Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(411)

Side by Side Diff: Source/WTF/wtf/dtoa/fast-dtoa.cc

Issue 14238015: Move Source/WTF/wtf to Source/wtf (Closed) Base URL: svn://svn.chromium.org/blink/trunk
Patch Set: Created 7 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
OLDNEW
(Empty)
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "config.h"
29
30 #include "fast-dtoa.h"
31
32 #include "cached-powers.h"
33 #include "diy-fp.h"
34 #include "double.h"
35
36 namespace WTF {
37
38 namespace double_conversion {
39
40 // The minimal and maximal target exponent define the range of w's binary
41 // exponent, where 'w' is the result of multiplying the input by a cached po wer
42 // of ten.
43 //
44 // A different range might be chosen on a different platform, to optimize di git
45 // generation, but a smaller range requires more powers of ten to be cached.
46 static const int kMinimalTargetExponent = -60;
47 static const int kMaximalTargetExponent = -32;
48
49
50 // Adjusts the last digit of the generated number, and screens out generated
51 // solutions that may be inaccurate. A solution may be inaccurate if it is
52 // outside the safe interval, or if we cannot prove that it is closer to the
53 // input than a neighboring representation of the same length.
54 //
55 // Input: * buffer containing the digits of too_high / 10^kappa
56 // * the buffer's length
57 // * distance_too_high_w == (too_high - w).f() * unit
58 // * unsafe_interval == (too_high - too_low).f() * unit
59 // * rest = (too_high - buffer * 10^kappa).f() * unit
60 // * ten_kappa = 10^kappa * unit
61 // * unit = the common multiplier
62 // Output: returns true if the buffer is guaranteed to contain the closest
63 // representable number to the input.
64 // Modifies the generated digits in the buffer to approach (round towards) w.
65 static bool RoundWeed(Vector<char> buffer,
66 int length,
67 uint64_t distance_too_high_w,
68 uint64_t unsafe_interval,
69 uint64_t rest,
70 uint64_t ten_kappa,
71 uint64_t unit) {
72 uint64_t small_distance = distance_too_high_w - unit;
73 uint64_t big_distance = distance_too_high_w + unit;
74 // Let w_low = too_high - big_distance, and
75 // w_high = too_high - small_distance.
76 // Note: w_low < w < w_high
77 //
78 // The real w (* unit) must lie somewhere inside the interval
79 // ]w_low; w_high[ (often written as "(w_low; w_high)")
80
81 // Basically the buffer currently contains a number in the unsafe interv al
82 // ]too_low; too_high[ with too_low < w < too_high
83 //
84 // too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
85 // ^v 1 unit ^ ^ ^ ^
86 // boundary_high --------------------- . . . .
87 // ^v 1 unit . . . .
88 // - - - - - - - - - - - - - - - - - - - + - - + - - - - - - . .
89 // . . ^ . .
90 // . big_distance . . .
91 // . . . . rest
92 // small_distance . . . .
93 // v . . . .
94 // w_high - - - - - - - - - - - - - - - - - - . . . .
95 // ^v 1 unit . . . .
96 // w ---------------------------------------- . . . .
97 // ^v 1 unit v . . .
98 // w_low - - - - - - - - - - - - - - - - - - - - - . . .
99 // . . v
100 // buffer --------------------------------------------------+-------+-- ------
101 // . .
102 // safe_interval .
103 // v .
104 // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .
105 // ^v 1 unit .
106 // boundary_low ------------------------- unsafe_in terval
107 // ^v 1 unit v
108 // too_low - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
109 //
110 //
111 // Note that the value of buffer could lie anywhere inside the range too _low
112 // to too_high.
113 //
114 // boundary_low, boundary_high and w are approximations of the real boun daries
115 // and v (the input number). They are guaranteed to be precise up to one unit.
116 // In fact the error is guaranteed to be strictly less than one unit.
117 //
118 // Anything that lies outside the unsafe interval is guaranteed not to r ound
119 // to v when read again.
120 // Anything that lies inside the safe interval is guaranteed to round to v
121 // when read again.
