OLD | NEW |
| (Empty) |
1 // Copyright 2010 the V8 project authors. All rights reserved. | |
2 // Redistribution and use in source and binary forms, with or without | |
3 // modification, are permitted provided that the following conditions are | |
4 // met: | |
5 // | |
6 // * Redistributions of source code must retain the above copyright | |
7 // notice, this list of conditions and the following disclaimer. | |
8 // * Redistributions in binary form must reproduce the above | |
9 // copyright notice, this list of conditions and the following | |
10 // disclaimer in the documentation and/or other materials provided | |
11 // with the distribution. | |
12 // * Neither the name of Google Inc. nor the names of its | |
13 // contributors may be used to endorse or promote products derived | |
14 // from this software without specific prior written permission. | |
15 // | |
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
27 | |
28 #include "config.h" | |
29 | |
30 #include "bignum.h" | |
31 #include "utils.h" | |
32 | |
33 namespace WTF { | |
34 | |
35 namespace double_conversion { | |
36 | |
37 Bignum::Bignum() | |
38 : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) { | |
39 for (int i = 0; i < kBigitCapacity; ++i) { | |
40 bigits_[i] = 0; | |
41 } | |
42 } | |
43 | |
44 | |
45 template<typename S> | |
46 static int BitSize(S value) { | |
47 return 8 * sizeof(value); | |
48 } | |
49 | |
50 // Guaranteed to lie in one Bigit. | |
51 void Bignum::AssignUInt16(uint16_t value) { | |
52 ASSERT(kBigitSize >= BitSize(value)); | |
53 Zero(); | |
54 if (value == 0) return; | |
55 | |
56 EnsureCapacity(1); | |
57 bigits_[0] = value; | |
58 used_digits_ = 1; | |
59 } | |
60 | |
61 | |
62 void Bignum::AssignUInt64(uint64_t value) { | |
63 const int kUInt64Size = 64; | |
64 | |
65 Zero(); | |
66 if (value == 0) return; | |
67 | |
68 int needed_bigits = kUInt64Size / kBigitSize + 1; | |
69 EnsureCapacity(needed_bigits); | |
70 for (int i = 0; i < needed_bigits; ++i) { | |
71 bigits_[i] = (uint32_t)value & kBigitMask; | |
72 value = value >> kBigitSize; | |
73 } | |
74 used_digits_ = needed_bigits; | |
75 Clamp(); | |
76 } | |
77 | |
78 | |
79 void Bignum::AssignBignum(const Bignum& other) { | |
80 exponent_ = other.exponent_; | |
81 for (int i = 0; i < other.used_digits_; ++i) { | |
82 bigits_[i] = other.bigits_[i]; | |
83 } | |
84 // Clear the excess digits (if there were any). | |
85 for (int i = other.used_digits_; i < used_digits_; ++i) { | |
86 bigits_[i] = 0; | |
87 } | |
88 used_digits_ = other.used_digits_; | |
89 } | |
90 | |
91 | |
92 static uint64_t ReadUInt64(Vector<const char> buffer, | |
93 int from, | |
94 int digits_to_read) { | |
95 uint64_t result = 0; | |
96 for (int i = from; i < from + digits_to_read; ++i) { | |
97 int digit = buffer[i] - '0'; | |
98 ASSERT(0 <= digit && digit <= 9); | |
99 result = result * 10 + digit; | |
100 } | |
101 return result; | |
102 } | |
103 | |
104 | |
105 void Bignum::AssignDecimalString(Vector<const char> value) { | |
106 // 2^64 = 18446744073709551616 > 10^19 | |
107 const int kMaxUint64DecimalDigits = 19; | |
108 Zero(); | |
109 int length = value.length(); | |
110 int pos = 0; | |
111 // Let's just say that each digit needs 4 bits. | |
112 while (length >= kMaxUint64DecimalDigits) { | |
113 uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits); | |
114 pos += kMaxUint64DecimalDigits; | |
115 length -= kMaxUint64DecimalDigits; | |
116 MultiplyByPowerOfTen(kMaxUint64DecimalDigits); | |
117 AddUInt64(digits); | |
118 } | |
119 uint64_t digits = ReadUInt64(value, pos, length); | |
120 MultiplyByPowerOfTen(length); | |
121 AddUInt64(digits); | |
122 Clamp(); | |
123 } | |
124 | |
125 | |
126 static int HexCharValue(char c) { | |
