| Index: Source/WTF/wtf/AVLTree.h
|
| diff --git a/Source/WTF/wtf/AVLTree.h b/Source/WTF/wtf/AVLTree.h
|
| deleted file mode 100644
|
| index 61f627e8b2ac777d5b4542fb80b1c3d90cc30238..0000000000000000000000000000000000000000
|
| --- a/Source/WTF/wtf/AVLTree.h
|
| +++ /dev/null
|
| @@ -1,960 +0,0 @@
|
| -/*
|
| - * Copyright (C) 2008 Apple Inc. All rights reserved.
|
| - *
|
| - * Based on Abstract AVL Tree Template v1.5 by Walt Karas
|
| - * <http://geocities.com/wkaras/gen_cpp/avl_tree.html>.
|
| - *
|
| - * Redistribution and use in source and binary forms, with or without
|
| - * modification, are permitted provided that the following conditions
|
| - * are met:
|
| - *
|
| - * 1. Redistributions of source code must retain the above copyright
|
| - * notice, this list of conditions and the following disclaimer.
|
| - * 2. Redistributions in binary form must reproduce the above copyright
|
| - * notice, this list of conditions and the following disclaimer in the
|
| - * documentation and/or other materials provided with the distribution.
|
| - * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
|
| - * its contributors may be used to endorse or promote products derived
|
| - * from this software without specific prior written permission.
|
| - *
|
| - * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
|
| - * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
| - * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
| - * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
|
| - * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
| - * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
| - * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
| - * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
| - * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| - */
|
| -
|
| -#ifndef AVL_TREE_H_
|
| -#define AVL_TREE_H_
|
| -
|
| -#include <wtf/Assertions.h>
|
| -#include <wtf/FixedArray.h>
|
| -
|
| -namespace WTF {
|
| -
|
| -// Here is the reference class for BSet.
|
| -//
|
| -// class BSet
|
| -// {
|
| -// public:
|
| -//
|
| -// class ANY_bitref
|
| -// {
|
| -// public:
|
| -// operator bool ();
|
| -// void operator = (bool b);
|
| -// };
|
| -//
|
| -// // Does not have to initialize bits.
|
| -// BSet();
|
| -//
|
| -// // Must return a valid value for index when 0 <= index < maxDepth
|
| -// ANY_bitref operator [] (unsigned index);
|
| -//
|
| -// // Set all bits to 1.
|
| -// void set();
|
| -//
|
| -// // Set all bits to 0.
|
| -// void reset();
|
| -// };
|
| -
|
| -template<unsigned maxDepth>
|
| -class AVLTreeDefaultBSet {
|
| -public:
|
| - bool& operator[](unsigned i) { ASSERT_WITH_SECURITY_IMPLICATION(i < maxDepth); return m_data[i]; }
|
| - void set() { for (unsigned i = 0; i < maxDepth; ++i) m_data[i] = true; }
|
| - void reset() { for (unsigned i = 0; i < maxDepth; ++i) m_data[i] = false; }
|
| -
|
| -private:
|
| - FixedArray<bool, maxDepth> m_data;
|
| -};
|
| -
|
| -// How to determine maxDepth:
|
| -// d Minimum number of nodes
|
| -// 2 2
|
| -// 3 4
|
| -// 4 7
|
| -// 5 12
|
| -// 6 20
|
| -// 7 33
|
| -// 8 54
|
| -// 9 88
|
| -// 10 143
|
| -// 11 232
|
| -// 12 376
|
| -// 13 609
|
| -// 14 986
|
| -// 15 1,596
|
| -// 16 2,583
|
| -// 17 4,180
|
| -// 18 6,764
|
| -// 19 10,945
|
| -// 20 17,710
|
| -// 21 28,656
|
| -// 22 46,367
|
| -// 23 75,024
|
| -// 24 121,392
|
| -// 25 196,417
|
| -// 26 317,810
|
| -// 27 514,228
|
| -// 28 832,039
|
| -// 29 1,346,268
|
| -// 30 2,178,308
|
| -// 31 3,524,577
|
| -// 32 5,702,886
|
| -// 33 9,227,464
|
| -// 34 14,930,351
|
| -// 35 24,157,816
|
| -// 36 39,088,168
|
| -// 37 63,245,985
|
| -// 38 102,334,154
|
| -// 39 165,580,140
|
| -// 40 267,914,295
|
| -// 41 433,494,436
|
| -// 42 701,408,732
|
| -// 43 1,134,903,169
|
| -// 44 1,836,311,902
|
| -// 45 2,971,215,072
|
| -//
|
| -// E.g., if, in a particular instantiation, the maximum number of nodes in a tree instance is 1,000,000, the maximum depth should be 28.