122 // If the number inside the buffer lies inside the unsafe interval but n ot
123 // inside the safe interval then we simply do not know and bail out (ret urning
124 // false).
125 //
126 // Similarly we have to take into account the imprecision of 'w' when fi nding
127 // the closest representation of 'w'. If we have two potential
128 // representations, and one is closer to both w_low and w_high, then we know
129 // it is closer to the actual value v.
130 //
131 // By generating the digits of too_high we got the largest (closest to
132 // too_high) buffer that is still in the unsafe interval. In the case wh ere
133 // w_high < buffer < too_high we try to decrement the buffer.
134 // This way the buffer approaches (rounds towards) w.
135 // There are 3 conditions that stop the decrementation process:
136 // 1) the buffer is already below w_high
137 // 2) decrementing the buffer would make it leave the unsafe interval
138 // 3) decrementing the buffer would yield a number below w_high and fa rther
139 // away than the current number. In other words:
140 // (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high
141 // Instead of using the buffer directly we use its distance to too_high.
142 // Conceptually rest ~= too_high - buffer
143 // We need to do the following tests in this order to avoid over- and
144 // underflows.
145 ASSERT(rest <= unsafe_interval);
146 while (rest < small_distance && // Negated condition 1
147 unsafe_interval - rest >= ten_kappa && // Negated condition 2
148 (rest + ten_kappa < small_distance || // buffer{-1} > w_high
149 small_distance - rest >= rest + ten_kappa - small_distance)) {
150 buffer[length - 1]--;
151 rest += ten_kappa;
152 }
153
154 // We have approached w+ as much as possible. We now test if approaching w-
155 // would require changing the buffer. If yes, then we have two possible
156 // representations close to w, but we cannot decide which one is closer.
157 if (rest < big_distance &&
158 unsafe_interval - rest >= ten_kappa &&
159 (rest + ten_kappa < big_distance ||
160 big_distance - rest > rest + ten_kappa - big_distance)) {
161 return false;
162 }
163
164 // Weeding test.
165 // The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
166 // Since too_low = too_high - unsafe_interval this is equivalent to
167 // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
168 // Conceptually we have: rest ~= too_high - buffer
169 return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
170 }
171
172
173 // Rounds the buffer upwards if the result is closer to v by possibly adding
174 // 1 to the buffer. If the precision of the calculation is not sufficient to
175 // round correctly, return false.
176 // The rounding might shift the whole buffer in which case the kappa is
177 // adjusted. For example "99", kappa = 3 might become "10", kappa = 4.
178 //
179 // If 2*rest > ten_kappa then the buffer needs to be round up.
180 // rest can have an error of +/- 1 unit. This function accounts for the
181 // imprecision and returns false, if the rounding direction cannot be
182 // unambiguously determined.
183 //
184 // Precondition: rest < ten_kappa.
185 static bool RoundWeedCounted(Vector<char> buffer,
186 int length,
187 uint64_t rest,
188 uint64_t ten_kappa,
189 uint64_t unit,
190 int* kappa) {
191 ASSERT(rest < ten_kappa);
192 // The following tests are done in a specific order to avoid overflows. They
193 // will work correctly with any uint64 values of rest < ten_kappa and un it.
194 //
195 // If the unit is too big, then we don't know which way to round. For ex ample
196 // a unit of 50 means that the real number lies within rest +/- 50. If
197 // 10^kappa == 40 then there is no way to tell which way to round.
198 if (unit >= ten_kappa) return false;
199 // Even if unit is just half the size of 10^kappa we are already complet ely
200 // lost. (And after the previous test we know that the expression will n ot
201 // over/underflow.)
202 if (ten_kappa - unit <= unit) return false;
203 // If 2 * (rest + unit) <= 10^kappa we can safely round down.
204 if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) {
205 return true;
206 }
207 // If 2 * (rest - unit) >= 10^kappa, then we can safely round up.
208 if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) {
209 // Increment the last digit recursively until we find a non '9' digi t.