127 if ('0' <= c && c <= '9') return c - '0'; | |
128 if ('a' <= c && c <= 'f') return 10 + c - 'a'; | |
129 if ('A' <= c && c <= 'F') return 10 + c - 'A'; | |
130 UNREACHABLE(); | |
131 return 0; // To make compiler happy. | |
132 } | |
133 | |
134 | |
135 void Bignum::AssignHexString(Vector<const char> value) { | |
136 Zero(); | |
137 int length = value.length(); | |
138 | |
139 int needed_bigits = length * 4 / kBigitSize + 1; | |
140 EnsureCapacity(needed_bigits); | |
141 int string_index = length - 1; | |
142 for (int i = 0; i < needed_bigits - 1; ++i) { | |
143 // These bigits are guaranteed to be "full". | |
144 Chunk current_bigit = 0; | |
145 for (int j = 0; j < kBigitSize / 4; j++) { | |
146 current_bigit += HexCharValue(value[string_index--]) << (j * 4); | |
147 } | |
148 bigits_[i] = current_bigit; | |
149 } | |
150 used_digits_ = needed_bigits - 1; | |
151 | |
152 Chunk most_significant_bigit = 0; // Could be = 0; | |
153 for (int j = 0; j <= string_index; ++j) { | |
154 most_significant_bigit <<= 4; | |
155 most_significant_bigit += HexCharValue(value[j]); | |
156 } | |
157 if (most_significant_bigit != 0) { | |
158 bigits_[used_digits_] = most_significant_bigit; | |
159 used_digits_++; | |
160 } | |
161 Clamp(); | |
162 } | |
163 | |
164 | |
165 void Bignum::AddUInt64(uint64_t operand) { | |
166 if (operand == 0) return; | |
167 Bignum other; | |
168 other.AssignUInt64(operand); | |
169 AddBignum(other); | |
170 } | |
171 | |
172 | |
173 void Bignum::AddBignum(const Bignum& other) { | |
174 ASSERT(IsClamped()); | |
175 ASSERT(other.IsClamped()); | |
176 | |
177 // If this has a greater exponent than other append zero-bigits to this. | |
178 // After this call exponent_ <= other.exponent_. | |
179 Align(other); | |
180 | |
181 // There are two possibilities: | |
182 // aaaaaaaaaaa 0000 (where the 0s represent a's exponent) | |
183 // bbbbb 00000000 | |
184 // ---------------- | |
185 // ccccccccccc 0000 | |
186 // or | |
187 // aaaaaaaaaa 0000 | |
188 // bbbbbbbbb 0000000 | |
189 // ----------------- | |
190 // cccccccccccc 0000 | |
191 // In both cases we might need a carry bigit. | |
192 | |
193 EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_); | |
194 Chunk carry = 0; | |
195 int bigit_pos = other.exponent_ - exponent_; | |
196 ASSERT(bigit_pos >= 0); | |
197 for (int i = 0; i < other.used_digits_; ++i) { | |
198 Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry; | |
199 bigits_[bigit_pos] = sum & kBigitMask; | |
200 carry = sum >> kBigitSize; | |
201 bigit_pos++; | |
202 } | |
203 | |
204 while (carry != 0) { | |
205 Chunk sum = bigits_[bigit_pos] + carry; | |
206 bigits_[bigit_pos] = sum & kBigitMask; | |
207 carry = sum >> kBigitSize; | |
208 bigit_pos++; | |
209 } | |
210 used_digits_ = Max(bigit_pos, used_digits_); | |
211 ASSERT(IsClamped()); | |
212 } | |
213 | |
214 | |
215 void Bignum::SubtractBignum(const Bignum& other) { | |
216 ASSERT(IsClamped()); | |
217 ASSERT(other.IsClamped()); | |
218 // We require this to be bigger than other. | |
219 ASSERT(LessEqual(other, *this)); | |
220 | |
221 Align(other); | |
222 | |
223 int offset = other.exponent_ - exponent_; | |
224 Chunk borrow = 0; | |
225 int i; | |
226 for (i = 0; i < other.used_digits_; ++i) { | |
227 ASSERT((borrow == 0) || (borrow == 1)); | |
228 Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow; | |
229 bigits_[i + offset] = difference & kBigitMask; | |
230 borrow = difference >> (kChunkSize - 1); | |
231 } | |
232 while (borrow != 0) { | |
233 Chunk difference = bigits_[i + offset] - borrow; | |
234 bigits_[i + offset] = difference & kBigitMask; | |
235 borrow = difference >> (kChunkSize - 1); | |
236 ++i; | |
237 } | |
238 Clamp(); | |