|
| -// You pick 28 because MN(28) is 832,039, which is less than or equal to 1,000,000, and MN(29) is 1,346,268, which is strictly greater than 1,000,000.
|
| -
|
| -template <class Abstractor, unsigned maxDepth = 32, class BSet = AVLTreeDefaultBSet<maxDepth> >
|
| -class AVLTree {
|
| -public:
|
| -
|
| - typedef typename Abstractor::key key;
|
| - typedef typename Abstractor::handle handle;
|
| - typedef typename Abstractor::size size;
|
| -
|
| - enum SearchType {
|
| - EQUAL = 1,
|
| - LESS = 2,
|
| - GREATER = 4,
|
| - LESS_EQUAL = EQUAL | LESS,
|
| - GREATER_EQUAL = EQUAL | GREATER
|
| - };
|
| -
|
| -
|
| - Abstractor& abstractor() { return abs; }
|
| -
|
| - inline handle insert(handle h);
|
| -
|
| - inline handle search(key k, SearchType st = EQUAL);
|
| - inline handle search_least();
|
| - inline handle search_greatest();
|
| -
|
| - inline handle remove(key k);
|
| -
|
| - inline handle subst(handle new_node);
|
| -
|
| - void purge() { abs.root = null(); }
|
| -
|
| - bool is_empty() { return abs.root == null(); }
|
| -
|
| - AVLTree() { abs.root = null(); }
|
| -
|
| - class Iterator {
|
| - public:
|
| -
|
| - // Initialize depth to invalid value, to indicate iterator is
|
| - // invalid. (Depth is zero-base.)
|
| - Iterator() { depth = ~0U; }
|
| -
|
| - void start_iter(AVLTree &tree, key k, SearchType st = EQUAL)
|
| - {
|
| - // Mask of high bit in an int.
|
| - const int MASK_HIGH_BIT = (int) ~ ((~ (unsigned) 0) >> 1);
|
| -
|
| - // Save the tree that we're going to iterate through in a
|
| - // member variable.
|
| - tree_ = &tree;
|
| -
|
| - int cmp, target_cmp;
|
| - handle h = tree_->abs.root;
|
| - unsigned d = 0;
|
| -
|
| - depth = ~0U;
|
| -
|
| - if (h == null())
|
| - // Tree is empty.
|
| - return;
|
| -
|
| - if (st & LESS)
|
| - // Key can be greater than key of starting node.
|
| - target_cmp = 1;
|
| - else if (st & GREATER)
|
| - // Key can be less than key of starting node.
|
| - target_cmp = -1;
|
| - else
|
| - // Key must be same as key of starting node.
|
| - target_cmp = 0;
|
| -
|
| - for (;;) {
|
| - cmp = cmp_k_n(k, h);
|
| - if (cmp == 0) {
|
| - if (st & EQUAL) {
|
| - // Equal node was sought and found as starting node.
|
| - depth = d;
|
| - break;
|
| - }
|
| - cmp = -target_cmp;
|
| - } else if (target_cmp != 0) {
|
| - if (!((cmp ^ target_cmp) & MASK_HIGH_BIT)) {
|
| - // cmp and target_cmp are both negative or both positive.