210 buffer[length - 1]++;
211 for (int i = length - 1; i > 0; --i) {
212 if (buffer[i] != '0' + 10) break;
213 buffer[i] = '0';
214 buffer[i - 1]++;
215 }
216 // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the
217 // exception of the first digit all digits are now '0'. Simply switc h the
218 // first digit to '1' and adjust the kappa. Example: "99" becomes "1 0" and
219 // the power (the kappa) is increased.
220 if (buffer[0] == '0' + 10) {
221 buffer[0] = '1';
222 (*kappa) += 1;
223 }
224 return true;
225 }
226 return false;
227 }
228
229
230 static const uint32_t kTen4 = 10000;
231 static const uint32_t kTen5 = 100000;
232 static const uint32_t kTen6 = 1000000;
233 static const uint32_t kTen7 = 10000000;
234 static const uint32_t kTen8 = 100000000;
235 static const uint32_t kTen9 = 1000000000;
236
237 // Returns the biggest power of ten that is less than or equal to the given
238 // number. We furthermore receive the maximum number of bits 'number' has.
239 // If number_bits == 0 then 0^-1 is returned
240 // The number of bits must be <= 32.
241 // Precondition: number < (1 << (number_bits + 1)).
242 static void BiggestPowerTen(uint32_t number,
243 int number_bits,
244 uint32_t* power,
245 int* exponent) {
246 ASSERT(number < (uint32_t)(1 << (number_bits + 1)));
247
248 switch (number_bits) {
249 case 32:
250 case 31:
251 case 30:
252 if (kTen9 <= number) {
253 *power = kTen9;
254 *exponent = 9;
255 break;
256 } // else fallthrough
257 case 29:
258 case 28:
259 case 27:
260 if (kTen8 <= number) {
261 *power = kTen8;
262 *exponent = 8;
263 break;
264 } // else fallthrough
265 case 26:
266 case 25:
267 case 24:
268 if (kTen7 <= number) {
269 *power = kTen7;
270 *exponent = 7;
271 break;
272 } // else fallthrough
273 case 23:
274 case 22:
275 case 21:
276 case 20:
277 if (kTen6 <= number) {
278 *power = kTen6;
279 *exponent = 6;
280 break;
281 } // else fallthrough
282 case 19:
283 case 18:
284 case 17:
285 if (kTen5 <= number) {
286 *power = kTen5;
287 *exponent = 5;
288 break;
289 } // else fallthrough
290 case 16:
291 case 15:
292 case 14:
293 if (kTen4 <= number) {
294 *power = kTen4;
295 *exponent = 4;
296 break;
297 } // else fallthrough
298 case 13:
299 case 12:
300 case 11:
301 case 10:
302 if (1000 <= number) {
303 *power = 1000;
304 *exponent = 3;
305 break;
306 } // else fallthrough
307 case 9:
308 case 8:
309 case 7:
310 if (100 <= number) {
311 *power = 100;
312 *exponent = 2;
313 break;
314 } // else fallthrough
315 case 6:
316 case 5:
317 case 4:
318 if (10 <= number) {
319 *power = 10;
320 *exponent = 1;
321 break;
322 } // else fallthrough
323 case 3:
324 case 2:
325 case 1:
326 if (1 <= number) {
327 *power = 1;
328 *exponent = 0;
329 break;
330 } // else fallthrough
331 case 0:
332 *power = 0;
333 *exponent = -1;
334 break;
335 default:
336 // Following assignments are here to silence compiler warnings.
337 *power = 0;
338 *exponent = 0;
339 UNREACHABLE();
340 }
341 }
342
343
344 // Generates the digits of input number w.
345 // w is a floating-point number (DiyFp), consisting of a significand and an
346 // exponent. Its exponent is bounded by kMinimalTargetExponent and
347 // kMaximalTargetExponent.
348 // Hence -60 <= w.e() <= -32.
349 //
350 // Returns false if it fails, in which case the generated digits in the buff er
351 // should not be used.
