Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(255)

Side by Side Diff: Source/WTF/wtf/dtoa/bignum.cc

Issue 14238015: Move Source/WTF/wtf to Source/wtf (Closed) Base URL: svn://svn.chromium.org/blink/trunk
Patch Set: Created 7 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
OLDNEW
(Empty)
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "config.h"
29
30 #include "bignum.h"
31 #include "utils.h"
32
33 namespace WTF {
34
35 namespace double_conversion {
36
37 Bignum::Bignum()
38 : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) {
39 for (int i = 0; i < kBigitCapacity; ++i) {
40 bigits_[i] = 0;
41 }
42 }
43
44
45 template<typename S>
46 static int BitSize(S value) {
47 return 8 * sizeof(value);
48 }
49
50 // Guaranteed to lie in one Bigit.
51 void Bignum::AssignUInt16(uint16_t value) {
52 ASSERT(kBigitSize >= BitSize(value));
53 Zero();
54 if (value == 0) return;
55
56 EnsureCapacity(1);
57 bigits_[0] = value;
58 used_digits_ = 1;
59 }
60
61
62 void Bignum::AssignUInt64(uint64_t value) {
63 const int kUInt64Size = 64;
64
65 Zero();
66 if (value == 0) return;
67
68 int needed_bigits = kUInt64Size / kBigitSize + 1;
69 EnsureCapacity(needed_bigits);
70 for (int i = 0; i < needed_bigits; ++i) {
71 bigits_[i] = (uint32_t)value & kBigitMask;
72 value = value >> kBigitSize;
73 }
74 used_digits_ = needed_bigits;
75 Clamp();
76 }
77
78
79 void Bignum::AssignBignum(const Bignum& other) {
80 exponent_ = other.exponent_;
81 for (int i = 0; i < other.used_digits_; ++i) {
82 bigits_[i] = other.bigits_[i];
83 }
84 // Clear the excess digits (if there were any).
85 for (int i = other.used_digits_; i < used_digits_; ++i) {
86 bigits_[i] = 0;
87 }
88 used_digits_ = other.used_digits_;
89 }
90
91
92 static uint64_t ReadUInt64(Vector<const char> buffer,
93 int from,
94 int digits_to_read) {
95 uint64_t result = 0;
96 for (int i = from; i < from + digits_to_read; ++i) {
97 int digit = buffer[i] - '0';
98 ASSERT(0 <= digit && digit <= 9);
99 result = result * 10 + digit;
100 }
101 return result;
102 }
103
104
105 void Bignum::AssignDecimalString(Vector<const char> value) {
106 // 2^64 = 18446744073709551616 > 10^19
107 const int kMaxUint64DecimalDigits = 19;
108 Zero();
109 int length = value.length();
110 int pos = 0;
111 // Let's just say that each digit needs 4 bits.
112 while (length >= kMaxUint64DecimalDigits) {
113 uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
114 pos += kMaxUint64DecimalDigits;
115 length -= kMaxUint64DecimalDigits;
116 MultiplyByPowerOfTen(kMaxUint64DecimalDigits);
117 AddUInt64(digits);
118 }
119 uint64_t digits = ReadUInt64(value, pos, length);
120 MultiplyByPowerOfTen(length);
121 AddUInt64(digits);
122 Clamp();
123 }
124
125
126 static int HexCharValue(char c) {
127 if ('0' <= c && c <= '9') return c - '0';
128 if ('a' <= c && c <= 'f') return 10 + c - 'a';
129 if ('A' <= c && c <= 'F') return 10 + c - 'A';
130 UNREACHABLE();
131 return 0; // To make compiler happy.
132 }
133
134
135 void Bignum::AssignHexString(Vector<const char> value) {
136 Zero();
137 int length = value.length();
138
139 int needed_bigits = length * 4 / kBigitSize + 1;
140 EnsureCapacity(needed_bigits);
141 int string_index = length - 1;
142 for (int i = 0; i < needed_bigits - 1; ++i) {
143 // These bigits are guaranteed to be "full".
