
| -
|
| - if (word0(&u) & Sign_bit) {
|
| - signOut = true;
|
| - word0(&u) &= ~Sign_bit; // clear sign bit
|
| - } else
|
| - signOut = false;
|
| -
|
| - d2b(b, &u, &be, &bbits);
|
| - if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask >> Exp_shift1)))) {
|
| - dval(&d2) = dval(&u);
|
| - word0(&d2) &= Frac_mask1;
|
| - word0(&d2) |= Exp_11;
|
| -
|
| - /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
|
| - * log10(x) = log(x) / log(10)
|
| - * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
|
| - * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
|
| - *
|
| - * This suggests computing an approximation k to log10(d) by
|
| - *
|
| - * k = (i - Bias)*0.301029995663981
|
| - * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
|
| - *
|
| - * We want k to be too large rather than too small.
|
| - * The error in the first-order Taylor series approximation
|
| - * is in our favor, so we just round up the constant enough
|
| - * to compensate for any error in the multiplication of
|
| - * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
|
| - * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
|
| - * adding 1e-13 to the constant term more than suffices.
|
| - * Hence we adjust the constant term to 0.1760912590558.
|
| - * (We could get a more accurate k by invoking log10,
|
| - * but this is probably not worthwhile.)
|
| - */
|
| -
|
| - i -= Bias;
|
| - denorm = 0;
|
| - } else {
|
| - /* d is denormalized */
|
| -
|
| - i = bbits + be + (Bias + (P - 1) - 1);
|
| - x = (i > 32) ? (word0(&u) << (64 - i)) | (word1(&u) >> (i - 32))
|
| - : word1(&u) << (32 - i);
|
| - dval(&d2) = x;
|
| - word0(&d2) -= 31 * Exp_msk1; /* adjust exponent */
|
| - i -= (Bias + (P - 1) - 1) + 1;
|
| - denorm = 1;
|
| - }
|
| - ds = (dval(&d2) - 1.5) * 0.289529654602168 + 0.1760912590558 + (i * 0.301029995663981);
|
| - k = (int)ds;
|
| - if (ds < 0. && ds != k)
|
| - k--; /* want k = floor(ds) */
|
| - k_check = 1;
|
| - if (k >= 0 && k <= Ten_pmax) {
|
| - if (dval(&u) < tens[k])
|
| - k--;
|
| - k_check = 0;
|
| - }
|
| - j = bbits - i - 1;
|
| - if (j >= 0) {
|
| - b2 = 0;
|
| - s2 = j;
|
| - } else {
|
| - b2 = -j;
|
| - s2 = 0;
|
| - }
|
| - if (k >= 0) {
|
| - b5 = 0;
|
| - s5 = k;
|
| - s2 += k;
|
| - } else {
|
| - b2 -= k;
|
| - b5 = -k;
|
| - s5 = 0;
|
| - }
|
| -
|
| - if (roundingNone) {
|
| - ilim = ilim1 = -1;
|
| - i = 18;
|
| - ndigits = 0;
|
| - }
|
| - if (roundingSignificantFigures) {
|
| - if (ndigits <= 0)
|
| - ndigits = 1;
|
| - ilim = ilim1 = i = ndigits;
|
| - }
|
| - if (roundingDecimalPlaces) {
|
| - i = ndigits + k + 1;
|
| - ilim = i;
|
| - ilim1 = i - 1;
|
| - if (i <= 0)
|
| - i = 1;
|
| - }
|
| -
|
| - s = s0 = result;
|
| -
|
| - if (ilim >= 0 && ilim <= Quick_max) {
|
| - /* Try to get by with floating-point arithmetic. */
|
| -
|
| - i = 0;
|
| - dval(&d2) = dval(&u);
|
| - k0 = k;
|
| - ilim0 = ilim;
|
| - ieps = 2; /* conservative */
|
| - if (k > 0) {
|
| - ds = tens[k & 0xf];
|
| - j = k >> 4;
|
| - if (j & Bletch) {
|
| - /* prevent overflows */
|
| - j &= Bletch - 1;
|
| - dval(&u) /= bigtens[n_bigtens - 1];
|
| - ieps++;
|
| - }
|
| - for (; j; j >>= 1, i++) {
|
| - if (j & 1) {
|
| - ieps++;
|
| - ds *= bigtens[i];
|
| - }
|
| - }
|
| - dval(&u) /= ds;
|
| - } else if ((j1 = -k)) {
|
| - dval(&u) *= tens[j1 & 0xf];
|
| - for (j = j1 >> 4; j; j >>= 1, i++) {
|
| - if (j & 1) {
|
| - ieps++;
|
| - dval(&u) *= bigtens[i];
|
| - }
|
| - }
|
| - }
|
| - if (k_check && dval(&u) < 1. && ilim > 0) {
|
| - if (ilim1 <= 0)
|
| - goto fastFailed;
|
| - ilim = ilim1;
|
| - k--;
|
| - dval(&u) *= 10.;
|
| - ieps++;
|
| - }
|
| - dval(&eps) = (ieps * dval(&u)) + 7.;
|
| - word0(&eps) -= (P - 1) * Exp_msk1;
|
| - if (!ilim) {
|
| - S.clear();
|
| - mhi.clear();
|
| - dval(&u) -= 5.;
|
| - if (dval(&u) > dval(&eps))
|
| - goto oneDigit;
|
| - if (dval(&u) < -dval(&eps))
|
| - goto noDigits;
|
| - goto fastFailed;
|
| - }
|
| - if (leftright) {
|
| - /* Use Steele & White method of only
|
| - * generating digits needed.