|
| - depth = d;
|
| - }
|
| - }
|
| - h = cmp < 0 ? get_lt(h) : get_gt(h);
|
| - if (h == null())
|
| - break;
|
| - branch[d] = cmp > 0;
|
| - path_h[d++] = h;
|
| - }
|
| - }
|
| -
|
| - void start_iter_least(AVLTree &tree)
|
| - {
|
| - tree_ = &tree;
|
| -
|
| - handle h = tree_->abs.root;
|
| -
|
| - depth = ~0U;
|
| -
|
| - branch.reset();
|
| -
|
| - while (h != null()) {
|
| - if (depth != ~0U)
|
| - path_h[depth] = h;
|
| - depth++;
|
| - h = get_lt(h);
|
| - }
|
| - }
|
| -
|
| - void start_iter_greatest(AVLTree &tree)
|
| - {
|
| - tree_ = &tree;
|
| -
|
| - handle h = tree_->abs.root;
|
| -
|
| - depth = ~0U;
|
| -
|
| - branch.set();
|
| -
|
| - while (h != null()) {
|
| - if (depth != ~0U)
|
| - path_h[depth] = h;
|
| - depth++;
|
| - h = get_gt(h);
|
| - }
|
| - }
|
| -
|
| - handle operator*()
|
| - {
|
| - if (depth == ~0U)
|
| - return null();
|
| -
|
| - return depth == 0 ? tree_->abs.root : path_h[depth - 1];
|
| - }
|
| -
|
| - void operator++()
|
| - {
|
| - if (depth != ~0U) {
|
| - handle h = get_gt(**this);
|
| - if (h == null()) {
|
| - do {
|
| - if (depth == 0) {
|
| - depth = ~0U;
|
| - break;
|
| - }
|
| - depth--;
|
| - } while (branch[depth]);
|
| - } else {
|
| - branch[depth] = true;
|
| - path_h[depth++] = h;
|
| - for (;;) {
|
| - h = get_lt(h);
|
| - if (h == null())
|
| - break;
|
| - branch[depth] = false;
|
| - path_h[depth++] = h;
|
| - }
|
| - }
|
| - }
|
| - }
|
| -
|
| - void operator--()
|
| - {
|
| - if (depth != ~0U) {
|
| - handle h = get_lt(**this);
|
| - if (h == null())
|
| - do {
|
| - if (depth == 0) {
|
| - depth = ~0U;
|
| - break;
|
| - }
|
| - depth--;
|
| - } while (!branch[depth]);
|
| - else {
|
| - branch[depth] = false;
|
| - path_h[depth++] = h;
|
| - for (;;) {
|
| - h = get_gt(h);
|
| - if (h == null())
|
| - break;
|
| - branch[depth] = true;
|
| - path_h[depth++] = h;
|
| - }
|
| - }
|
| - }
|
| - }
|
| -
|
| - void operator++(int) { ++(*this); }
|
| - void operator--(int) { --(*this); }
|
| -
|
| - protected:
|
| -
|
| - // Tree being iterated over.
|
| - AVLTree *tree_;
|
| -
|
| - // Records a path into the tree. If branch[n] is true, indicates
|
| - // take greater branch from the nth node in the path, otherwise
|
| - // take the less branch. branch[0] gives branch from root, and
|
| - // so on.
|
| - BSet branch;
|
| -
|
| - // Zero-based depth of path into tree.
|
| - unsigned depth;
|
| -
|
| - // Handles of nodes in path from root to current node (returned by *).
|
| - handle path_h[maxDepth - 1];
|
| -
|
| - int cmp_k_n(key k, handle h) { return tree_->abs.compare_key_node(k, h); }
|
| - int cmp_n_n(handle h1, handle h2) { return tree_->abs.compare_node_node(h1, h2); }
|
| - handle get_lt(handle h) { return tree_->abs.get_less(h); }
|
| - handle get_gt(handle h) { return tree_->abs.get_greater(h); }
|
| - handle null() { return tree_->abs.null(); }
|
| - };
|
| -
|
| - template<typename fwd_iter>
|
| - bool build(fwd_iter p, size num_nodes)
|
| - {
|
| - if (num_nodes == 0) {
|
| - abs.root = null();
|
| - return true;
|
| - }
|
| -
|
| - // Gives path to subtree being built. If branch[N] is false, branch
|
| - // less from the node at depth N, if true branch greater.
|
| - BSet branch;
|
| -
|
| - // If rem[N] is true, then for the current subtree at depth N, it's
|
| - // greater subtree has one more node than it's less subtree.
|
| - BSet rem;
|
| -
|
| - // Depth of root node of current subtree.
|
| - unsigned depth = 0;
|
| -
|
| - // Number of nodes in current subtree.