144 Chunk current_bigit = 0;
145 for (int j = 0; j < kBigitSize / 4; j++) {
146 current_bigit += HexCharValue(value[string_index--]) << (j * 4);
147 }
148 bigits_[i] = current_bigit;
149 }
150 used_digits_ = needed_bigits - 1;
151
152 Chunk most_significant_bigit = 0; // Could be = 0;
153 for (int j = 0; j <= string_index; ++j) {
154 most_significant_bigit <<= 4;
155 most_significant_bigit += HexCharValue(value[j]);
156 }
157 if (most_significant_bigit != 0) {
158 bigits_[used_digits_] = most_significant_bigit;
159 used_digits_++;
160 }
161 Clamp();
162 }
163
164
165 void Bignum::AddUInt64(uint64_t operand) {
166 if (operand == 0) return;
167 Bignum other;
168 other.AssignUInt64(operand);
169 AddBignum(other);
170 }
171
172
173 void Bignum::AddBignum(const Bignum& other) {
174 ASSERT(IsClamped());
175 ASSERT(other.IsClamped());
176
177 // If this has a greater exponent than other append zero-bigits to this.
178 // After this call exponent_ <= other.exponent_.
179 Align(other);
180
181 // There are two possibilities:
182 // aaaaaaaaaaa 0000 (where the 0s represent a's exponent)
183 // bbbbb 00000000
184 // ----------------
185 // ccccccccccc 0000
186 // or
187 // aaaaaaaaaa 0000
188 // bbbbbbbbb 0000000
189 // -----------------
190 // cccccccccccc 0000
191 // In both cases we might need a carry bigit.
192
193 EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_);
194 Chunk carry = 0;
195 int bigit_pos = other.exponent_ - exponent_;
196 ASSERT(bigit_pos >= 0);
197 for (int i = 0; i < other.used_digits_; ++i) {
198 Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry;
199 bigits_[bigit_pos] = sum & kBigitMask;
200 carry = sum >> kBigitSize;
201 bigit_pos++;
202 }
203
204 while (carry != 0) {
205 Chunk sum = bigits_[bigit_pos] + carry;
206 bigits_[bigit_pos] = sum & kBigitMask;
207 carry = sum >> kBigitSize;
208 bigit_pos++;
209 }
210 used_digits_ = Max(bigit_pos, used_digits_);
211 ASSERT(IsClamped());
212 }
213
214
215 void Bignum::SubtractBignum(const Bignum& other) {
216 ASSERT(IsClamped());
217 ASSERT(other.IsClamped());
218 // We require this to be bigger than other.
219 ASSERT(LessEqual(other, *this));
220
221 Align(other);
222
223 int offset = other.exponent_ - exponent_;
224 Chunk borrow = 0;
225 int i;
226 for (i = 0; i < other.used_digits_; ++i) {
227 ASSERT((borrow == 0) || (borrow == 1));
228 Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow;
229 bigits_[i + offset] = difference & kBigitMask;
230 borrow = difference >> (kChunkSize - 1);
231 }
232 while (borrow != 0) {
233 Chunk difference = bigits_[i + offset] - borrow;
234 bigits_[i + offset] = difference & kBigitMask;
235 borrow = difference >> (kChunkSize - 1);
236 ++i;
237 }
238 Clamp();
239 }
240
241
242 void Bignum::ShiftLeft(int shift_amount) {
243 if (used_digits_ == 0) return;
244 exponent_ += shift_amount / kBigitSize;
245 int local_shift = shift_amount % kBigitSize;
246 EnsureCapacity(used_digits_ + 1);
247 BigitsShiftLeft(local_shift);
248 }
249
250
251 void Bignum::MultiplyByUInt32(uint32_t factor) {
252 if (factor == 1) return;
253 if (factor == 0) {
254 Zero();
255 return;
256 }
257 if (used_digits_ == 0) return;
258
259 // The product of a bigit with the factor is of size kBigitSize + 32.
260 // Assert that this number + 1 (for the carry) fits into double chunk.
