Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(218)

Side by Side Diff: Source/WTF/wtf/dtoa/fixed-dtoa.cc

Issue 14238015: Move Source/WTF/wtf to Source/wtf (Closed) Base URL: svn://svn.chromium.org/blink/trunk
Patch Set: Created 7 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
OLDNEW
(Empty)
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "config.h"
29
30 #include <math.h>
31
32 #include "UnusedParam.h"
33 #include "fixed-dtoa.h"
34 #include "double.h"
35
36 namespace WTF {
37
38 namespace double_conversion {
39
40 // Represents a 128bit type. This class should be replaced by a native type on
41 // platforms that support 128bit integers.
42 class UInt128 {
43 public:
44 UInt128() : high_bits_(0), low_bits_(0) { }
45 UInt128(uint64_t high, uint64_t low) : high_bits_(high), low_bits_(low) { }
46
47 void Multiply(uint32_t multiplicand) {
48 uint64_t accumulator;
49
50 accumulator = (low_bits_ & kMask32) * multiplicand;
51 uint32_t part = static_cast<uint32_t>(accumulator & kMask32);
52 accumulator >>= 32;
53 accumulator = accumulator + (low_bits_ >> 32) * multiplicand;
54 low_bits_ = (accumulator << 32) + part;
55 accumulator >>= 32;
56 accumulator = accumulator + (high_bits_ & kMask32) * multiplicand;
57 part = static_cast<uint32_t>(accumulator & kMask32);
58 accumulator >>= 32;
59 accumulator = accumulator + (high_bits_ >> 32) * multiplicand;
60 high_bits_ = (accumulator << 32) + part;
61 ASSERT((accumulator >> 32) == 0);
62 }
63
64 void Shift(int shift_amount) {
65 ASSERT(-64 <= shift_amount && shift_amount <= 64);
66 if (shift_amount == 0) {
67 return;
68 } else if (shift_amount == -64) {
69 high_bits_ = low_bits_;
70 low_bits_ = 0;
71 } else if (shift_amount == 64) {
72 low_bits_ = high_bits_;
73 high_bits_ = 0;
74 } else if (shift_amount <= 0) {
75 high_bits_ <<= -shift_amount;
76 high_bits_ += low_bits_ >> (64 + shift_amount);
77 low_bits_ <<= -shift_amount;
78 } else {
79 low_bits_ >>= shift_amount;
80 low_bits_ += high_bits_ << (64 - shift_amount);
81 high_bits_ >>= shift_amount;
82 }
83 }
84
85 // Modifies *this to *this MOD (2^power).
86 // Returns *this DIV (2^power).
87 int DivModPowerOf2(int power) {
88 if (power >= 64) {
89 int result = static_cast<int>(high_bits_ >> (power - 64));
90 high_bits_ -= static_cast<uint64_t>(result) << (power - 64);
91 return result;
92 } else {
93 uint64_t part_low = low_bits_ >> power;
94 uint64_t part_high = high_bits_ << (64 - power);
95 int result = static_cast<int>(part_low + part_high);
96 high_bits_ = 0;
97 low_bits_ -= part_low << power;
98 return result;
99 }
100 }
101
102 bool IsZero() const {
103 return high_bits_ == 0 && low_bits_ == 0;
104 }
105
106 int BitAt(int position) {
107 if (position >= 64) {
108 return static_cast<int>(high_bits_ >> (position - 64)) & 1;
109 } else {
110 return static_cast<int>(low_bits_ >> position) & 1;
111 }
112 }
113
114 private:
115 static const uint64_t kMask32 = 0xFFFFFFFF;
116 // Value == (high_bits_ << 64) + low_bits_
117 uint64_t high_bits_;
118 uint64_t low_bits_;
119 };
120
121
122 static const int kDoubleSignificandSize = 53; // Includes the hidden bit.
