| Index: Source/WTF/wtf/MathExtras.h
|
| diff --git a/Source/WTF/wtf/MathExtras.h b/Source/WTF/wtf/MathExtras.h
|
| deleted file mode 100644
|
| index 47441128aa90db6849118cb0df19cbfb8089672d..0000000000000000000000000000000000000000
|
| --- a/Source/WTF/wtf/MathExtras.h
|
| +++ /dev/null
|
| @@ -1,454 +0,0 @@
|
| -/*
|
| - * Copyright (C) 2006, 2007, 2008, 2009, 2010 Apple Inc. All rights reserved.
|
| - *
|
| - * Redistribution and use in source and binary forms, with or without
|
| - * modification, are permitted provided that the following conditions
|
| - * are met:
|
| - * 1. Redistributions of source code must retain the above copyright
|
| - * notice, this list of conditions and the following disclaimer.
|
| - * 2. Redistributions in binary form must reproduce the above copyright
|
| - * notice, this list of conditions and the following disclaimer in the
|
| - * documentation and/or other materials provided with the distribution.
|
| - *
|
| - * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
|
| - * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
| - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
| - * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
|
| - * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
| - * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
| - * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
| - * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
| - * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| - * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| - */
|
| -
|
| -#ifndef WTF_MathExtras_h
|
| -#define WTF_MathExtras_h
|
| -
|
| -#include <algorithm>
|
| -#include <cmath>
|
| -#include <float.h>
|
| -#include <limits>
|
| -#include <stdint.h>
|
| -#include <stdlib.h>
|
| -#include <wtf/StdLibExtras.h>
|
| -
|
| -#if OS(SOLARIS)
|
| -#include <ieeefp.h>
|
| -#endif
|
| -
|
| -#if OS(OPENBSD)
|
| -#include <sys/types.h>
|
| -#include <machine/ieee.h>
|
| -#endif
|
| -
|
| -#if OS(QNX)
|
| -// FIXME: Look into a way to have cmath import its functions into both the standard and global
|
| -// namespace. For now, we include math.h since the QNX cmath header only imports its functions
|
| -// into the standard namespace.
|
| -#include <math.h>
|
| -#endif
|
| -
|
| -#ifndef M_PI
|
| -const double piDouble = 3.14159265358979323846;
|
| -const float piFloat = 3.14159265358979323846f;
|
| -#else
|
| -const double piDouble = M_PI;
|
| -const float piFloat = static_cast<float>(M_PI);
|
| -#endif
|
| -
|
| -#ifndef M_PI_2
|
| -const double piOverTwoDouble = 1.57079632679489661923;
|
| -const float piOverTwoFloat = 1.57079632679489661923f;
|
| -#else
|
| -const double piOverTwoDouble = M_PI_2;
|
| -const float piOverTwoFloat = static_cast<float>(M_PI_2);
|
| -#endif
|
| -
|
| -#ifndef M_PI_4
|
| -const double piOverFourDouble = 0.785398163397448309616;
|
| -const float piOverFourFloat = 0.785398163397448309616f;
|
| -#else
|
| -const double piOverFourDouble = M_PI_4;
|
| -const float piOverFourFloat = static_cast<float>(M_PI_4);
|
| -#endif
|
| -
|
| -#if OS(DARWIN)
|
| -
|
| -// Work around a bug in the Mac OS X libc where ceil(-0.1) return +0.