|
| - size num_sub = num_nodes;
|
| -
|
| - // The algorithm relies on a stack of nodes whose less subtree has
|
| - // been built, but whose right subtree has not yet been built. The
|
| - // stack is implemented as linked list. The nodes are linked
|
| - // together by having the "greater" handle of a node set to the
|
| - // next node in the list. "less_parent" is the handle of the first
|
| - // node in the list.
|
| - handle less_parent = null();
|
| -
|
| - // h is root of current subtree, child is one of its children.
|
| - handle h, child;
|
| -
|
| - for (;;) {
|
| - while (num_sub > 2) {
|
| - // Subtract one for root of subtree.
|
| - num_sub--;
|
| - rem[depth] = !!(num_sub & 1);
|
| - branch[depth++] = false;
|
| - num_sub >>= 1;
|
| - }
|
| -
|
| - if (num_sub == 2) {
|
| - // Build a subtree with two nodes, slanting to greater.
|
| - // I arbitrarily chose to always have the extra node in the
|
| - // greater subtree when there is an odd number of nodes to
|
| - // split between the two subtrees.
|
| -
|
| - h = *p;
|
| - p++;
|
| - child = *p;
|
| - p++;
|
| - set_lt(child, null());
|
| - set_gt(child, null());
|
| - set_bf(child, 0);
|
| - set_gt(h, child);
|
| - set_lt(h, null());
|
| - set_bf(h, 1);
|
| - } else { // num_sub == 1
|
| - // Build a subtree with one node.
|
| -
|
| - h = *p;
|
| - p++;
|
| - set_lt(h, null());
|
| - set_gt(h, null());
|
| - set_bf(h, 0);
|
| - }
|
| -
|
| - while (depth) {
|
| - depth--;
|
| - if (!branch[depth])
|
| - // We've completed a less subtree.
|
| - break;
|
| -
|
| - // We've completed a greater subtree, so attach it to
|
| - // its parent (that is less than it). We pop the parent
|
| - // off the stack of less parents.
|
| - child = h;
|
| - h = less_parent;
|
| - less_parent = get_gt(h);
|
| - set_gt(h, child);
|
| - // num_sub = 2 * (num_sub - rem[depth]) + rem[depth] + 1
|
| - num_sub <<= 1;
|
| - num_sub += 1 - rem[depth];
|
| - if (num_sub & (num_sub - 1))
|
| - // num_sub is not a power of 2
|
| - set_bf(h, 0);
|
| - else
|
| - // num_sub is a power of 2
|
| - set_bf(h, 1);
|
| - }
|
| -
|
| - if (num_sub == num_nodes)
|
| - // We've completed the full tree.
|
| - break;
|
| -
|
| - // The subtree we've completed is the less subtree of the
|
| - // next node in the sequence.
|
| -
|
| - child = h;
|
| - h = *p;
|
| - p++;
|
| - set_lt(h, child);
|
| -
|
| - // Put h into stack of less parents.
|
| - set_gt(h, less_parent);
|
| - less_parent = h;
|
| -
|
| - // Proceed to creating greater than subtree of h.
|
| - branch[depth] = true;
|
| - num_sub += rem[depth++];
|
| -
|
| - } // end for (;;)
|
| -
|
| - abs.root = h;
|
| -
|
| - return true;
|
| - }
|
| -
|
| -protected:
|
| -
|
| - friend class Iterator;
|
| -
|
| - // Create a class whose sole purpose is to take advantage of
|
| - // the "empty member" optimization.
|
| - struct abs_plus_root : public Abstractor {
|
| - // The handle of the root element in the AVL tree.
|
| - handle root;
|
| - };
|
| -
|
| - abs_plus_root abs;
|
| -
|
| -
|
| - handle get_lt(handle h) { return abs.get_less(h); }
|
| - void set_lt(handle h, handle lh) { abs.set_less(h, lh); }
|
| -
|
| - handle get_gt(handle h) { return abs.get_greater(h); }
|
| - void set_gt(handle h, handle gh) { abs.set_greater(h, gh); }
|
| -
|
| - int get_bf(handle h) { return abs.get_balance_factor(h); }
|
| - void set_bf(handle h, int bf) { abs.set_balance_factor(h, bf); }
|
| -
|
| - int cmp_k_n(key k, handle h) { return abs.compare_key_node(k, h); }
|
| - int cmp_n_n(handle h1, handle h2) { return abs.compare_node_node(h1, h2); }
|
| -
|
| - handle null() { return abs.null(); }
|
| -
|
| -private:
|
| -
|
| - // Balances subtree, returns handle of root node of subtree
|
| - // after balancing.