123
124
125 static void FillDigits32FixedLength(uint32_t number, int requested_length,
126 Vector<char> buffer, int* length) {
127 for (int i = requested_length - 1; i >= 0; --i) {
128 buffer[(*length) + i] = '0' + number % 10;
129 number /= 10;
130 }
131 *length += requested_length;
132 }
133
134
135 static void FillDigits32(uint32_t number, Vector<char> buffer, int* length) {
136 int number_length = 0;
137 // We fill the digits in reverse order and exchange them afterwards.
138 while (number != 0) {
139 int digit = number % 10;
140 number /= 10;
141 buffer[(*length) + number_length] = '0' + digit;
142 number_length++;
143 }
144 // Exchange the digits.
145 int i = *length;
146 int j = *length + number_length - 1;
147 while (i < j) {
148 char tmp = buffer[i];
149 buffer[i] = buffer[j];
150 buffer[j] = tmp;
151 i++;
152 j--;
153 }
154 *length += number_length;
155 }
156
157
158 static void FillDigits64FixedLength(uint64_t number, int requested_length,
159 Vector<char> buffer, int* length) {
160 UNUSED_PARAM(requested_length);
161 const uint32_t kTen7 = 10000000;
162 // For efficiency cut the number into 3 uint32_t parts, and print those.
163 uint32_t part2 = static_cast<uint32_t>(number % kTen7);
164 number /= kTen7;
165 uint32_t part1 = static_cast<uint32_t>(number % kTen7);
166 uint32_t part0 = static_cast<uint32_t>(number / kTen7);
167
168 FillDigits32FixedLength(part0, 3, buffer, length);
169 FillDigits32FixedLength(part1, 7, buffer, length);
170 FillDigits32FixedLength(part2, 7, buffer, length);
171 }
172
173
174 static void FillDigits64(uint64_t number, Vector<char> buffer, int* length) {
175 const uint32_t kTen7 = 10000000;
176 // For efficiency cut the number into 3 uint32_t parts, and print those.
177 uint32_t part2 = static_cast<uint32_t>(number % kTen7);
178 number /= kTen7;
179 uint32_t part1 = static_cast<uint32_t>(number % kTen7);
180 uint32_t part0 = static_cast<uint32_t>(number / kTen7);
181
182 if (part0 != 0) {
183 FillDigits32(part0, buffer, length);
184 FillDigits32FixedLength(part1, 7, buffer, length);
185 FillDigits32FixedLength(part2, 7, buffer, length);
186 } else if (part1 != 0) {
187 FillDigits32(part1, buffer, length);
188 FillDigits32FixedLength(part2, 7, buffer, length);
189 } else {
190 FillDigits32(part2, buffer, length);
191 }
192 }
193
194
195 static void RoundUp(Vector<char> buffer, int* length, int* decimal_point) {
196 // An empty buffer represents 0.
197 if (*length == 0) {
198 buffer[0] = '1';
199 *decimal_point = 1;
200 *length = 1;
201 return;
202 }
203 // Round the last digit until we either have a digit that was not '9' or until
204 // we reached the first digit.
205 buffer[(*length) - 1]++;
206 for (int i = (*length) - 1; i > 0; --i) {
207 if (buffer[i] != '0' + 10) {
208 return;
209 }
210 buffer[i] = '0';
211 buffer[i - 1]++;
212 }
213 // If the first digit is now '0' + 10, we would need to set it to '0' an d add
214 // a '1' in front. However we reach the first digit only if all followin g
215 // digits had been '9' before rounding up. Now all trailing digits are ' 0' and
216 // we simply switch the first digit to '1' and update the decimal-point
217 // (indicating that the point is now one digit to the right).
218 if (buffer[0] == '0' + 10) {
219 buffer[0] = '1';
220 (*decimal_point)++;
221 }
222 }
223
224
225 // The given fractionals number represents a fixed-point number with binary
226 // point at bit (-exponent).
227 // Preconditions:
228 // -128 <= exponent <= 0.
229 // 0 <= fractionals * 2^exponent < 1
230 // The buffer holds the result.
231 // The function will round its result. During the rounding-process digits no t
232 // generated by this function might be updated, and the decimal-point variab le
233 // might be updated. If this function generates the digits 99 and the buffer
234 // already contained "199" (thus yielding a buffer of "19999") then a
235 // rounding-up will change the contents of the buffer to "20000".