261 ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1);
262 DoubleChunk carry = 0;
263 for (int i = 0; i < used_digits_; ++i) {
264 DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry;
265 bigits_[i] = static_cast<Chunk>(product & kBigitMask);
266 carry = (product >> kBigitSize);
267 }
268 while (carry != 0) {
269 EnsureCapacity(used_digits_ + 1);
270 bigits_[used_digits_] = (uint32_t)carry & kBigitMask;
271 used_digits_++;
272 carry >>= kBigitSize;
273 }
274 }
275
276
277 void Bignum::MultiplyByUInt64(uint64_t factor) {
278 if (factor == 1) return;
279 if (factor == 0) {
280 Zero();
281 return;
282 }
283 ASSERT(kBigitSize < 32);
284 uint64_t carry = 0;
285 uint64_t low = factor & 0xFFFFFFFF;
286 uint64_t high = factor >> 32;
287 for (int i = 0; i < used_digits_; ++i) {
288 uint64_t product_low = low * bigits_[i];
289 uint64_t product_high = high * bigits_[i];
290 uint64_t tmp = (carry & kBigitMask) + product_low;
291 bigits_[i] = (uint32_t)tmp & kBigitMask;
292 carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
293 (product_high << (32 - kBigitSize));
294 }
295 while (carry != 0) {
296 EnsureCapacity(used_digits_ + 1);
297 bigits_[used_digits_] = (uint32_t)carry & kBigitMask;
298 used_digits_++;
299 carry >>= kBigitSize;
300 }
301 }
302
303
304 void Bignum::MultiplyByPowerOfTen(int exponent) {
305 const uint64_t kFive27 = UINT64_2PART_C(0x6765c793, fa10079d);
306 const uint16_t kFive1 = 5;
307 const uint16_t kFive2 = kFive1 * 5;
308 const uint16_t kFive3 = kFive2 * 5;
309 const uint16_t kFive4 = kFive3 * 5;
310 const uint16_t kFive5 = kFive4 * 5;
311 const uint16_t kFive6 = kFive5 * 5;
312 const uint32_t kFive7 = kFive6 * 5;
313 const uint32_t kFive8 = kFive7 * 5;
314 const uint32_t kFive9 = kFive8 * 5;
315 const uint32_t kFive10 = kFive9 * 5;
316 const uint32_t kFive11 = kFive10 * 5;
317 const uint32_t kFive12 = kFive11 * 5;
318 const uint32_t kFive13 = kFive12 * 5;
319 const uint32_t kFive1_to_12[] =
320 { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6,
321 kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 };
322
323 ASSERT(exponent >= 0);
324 if (exponent == 0) return;
325 if (used_digits_ == 0) return;
326
327 // We shift by exponent at the end just before returning.
328 int remaining_exponent = exponent;
329 while (remaining_exponent >= 27) {
330 MultiplyByUInt64(kFive27);
331 remaining_exponent -= 27;
332 }
333 while (remaining_exponent >= 13) {
334 MultiplyByUInt32(kFive13);
335 remaining_exponent -= 13;
336 }
337 if (remaining_exponent > 0) {
338 MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
339 }
340 ShiftLeft(exponent);
341 }
342
343
344 void Bignum::Square() {
345 ASSERT(IsClamped());
346 int product_length = 2 * used_digits_;
347 EnsureCapacity(product_length);
348
349 // Comba multiplication: compute each column separately.
350 // Example: r = a2a1a0 * b2b1b0.
351 // r = 1 * a0b0 +
352 // 10 * (a1b0 + a0b1) +
353 // 100 * (a2b0 + a1b1 + a0b2) +
354 // 1000 * (a2b1 + a1b2) +
355 // 10000 * a2b2
356 //
357 // In the worst case we have to accumulate nb-digits products of digit*d igit.
358 //
359 // Assert that the additional number of bits in a DoubleChunk are enough to
360 // sum up used_digits of Bigit*Bigit.
361 if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) {
362 UNIMPLEMENTED();
363 }
364 DoubleChunk accumulator = 0;
365 // First shift the digits so we don't overwrite them.
366 int copy_offset = used_digits_;
367 for (int i = 0; i < used_digits_; ++i) {
368 bigits_[copy_offset + i] = bigits_[i];
369 }
370 // We have two loops to avoid some 'if's in the loop.
371 for (int i = 0; i < used_digits_; ++i) {
372 // Process temporary digit i with power i.
373 // The sum of the two indices must be equal to i.
374 int bigit_index1 = i;
375 int bigit_index2 = 0;
376 // Sum all of the sub-products.
377 while (bigit_index1 >= 0) {
378 Chunk chunk1 = bigits_[copy_offset + bigit_index1];
379 Chunk chunk2 = bigits_[copy_offset + bigit_index2];
380 accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
381 bigit_index1--;
382 bigit_index2++;
383 }
384 bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
385 accumulator >>= kBigitSize;
386 }
387 for (int i = used_digits_; i < product_length; ++i) {
388 int bigit_index1 = used_digits_ - 1;
389 int bigit_index2 = i - bigit_index1;
390 // Invariant: sum of both indices is again equal to i.