|
| - handle balance(handle bal_h)
|
| - {
|
| - handle deep_h;
|
| -
|
| - // Either the "greater than" or the "less than" subtree of
|
| - // this node has to be 2 levels deeper (or else it wouldn't
|
| - // need balancing).
|
| -
|
| - if (get_bf(bal_h) > 0) {
|
| - // "Greater than" subtree is deeper.
|
| -
|
| - deep_h = get_gt(bal_h);
|
| -
|
| - if (get_bf(deep_h) < 0) {
|
| - handle old_h = bal_h;
|
| - bal_h = get_lt(deep_h);
|
| -
|
| - set_gt(old_h, get_lt(bal_h));
|
| - set_lt(deep_h, get_gt(bal_h));
|
| - set_lt(bal_h, old_h);
|
| - set_gt(bal_h, deep_h);
|
| -
|
| - int bf = get_bf(bal_h);
|
| - if (bf != 0) {
|
| - if (bf > 0) {
|
| - set_bf(old_h, -1);
|
| - set_bf(deep_h, 0);
|
| - } else {
|
| - set_bf(deep_h, 1);
|
| - set_bf(old_h, 0);
|
| - }
|
| - set_bf(bal_h, 0);
|
| - } else {
|
| - set_bf(old_h, 0);
|
| - set_bf(deep_h, 0);
|
| - }
|
| - } else {
|
| - set_gt(bal_h, get_lt(deep_h));
|
| - set_lt(deep_h, bal_h);
|
| - if (get_bf(deep_h) == 0) {
|
| - set_bf(deep_h, -1);
|
| - set_bf(bal_h, 1);
|
| - } else {
|
| - set_bf(deep_h, 0);
|
| - set_bf(bal_h, 0);
|
| - }
|
| - bal_h = deep_h;
|
| - }
|
| - } else {
|
| - // "Less than" subtree is deeper.
|
| -
|
| - deep_h = get_lt(bal_h);
|
| -
|
| - if (get_bf(deep_h) > 0) {
|
| - handle old_h = bal_h;
|
| - bal_h = get_gt(deep_h);
|
| - set_lt(old_h, get_gt(bal_h));
|
| - set_gt(deep_h, get_lt(bal_h));
|
| - set_gt(bal_h, old_h);
|
| - set_lt(bal_h, deep_h);
|
| -
|
| - int bf = get_bf(bal_h);
|
| - if (bf != 0) {
|
| - if (bf < 0) {
|
| - set_bf(old_h, 1);
|
| - set_bf(deep_h, 0);
|
| - } else {
|
| - set_bf(deep_h, -1);
|
| - set_bf(old_h, 0);
|
| - }
|
| - set_bf(bal_h, 0);
|
| - } else {
|
| - set_bf(old_h, 0);
|
| - set_bf(deep_h, 0);
|
| - }
|
| - } else {
|
| - set_lt(bal_h, get_gt(deep_h));
|
| - set_gt(deep_h, bal_h);
|
| - if (get_bf(deep_h) == 0) {
|
| - set_bf(deep_h, 1);
|
| - set_bf(bal_h, -1);
|
| - } else {
|
| - set_bf(deep_h, 0);
|
| - set_bf(bal_h, 0);
|
| - }
|
| - bal_h = deep_h;
|
| - }
|
| - }
|
| -
|
| - return bal_h;
|
| - }
|
| -
|
| -};
|
| -
|
| -template <class Abstractor, unsigned maxDepth, class BSet>
|
| -inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
|
| -AVLTree<Abstractor, maxDepth, BSet>::insert(handle h)
|
| -{
|
| - set_lt(h, null());
|
| - set_gt(h, null());
|
| - set_bf(h, 0);
|
| -
|
| - if (abs.root == null())
|
| - abs.root = h;
|
| - else {
|
| - // Last unbalanced node encountered in search for insertion point.