236 static void FillFractionals(uint64_t fractionals, int exponent,
237 int fractional_count, Vector<char> buffer,
238 int* length, int* decimal_point) {
239 ASSERT(-128 <= exponent && exponent <= 0);
240 // 'fractionals' is a fixed-point number, with binary point at bit
241 // (-exponent). Inside the function the non-converted remainder of fract ionals
242 // is a fixed-point number, with binary point at bit 'point'.
243 if (-exponent <= 64) {
244 // One 64 bit number is sufficient.
245 ASSERT(fractionals >> 56 == 0);
246 int point = -exponent;
247 for (int i = 0; i < fractional_count; ++i) {
248 if (fractionals == 0) break;
249 // Instead of multiplying by 10 we multiply by 5 and adjust the point
250 // location. This way the fractionals variable will not overflow .
251 // Invariant at the beginning of the loop: fractionals < 2^point .
252 // Initially we have: point <= 64 and fractionals < 2^56
253 // After each iteration the point is decremented by one.
254 // Note that 5^3 = 125 < 128 = 2^7.
255 // Therefore three iterations of this loop will not overflow fra ctionals
256 // (even without the subtraction at the end of the loop body). A t this
257 // time point will satisfy point <= 61 and therefore fractionals < 2^point
258 // and any further multiplication of fractionals by 5 will not o verflow.
259 fractionals *= 5;
260 point--;
261 int digit = static_cast<int>(fractionals >> point);
262 buffer[*length] = '0' + digit;
263 (*length)++;
264 fractionals -= static_cast<uint64_t>(digit) << point;
265 }
266 // If the first bit after the point is set we have to round up.
267 if (((fractionals >> (point - 1)) & 1) == 1) {
268 RoundUp(buffer, length, decimal_point);
269 }
270 } else { // We need 128 bits.
271 ASSERT(64 < -exponent && -exponent <= 128);
272 UInt128 fractionals128 = UInt128(fractionals, 0);
273 fractionals128.Shift(-exponent - 64);
274 int point = 128;
275 for (int i = 0; i < fractional_count; ++i) {
276 if (fractionals128.IsZero()) break;
277 // As before: instead of multiplying by 10 we multiply by 5 and adjust the
278 // point location.
279 // This multiplication will not overflow for the same reasons as before.
280 fractionals128.Multiply(5);
281 point--;
282 int digit = fractionals128.DivModPowerOf2(point);
283 buffer[*length] = '0' + digit;
284 (*length)++;
285 }
286 if (fractionals128.BitAt(point - 1) == 1) {
287 RoundUp(buffer, length, decimal_point);
288 }
289 }
290 }
291
292
293 // Removes leading and trailing zeros.
294 // If leading zeros are removed then the decimal point position is adjusted.
295 static void TrimZeros(Vector<char> buffer, int* length, int* decimal_point) {
296 while (*length > 0 && buffer[(*length) - 1] == '0') {
297 (*length)--;
298 }
299 int first_non_zero = 0;
300 while (first_non_zero < *length && buffer[first_non_zero] == '0') {
301 first_non_zero++;
302 }
303 if (first_non_zero != 0) {
304 for (int i = first_non_zero; i < *length; ++i) {
305 buffer[i - first_non_zero] = buffer[i];
306 }
307 *length -= first_non_zero;
308 *decimal_point -= first_non_zero;
309 }
310 }
311
312
313 bool FastFixedDtoa(double v,
314 int fractional_count,
315 Vector<char> buffer,
316 int* length,
317 int* decimal_point) {
318 const uint32_t kMaxUInt32 = 0xFFFFFFFF;
319 uint64_t significand = Double(v).Significand();
320 int exponent = Double(v).Exponent();
321 // v = significand * 2^exponent (with significand a 53bit integer).
322 // If the exponent is larger than 20 (i.e. we may have a 73bit number) t hen we
323 // don't know how to compute the representation. 2^73 ~= 9.5*10^21.