|
| -inline double wtf_ceil(double x) { return copysign(ceil(x), x); }
|
| -
|
| -#define ceil(x) wtf_ceil(x)
|
| -
|
| -#endif
|
| -
|
| -#if OS(SOLARIS)
|
| -
|
| -namespace std {
|
| -
|
| -#ifndef isfinite
|
| -inline bool isfinite(double x) { return finite(x) && !isnand(x); }
|
| -#endif
|
| -#ifndef signbit
|
| -inline bool signbit(double x) { return copysign(1.0, x) < 0; }
|
| -#endif
|
| -#ifndef isinf
|
| -inline bool isinf(double x) { return !finite(x) && !isnand(x); }
|
| -#endif
|
| -
|
| -} // namespace std
|
| -
|
| -#endif
|
| -
|
| -#if OS(OPENBSD)
|
| -
|
| -namespace std {
|
| -
|
| -#ifndef isfinite
|
| -inline bool isfinite(double x) { return finite(x); }
|
| -#endif
|
| -#ifndef signbit
|
| -inline bool signbit(double x) { struct ieee_double *p = (struct ieee_double *)&x; return p->dbl_sign; }
|
| -#endif
|
| -
|
| -} // namespace std
|
| -
|
| -#endif
|
| -
|
| -#if COMPILER(MSVC)
|
| -
|
| -// We must not do 'num + 0.5' or 'num - 0.5' because they can cause precision loss.
|
| -static double round(double num)
|
| -{
|
| - double integer = ceil(num);
|
| - if (num > 0)
|
| - return integer - num > 0.5 ? integer - 1.0 : integer;
|
| - return integer - num >= 0.5 ? integer - 1.0 : integer;
|
| -}
|
| -static float roundf(float num)
|
| -{
|
| - float integer = ceilf(num);
|
| - if (num > 0)
|
| - return integer - num > 0.5f ? integer - 1.0f : integer;
|
| - return integer - num >= 0.5f ? integer - 1.0f : integer;
|
| -}
|
| -inline long long llround(double num) { return static_cast<long long>(round(num)); }
|
| -inline long long llroundf(float num) { return static_cast<long long>(roundf(num)); }
|
| -inline long lround(double num) { return static_cast<long>(round(num)); }
|
| -inline long lroundf(float num) { return static_cast<long>(roundf(num)); }
|
| -inline double trunc(double num) { return num > 0 ? floor(num) : ceil(num); }
|
| -
|
| -#endif
|
| -
|
| -#if COMPILER(GCC) && OS(QNX)
|
| -// The stdlib on QNX doesn't contain long abs(long). See PR #104666.
|
| -inline long long abs(long num) { return labs(num); }
|
| -#endif
|
| -
|
| -#if OS(ANDROID) || COMPILER(MSVC)
|
| -// ANDROID and MSVC's math.h does not currently supply log2 or log2f.
|
| -inline double log2(double num)
|
| -{
|
| - // This constant is roughly M_LN2, which is not provided by default on Windows and Android.
|
| - return log(num) / 0.693147180559945309417232121458176568;
|
| -}
|
| -
|
| -inline float log2f(float num)
|
| -{
|
| - // This constant is roughly M_LN2, which is not provided by default on Windows and Android.
|
| - return logf(num) / 0.693147180559945309417232121458176568f;
|
| -}
|
| -#endif
|
| -
|
| -#if COMPILER(MSVC)
|
| -// The 64bit version of abs() is already defined in stdlib.h which comes with VC10
|
| -#if COMPILER(MSVC9_OR_LOWER)
|
| -inline long long abs(long long num) { return _abs64(num); }
|
| -#endif
|
| -
|
| -namespace std {
|
| -
|
| -inline bool isinf(double num) { return !_finite(num) && !_isnan(num); }
|
| -inline bool isnan(double num) { return !!_isnan(num); }
|
| -inline bool isfinite(double x) { return _finite(x); }
|
| -inline bool signbit(double num) { return _copysign(1.0, num) < 0; }
|
| -
|
| -} // namespace std
|
| -
|
| -inline double nextafter(double x, double y) { return _nextafter(x, y); }
|
| -inline float nextafterf(float x, float y) { return x > y ? x - FLT_EPSILON : x + FLT_EPSILON; }
|
| -
|
| -inline double copysign(double x, double y) { return _copysign(x, y); }
|
| -
|
| -// Work around a bug in Win, where atan2(+-infinity, +-infinity) yields NaN instead of specific values.