352 // Preconditions:
353 // * low, w and high are correct up to 1 ulp (unit in the last place). That
354 // is, their error must be less than a unit of their last digits.
355 // * low.e() == w.e() == high.e()
356 // * low < w < high, and taking into account their error: low~ <= high~
357 // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
358 // Postconditions: returns false if procedure fails.
359 // otherwise:
360 // * buffer is not null-terminated, but len contains the number of digit s.
361 // * buffer contains the shortest possible decimal digit-sequence
362 // such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are th e
363 // correct values of low and high (without their error).
364 // * if more than one decimal representation gives the minimal number of
365 // decimal digits then the one closest to W (where W is the correct va lue
366 // of w) is chosen.
367 // Remark: this procedure takes into account the imprecision of its input
368 // numbers. If the precision is not enough to guarantee all the postcondit ions
369 // then false is returned. This usually happens rarely (~0.5%).
370 //
371 // Say, for the sake of example, that
372 // w.e() == -48, and w.f() == 0x1234567890abcdef
373 // w's value can be computed by w.f() * 2^w.e()
374 // We can obtain w's integral digits by simply shifting w.f() by -w.e().
375 // -> w's integral part is 0x1234
376 // w's fractional part is therefore 0x567890abcdef.
377 // Printing w's integral part is easy (simply print 0x1234 in decimal).
378 // In order to print its fraction we repeatedly multiply the fraction by 10 and
379 // get each digit. Example the first digit after the point would be computed by
380 // (0x567890abcdef * 10) >> 48. -> 3
381 // The whole thing becomes slightly more complicated because we want to stop
382 // once we have enough digits. That is, once the digits inside the buffer
383 // represent 'w' we can stop. Everything inside the interval low - high
384 // represents w. However we have to pay attention to low, high and w's
385 // imprecision.
386 static bool DigitGen(DiyFp low,
387 DiyFp w,
388 DiyFp high,
389 Vector<char> buffer,
390 int* length,
391 int* kappa) {
392 ASSERT(low.e() == w.e() && w.e() == high.e());
393 ASSERT(low.f() + 1 <= high.f() - 1);
394 ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponen t);
395 // low, w and high are imprecise, but by less than one ulp (unit in the last
396 // place).
397 // If we remove (resp. add) 1 ulp from low (resp. high) we are certain t hat
398 // the new numbers are outside of the interval we want the final
399 // representation to lie in.
400 // Inversely adding (resp. removing) 1 ulp from low (resp. high) would y ield
401 // numbers that are certain to lie in the interval. We will use this fac t
402 // later on.
403 // We will now start by generating the digits within the uncertain
404 // interval. Later we will weed out representations that lie outside the safe
405 // interval and thus _might_ lie outside the correct interval.
406 uint64_t unit = 1;
407 DiyFp too_low = DiyFp(low.f() - unit, low.e());
408 DiyFp too_high = DiyFp(high.f() + unit, high.e());
409 // too_low and too_high are guaranteed to lie outside the interval we wa nt the
410 // generated number in.
411 DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
412 // We now cut the input number into two parts: the integral digits and t he
413 // fractionals. We will not write any decimal separator though, but adap t
414 // kappa instead.
415 // Reminder: we are currently computing the digits (stored inside the bu ffer)
416 // such that: too_low < buffer * 10^kappa < too_high
417 // We use too_high for the digit_generation and stop as soon as possible .
418 // If we stop early we effectively round down.
419 DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
420 // Division by one is a shift.
421 uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e());
422 // Modulo by one is an and.
423 uint64_t fractionals = too_high.f() & (one.f() - 1);
424 uint32_t divisor;
425 int divisor_exponent;
426 BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
427 &divisor, &divisor_exponent);
428 *kappa = divisor_exponent + 1;
429 *length = 0;
430 // Loop invariant: buffer = too_high / 10^kappa (integer division)
431 // The invariant holds for the first iteration: kappa has been initializ ed
432 // with the divisor exponent + 1. And the divisor is the biggest power o f ten
433 // that is smaller than integrals.