|
| - */
|
| - dval(&eps) = (0.5 / tens[ilim - 1]) - dval(&eps);
|
| - for (i = 0;;) {
|
| - L = (long int)dval(&u);
|
| - dval(&u) -= L;
|
| - *s++ = '0' + (int)L;
|
| - if (dval(&u) < dval(&eps))
|
| - goto ret;
|
| - if (1. - dval(&u) < dval(&eps))
|
| - goto bumpUp;
|
| - if (++i >= ilim)
|
| - break;
|
| - dval(&eps) *= 10.;
|
| - dval(&u) *= 10.;
|
| - }
|
| - } else {
|
| - /* Generate ilim digits, then fix them up. */
|
| - dval(&eps) *= tens[ilim - 1];
|
| - for (i = 1;; i++, dval(&u) *= 10.) {
|
| - L = (int32_t)(dval(&u));
|
| - if (!(dval(&u) -= L))
|
| - ilim = i;
|
| - *s++ = '0' + (int)L;
|
| - if (i == ilim) {
|
| - if (dval(&u) > 0.5 + dval(&eps))
|
| - goto bumpUp;
|
| - if (dval(&u) < 0.5 - dval(&eps)) {
|
| - while (*--s == '0') { }
|
| - s++;
|
| - goto ret;
|
| - }
|
| - break;
|
| - }
|
| - }
|
| - }
|
| -fastFailed:
|
| - s = s0;
|
| - dval(&u) = dval(&d2);
|
| - k = k0;
|
| - ilim = ilim0;
|
| - }
|
| -
|
| - /* Do we have a "small" integer? */
|
| -
|
| - if (be >= 0 && k <= Int_max) {
|
| - /* Yes. */
|
| - ds = tens[k];
|
| - if (ndigits < 0 && ilim <= 0) {
|
| - S.clear();
|
| - mhi.clear();
|
| - if (ilim < 0 || dval(&u) <= 5 * ds)
|
| - goto noDigits;
|
| - goto oneDigit;
|
| - }
|
| - for (i = 1;; i++, dval(&u) *= 10.) {
|
| - L = (int32_t)(dval(&u) / ds);
|
| - dval(&u) -= L * ds;
|
| - *s++ = '0' + (int)L;
|
| - if (!dval(&u)) {
|
| - break;
|
| - }
|
| - if (i == ilim) {
|
| - dval(&u) += dval(&u);
|
| - if (dval(&u) > ds || (dval(&u) == ds && (L & 1))) {
|
| -bumpUp:
|
| - while (*--s == '9')
|
| - if (s == s0) {
|
| - k++;
|
| - *s = '0';
|
| - break;
|
| - }
|
| - ++*s++;
|
| - }
|
| - break;
|
| - }
|
| - }
|
| - goto ret;
|
| - }
|
| -
|
| - m2 = b2;
|
| - m5 = b5;
|
| - mhi.clear();
|
| - mlo.clear();
|
| - if (leftright) {
|
| - i = denorm ? be + (Bias + (P - 1) - 1 + 1) : 1 + P - bbits;
|
| - b2 += i;
|
| - s2 += i;
|
| - i2b(mhi, 1);
|
| - }
|
| - if (m2 > 0 && s2 > 0) {
|
| - i = m2 < s2 ? m2 : s2;
|
| - b2 -= i;
|
| - m2 -= i;
|
| - s2 -= i;
|
| - }
|
| - if (b5 > 0) {
|
| - if (leftright) {
|
| - if (m5 > 0) {
|
| - pow5mult(mhi, m5);
|
| - mult(b, mhi);
|
| - }
|
| - if ((j = b5 - m5))
|
| - pow5mult(b, j);
|
| - } else
|
| - pow5mult(b, b5);
|
| - }
|
| - i2b(S, 1);
|
| - if (s5 > 0)
|
| - pow5mult(S, s5);
|
| -
|
| - /* Check for special case that d is a normalized power of 2. */
|
| -
|
| - spec_case = 0;
|
| - if ((roundingNone || leftright) && (!word1(&u) && !(word0(&u) & Bndry_mask) && word0(&u) & (Exp_mask & ~Exp_msk1))) {
|
| - /* The special case */
|