391 // Inner loop runs 0 times on last iteration, emptying accumulator.
392 while (bigit_index2 < used_digits_) {
393 Chunk chunk1 = bigits_[copy_offset + bigit_index1];
394 Chunk chunk2 = bigits_[copy_offset + bigit_index2];
395 accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
396 bigit_index1--;
397 bigit_index2++;
398 }
399 // The overwritten bigits_[i] will never be read in further loop ite rations,
400 // because bigit_index1 and bigit_index2 are always greater
401 // than i - used_digits_.
402 bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
403 accumulator >>= kBigitSize;
404 }
405 // Since the result was guaranteed to lie inside the number the
406 // accumulator must be 0 now.
407 ASSERT(accumulator == 0);
408
409 // Don't forget to update the used_digits and the exponent.
410 used_digits_ = product_length;
411 exponent_ *= 2;
412 Clamp();
413 }
414
415
416 void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) {
417 ASSERT(base != 0);
418 ASSERT(power_exponent >= 0);
419 if (power_exponent == 0) {
420 AssignUInt16(1);
421 return;
422 }
423 Zero();
424 int shifts = 0;
425 // We expect base to be in range 2-32, and most often to be 10.
426 // It does not make much sense to implement different algorithms for cou nting
427 // the bits.
428 while ((base & 1) == 0) {
429 base >>= 1;
430 shifts++;
431 }
432 int bit_size = 0;
433 int tmp_base = base;
434 while (tmp_base != 0) {
435 tmp_base >>= 1;
436 bit_size++;
437 }
438 int final_size = bit_size * power_exponent;
439 // 1 extra bigit for the shifting, and one for rounded final_size.
440 EnsureCapacity(final_size / kBigitSize + 2);
441
442 // Left to Right exponentiation.
443 int mask = 1;
444 while (power_exponent >= mask) mask <<= 1;
445
446 // The mask is now pointing to the bit above the most significant 1-bit of
447 // power_exponent.
448 // Get rid of first 1-bit;
449 mask >>= 2;
450 uint64_t this_value = base;
451
452 bool delayed_multipliciation = false;
453 const uint64_t max_32bits = 0xFFFFFFFF;
454 while (mask != 0 && this_value <= max_32bits) {
455 this_value = this_value * this_value;
456 // Verify that there is enough space in this_value to perform the
457 // multiplication. The first bit_size bits must be 0.
458 if ((power_exponent & mask) != 0) {
459 uint64_t base_bits_mask =
460 ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
461 bool high_bits_zero = (this_value & base_bits_mask) == 0;
462 if (high_bits_zero) {
463 this_value *= base;
464 } else {
465 delayed_multipliciation = true;
466 }
467 }
468 mask >>= 1;
469 }
470 AssignUInt64(this_value);
471 if (delayed_multipliciation) {
472 MultiplyByUInt32(base);
473 }
474
475 // Now do the same thing as a bignum.
476 while (mask != 0) {
477 Square();
478 if ((power_exponent & mask) != 0) {
479 MultiplyByUInt32(base);
480 }
481 mask >>= 1;
482 }
483
484 // And finally add the saved shifts.
485 ShiftLeft(shifts * power_exponent);
486 }
487
488
489 // Precondition: this/other < 16bit.
490 uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
491 ASSERT(IsClamped());
492 ASSERT(other.IsClamped());
493 ASSERT(other.used_digits_ > 0);
494
495 // Easy case: if we have less digits than the divisor than the result is 0.
496 // Note: this handles the case where this == 0, too.
497 if (BigitLength() < other.BigitLength()) {
498 return 0;
499 }
500
501 Align(other);
502
503 uint16_t result = 0;
504
505 // Start by removing multiples of 'other' until both numbers have the sa me
506 // number of digits.
507 while (BigitLength() > other.BigitLength()) {
508 // This naive approach is extremely inefficient if the this divided other
509 // might be big. This function is implemented for doubleToString whe re
510 // the result should be small (less than 10).
511 ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16));
512 // Remove the multiples of the first digit.
513 // Example this = 23 and other equals 9. -> Remove 2 multiples.
514 result += bigits_[used_digits_ - 1];
515 SubtractTimes(other, bigits_[used_digits_ - 1]);
516 }
517
518 ASSERT(BigitLength() == other.BigitLength());
519
520 // Both bignums are at the same length now.