|
| - handle unbal = null();
|
| - // Parent of last unbalanced node.
|
| - handle parent_unbal = null();
|
| - // Balance factor of last unbalanced node.
|
| - int unbal_bf;
|
| -
|
| - // Zero-based depth in tree.
|
| - unsigned depth = 0, unbal_depth = 0;
|
| -
|
| - // Records a path into the tree. If branch[n] is true, indicates
|
| - // take greater branch from the nth node in the path, otherwise
|
| - // take the less branch. branch[0] gives branch from root, and
|
| - // so on.
|
| - BSet branch;
|
| -
|
| - handle hh = abs.root;
|
| - handle parent = null();
|
| - int cmp;
|
| -
|
| - do {
|
| - if (get_bf(hh) != 0) {
|
| - unbal = hh;
|
| - parent_unbal = parent;
|
| - unbal_depth = depth;
|
| - }
|
| - cmp = cmp_n_n(h, hh);
|
| - if (cmp == 0)
|
| - // Duplicate key.
|
| - return hh;
|
| - parent = hh;
|
| - hh = cmp < 0 ? get_lt(hh) : get_gt(hh);
|
| - branch[depth++] = cmp > 0;
|
| - } while (hh != null());
|
| -
|
| - // Add node to insert as leaf of tree.
|
| - if (cmp < 0)
|
| - set_lt(parent, h);
|
| - else
|
| - set_gt(parent, h);
|
| -
|
| - depth = unbal_depth;
|
| -
|
| - if (unbal == null())
|
| - hh = abs.root;
|
| - else {
|
| - cmp = branch[depth++] ? 1 : -1;
|
| - unbal_bf = get_bf(unbal);
|
| - if (cmp < 0)
|
| - unbal_bf--;
|
| - else // cmp > 0
|
| - unbal_bf++;
|
| - hh = cmp < 0 ? get_lt(unbal) : get_gt(unbal);
|
| - if ((unbal_bf != -2) && (unbal_bf != 2)) {
|
| - // No rebalancing of tree is necessary.
|
| - set_bf(unbal, unbal_bf);
|
| - unbal = null();
|
| - }
|
| - }
|
| -
|
| - if (hh != null())
|
| - while (h != hh) {
|
| - cmp = branch[depth++] ? 1 : -1;
|
| - if (cmp < 0) {
|
| - set_bf(hh, -1);
|
| - hh = get_lt(hh);
|
| - } else { // cmp > 0
|
| - set_bf(hh, 1);
|
| - hh = get_gt(hh);
|
| - }
|
| - }
|
| -
|
| - if (unbal != null()) {
|
| - unbal = balance(unbal);
|
| - if (parent_unbal == null())
|
| - abs.root = unbal;
|
| - else {
|
| - depth = unbal_depth - 1;
|
| - cmp = branch[depth] ? 1 : -1;
|
| - if (cmp < 0)
|
| - set_lt(parent_unbal, unbal);
|
| - else // cmp > 0
|
| - set_gt(parent_unbal, unbal);
|
| - }
|
| - }
|
| - }
|
| -
|
| - return h;
|
| -}
|
| -
|
| -template <class Abstractor, unsigned maxDepth, class BSet>
|
| -inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
|
| -AVLTree<Abstractor, maxDepth, BSet>::search(key k, typename AVLTree<Abstractor, maxDepth, BSet>::SearchType st)
|
| -{
|
| - const int MASK_HIGH_BIT = (int) ~ ((~ (unsigned) 0) >> 1);
|
| -
|
| - int cmp, target_cmp;
|
| - handle match_h = null();
|
| - handle h = abs.root;
|
| -
|
| - if (st & LESS)
|
| - target_cmp = 1;
|
| - else if (st & GREATER)
|
| - target_cmp = -1;
|
| - else
|
| - target_cmp = 0;
|
| -
|
| - while (h != null()) {
|
| - cmp = cmp_k_n(k, h);
|
| - if (cmp == 0) {
|
| - if (st & EQUAL) {
|
| - match_h = h;
|
| - break;
|
| - }
|
| - cmp = -target_cmp;
|
| - } else if (target_cmp != 0)
|
| - if (!((cmp ^ target_cmp) & MASK_HIGH_BIT))
|
| - // cmp and target_cmp are both positive or both negative.