| - b2 += Log2P;
|
| - s2 += Log2P;
|
| - spec_case = 1;
|
| - }
|
| -
|
| - /* Arrange for convenient computation of quotients:
|
| - * shift left if necessary so divisor has 4 leading 0 bits.
|
| - *
|
| - * Perhaps we should just compute leading 28 bits of S once
|
| - * and for all and pass them and a shift to quorem, so it
|
| - * can do shifts and ors to compute the numerator for q.
|
| - */
|
| - if ((i = ((s5 ? 32 - hi0bits(S.words()[S.size() - 1]) : 1) + s2) & 0x1f))
|
| - i = 32 - i;
|
| - if (i > 4) {
|
| - i -= 4;
|
| - b2 += i;
|
| - m2 += i;
|
| - s2 += i;
|
| - } else if (i < 4) {
|
| - i += 28;
|
| - b2 += i;
|
| - m2 += i;
|
| - s2 += i;
|
| - }
|
| - if (b2 > 0)
|
| - lshift(b, b2);
|
| - if (s2 > 0)
|
| - lshift(S, s2);
|
| - if (k_check) {
|
| - if (cmp(b, S) < 0) {
|
| - k--;
|
| - multadd(b, 10, 0); /* we botched the k estimate */
|
| - if (leftright)
|
| - multadd(mhi, 10, 0);
|
| - ilim = ilim1;
|
| - }
|
| - }
|
| - if (ilim <= 0 && roundingDecimalPlaces) {
|
| - if (ilim < 0)
|
| - goto noDigits;
|
| - multadd(S, 5, 0);
|
| - // For IEEE-754 unbiased rounding this check should be <=, such that 0.5 would flush to zero.
|
| - if (cmp(b, S) < 0)
|
| - goto noDigits;
|
| - goto oneDigit;
|
| - }
|
| - if (leftright) {
|
| - if (m2 > 0)
|
| - lshift(mhi, m2);
|
| -
|
| - /* Compute mlo -- check for special case
|
| - * that d is a normalized power of 2.
|
| - */
|
| -
|
| - mlo = mhi;
|
| - if (spec_case)
|
| - lshift(mhi, Log2P);
|
| -
|
| - for (i = 1;;i++) {
|
| - dig = quorem(b, S) + '0';
|
| - /* Do we yet have the shortest decimal string
|
| - * that will round to d?
|
| - */
|
| - j = cmp(b, mlo);
|
| - diff(delta, S, mhi);
|
| - j1 = delta.sign ? 1 : cmp(b, delta);
|
| -#ifdef DTOA_ROUND_BIASED
|
| - if (j < 0 || !j) {
|
| -#else
|
| - // FIXME: ECMA-262 specifies that equidistant results round away from
|
| - // zero, which probably means we shouldn't be on the unbiased code path
|
| - // (the (word1(&u) & 1) clause is looking highly suspicious). I haven't
|
| - // yet understood this code well enough to make the call, but we should
|
| - // probably be enabling DTOA_ROUND_BIASED. I think the interesting corner
|
| - // case to understand is probably "Math.pow(0.5, 24).toString()".
|
| - // I believe this value is interesting because I think it is precisely
|
| - // representable in binary floating point, and its decimal representation
|
| - // has a single digit that Steele & White reduction can remove, with the
|
| - // value 5 (thus equidistant from the next numbers above and below).