239 } | |
240 | |
241 | |
242 void Bignum::ShiftLeft(int shift_amount) { | |
243 if (used_digits_ == 0) return; | |
244 exponent_ += shift_amount / kBigitSize; | |
245 int local_shift = shift_amount % kBigitSize; | |
246 EnsureCapacity(used_digits_ + 1); | |
247 BigitsShiftLeft(local_shift); | |
248 } | |
249 | |
250 | |
251 void Bignum::MultiplyByUInt32(uint32_t factor) { | |
252 if (factor == 1) return; | |
253 if (factor == 0) { | |
254 Zero(); | |
255 return; | |
256 } | |
257 if (used_digits_ == 0) return; | |
258 | |
259 // The product of a bigit with the factor is of size kBigitSize + 32. | |
260 // Assert that this number + 1 (for the carry) fits into double chunk. | |
261 ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1); | |
262 DoubleChunk carry = 0; | |
263 for (int i = 0; i < used_digits_; ++i) { | |
264 DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i]
+ carry; | |
265 bigits_[i] = static_cast<Chunk>(product & kBigitMask); | |
266 carry = (product >> kBigitSize); | |
267 } | |
268 while (carry != 0) { | |
269 EnsureCapacity(used_digits_ + 1); | |
270 bigits_[used_digits_] = (uint32_t)carry & kBigitMask; | |
271 used_digits_++; | |
272 carry >>= kBigitSize; | |
273 } | |
274 } | |
275 | |
276 | |
277 void Bignum::MultiplyByUInt64(uint64_t factor) { | |
278 if (factor == 1) return; | |
279 if (factor == 0) { | |
280 Zero(); | |
281 return; | |
282 } | |
283 ASSERT(kBigitSize < 32); | |
284 uint64_t carry = 0; | |
285 uint64_t low = factor & 0xFFFFFFFF; | |
286 uint64_t high = factor >> 32; | |
287 for (int i = 0; i < used_digits_; ++i) { | |
288 uint64_t product_low = low * bigits_[i]; | |
289 uint64_t product_high = high * bigits_[i]; | |
290 uint64_t tmp = (carry & kBigitMask) + product_low; | |
291 bigits_[i] = (uint32_t)tmp & kBigitMask; | |
292 carry = (carry >> kBigitSize) + (tmp >> kBigitSize) + | |
293 (product_high << (32 - kBigitSize)); | |
294 } | |
295 while (carry != 0) { | |
296 EnsureCapacity(used_digits_ + 1); | |
297 bigits_[used_digits_] = (uint32_t)carry & kBigitMask; | |
298 used_digits_++; | |
299 carry >>= kBigitSize; | |
300 } | |
301 } | |
302 | |
303 | |
304 void Bignum::MultiplyByPowerOfTen(int exponent) { | |
305 const uint64_t kFive27 = UINT64_2PART_C(0x6765c793, fa10079d); | |
306 const uint16_t kFive1 = 5; | |
307 const uint16_t kFive2 = kFive1 * 5; | |
308 const uint16_t kFive3 = kFive2 * 5; | |
309 const uint16_t kFive4 = kFive3 * 5; | |
310 const uint16_t kFive5 = kFive4 * 5; | |
311 const uint16_t kFive6 = kFive5 * 5; | |
312 const uint32_t kFive7 = kFive6 * 5; | |
313 const uint32_t kFive8 = kFive7 * 5; | |
314 const uint32_t kFive9 = kFive8 * 5; | |
315 const uint32_t kFive10 = kFive9 * 5; | |
316 const uint32_t kFive11 = kFive10 * 5; | |
317 const uint32_t kFive12 = kFive11 * 5; | |
318 const uint32_t kFive13 = kFive12 * 5; | |
319 const uint32_t kFive1_to_12[] = | |
320 { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6, | |
321 kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 }; | |
322 | |
323 ASSERT(exponent >= 0); | |
324 if (exponent == 0) return; | |
325 if (used_digits_ == 0) return; | |
326 | |
327 // We shift by exponent at the end just before returning. | |
328 int remaining_exponent = exponent; | |
329 while (remaining_exponent >= 27) { | |
330 MultiplyByUInt64(kFive27); | |
331 remaining_exponent -= 27; | |
332 } | |
333 while (remaining_exponent >= 13) { | |
334 MultiplyByUInt32(kFive13); | |
335 remaining_exponent -= 13; | |
336 } | |
337 if (remaining_exponent > 0) { | |
338 MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]); | |
339 } | |
340 ShiftLeft(exponent); | |
341 } | |
342 | |
343 | |
344 void Bignum::Square() { | |
345 ASSERT(IsClamped()); | |