|
| - match_h = h;
|
| - h = cmp < 0 ? get_lt(h) : get_gt(h);
|
| - }
|
| -
|
| - return match_h;
|
| -}
|
| -
|
| -template <class Abstractor, unsigned maxDepth, class BSet>
|
| -inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
|
| -AVLTree<Abstractor, maxDepth, BSet>::search_least()
|
| -{
|
| - handle h = abs.root, parent = null();
|
| -
|
| - while (h != null()) {
|
| - parent = h;
|
| - h = get_lt(h);
|
| - }
|
| -
|
| - return parent;
|
| -}
|
| -
|
| -template <class Abstractor, unsigned maxDepth, class BSet>
|
| -inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
|
| -AVLTree<Abstractor, maxDepth, BSet>::search_greatest()
|
| -{
|
| - handle h = abs.root, parent = null();
|
| -
|
| - while (h != null()) {
|
| - parent = h;
|
| - h = get_gt(h);
|
| - }
|
| -
|
| - return parent;
|
| -}
|
| -
|
| -template <class Abstractor, unsigned maxDepth, class BSet>
|
| -inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
|
| -AVLTree<Abstractor, maxDepth, BSet>::remove(key k)
|
| -{
|
| - // Zero-based depth in tree.
|
| - unsigned depth = 0, rm_depth;
|
| -
|
| - // Records a path into the tree. If branch[n] is true, indicates
|
| - // take greater branch from the nth node in the path, otherwise
|
| - // take the less branch. branch[0] gives branch from root, and
|
| - // so on.
|
| - BSet branch;
|
| -
|
| - handle h = abs.root;
|
| - handle parent = null(), child;
|
| - int cmp, cmp_shortened_sub_with_path = 0;
|
| -
|
| - for (;;) {
|
| - if (h == null())
|
| - // No node in tree with given key.
|
| - return null();
|
| - cmp = cmp_k_n(k, h);
|
| - if (cmp == 0)
|
| - // Found node to remove.
|
| - break;
|
| - parent = h;
|
| - h = cmp < 0 ? get_lt(h) : get_gt(h);
|
| - branch[depth++] = cmp > 0;
|
| - cmp_shortened_sub_with_path = cmp;
|
| - }
|
| - handle rm = h;
|
| - handle parent_rm = parent;
|
| - rm_depth = depth;
|
| -
|
| - // If the node to remove is not a leaf node, we need to get a
|
| - // leaf node, or a node with a single leaf as its child, to put
|
| - // in the place of the node to remove. We will get the greatest
|
| - // node in the less subtree (of the node to remove), or the least
|
| - // node in the greater subtree. We take the leaf node from the
|
| - // deeper subtree, if there is one.
|
| -
|
| - if (get_bf(h) < 0) {
|
| - child = get_lt(h);
|
| - branch[depth] = false;
|
| - cmp = -1;
|
| - } else {
|
| - child = get_gt(h);
|
| - branch[depth] = true;
|
| - cmp = 1;
|
| - }
|
| - depth++;
|
| -
|
| - if (child != null()) {
|
| - cmp = -cmp;
|
| - do {
|
| - parent = h;
|
| - h = child;
|
| - if (cmp < 0) {
|
| - child = get_lt(h);
|
| - branch[depth] = false;
|
| - } else {
|
| - child = get_gt(h);
|
| - branch[depth] = true;
|
| - }
|
| - depth++;
|
| - } while (child != null());
|
| -
|
| - if (parent == rm)
|
| - // Only went through do loop once. Deleted node will be replaced
|
| - // in the tree structure by one of its immediate children.
|
| - cmp_shortened_sub_with_path = -cmp;
|
| - else
|
| - cmp_shortened_sub_with_path = cmp;
|
| -
|
| - // Get the handle of the opposite child, which may not be null.
|
| - child = cmp > 0 ? get_lt(h) : get_gt(h);
|
| - }
|
| -
|
| - if (parent == null())
|
| - // There were only 1 or 2 nodes in this tree.