521 // Since other has more than 0 digits we know that the access to
522 // bigits_[used_digits_ - 1] is safe.
523 Chunk this_bigit = bigits_[used_digits_ - 1];
524 Chunk other_bigit = other.bigits_[other.used_digits_ - 1];
525
526 if (other.used_digits_ == 1) {
527 // Shortcut for easy (and common) case.
528 int quotient = this_bigit / other_bigit;
529 bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient;
530 result += quotient;
531 Clamp();
532 return result;
533 }
534
535 int division_estimate = this_bigit / (other_bigit + 1);
536 result += division_estimate;
537 SubtractTimes(other, division_estimate);
538
539 if (other_bigit * (division_estimate + 1) > this_bigit) {
540 // No need to even try to subtract. Even if other's remaining digits were 0
541 // another subtraction would be too much.
542 return result;
543 }
544
545 while (LessEqual(other, *this)) {
546 SubtractBignum(other);
547 result++;
548 }
549 return result;
550 }
551
552
553 template<typename S>
554 static int SizeInHexChars(S number) {
555 ASSERT(number > 0);
556 int result = 0;
557 while (number != 0) {
558 number >>= 4;
559 result++;
560 }
561 return result;
562 }
563
564
565 static char HexCharOfValue(int value) {
566 ASSERT(0 <= value && value <= 16);
567 if (value < 10) return value + '0';
568 return value - 10 + 'A';
569 }
570
571
572 bool Bignum::ToHexString(char* buffer, int buffer_size) const {
573 ASSERT(IsClamped());
574 // Each bigit must be printable as separate hex-character.
575 ASSERT(kBigitSize % 4 == 0);
576 const int kHexCharsPerBigit = kBigitSize / 4;
577
578 if (used_digits_ == 0) {
579 if (buffer_size < 2) return false;
580 buffer[0] = '0';
581 buffer[1] = '\0';
582 return true;
583 }
584 // We add 1 for the terminating '\0' character.
585 int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit +
586 SizeInHexChars(bigits_[used_digits_ - 1]) + 1;
587 if (needed_chars > buffer_size) return false;
588 int string_index = needed_chars - 1;
589 buffer[string_index--] = '\0';
590 for (int i = 0; i < exponent_; ++i) {
591 for (int j = 0; j < kHexCharsPerBigit; ++j) {
592 buffer[string_index--] = '0';
593 }
594 }
595 for (int i = 0; i < used_digits_ - 1; ++i) {
596 Chunk current_bigit = bigits_[i];
597 for (int j = 0; j < kHexCharsPerBigit; ++j) {
598 buffer[string_index--] = HexCharOfValue(current_bigit & 0xF);
599 current_bigit >>= 4;
600 }
601 }
602 // And finally the last bigit.
603 Chunk most_significant_bigit = bigits_[used_digits_ - 1];
604 while (most_significant_bigit != 0) {
605 buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF );
606 most_significant_bigit >>= 4;
607 }
608 return true;
609 }
610
611
612 Bignum::Chunk Bignum::BigitAt(int index) const {
613 if (index >= BigitLength()) return 0;
614 if (index < exponent_) return 0;
615 return bigits_[index - exponent_];
616 }
617
618
619 int Bignum::Compare(const Bignum& a, const Bignum& b) {
620 ASSERT(a.IsClamped());
621 ASSERT(b.IsClamped());
622 int bigit_length_a = a.BigitLength();
623 int bigit_length_b = b.BigitLength();
624 if (bigit_length_a < bigit_length_b) return -1;
625 if (bigit_length_a > bigit_length_b) return +1;
626 for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i ) {
627 Chunk bigit_a = a.BigitAt(i);
628 Chunk bigit_b = b.BigitAt(i);
629 if (bigit_a < bigit_b) return -1;
630 if (bigit_a > bigit_b) return +1;
631 // Otherwise they are equal up to this digit. Try the next digit.
632 }
633 return 0;
634 }
635
636
637 int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) {
638 ASSERT(a.IsClamped());
639 ASSERT(b.IsClamped());
640 ASSERT(c.IsClamped());
641 if (a.BigitLength() < b.BigitLength()) {
642 return PlusCompare(b, a, c);
643 }
644 if (a.BigitLength() + 1 < c.BigitLength()) return -1;
645 if (a.BigitLength() > c.BigitLength()) return +1;
646 // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' t han
647 // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
648 // of 'a'.