|
| - // We produce the correct answer using either codepath, and I don't as
|
| - // yet understand why. :-)
|
| - if (!j1 && !(word1(&u) & 1)) {
|
| - if (dig == '9')
|
| - goto round9up;
|
| - if (j > 0)
|
| - dig++;
|
| - *s++ = dig;
|
| - goto ret;
|
| - }
|
| - if (j < 0 || (!j && !(word1(&u) & 1))) {
|
| -#endif
|
| - if ((b.words()[0] || b.size() > 1) && (j1 > 0)) {
|
| - lshift(b, 1);
|
| - j1 = cmp(b, S);
|
| - // For IEEE-754 round-to-even, this check should be (j1 > 0 || (!j1 && (dig & 1))),
|
| - // but ECMA-262 specifies that equidistant values (e.g. (.5).toFixed()) should
|
| - // be rounded away from zero.
|
| - if (j1 >= 0) {
|
| - if (dig == '9')
|
| - goto round9up;
|
| - dig++;
|
| - }
|
| - }
|
| - *s++ = dig;
|
| - goto ret;
|
| - }
|
| - if (j1 > 0) {
|
| - if (dig == '9') { /* possible if i == 1 */
|
| -round9up:
|
| - *s++ = '9';
|
| - goto roundoff;
|
| - }
|
| - *s++ = dig + 1;
|
| - goto ret;
|
| - }
|
| - *s++ = dig;
|
| - if (i == ilim)
|
| - break;
|
| - multadd(b, 10, 0);
|
| - multadd(mlo, 10, 0);
|
| - multadd(mhi, 10, 0);
|
| - }
|
| - } else {
|
| - for (i = 1;; i++) {
|
| - *s++ = dig = quorem(b, S) + '0';
|
| - if (!b.words()[0] && b.size() <= 1)
|
| - goto ret;
|
| - if (i >= ilim)
|
| - break;
|
| - multadd(b, 10, 0);
|
| - }
|
| - }
|
| -
|
| - /* Round off last digit */
|
| -
|
| - lshift(b, 1);
|
| - j = cmp(b, S);
|
| - // For IEEE-754 round-to-even, this check should be (j > 0 || (!j && (dig & 1))),
|
| - // but ECMA-262 specifies that equidistant values (e.g. (.5).toFixed()) should
|
| - // be rounded away from zero.
|
| - if (j >= 0) {
|
| -roundoff:
|
| - while (*--s == '9')
|
| - if (s == s0) {
|
| - k++;
|
| - *s++ = '1';
|
| - goto ret;
|
| - }
|
| - ++*s++;
|
| - } else {
|
| - while (*--s == '0') { }
|
| - s++;
|
| - }
|
| - goto ret;
|
| -noDigits:
|
| - exponentOut = 0;
|
| - precisionOut = 1;
|
| - result[0] = '0';
|
| - result[1] = '\0';
|
| - return;
|
| -oneDigit:
|
| - *s++ = '1';
|
| - k++;
|
| - goto ret;
|
| -ret:
|
| - ASSERT(s > result);
|
| - *s = 0;
|
| - exponentOut = k;
|
| - precisionOut = s - result;
|
| -}
|
| -
|
| -void dtoa(DtoaBuffer result, double dd, bool& sign, int& exponent, unsigned& precision)
|
| -{
|
| - // flags are roundingNone, leftright.
|
| - dtoa<true, false, false, true>(result, dd, 0, sign, exponent, precision);
|
| -}
|
| -
|
| -void dtoaRoundSF(DtoaBuffer result, double dd, int ndigits, bool& sign, int& exponent, unsigned& precision)
|
| -{
|
| - // flag is roundingSignificantFigures.
|
| - dtoa<false, true, false, false>(result, dd, ndigits, sign, exponent, precision);
|
| -}
|
| -
|
| -void dtoaRoundDP(DtoaBuffer result, double dd, int ndigits, bool& sign, int& exponent, unsigned& precision)
|
| -{
|
| - // flag is roundingDecimalPlaces.