346 int product_length = 2 * used_digits_; | |
347 EnsureCapacity(product_length); | |
348 | |
349 // Comba multiplication: compute each column separately. | |
350 // Example: r = a2a1a0 * b2b1b0. | |
351 // r = 1 * a0b0 + | |
352 // 10 * (a1b0 + a0b1) + | |
353 // 100 * (a2b0 + a1b1 + a0b2) + | |
354 // 1000 * (a2b1 + a1b2) + | |
355 // 10000 * a2b2 | |
356 // | |
357 // In the worst case we have to accumulate nb-digits products of digit*d
igit. | |
358 // | |
359 // Assert that the additional number of bits in a DoubleChunk are enough
to | |
360 // sum up used_digits of Bigit*Bigit. | |
361 if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) { | |
362 UNIMPLEMENTED(); | |
363 } | |
364 DoubleChunk accumulator = 0; | |
365 // First shift the digits so we don't overwrite them. | |
366 int copy_offset = used_digits_; | |
367 for (int i = 0; i < used_digits_; ++i) { | |
368 bigits_[copy_offset + i] = bigits_[i]; | |
369 } | |
370 // We have two loops to avoid some 'if's in the loop. | |
371 for (int i = 0; i < used_digits_; ++i) { | |
372 // Process temporary digit i with power i. | |
373 // The sum of the two indices must be equal to i. | |
374 int bigit_index1 = i; | |
375 int bigit_index2 = 0; | |
376 // Sum all of the sub-products. | |
377 while (bigit_index1 >= 0) { | |
378 Chunk chunk1 = bigits_[copy_offset + bigit_index1]; | |
379 Chunk chunk2 = bigits_[copy_offset + bigit_index2]; | |
380 accumulator += static_cast<DoubleChunk>(chunk1) * chunk2; | |
381 bigit_index1--; | |
382 bigit_index2++; | |
383 } | |
384 bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask; | |
385 accumulator >>= kBigitSize; | |
386 } | |
387 for (int i = used_digits_; i < product_length; ++i) { | |
388 int bigit_index1 = used_digits_ - 1; | |
389 int bigit_index2 = i - bigit_index1; | |
390 // Invariant: sum of both indices is again equal to i. | |
391 // Inner loop runs 0 times on last iteration, emptying accumulator. | |
392 while (bigit_index2 < used_digits_) { | |
393 Chunk chunk1 = bigits_[copy_offset + bigit_index1]; | |
394 Chunk chunk2 = bigits_[copy_offset + bigit_index2]; | |
395 accumulator += static_cast<DoubleChunk>(chunk1) * chunk2; | |
396 bigit_index1--; | |
397 bigit_index2++; | |
398 } | |
399 // The overwritten bigits_[i] will never be read in further loop ite
rations, | |
400 // because bigit_index1 and bigit_index2 are always greater | |
401 // than i - used_digits_. | |
402 bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask; | |
403 accumulator >>= kBigitSize; | |
404 } | |
405 // Since the result was guaranteed to lie inside the number the | |
406 // accumulator must be 0 now. | |
407 ASSERT(accumulator == 0); | |
408 | |
409 // Don't forget to update the used_digits and the exponent. | |
410 used_digits_ = product_length; | |
411 exponent_ *= 2; | |
412 Clamp(); | |
413 } | |
414 | |
415 | |
416 void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) { | |
417 ASSERT(base != 0); | |
418 ASSERT(power_exponent >= 0); | |
419 if (power_exponent == 0) { | |
420 AssignUInt16(1); | |
421 return; | |
422 } | |
423 Zero(); | |
424 int shifts = 0; | |
425 // We expect base to be in range 2-32, and most often to be 10. | |
426 // It does not make much sense to implement different algorithms for cou
nting | |
427 // the bits. | |
428 while ((base & 1) == 0) { | |
429 base >>= 1; | |
430 shifts++; | |
431 } | |
432 int bit_size = 0; | |
433 int tmp_base = base; | |
434 while (tmp_base != 0) { | |
435 tmp_base >>= 1; | |
436 bit_size++; | |
437 } | |
438 int final_size = bit_size * power_exponent; | |
439 // 1 extra bigit for the shifting, and one for rounded final_size. | |
440 EnsureCapacity(final_size / kBigitSize + 2); | |
441 | |
442 // Left to Right exponentiation. | |