|
| - abs.root = child;
|
| - else if (cmp_shortened_sub_with_path < 0)
|
| - set_lt(parent, child);
|
| - else
|
| - set_gt(parent, child);
|
| -
|
| - // "path" is the parent of the subtree being eliminated or reduced
|
| - // from a depth of 2 to 1. If "path" is the node to be removed, we
|
| - // set path to the node we're about to poke into the position of the
|
| - // node to be removed.
|
| - handle path = parent == rm ? h : parent;
|
| -
|
| - if (h != rm) {
|
| - // Poke in the replacement for the node to be removed.
|
| - set_lt(h, get_lt(rm));
|
| - set_gt(h, get_gt(rm));
|
| - set_bf(h, get_bf(rm));
|
| - if (parent_rm == null())
|
| - abs.root = h;
|
| - else {
|
| - depth = rm_depth - 1;
|
| - if (branch[depth])
|
| - set_gt(parent_rm, h);
|
| - else
|
| - set_lt(parent_rm, h);
|
| - }
|
| - }
|
| -
|
| - if (path != null()) {
|
| - // Create a temporary linked list from the parent of the path node
|
| - // to the root node.
|
| - h = abs.root;
|
| - parent = null();
|
| - depth = 0;
|
| - while (h != path) {
|
| - if (branch[depth++]) {
|
| - child = get_gt(h);
|
| - set_gt(h, parent);
|
| - } else {
|
| - child = get_lt(h);
|
| - set_lt(h, parent);
|
| - }
|
| - parent = h;
|
| - h = child;
|
| - }
|
| -
|
| - // Climb from the path node to the root node using the linked
|
| - // list, restoring the tree structure and rebalancing as necessary.
|
| - bool reduced_depth = true;
|
| - int bf;
|
| - cmp = cmp_shortened_sub_with_path;
|
| - for (;;) {
|
| - if (reduced_depth) {
|
| - bf = get_bf(h);
|
| - if (cmp < 0)
|
| - bf++;
|
| - else // cmp > 0
|
| - bf--;
|
| - if ((bf == -2) || (bf == 2)) {
|
| - h = balance(h);
|
| - bf = get_bf(h);
|
| - } else
|
| - set_bf(h, bf);
|
| - reduced_depth = (bf == 0);
|
| - }
|
| - if (parent == null())
|
| - break;
|
| - child = h;
|
| - h = parent;
|
| - cmp = branch[--depth] ? 1 : -1;
|
| - if (cmp < 0) {
|
| - parent = get_lt(h);
|
| - set_lt(h, child);
|
| - } else {
|
| - parent = get_gt(h);
|
| - set_gt(h, child);
|
| - }
|
| - }
|
| - abs.root = h;
|
| - }
|
| -
|
| - return rm;
|
| -}
|
| -
|
| -template <class Abstractor, unsigned maxDepth, class BSet>
|
| -inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
|
| -AVLTree<Abstractor, maxDepth, BSet>::subst(handle new_node)
|
| -{
|
| - handle h = abs.root;
|
| - handle parent = null();
|
| - int cmp, last_cmp;
|
| -
|
| - /* Search for node already in tree with same key. */
|
| - for (;;) {
|
| - if (h == null())
|
| - /* No node in tree with same key as new node. */
|
| - return null();
|
| - cmp = cmp_n_n(new_node, h);
|
| - if (cmp == 0)
|
| - /* Found the node to substitute new one for. */
|
| - break;
|
| - last_cmp = cmp;
|
| - parent = h;
|
| - h = cmp < 0 ? get_lt(h) : get_gt(h);
|
| - }
|
| -
|
| - /* Copy tree housekeeping fields from node in tree to new node. */
|
| - set_lt(new_node, get_lt(h));
|
| - set_gt(new_node, get_gt(h));
|
| - set_bf(new_node, get_bf(h));
|
| -
|
| - if (parent == null())
|
| - /* New node is also new root. */
|
| - abs.root = new_node;
|
| - else {
|
| - /* Make parent point to new node. */
|
| - if (last_cmp < 0)
|
| - set_lt(parent, new_node);
|
| - else
|
| - set_gt(parent, new_node);
|
| - }
|
| -
|
| - return h;
|
| -}
|
| -
|
| -}
|
| -
|
| -#endif
|
|
|