649 if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) {
650 return -1;
651 }
652
653 Chunk borrow = 0;
654 // Starting at min_exponent all digits are == 0. So no need to compare t hem.
655 int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_);
656 for (int i = c.BigitLength() - 1; i >= min_exponent; --i) {
657 Chunk chunk_a = a.BigitAt(i);
658 Chunk chunk_b = b.BigitAt(i);
659 Chunk chunk_c = c.BigitAt(i);
660 Chunk sum = chunk_a + chunk_b;
661 if (sum > chunk_c + borrow) {
662 return +1;
663 } else {
664 borrow = chunk_c + borrow - sum;
665 if (borrow > 1) return -1;
666 borrow <<= kBigitSize;
667 }
668 }
669 if (borrow == 0) return 0;
670 return -1;
671 }
672
673
674 void Bignum::Clamp() {
675 while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) {
676 used_digits_--;
677 }
678 if (used_digits_ == 0) {
679 // Zero.
680 exponent_ = 0;
681 }
682 }
683
684
685 bool Bignum::IsClamped() const {
686 return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0;
687 }
688
689
690 void Bignum::Zero() {
691 for (int i = 0; i < used_digits_; ++i) {
692 bigits_[i] = 0;
693 }
694 used_digits_ = 0;
695 exponent_ = 0;
696 }
697
698
699 void Bignum::Align(const Bignum& other) {
700 if (exponent_ > other.exponent_) {
701 // If "X" represents a "hidden" digit (by the exponent) then we are in the
702 // following case (a == this, b == other):
703 // a: aaaaaaXXXX or a: aaaaaXXX
704 // b: bbbbbbX b: bbbbbbbbXX
705 // We replace some of the hidden digits (X) of a with 0 digits.
706 // a: aaaaaa000X or a: aaaaa0XX
707 int zero_digits = exponent_ - other.exponent_;
708 EnsureCapacity(used_digits_ + zero_digits);
709 for (int i = used_digits_ - 1; i >= 0; --i) {
710 bigits_[i + zero_digits] = bigits_[i];
711 }
712 for (int i = 0; i < zero_digits; ++i) {
713 bigits_[i] = 0;
714 }
715 used_digits_ += zero_digits;
716 exponent_ -= zero_digits;
717 ASSERT(used_digits_ >= 0);
718 ASSERT(exponent_ >= 0);
719 }
720 }
721
722
723 void Bignum::BigitsShiftLeft(int shift_amount) {
724 ASSERT(shift_amount < kBigitSize);
725 ASSERT(shift_amount >= 0);
726 Chunk carry = 0;
727 for (int i = 0; i < used_digits_; ++i) {
728 Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount);
729 bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask;
730 carry = new_carry;
731 }
732 if (carry != 0) {
733 bigits_[used_digits_] = carry;
734 used_digits_++;
735 }
736 }
737
738
739 void Bignum::SubtractTimes(const Bignum& other, int factor) {
740 ASSERT(exponent_ <= other.exponent_);
741 if (factor < 3) {
742 for (int i = 0; i < factor; ++i) {
743 SubtractBignum(other);
744 }
745 return;
746 }
747 Chunk borrow = 0;
748 int exponent_diff = other.exponent_ - exponent_;
749 for (int i = 0; i < other.used_digits_; ++i) {
750 DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigit s_[i];
751 DoubleChunk remove = borrow + product;
752 Chunk difference = bigits_[i + exponent_diff] - ((uint32_t)remove & kBigitMask);
753 bigits_[i + exponent_diff] = difference & kBigitMask;
754 borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
755 (remove >> kBigitSize));
756 }
757 for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) {
758 if (borrow == 0) return;
759 Chunk difference = bigits_[i] - borrow;
760 bigits_[i] = difference & kBigitMask;
761 borrow = difference >> (kChunkSize - 1);
762 ++i;
763 }
764 Clamp();
765 }
766
767
768 } // namespace double_conversion
769
770 } // namespace WTF
OLDNEW
« no previous file with comments | « Source/WTF/wtf/dtoa/bignum.h ('k') | Source/WTF/wtf/dtoa/bignum-dtoa.h » ('j') | Source/config.h » ('J')

Powered by Google App Engine
This is Rietveld 408576698