434 while (*kappa > 0) {
435 int digit = integrals / divisor;
436 buffer[*length] = '0' + digit;
437 (*length)++;
438 integrals %= divisor;
439 (*kappa)--;
440 // Note that kappa now equals the exponent of the divisor and that t he
441 // invariant thus holds again.
442 uint64_t rest =
443 (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
444 // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
445 // Reminder: unsafe_interval.e() == one.e()
446 if (rest < unsafe_interval.f()) {
447 // Rounding down (by not emitting the remaining digits) yields a number
448 // that lies within the unsafe interval.
449 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
450 unsafe_interval.f(), rest,
451 static_cast<uint64_t>(divisor) << -one.e(), uni t);
452 }
453 divisor /= 10;
454 }
455
456 // The integrals have been generated. We are at the point of the decimal
457 // separator. In the following loop we simply multiply the remaining dig its by
458 // 10 and divide by one. We just need to pay attention to multiply assoc iated
459 // data (like the interval or 'unit'), too.
460 // Note that the multiplication by 10 does not overflow, because w.e >= -60
461 // and thus one.e >= -60.
462 ASSERT(one.e() >= -60);
463 ASSERT(fractionals < one.f());
464 ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
465 while (true) {
466 fractionals *= 10;
467 unit *= 10;
468 unsafe_interval.set_f(unsafe_interval.f() * 10);
469 // Integer division by one.
470 int digit = static_cast<int>(fractionals >> -one.e());
471 buffer[*length] = '0' + digit;
472 (*length)++;
473 fractionals &= one.f() - 1; // Modulo by one.
474 (*kappa)--;
475 if (fractionals < unsafe_interval.f()) {
476 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
477 unsafe_interval.f(), fractionals, one.f(), unit );
478 }
479 }
480 }
481
482
483
484 // Generates (at most) requested_digits digits of input number w.
485 // w is a floating-point number (DiyFp), consisting of a significand and an
486 // exponent. Its exponent is bounded by kMinimalTargetExponent and
487 // kMaximalTargetExponent.
488 // Hence -60 <= w.e() <= -32.
489 //
490 // Returns false if it fails, in which case the generated digits in the buff er
491 // should not be used.
492 // Preconditions:
493 // * w is correct up to 1 ulp (unit in the last place). That
494 // is, its error must be strictly less than a unit of its last digit.
495 // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
496 //
497 // Postconditions: returns false if procedure fails.
498 // otherwise:
499 // * buffer is not null-terminated, but length contains the number of
500 // digits.
501 // * the representation in buffer is the most precise representation of
502 // requested_digits digits.
503 // * buffer contains at most requested_digits digits of w. If there are less
504 // than requested_digits digits then some trailing '0's have been remo ved.
505 // * kappa is such that
506 // w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.
507 //
508 // Remark: This procedure takes into account the imprecision of its input
509 // numbers. If the precision is not enough to guarantee all the postcondit ions
510 // then false is returned. This usually happens rarely, but the failure-ra te
511 // increases with higher requested_digits.
512 static bool DigitGenCounted(DiyFp w,
513 int requested_digits,
514 Vector<char> buffer,
515 int* length,
516 int* kappa) {
517 ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponen t);
518 ASSERT(kMinimalTargetExponent >= -60);
519 ASSERT(kMaximalTargetExponent <= -32);
520 // w is assumed to have an error less than 1 unit. Whenever w is scaled we
521 // also scale its error.
522 uint64_t w_error = 1;
523 // We cut the input number into two parts: the integral digits and the
524 // fractional digits. We don't emit any decimal separator, but adapt kap pa
525 // instead. Example: instead of writing "1.2" we put "12" into the buffe r and
526 // increase kappa by 1.
527 DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
528 // Division by one is a shift.
529 uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e());
530 // Modulo by one is an and.
531 uint64_t fractionals = w.f() & (one.f() - 1);
532 uint32_t divisor;
533 int divisor_exponent;
534 BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
535 &divisor, &divisor_exponent);
536 *kappa = divisor_exponent + 1;
537 *length = 0;
538
539 // Loop invariant: buffer = w / 10^kappa (integer division)
540 // The invariant holds for the first iteration: kappa has been initializ ed
541 // with the divisor exponent + 1. And the divisor is the biggest power o f ten
542 // that is smaller than 'integrals'.