443 int mask = 1; | |
444 while (power_exponent >= mask) mask <<= 1; | |
445 | |
446 // The mask is now pointing to the bit above the most significant 1-bit
of | |
447 // power_exponent. | |
448 // Get rid of first 1-bit; | |
449 mask >>= 2; | |
450 uint64_t this_value = base; | |
451 | |
452 bool delayed_multipliciation = false; | |
453 const uint64_t max_32bits = 0xFFFFFFFF; | |
454 while (mask != 0 && this_value <= max_32bits) { | |
455 this_value = this_value * this_value; | |
456 // Verify that there is enough space in this_value to perform the | |
457 // multiplication. The first bit_size bits must be 0. | |
458 if ((power_exponent & mask) != 0) { | |
459 uint64_t base_bits_mask = | |
460 ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1); | |
461 bool high_bits_zero = (this_value & base_bits_mask) == 0; | |
462 if (high_bits_zero) { | |
463 this_value *= base; | |
464 } else { | |
465 delayed_multipliciation = true; | |
466 } | |
467 } | |
468 mask >>= 1; | |
469 } | |
470 AssignUInt64(this_value); | |
471 if (delayed_multipliciation) { | |
472 MultiplyByUInt32(base); | |
473 } | |
474 | |
475 // Now do the same thing as a bignum. | |
476 while (mask != 0) { | |
477 Square(); | |
478 if ((power_exponent & mask) != 0) { | |
479 MultiplyByUInt32(base); | |
480 } | |
481 mask >>= 1; | |
482 } | |
483 | |
484 // And finally add the saved shifts. | |
485 ShiftLeft(shifts * power_exponent); | |
486 } | |
487 | |
488 | |
489 // Precondition: this/other < 16bit. | |
490 uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) { | |
491 ASSERT(IsClamped()); | |
492 ASSERT(other.IsClamped()); | |
493 ASSERT(other.used_digits_ > 0); | |
494 | |
495 // Easy case: if we have less digits than the divisor than the result is
0. | |
496 // Note: this handles the case where this == 0, too. | |
497 if (BigitLength() < other.BigitLength()) { | |
498 return 0; | |
499 } | |
500 | |
501 Align(other); | |
502 | |
503 uint16_t result = 0; | |
504 | |
505 // Start by removing multiples of 'other' until both numbers have the sa
me | |
506 // number of digits. | |
507 while (BigitLength() > other.BigitLength()) { | |
508 // This naive approach is extremely inefficient if the this divided
other | |
509 // might be big. This function is implemented for doubleToString whe
re | |
510 // the result should be small (less than 10). | |
511 ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) /
16)); | |
512 // Remove the multiples of the first digit. | |
513 // Example this = 23 and other equals 9. -> Remove 2 multiples. | |
514 result += bigits_[used_digits_ - 1]; | |
515 SubtractTimes(other, bigits_[used_digits_ - 1]); | |
516 } | |
517 | |
518 ASSERT(BigitLength() == other.BigitLength()); | |
519 | |
520 // Both bignums are at the same length now. | |
521 // Since other has more than 0 digits we know that the access to | |
522 // bigits_[used_digits_ - 1] is safe. | |
523 Chunk this_bigit = bigits_[used_digits_ - 1]; | |
524 Chunk other_bigit = other.bigits_[other.used_digits_ - 1]; | |
525 | |
526 if (other.used_digits_ == 1) { | |
527 // Shortcut for easy (and common) case. | |
528 int quotient = this_bigit / other_bigit; | |
529 bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient; | |
530 result += quotient; | |
531 Clamp(); | |
532 return result; | |
533 } | |
534 | |
535 int division_estimate = this_bigit / (other_bigit + 1); | |
536 result += division_estimate; | |
537 SubtractTimes(other, division_estimate); | |
538 | |
539 if (other_bigit * (division_estimate + 1) > this_bigit) { | |
540 // No need to even try to subtract. Even if other's remaining digits
were 0 | |
541 // another subtraction would be too much. | |
542 return result; | |
543 } | |
