Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(139)

Side by Side Diff: Source/WTF/wtf/dtoa/strtod.cc

Issue 14238015: Move Source/WTF/wtf to Source/wtf (Closed) Base URL: svn://svn.chromium.org/blink/trunk
Patch Set: Created 7 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
OLDNEW
(Empty)
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "config.h"
29
30 #include <stdarg.h>
31 #include <limits.h>
32
33 #include "strtod.h"
34 #include "bignum.h"
35 #include "cached-powers.h"
36 #include "double.h"
37
38 namespace WTF {
39
40 namespace double_conversion {
41
42 // 2^53 = 9007199254740992.
43 // Any integer with at most 15 decimal digits will hence fit into a double
44 // (which has a 53bit significand) without loss of precision.
45 static const int kMaxExactDoubleIntegerDecimalDigits = 15;
46 // 2^64 = 18446744073709551616 > 10^19
47 static const int kMaxUint64DecimalDigits = 19;
48
49 // Max double: 1.7976931348623157 x 10^308
50 // Min non-zero double: 4.9406564584124654 x 10^-324
51 // Any x >= 10^309 is interpreted as +infinity.
52 // Any x <= 10^-324 is interpreted as 0.
53 // Note that 2.5e-324 (despite being smaller than the min double) will be re ad
54 // as non-zero (equal to the min non-zero double).
55 static const int kMaxDecimalPower = 309;
56 static const int kMinDecimalPower = -324;
57
58 // 2^64 = 18446744073709551616
59 static const uint64_t kMaxUint64 = UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF);
60
61
62 static const double exact_powers_of_ten[] = {
63 1.0, // 10^0
64 10.0,
65 100.0,
66 1000.0,
67 10000.0,
68 100000.0,
69 1000000.0,
70 10000000.0,
71 100000000.0,
72 1000000000.0,
73 10000000000.0, // 10^10
74 100000000000.0,
75 1000000000000.0,
76 10000000000000.0,
77 100000000000000.0,
78 1000000000000000.0,
79 10000000000000000.0,
80 100000000000000000.0,
81 1000000000000000000.0,
82 10000000000000000000.0,
83 100000000000000000000.0, // 10^20
84 1000000000000000000000.0,
85 // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22
86 10000000000000000000000.0
87 };
88 static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten);
89
90 // Maximum number of significant digits in the decimal representation.
91 // In fact the value is 772 (see conversions.cc), but to give us some margin
92 // we round up to 780.
93 static const int kMaxSignificantDecimalDigits = 780;
94
95 static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
96 for (int i = 0; i < buffer.length(); i++) {
97 if (buffer[i] != '0') {
98 return buffer.SubVector(i, buffer.length());
99 }
100 }
101 return Vector<const char>(buffer.start(), 0);
102 }
103
104
105 static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) {
106 for (int i = buffer.length() - 1; i >= 0; --i) {
107 if (buffer[i] != '0') {
108 return buffer.SubVector(0, i + 1);
109 }
110 }
111 return Vector<const char>(buffer.start(), 0);
112 }
113
114
115 static void TrimToMaxSignificantDigits(Vector<const char> buffer,
116 int exponent,
117 char* significant_buffer,
118 int* significant_exponent) {
119 for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) {
120 significant_buffer[i] = buffer[i];
121 }
122 // The input buffer has been trimmed. Therefore the last digit must be
123 // different from '0'.
124 ASSERT(buffer[buffer.length() - 1] != '0');
125 // Set the last digit to be non-zero. This is sufficient to guarantee
126 // correct rounding.
127 significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';
128 *significant_exponent =
129 exponent + (buffer.length() - kMaxSignificantDecimalDigits);
130 }
131
132 // Reads digits from the buffer and converts them to a uint64.
133 // Reads in as many digits as fit into a uint64.
134 // When the string starts with "1844674407370955161" no further digit is rea d.
135 // Since 2^64 = 18446744073709551616 it would still be possible read another
136 // digit if it was less or equal than 6, but this would complicate the code.