543 while (*kappa > 0) {
544 int digit = integrals / divisor;
545 buffer[*length] = '0' + digit;
546 (*length)++;
547 requested_digits--;
548 integrals %= divisor;
549 (*kappa)--;
550 // Note that kappa now equals the exponent of the divisor and that t he
551 // invariant thus holds again.
552 if (requested_digits == 0) break;
553 divisor /= 10;
554 }
555
556 if (requested_digits == 0) {
557 uint64_t rest =
558 (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
559 return RoundWeedCounted(buffer, *length, rest,
560 static_cast<uint64_t>(divisor) << -one.e(), w_error,
561 kappa);
562 }
563
564 // The integrals have been generated. We are at the point of the decimal
565 // separator. In the following loop we simply multiply the remaining dig its by
566 // 10 and divide by one. We just need to pay attention to multiply assoc iated
567 // data (the 'unit'), too.
568 // Note that the multiplication by 10 does not overflow, because w.e >= -60
569 // and thus one.e >= -60.
570 ASSERT(one.e() >= -60);
571 ASSERT(fractionals < one.f());
572 ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
573 while (requested_digits > 0 && fractionals > w_error) {
574 fractionals *= 10;
575 w_error *= 10;
576 // Integer division by one.
577 int digit = static_cast<int>(fractionals >> -one.e());
578 buffer[*length] = '0' + digit;
579 (*length)++;
580 requested_digits--;
581 fractionals &= one.f() - 1; // Modulo by one.
582 (*kappa)--;
583 }
584 if (requested_digits != 0) return false;
585 return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error,
586 kappa);
587 }
588
589
590 // Provides a decimal representation of v.
591 // Returns true if it succeeds, otherwise the result cannot be trusted.
592 // There will be *length digits inside the buffer (not null-terminated).
593 // If the function returns true then
594 // v == (double) (buffer * 10^decimal_exponent).
595 // The digits in the buffer are the shortest representation possible: no
596 // 0.09999999999999999 instead of 0.1. The shorter representation will even be
597 // chosen even if the longer one would be closer to v.
598 // The last digit will be closest to the actual v. That is, even if several
599 // digits might correctly yield 'v' when read again, the closest will be
600 // computed.
601 static bool Grisu3(double v,
602 Vector<char> buffer,
603 int* length,
604 int* decimal_exponent) {
605 DiyFp w = Double(v).AsNormalizedDiyFp();
606 // boundary_minus and boundary_plus are the boundaries between v and its
607 // closest floating-point neighbors. Any number strictly between
608 // boundary_minus and boundary_plus will round to v when convert to a do uble.
609 // Grisu3 will never output representations that lie exactly on a bounda ry.
610 DiyFp boundary_minus, boundary_plus;
611 Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
612 ASSERT(boundary_plus.e() == w.e());
613 DiyFp ten_mk; // Cached power of ten: 10^-k
614 int mk; // -k
615 int ten_mk_minimal_binary_exponent =
616 kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
617 int ten_mk_maximal_binary_exponent =
618 kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
619 PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
620 ten_mk_minimal_bi nary_exponent,
621 ten_mk_maximal_bi nary_exponent,
622 &ten_mk, &mk);
623 ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
624 DiyFp::kSignificandSize) &&
625 (kMaximalTargetExponent >= w.e() + ten_mk.e() +
626 DiyFp::kSignificandSize));
627 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only cont ains a
628 // 64 bit significand and ten_mk is thus only precise up to 64 bits.
629
630 // The DiyFp::Times procedure rounds its result, and ten_mk is approxima ted
631 // too. The variable scaled_w (as well as scaled_boundary_minus/plus) ar e now
632 // off by a small amount.
633 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_ w.