|
| - dtoa<false, false, true, false>(result, dd, ndigits, sign, exponent, precision);
|
| -}
|
| -
|
| -const char* numberToString(double d, NumberToStringBuffer buffer)
|
| -{
|
| - double_conversion::StringBuilder builder(buffer, NumberToStringBufferLength);
|
| - const double_conversion::DoubleToStringConverter& converter = double_conversion::DoubleToStringConverter::EcmaScriptConverter();
|
| - converter.ToShortest(d, &builder);
|
| - return builder.Finalize();
|
| -}
|
| -
|
| -static inline const char* formatStringTruncatingTrailingZerosIfNeeded(NumberToStringBuffer buffer, double_conversion::StringBuilder& builder)
|
| -{
|
| - size_t length = builder.position();
|
| - size_t decimalPointPosition = 0;
|
| - for (; decimalPointPosition < length; ++decimalPointPosition) {
|
| - if (buffer[decimalPointPosition] == '.')
|
| - break;
|
| - }
|
| -
|
| - // No decimal seperator found, early exit.
|
| - if (decimalPointPosition == length)
|
| - return builder.Finalize();
|
| -
|
| - size_t truncatedLength = length - 1;
|
| - for (; truncatedLength > decimalPointPosition; --truncatedLength) {
|
| - if (buffer[truncatedLength] != '0')
|
| - break;
|
| - }
|
| -
|
| - // No trailing zeros found to strip.
|
| - if (truncatedLength == length - 1)
|
| - return builder.Finalize();
|
| -
|
| - // If we removed all trailing zeros, remove the decimal point as well.
|
| - if (truncatedLength == decimalPointPosition) {
|
| - ASSERT(truncatedLength > 0);
|
| - --truncatedLength;
|
| - }
|
| -
|
| - // Truncate the StringBuilder, and return the final result.
|
| - builder.SetPosition(truncatedLength + 1);
|
| - return builder.Finalize();
|
| -}
|
| -
|
| -const char* numberToFixedPrecisionString(double d, unsigned significantFigures, NumberToStringBuffer buffer, bool truncateTrailingZeros)
|
| -{
|
| - // Mimic String::format("%.[precision]g", ...), but use dtoas rounding facilities.
|
| - // "g": Signed value printed in f or e format, whichever is more compact for the given value and precision.
|
| - // The e format is used only when the exponent of the value is less than –4 or greater than or equal to the
|
| - // precision argument. Trailing zeros are truncated, and the decimal point appears only if one or more digits follow it.
|
| - // "precision": The precision specifies the maximum number of significant digits printed.
|
| - double_conversion::StringBuilder builder(buffer, NumberToStringBufferLength);
|
| - const double_conversion::DoubleToStringConverter& converter = double_conversion::DoubleToStringConverter::EcmaScriptConverter();
|
| - converter.ToPrecision(d, significantFigures, &builder);
|
| - if (!truncateTrailingZeros)
|
| - return builder.Finalize();
|
| - return formatStringTruncatingTrailingZerosIfNeeded(buffer, builder);
|
| -}
|
| -
|
| -const char* numberToFixedWidthString(double d, unsigned decimalPlaces, NumberToStringBuffer buffer)
|
| -{
|
| - // Mimic String::format("%.[precision]f", ...), but use dtoas rounding facilities.
|
| - // "f": Signed value having the form [ – ]dddd.dddd, where dddd is one or more decimal digits.
|
| - // The number of digits before the decimal point depends on the magnitude of the number, and
|
| - // the number of digits after the decimal point depends on the requested precision.
|
| - // "precision": The precision value specifies the number of digits after the decimal point.
|
| - // If a decimal point appears, at least one digit appears before it.
|
| - // The value is rounded to the appropriate number of digits.
|
| - double_conversion::StringBuilder builder(buffer, NumberToStringBufferLength);
|
| - const double_conversion::DoubleToStringConverter& converter = double_conversion::DoubleToStringConverter::EcmaScriptConverter();
|
| - converter.ToFixed(d, decimalPlaces, &builder);
|
| - return builder.Finalize();
|
| -}
|
| -
|
| -namespace Internal {
|
| -
|
| -double parseDoubleFromLongString(const UChar* string, size_t length, size_t& parsedLength)
|
| -{
|
| - Vector<LChar> conversionBuffer(length);
|
| - for (size_t i = 0; i < length; ++i)
|
| - conversionBuffer[i] = isASCII(string[i]) ? string[i] : 0;
|
| - return parseDouble(conversionBuffer.data(), length, parsedLength);
|
| -}
|
| -
|
| -} // namespace Internal
|
| -
|
| -} // namespace WTF
|
|
|