137 static uint64_t ReadUint64(Vector<const char> buffer,
138 int* number_of_read_digits) {
139 uint64_t result = 0;
140 int i = 0;
141 while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
142 int digit = buffer[i++] - '0';
143 ASSERT(0 <= digit && digit <= 9);
144 result = 10 * result + digit;
145 }
146 *number_of_read_digits = i;
147 return result;
148 }
149
150
151 // Reads a DiyFp from the buffer.
152 // The returned DiyFp is not necessarily normalized.
153 // If remaining_decimals is zero then the returned DiyFp is accurate.
154 // Otherwise it has been rounded and has error of at most 1/2 ulp.
155 static void ReadDiyFp(Vector<const char> buffer,
156 DiyFp* result,
157 int* remaining_decimals) {
158 int read_digits;
159 uint64_t significand = ReadUint64(buffer, &read_digits);
160 if (buffer.length() == read_digits) {
161 *result = DiyFp(significand, 0);
162 *remaining_decimals = 0;
163 } else {
164 // Round the significand.
165 if (buffer[read_digits] >= '5') {
166 significand++;
167 }
168 // Compute the binary exponent.
169 int exponent = 0;
170 *result = DiyFp(significand, exponent);
171 *remaining_decimals = buffer.length() - read_digits;
172 }
173 }
174
175
176 static bool DoubleStrtod(Vector<const char> trimmed,
177 int exponent,
178 double* result) {
179 #if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
180 // On x86 the floating-point stack can be 64 or 80 bits wide. If it is
181 // 80 bits wide (as is the case on Linux) then double-rounding occurs an d the
182 // result is not accurate.
183 // We know that Windows32 uses 64 bits and is therefore accurate.
184 // Note that the ARM simulator is compiled for 32bits. It therefore exhi bits
185 // the same problem.
186 return false;
187 #endif
188 if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
189 int read_digits;
190 // The trimmed input fits into a double.
191 // If the 10^exponent (resp. 10^-exponent) fits into a double too th en we
192 // can compute the result-double simply by multiplying (resp. dividi ng) the
193 // two numbers.
194 // This is possible because IEEE guarantees that floating-point oper ations
195 // return the best possible approximation.
196 if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
197 // 10^-exponent fits into a double.
198 *result = static_cast<double>(ReadUint64(trimmed, &read_digits)) ;
199 ASSERT(read_digits == trimmed.length());
200 *result /= exact_powers_of_ten[-exponent];
201 return true;
202 }
203 if (0 <= exponent && exponent < kExactPowersOfTenSize) {
204 // 10^exponent fits into a double.
205 *result = static_cast<double>(ReadUint64(trimmed, &read_digits)) ;
206 ASSERT(read_digits == trimmed.length());
207 *result *= exact_powers_of_ten[exponent];
208 return true;
209 }
210 int remaining_digits =
211 kMaxExactDoubleIntegerDecimalDigits - trimmed.length();
212 if ((0 <= exponent) &&
213 (exponent - remaining_digits < kExactPowersOfTenSize)) {
214 // The trimmed string was short and we can multiply it with
215 // 10^remaining_digits. As a result the remaining exponent now f its
216 // into a double too.
217 *result = static_cast<double>(ReadUint64(trimmed, &read_digits)) ;
218 ASSERT(read_digits == trimmed.length());
219 *result *= exact_powers_of_ten[remaining_digits];
220 *result *= exact_powers_of_ten[exponent - remaining_digits];
221 return true;
222 }
223 }
224 return false;
225 }
226
227
228 // Returns 10^exponent as an exact DiyFp.
229 // The given exponent must be in the range [1; kDecimalExponentDistance[.
230 static DiyFp AdjustmentPowerOfTen(int exponent) {
231 ASSERT(0 < exponent);
232 ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance);
233 // Simply hardcode the remaining powers for the given decimal exponent
234 // distance.
235 ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8);
236 switch (exponent) {
237 case 1: return DiyFp(UINT64_2PART_C(0xa0000000, 00000000), -60);
238 case 2: return DiyFp(UINT64_2PART_C(0xc8000000, 00000000), -57);
239 case 3: return DiyFp(UINT64_2PART_C(0xfa000000, 00000000), -54);
240 case 4: return DiyFp(UINT64_2PART_C(0x9c400000, 00000000), -50);
241 case 5: return DiyFp(UINT64_2PART_C(0xc3500000, 00000000), -47);
242 case 6: return DiyFp(UINT64_2PART_C(0xf4240000, 00000000), -44);
243 case 7: return DiyFp(UINT64_2PART_C(0x98968000, 00000000), -40);
244 default:
245 UNREACHABLE();
246 return DiyFp(0, 0);
247 }
248 }
249
250
251 // If the function returns true then the result is the correct double.