324 // If necessary this limit could probably be increased, but we don't nee d
325 // more.
326 if (exponent > 20) return false;
327 if (fractional_count > 20) return false;
328 *length = 0;
329 // At most kDoubleSignificandSize bits of the significand are non-zero.
330 // Given a 64 bit integer we have 11 0s followed by 53 potentially non-z ero
331 // bits: 0..11*..0xxx..53*..xx
332 if (exponent + kDoubleSignificandSize > 64) {
333 // The exponent must be > 11.
334 //
335 // We know that v = significand * 2^exponent.
336 // And the exponent > 11.
337 // We simplify the task by dividing v by 10^17.
338 // The quotient delivers the first digits, and the remainder fits in to a 64
339 // bit number.
340 // Dividing by 10^17 is equivalent to dividing by 5^17*2^17.
341 const uint64_t kFive17 = UINT64_2PART_C(0xB1, A2BC2EC5); // 5^17
342 uint64_t divisor = kFive17;
343 int divisor_power = 17;
344 uint64_t dividend = significand;
345 uint32_t quotient;
346 uint64_t remainder;
347 // Let v = f * 2^e with f == significand and e == exponent.
348 // Then need q (quotient) and r (remainder) as follows:
349 // v = q * 10^17 + r
350 // f * 2^e = q * 10^17 + r
351 // f * 2^e = q * 5^17 * 2^17 + r
352 // If e > 17 then
353 // f * 2^(e-17) = q * 5^17 + r/2^17
354 // else
355 // f = q * 5^17 * 2^(17-e) + r/2^e
356 if (exponent > divisor_power) {
357 // We only allow exponents of up to 20 and therefore (17 - e) <= 3
358 dividend <<= exponent - divisor_power;
359 quotient = static_cast<uint32_t>(dividend / divisor);
360 remainder = (dividend % divisor) << divisor_power;
361 } else {
362 divisor <<= divisor_power - exponent;
363 quotient = static_cast<uint32_t>(dividend / divisor);
364 remainder = (dividend % divisor) << exponent;
365 }
366 FillDigits32(quotient, buffer, length);
367 FillDigits64FixedLength(remainder, divisor_power, buffer, length);
368 *decimal_point = *length;
369 } else if (exponent >= 0) {
370 // 0 <= exponent <= 11
371 significand <<= exponent;
372 FillDigits64(significand, buffer, length);
373 *decimal_point = *length;
374 } else if (exponent > -kDoubleSignificandSize) {
375 // We have to cut the number.
376 uint64_t integrals = significand >> -exponent;
377 uint64_t fractionals = significand - (integrals << -exponent);
378 if (integrals > kMaxUInt32) {
379 FillDigits64(integrals, buffer, length);
380 } else {
381 FillDigits32(static_cast<uint32_t>(integrals), buffer, length);
382 }
383 *decimal_point = *length;
384 FillFractionals(fractionals, exponent, fractional_count,
385 buffer, length, decimal_point);
386 } else if (exponent < -128) {
387 // This configuration (with at most 20 digits) means that all digits must be
388 // 0.
389 ASSERT(fractional_count <= 20);
390 buffer[0] = '\0';
391 *length = 0;
392 *decimal_point = -fractional_count;
393 } else {
394 *decimal_point = 0;
395 FillFractionals(significand, exponent, fractional_count,
396 buffer, length, decimal_point);
397 }
398 TrimZeros(buffer, length, decimal_point);
399 buffer[*length] = '\0';
400 if ((*length) == 0) {
401 // The string is empty and the decimal_point thus has no importance. Mimick
402 // Gay's dtoa and and set it to -fractional_count.
403 *decimal_point = -fractional_count;
404 }
405 return true;
406 }
407
408 } // namespace double_conversion
409
410 } // namespace WTF
OLDNEW
« no previous file with comments | « Source/WTF/wtf/dtoa/fixed-dtoa.h ('k') | Source/WTF/wtf/dtoa/strtod.h » ('j') | Source/config.h » ('J')

Powered by Google App Engine
This is Rietveld 408576698