|
| -inline double wtf_atan2(double x, double y)
|
| -{
|
| - double posInf = std::numeric_limits<double>::infinity();
|
| - double negInf = -std::numeric_limits<double>::infinity();
|
| - double nan = std::numeric_limits<double>::quiet_NaN();
|
| -
|
| - double result = nan;
|
| -
|
| - if (x == posInf && y == posInf)
|
| - result = piOverFourDouble;
|
| - else if (x == posInf && y == negInf)
|
| - result = 3 * piOverFourDouble;
|
| - else if (x == negInf && y == posInf)
|
| - result = -piOverFourDouble;
|
| - else if (x == negInf && y == negInf)
|
| - result = -3 * piOverFourDouble;
|
| - else
|
| - result = ::atan2(x, y);
|
| -
|
| - return result;
|
| -}
|
| -
|
| -// Work around a bug in the Microsoft CRT, where fmod(x, +-infinity) yields NaN instead of x.
|
| -inline double wtf_fmod(double x, double y) { return (!std::isinf(x) && std::isinf(y)) ? x : fmod(x, y); }
|
| -
|
| -// Work around a bug in the Microsoft CRT, where pow(NaN, 0) yields NaN instead of 1.
|
| -inline double wtf_pow(double x, double y) { return y == 0 ? 1 : pow(x, y); }
|
| -
|
| -#define atan2(x, y) wtf_atan2(x, y)
|
| -#define fmod(x, y) wtf_fmod(x, y)
|
| -#define pow(x, y) wtf_pow(x, y)
|
| -
|
| -// MSVC's math functions do not bring lrint.
|
| -inline long int lrint(double flt)
|
| -{
|
| - int64_t intgr;
|
| -#if CPU(X86)
|
| - __asm {
|
| - fld flt
|
| - fistp intgr
|
| - };
|
| -#else
|
| - ASSERT(std::isfinite(flt));
|
| - double rounded = round(flt);
|
| - intgr = static_cast<int64_t>(rounded);
|
| - // If the fractional part is exactly 0.5, we need to check whether
|
| - // the rounded result is even. If it is not we need to add 1 to
|
| - // negative values and subtract one from positive values.
|
| - if ((fabs(intgr - flt) == 0.5) & intgr)
|
| - intgr -= ((intgr >> 62) | 1); // 1 with the sign of result, i.e. -1 or 1.
|
| -#endif
|
| - return static_cast<long int>(intgr);
|
| -}
|
| -
|
| -#endif // COMPILER(MSVC)
|
| -
|
| -inline double deg2rad(double d) { return d * piDouble / 180.0; }
|
| -inline double rad2deg(double r) { return r * 180.0 / piDouble; }
|
| -inline double deg2grad(double d) { return d * 400.0 / 360.0; }
|
| -inline double grad2deg(double g) { return g * 360.0 / 400.0; }
|
| -inline double turn2deg(double t) { return t * 360.0; }
|
| -inline double deg2turn(double d) { return d / 360.0; }
|
| -inline double rad2grad(double r) { return r * 200.0 / piDouble; }
|
| -inline double grad2rad(double g) { return g * piDouble / 200.0; }
|
| -
|
| -inline float deg2rad(float d) { return d * piFloat / 180.0f; }
|
| -inline float rad2deg(float r) { return r * 180.0f / piFloat; }
|
| -inline float deg2grad(float d) { return d * 400.0f / 360.0f; }
|
| -inline float grad2deg(float g) { return g * 360.0f / 400.0f; }
|
| -inline float turn2deg(float t) { return t * 360.0f; }
|
| -inline float deg2turn(float d) { return d / 360.0f; }
|
| -inline float rad2grad(float r) { return r * 200.0f / piFloat; }
|
| -inline float grad2rad(float g) { return g * piFloat / 200.0f; }
|
| -
|
| -// std::numeric_limits<T>::min() returns the smallest positive value for floating point types
|
| -template<typename T> inline T defaultMinimumForClamp() { return std::numeric_limits<T>::min(); }
|
| -template<> inline float defaultMinimumForClamp() { return -std::numeric_limits<float>::max(); }
|
| -template<> inline double defaultMinimumForClamp() { return -std::numeric_limits<double>::max(); }
|
| -template<typename T> inline T defaultMaximumForClamp() { return std::numeric_limits<T>::max(); }
|
| -
|
| -template<typename T> inline T clampTo(double value, T min = defaultMinimumForClamp<T>(), T max = defaultMaximumForClamp<T>())
|
| -{
|
| - if (value >= static_cast<double>(max))
|
| - return max;
|
| - if (value <= static_cast<double>(min))
|
| - return min;
|
| - return static_cast<T>(value);
|
| -}
|
| -template<> inline long long int clampTo(double, long long int, long long int); // clampTo does not support long long ints.