252 // Otherwise it is either the correct double or the double that is just belo w
253 // the correct double.
254 static bool DiyFpStrtod(Vector<const char> buffer,
255 int exponent,
256 double* result) {
257 DiyFp input;
258 int remaining_decimals;
259 ReadDiyFp(buffer, &input, &remaining_decimals);
260 // Since we may have dropped some digits the input is not accurate.
261 // If remaining_decimals is different than 0 than the error is at most
262 // .5 ulp (unit in the last place).
263 // We don't want to deal with fractions and therefore keep a common
264 // denominator.
265 const int kDenominatorLog = 3;
266 const int kDenominator = 1 << kDenominatorLog;
267 // Move the remaining decimals into the exponent.
268 exponent += remaining_decimals;
269 int error = (remaining_decimals == 0 ? 0 : kDenominator / 2);
270
271 int old_e = input.e();
272 input.Normalize();
273 error <<= old_e - input.e();
274
275 ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent);
276 if (exponent < PowersOfTenCache::kMinDecimalExponent) {
277 *result = 0.0;
278 return true;
279 }
280 DiyFp cached_power;
281 int cached_decimal_exponent;
282 PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,
283 &cached_power,
284 &cached_decimal_expon ent);
285
286 if (cached_decimal_exponent != exponent) {
287 int adjustment_exponent = exponent - cached_decimal_exponent;
288 DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
289 input.Multiply(adjustment_power);
290 if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent ) {
291 // The product of input with the adjustment power fits into a 64 bit
292 // integer.
293 ASSERT(DiyFp::kSignificandSize == 64);
294 } else {
295 // The adjustment power is exact. There is hence only an error o f 0.5.
296 error += kDenominator / 2;
297 }
298 }
299
300 input.Multiply(cached_power);
301 // The error introduced by a multiplication of a*b equals
302 // error_a + error_b + error_a*error_b/2^64 + 0.5
303 // Substituting a with 'input' and b with 'cached_power' we have
304 // error_b = 0.5 (all cached powers have an error of less than 0.5 ul p),
305 // error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
306 int error_b = kDenominator / 2;
307 int error_ab = (error == 0 ? 0 : 1); // We round up to 1.
308 int fixed_error = kDenominator / 2;
309 error += error_b + error_ab + fixed_error;
310
311 old_e = input.e();
312 input.Normalize();
313 error <<= old_e - input.e();
314
315 // See if the double's significand changes if we add/subtract the error.
316 int order_of_magnitude = DiyFp::kSignificandSize + input.e();
317 int effective_significand_size =
318 Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
319 int precision_digits_count =
320 DiyFp::kSignificandSize - effective_significand_size;
321 if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) {
322 // This can only happen for very small denormals. In this case the
323 // half-way multiplied by the denominator exceeds the range of an ui nt64.
324 // Simply shift everything to the right.
325 int shift_amount = (precision_digits_count + kDenominatorLog) -
326 DiyFp::kSignificandSize + 1;
327 input.set_f(input.f() >> shift_amount);
328 input.set_e(input.e() + shift_amount);
329 // We add 1 for the lost precision of error, and kDenominator for
330 // the lost precision of input.f().
331 error = (error >> shift_amount) + 1 + kDenominator;
332 precision_digits_count -= shift_amount;
333 }
334 // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too .
335 ASSERT(DiyFp::kSignificandSize == 64);
336 ASSERT(precision_digits_count < 64);
337 uint64_t one64 = 1;
338 uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
339 uint64_t precision_bits = input.f() & precision_bits_mask;
340 uint64_t half_way = one64 << (precision_digits_count - 1);
341 precision_bits *= kDenominator;
342 half_way *= kDenominator;
343 DiyFp rounded_input(input.f() >> precision_digits_count,
344 input.e() + precision_digits_count);
345 if (precision_bits >= half_way + error) {
346 rounded_input.set_f(rounded_input.f() + 1);
347 }
348 // If the last_bits are too close to the half-way case than we are too
349 // inaccurate and round down. In this case we return false so that we ca n
350 // fall back to a more precise algorithm.