544 | |
545 while (LessEqual(other, *this)) { | |
546 SubtractBignum(other); | |
547 result++; | |
548 } | |
549 return result; | |
550 } | |
551 | |
552 | |
553 template<typename S> | |
554 static int SizeInHexChars(S number) { | |
555 ASSERT(number > 0); | |
556 int result = 0; | |
557 while (number != 0) { | |
558 number >>= 4; | |
559 result++; | |
560 } | |
561 return result; | |
562 } | |
563 | |
564 | |
565 static char HexCharOfValue(int value) { | |
566 ASSERT(0 <= value && value <= 16); | |
567 if (value < 10) return value + '0'; | |
568 return value - 10 + 'A'; | |
569 } | |
570 | |
571 | |
572 bool Bignum::ToHexString(char* buffer, int buffer_size) const { | |
573 ASSERT(IsClamped()); | |
574 // Each bigit must be printable as separate hex-character. | |
575 ASSERT(kBigitSize % 4 == 0); | |
576 const int kHexCharsPerBigit = kBigitSize / 4; | |
577 | |
578 if (used_digits_ == 0) { | |
579 if (buffer_size < 2) return false; | |
580 buffer[0] = '0'; | |
581 buffer[1] = '\0'; | |
582 return true; | |
583 } | |
584 // We add 1 for the terminating '\0' character. | |
585 int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit + | |
586 SizeInHexChars(bigits_[used_digits_ - 1]) + 1; | |
587 if (needed_chars > buffer_size) return false; | |
588 int string_index = needed_chars - 1; | |
589 buffer[string_index--] = '\0'; | |
590 for (int i = 0; i < exponent_; ++i) { | |
591 for (int j = 0; j < kHexCharsPerBigit; ++j) { | |
592 buffer[string_index--] = '0'; | |
593 } | |
594 } | |
595 for (int i = 0; i < used_digits_ - 1; ++i) { | |
596 Chunk current_bigit = bigits_[i]; | |
597 for (int j = 0; j < kHexCharsPerBigit; ++j) { | |
598 buffer[string_index--] = HexCharOfValue(current_bigit & 0xF); | |
599 current_bigit >>= 4; | |
600 } | |
601 } | |
602 // And finally the last bigit. | |
603 Chunk most_significant_bigit = bigits_[used_digits_ - 1]; | |
604 while (most_significant_bigit != 0) { | |
605 buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF
); | |
606 most_significant_bigit >>= 4; | |
607 } | |
608 return true; | |
609 } | |
610 | |
611 | |
612 Bignum::Chunk Bignum::BigitAt(int index) const { | |
613 if (index >= BigitLength()) return 0; | |
614 if (index < exponent_) return 0; | |
615 return bigits_[index - exponent_]; | |
616 } | |
617 | |
618 | |
619 int Bignum::Compare(const Bignum& a, const Bignum& b) { | |
620 ASSERT(a.IsClamped()); | |
621 ASSERT(b.IsClamped()); | |
622 int bigit_length_a = a.BigitLength(); | |
623 int bigit_length_b = b.BigitLength(); | |
624 if (bigit_length_a < bigit_length_b) return -1; | |
625 if (bigit_length_a > bigit_length_b) return +1; | |
626 for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i
) { | |
627 Chunk bigit_a = a.BigitAt(i); | |
628 Chunk bigit_b = b.BigitAt(i); | |
629 if (bigit_a < bigit_b) return -1; | |
630 if (bigit_a > bigit_b) return +1; | |
631 // Otherwise they are equal up to this digit. Try the next digit. | |
632 } | |
633 return 0; | |
634 } | |
635 | |
636 | |
637 int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) { | |
638 ASSERT(a.IsClamped()); | |
639 ASSERT(b.IsClamped()); | |
640 ASSERT(c.IsClamped()); | |
641 if (a.BigitLength() < b.BigitLength()) { | |
642 return PlusCompare(b, a, c); | |
643 } | |
644 if (a.BigitLength() + 1 < c.BigitLength()) return -1; | |
645 if (a.BigitLength() > c.BigitLength()) return +1; | |
646 // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' t
han | |
647 // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the
one | |
648 // of 'a'. | |
649 if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength())
{ | |
650 return -1; | |
651 } | |
652 | |
653 Chunk borrow = 0; | |
654 // Starting at min_exponent all digits are == 0. So no need to compare t