|
| -
|
| -inline int clampToInteger(double value)
|
| -{
|
| - return clampTo<int>(value);
|
| -}
|
| -
|
| -inline float clampToFloat(double value)
|
| -{
|
| - return clampTo<float>(value);
|
| -}
|
| -
|
| -inline int clampToPositiveInteger(double value)
|
| -{
|
| - return clampTo<int>(value, 0);
|
| -}
|
| -
|
| -inline int clampToInteger(float value)
|
| -{
|
| - return clampTo<int>(value);
|
| -}
|
| -
|
| -inline int clampToInteger(unsigned x)
|
| -{
|
| - const unsigned intMax = static_cast<unsigned>(std::numeric_limits<int>::max());
|
| -
|
| - if (x >= intMax)
|
| - return std::numeric_limits<int>::max();
|
| - return static_cast<int>(x);
|
| -}
|
| -
|
| -inline bool isWithinIntRange(float x)
|
| -{
|
| - return x > static_cast<float>(std::numeric_limits<int>::min()) && x < static_cast<float>(std::numeric_limits<int>::max());
|
| -}
|
| -
|
| -template<typename T> inline bool hasOneBitSet(T value)
|
| -{
|
| - return !((value - 1) & value) && value;
|
| -}
|
| -
|
| -template<typename T> inline bool hasZeroOrOneBitsSet(T value)
|
| -{
|
| - return !((value - 1) & value);
|
| -}
|
| -
|
| -template<typename T> inline bool hasTwoOrMoreBitsSet(T value)
|
| -{
|
| - return !hasZeroOrOneBitsSet(value);
|
| -}
|
| -
|
| -template <typename T> inline unsigned getLSBSet(T value)
|
| -{
|
| - unsigned result = 0;
|
| -
|
| - while (value >>= 1)
|
| - ++result;
|
| -
|
| - return result;
|
| -}
|
| -
|
| -template<typename T> inline T timesThreePlusOneDividedByTwo(T value)
|
| -{
|
| - // Mathematically equivalent to:
|
| - // (value * 3 + 1) / 2;
|
| - // or:
|
| - // (unsigned)ceil(value * 1.5));
|
| - // This form is not prone to internal overflow.
|
| - return value + (value >> 1) + (value & 1);
|
| -}
|
| -
|
| -#ifndef UINT64_C
|
| -#if COMPILER(MSVC)
|
| -#define UINT64_C(c) c ## ui64
|
| -#else
|
| -#define UINT64_C(c) c ## ull
|
| -#endif
|
| -#endif
|
| -
|
| -#if COMPILER(MINGW64) && (!defined(__MINGW64_VERSION_RC) || __MINGW64_VERSION_RC < 1)
|
| -inline double wtf_pow(double x, double y)
|
| -{
|
| - // MinGW-w64 has a custom implementation for pow.
|
| - // This handles certain special cases that are different.