351
352 *result = Double(rounded_input).value();
353 if (half_way - error < precision_bits && precision_bits < half_way + err or) {
354 // Too imprecise. The caller will have to fall back to a slower vers ion.
355 // However the returned number is guaranteed to be either the correc t
356 // double, or the next-lower double.
357 return false;
358 } else {
359 return true;
360 }
361 }
362
363
364 // Returns the correct double for the buffer*10^exponent.
365 // The variable guess should be a close guess that is either the correct dou ble
366 // or its lower neighbor (the nearest double less than the correct one).
367 // Preconditions:
368 // buffer.length() + exponent <= kMaxDecimalPower + 1
369 // buffer.length() + exponent > kMinDecimalPower
370 // buffer.length() <= kMaxDecimalSignificantDigits
371 static double BignumStrtod(Vector<const char> buffer,
372 int exponent,
373 double guess) {
374 if (guess == Double::Infinity()) {
375 return guess;
376 }
377
378 DiyFp upper_boundary = Double(guess).UpperBoundary();
379
380 ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1);
381 ASSERT(buffer.length() + exponent > kMinDecimalPower);
382 ASSERT(buffer.length() <= kMaxSignificantDecimalDigits);
383 // Make sure that the Bignum will be able to hold all our numbers.
384 // Our Bignum implementation has a separate field for exponents. Shifts will
385 // consume at most one bigit (< 64 bits).
386 // ln(10) == 3.3219...
387 ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBit s);
388 Bignum input;
389 Bignum boundary;
390 input.AssignDecimalString(buffer);
391 boundary.AssignUInt64(upper_boundary.f());
392 if (exponent >= 0) {
393 input.MultiplyByPowerOfTen(exponent);
394 } else {
395 boundary.MultiplyByPowerOfTen(-exponent);
396 }
397 if (upper_boundary.e() > 0) {
398 boundary.ShiftLeft(upper_boundary.e());
399 } else {
400 input.ShiftLeft(-upper_boundary.e());
401 }
402 int comparison = Bignum::Compare(input, boundary);
403 if (comparison < 0) {
404 return guess;
405 } else if (comparison > 0) {
406 return Double(guess).NextDouble();
407 } else if ((Double(guess).Significand() & 1) == 0) {
408 // Round towards even.
409 return guess;
410 } else {
411 return Double(guess).NextDouble();
412 }
413 }
414
415
416 double Strtod(Vector<const char> buffer, int exponent) {
417 Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
418 Vector<const char> trimmed = TrimTrailingZeros(left_trimmed);
419 exponent += left_trimmed.length() - trimmed.length();
420 if (trimmed.length() == 0) return 0.0;
421 if (trimmed.length() > kMaxSignificantDecimalDigits) {
422 char significant_buffer[kMaxSignificantDecimalDigits];
423 int significant_exponent;
424 TrimToMaxSignificantDigits(trimmed, exponent,
425 significant_buffer, &significant_exponent );
426 return Strtod(Vector<const char>(significant_buffer,
427 kMaxSignificantDecimalDigits),
428 significant_exponent);
429 }
430 if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) {
431 return Double::Infinity();
432 }
433 if (exponent + trimmed.length() <= kMinDecimalPower) {
434 return 0.0;
435 }
436
437 double guess;
438 if (DoubleStrtod(trimmed, exponent, &guess) ||
439 DiyFpStrtod(trimmed, exponent, &guess)) {
440 return guess;
441 }
442 return BignumStrtod(trimmed, exponent, guess);
443 }
444
445 } // namespace double_conversion
446
447 } // namespace WTF
OLDNEW
« no previous file with comments | « Source/WTF/wtf/dtoa/strtod.h ('k') | Source/WTF/wtf/dtoa/utils.h » ('j') | Source/config.h » ('J')

Powered by Google App Engine
This is Rietveld 408576698