hem. | |
655 int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_); | |
656 for (int i = c.BigitLength() - 1; i >= min_exponent; --i) { | |
657 Chunk chunk_a = a.BigitAt(i); | |
658 Chunk chunk_b = b.BigitAt(i); | |
659 Chunk chunk_c = c.BigitAt(i); | |
660 Chunk sum = chunk_a + chunk_b; | |
661 if (sum > chunk_c + borrow) { | |
662 return +1; | |
663 } else { | |
664 borrow = chunk_c + borrow - sum; | |
665 if (borrow > 1) return -1; | |
666 borrow <<= kBigitSize; | |
667 } | |
668 } | |
669 if (borrow == 0) return 0; | |
670 return -1; | |
671 } | |
672 | |
673 | |
674 void Bignum::Clamp() { | |
675 while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) { | |
676 used_digits_--; | |
677 } | |
678 if (used_digits_ == 0) { | |
679 // Zero. | |
680 exponent_ = 0; | |
681 } | |
682 } | |
683 | |
684 | |
685 bool Bignum::IsClamped() const { | |
686 return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0; | |
687 } | |
688 | |
689 | |
690 void Bignum::Zero() { | |
691 for (int i = 0; i < used_digits_; ++i) { | |
692 bigits_[i] = 0; | |
693 } | |
694 used_digits_ = 0; | |
695 exponent_ = 0; | |
696 } | |
697 | |
698 | |
699 void Bignum::Align(const Bignum& other) { | |
700 if (exponent_ > other.exponent_) { | |
701 // If "X" represents a "hidden" digit (by the exponent) then we are
in the | |
702 // following case (a == this, b == other): | |
703 // a: aaaaaaXXXX or a: aaaaaXXX | |
704 // b: bbbbbbX b: bbbbbbbbXX | |
705 // We replace some of the hidden digits (X) of a with 0 digits. | |
706 // a: aaaaaa000X or a: aaaaa0XX | |
707 int zero_digits = exponent_ - other.exponent_; | |
708 EnsureCapacity(used_digits_ + zero_digits); | |
709 for (int i = used_digits_ - 1; i >= 0; --i) { | |
710 bigits_[i + zero_digits] = bigits_[i]; | |
711 } | |
712 for (int i = 0; i < zero_digits; ++i) { | |
713 bigits_[i] = 0; | |
714 } | |
715 used_digits_ += zero_digits; | |
716 exponent_ -= zero_digits; | |
717 ASSERT(used_digits_ >= 0); | |
718 ASSERT(exponent_ >= 0); | |
719 } | |
720 } | |
721 | |
722 | |
723 void Bignum::BigitsShiftLeft(int shift_amount) { | |
724 ASSERT(shift_amount < kBigitSize); | |
725 ASSERT(shift_amount >= 0); | |
726 Chunk carry = 0; | |
727 for (int i = 0; i < used_digits_; ++i) { | |
728 Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount); | |
729 bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask; | |
730 carry = new_carry; | |
731 } | |
732 if (carry != 0) { | |
733 bigits_[used_digits_] = carry; | |
734 used_digits_++; | |
735 } | |
736 } | |
737 | |
738 | |
739 void Bignum::SubtractTimes(const Bignum& other, int factor) { | |
740 ASSERT(exponent_ <= other.exponent_); | |
741 if (factor < 3) { | |
742 for (int i = 0; i < factor; ++i) { | |
743 SubtractBignum(other); | |
744 } | |
745 return; | |
746 } | |
747 Chunk borrow = 0; | |
748 int exponent_diff = other.exponent_ - exponent_; | |
749 for (int i = 0; i < other.used_digits_; ++i) { | |
750 DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigit
s_[i]; | |
751 DoubleChunk remove = borrow + product; | |
752 Chunk difference = bigits_[i + exponent_diff] - ((uint32_t)remove &
kBigitMask); | |
753 bigits_[i + exponent_diff] = difference & kBigitMask; | |
754 borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) + | |
755 (remove >> kBigitSize)); | |
756 } | |
757 for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i)
{ | |
758 if (borrow == 0) return; | |
759 Chunk difference = bigits_[i] - borrow; | |
760 bigits_[i] = difference & kBigitMask; | |
761 borrow = difference >> (kChunkSize - 1); | |
762 ++i; | |
763 } | |
764 Clamp(); | |
765 } | |
766 | |
767 | |
768 } // namespace double_conversion | |
769 | |
770 } // namespace WTF | |
OLD | NEW |