|
| - if ((x == 0.0 || std::isinf(x)) && std::isfinite(y)) {
|
| - double f;
|
| - if (modf(y, &f) != 0.0)
|
| - return ((x == 0.0) ^ (y > 0.0)) ? std::numeric_limits<double>::infinity() : 0.0;
|
| - }
|
| -
|
| - if (x == 2.0) {
|
| - int yInt = static_cast<int>(y);
|
| - if (y == yInt)
|
| - return ldexp(1.0, yInt);
|
| - }
|
| -
|
| - return pow(x, y);
|
| -}
|
| -#define pow(x, y) wtf_pow(x, y)
|
| -#endif // COMPILER(MINGW64) && (!defined(__MINGW64_VERSION_RC) || __MINGW64_VERSION_RC < 1)
|
| -
|
| -
|
| -// decompose 'number' to its sign, exponent, and mantissa components.
|
| -// The result is interpreted as:
|
| -// (sign ? -1 : 1) * pow(2, exponent) * (mantissa / (1 << 52))
|
| -inline void decomposeDouble(double number, bool& sign, int32_t& exponent, uint64_t& mantissa)
|
| -{
|
| - ASSERT(std::isfinite(number));
|
| -
|
| - sign = std::signbit(number);
|
| -
|
| - uint64_t bits = WTF::bitwise_cast<uint64_t>(number);
|
| - exponent = (static_cast<int32_t>(bits >> 52) & 0x7ff) - 0x3ff;
|
| - mantissa = bits & 0xFFFFFFFFFFFFFull;
|
| -
|
| - // Check for zero/denormal values; if so, adjust the exponent,
|
| - // if not insert the implicit, omitted leading 1 bit.
|
| - if (exponent == -0x3ff)
|
| - exponent = mantissa ? -0x3fe : 0;
|
| - else
|
| - mantissa |= 0x10000000000000ull;
|
| -}
|
| -
|
| -// Calculate d % 2^{64}.
|
| -inline void doubleToInteger(double d, unsigned long long& value)
|
| -{
|
| - if (std::isnan(d) || std::isinf(d))
|
| - value = 0;
|
| - else {
|
| - // -2^{64} < fmodValue < 2^{64}.
|
| - double fmodValue = fmod(trunc(d), std::numeric_limits<unsigned long long>::max() + 1.0);
|
| - if (fmodValue >= 0) {
|
| - // 0 <= fmodValue < 2^{64}.
|
| - // 0 <= value < 2^{64}. This cast causes no loss.
|
| - value = static_cast<unsigned long long>(fmodValue);
|
| - } else {
|
| - // -2^{64} < fmodValue < 0.
|
| - // 0 < fmodValueInUnsignedLongLong < 2^{64}. This cast causes no loss.
|
| - unsigned long long fmodValueInUnsignedLongLong = static_cast<unsigned long long>(-fmodValue);
|
| - // -1 < (std::numeric_limits<unsigned long long>::max() - fmodValueInUnsignedLongLong) < 2^{64} - 1.
|
| - // 0 < value < 2^{64}.
|
| - value = std::numeric_limits<unsigned long long>::max() - fmodValueInUnsignedLongLong + 1;
|
| - }
|
| - }
|
| -}
|
| -
|
| -namespace WTF {
|
| -
|
| -// From http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
|
| -inline uint32_t roundUpToPowerOfTwo(uint32_t v)
|
| -{
|
| - v--;
|
| - v |= v >> 1;
|
| - v |= v >> 2;
|
| - v |= v >> 4;
|
| - v |= v >> 8;
|
| - v |= v >> 16;
|
| - v++;
|
| - return v;
|
| -}
|
| -
|
| -inline unsigned fastLog2(unsigned i)
|
| -{
|
| - unsigned log2 = 0;
|
| - if (i & (i - 1))
|
| - log2 += 1;
|
| - if (i >> 16)
|
| - log2 += 16, i >>= 16;
|
| - if (i >> 8)
|
| - log2 += 8, i >>= 8;
|
| - if (i >> 4)
|
| - log2 += 4, i >>= 4;
|
| - if (i >> 2)
|
| - log2 += 2, i >>= 2;
|
| - if (i >> 1)
|
| - log2 += 1;
|
| - return log2;
|
| -}
|
| -
|
| -} // namespace WTF
|
| -
|
| -#endif // #ifndef WTF_MathExtras_h
|
|
|