634 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
635 // (f-1) * 2^e < w*10^k < (f+1) * 2^e
636 DiyFp scaled_w = DiyFp::Times(w, ten_mk);
637 ASSERT(scaled_w.e() ==
638 boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
639 // In theory it would be possible to avoid some recomputations by comput ing
640 // the difference between w and boundary_minus/plus (a power of 2) and t o
641 // compute scaled_boundary_minus/plus by subtracting/adding from
642 // scaled_w. However the code becomes much less readable and the speed
643 // enhancements are not terriffic.
644 DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
645 DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk);
646
647 // DigitGen will generate the digits of scaled_w. Therefore we have
648 // v == (double) (scaled_w * 10^-mk).
649 // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is n ot an
650 // integer than it will be updated. For instance if scaled_w == 1.23 the n
651 // the buffer will be filled with "123" und the decimal_exponent will be
652 // decreased by 2.
653 int kappa;
654 bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_ plus,
655 buffer, length, &kappa);
656 *decimal_exponent = -mk + kappa;
657 return result;
658 }
659
660
661 // The "counted" version of grisu3 (see above) only generates requested_digi ts
662 // number of digits. This version does not generate the shortest representat ion,
663 // and with enough requested digits 0.1 will at some point print as 0.999999 9...
664 // Grisu3 is too imprecise for real halfway cases (1.5 will not work) and
665 // therefore the rounding strategy for halfway cases is irrelevant.
666 static bool Grisu3Counted(double v,
667 int requested_digits,
668 Vector<char> buffer,
669 int* length,
670 int* decimal_exponent) {
671 DiyFp w = Double(v).AsNormalizedDiyFp();
672 DiyFp ten_mk; // Cached power of ten: 10^-k
673 int mk; // -k
674 int ten_mk_minimal_binary_exponent =
675 kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
676 int ten_mk_maximal_binary_exponent =
677 kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
678 PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
679 ten_mk_minimal_bi nary_exponent,
680 ten_mk_maximal_bi nary_exponent,
681 &ten_mk, &mk);
682 ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
683 DiyFp::kSignificandSize) &&
684 (kMaximalTargetExponent >= w.e() + ten_mk.e() +
685 DiyFp::kSignificandSize));
686 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only cont ains a
687 // 64 bit significand and ten_mk is thus only precise up to 64 bits.
688
689 // The DiyFp::Times procedure rounds its result, and ten_mk is approxima ted
690 // too. The variable scaled_w (as well as scaled_boundary_minus/plus) ar e now
691 // off by a small amount.
692 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_ w.
693 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
694 // (f-1) * 2^e < w*10^k < (f+1) * 2^e
695 DiyFp scaled_w = DiyFp::Times(w, ten_mk);
696
697 // We now have (double) (scaled_w * 10^-mk).
698 // DigitGen will generate the first requested_digits digits of scaled_w and
699 // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It
700 // will not always be exactly the same since DigitGenCounted only produc es a
701 // limited number of digits.)
702 int kappa;
703 bool result = DigitGenCounted(scaled_w, requested_digits,
704 buffer, length, &kappa);
705 *decimal_exponent = -mk + kappa;
706 return result;
707 }
708
709
710 bool FastDtoa(double v,
711 FastDtoaMode mode,
712 int requested_digits,
713 Vector<char> buffer,
714 int* length,
715 int* decimal_point) {
716 ASSERT(v > 0);
717 ASSERT(!Double(v).IsSpecial());
718
719 bool result = false;
720 int decimal_exponent = 0;
721 switch (mode) {
722 case FAST_DTOA_SHORTEST:
723 result = Grisu3(v, buffer, length, &decimal_exponent);
724 break;
725 case FAST_DTOA_PRECISION:
726 result = Grisu3Counted(v, requested_digits,
727 buffer, length, &decimal_exponent);
728 break;
729 default:
730 UNREACHABLE();
731 }
732 if (result) {
733 *decimal_point = *length + decimal_exponent;
734 buffer[*length] = '\0';
735 }
736 return result;
737 }
738
739 } // namespace double_conversion
740
741 } // namespace WTF
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698