Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(211)

Side by Side Diff: Source/WTF/wtf/dtoa.cpp

Issue 14238015: Move Source/WTF/wtf to Source/wtf (Closed) Base URL: svn://svn.chromium.org/blink/trunk
Patch Set: Created 7 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
OLDNEW
(Empty)
1 /****************************************************************
2 *
3 * The author of this software is David M. Gay.
4 *
5 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
6 * Copyright (C) 2002, 2005, 2006, 2007, 2008, 2010, 2012 Apple Inc. All rights reserved.
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose without fee is hereby granted, provided that this entire notice
10 * is included in all copies of any software which is or includes a copy
11 * or modification of this software and in all copies of the supporting
12 * documentation for such software.
13 *
14 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
15 * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
16 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
17 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
18 *
19 ***************************************************************/
20
21 /* Please send bug reports to David M. Gay (dmg at acm dot org,
22 * with " at " changed at "@" and " dot " changed to "."). */
23
24 /* On a machine with IEEE extended-precision registers, it is
25 * necessary to specify double-precision (53-bit) rounding precision
26 * before invoking strtod or dtoa. If the machine uses (the equivalent
27 * of) Intel 80x87 arithmetic, the call
28 * _control87(PC_53, MCW_PC);
29 * does this with many compilers. Whether this or another call is
30 * appropriate depends on the compiler; for this to work, it may be
31 * necessary to #include "float.h" or another system-dependent header
32 * file.
33 */
34
35 #include "config.h"
36 #include "dtoa.h"
37
38 #include <stdio.h>
39 #include <wtf/MathExtras.h>
40 #include <wtf/Threading.h>
41 #include <wtf/Vector.h>
42
43 #if COMPILER(MSVC)
44 #pragma warning(disable: 4244)
45 #pragma warning(disable: 4245)
46 #pragma warning(disable: 4554)
47 #endif
48
49 namespace WTF {
50
51 Mutex* s_dtoaP5Mutex;
52
53 typedef union {
54 double d;
55 uint32_t L[2];
56 } U;
57
58 #if CPU(BIG_ENDIAN) || CPU(MIDDLE_ENDIAN)
59 #define word0(x) (x)->L[0]
60 #define word1(x) (x)->L[1]
61 #else
62 #define word0(x) (x)->L[1]
63 #define word1(x) (x)->L[0]
64 #endif
65 #define dval(x) (x)->d
66
67 /* The following definition of Storeinc is appropriate for MIPS processors.
68 * An alternative that might be better on some machines is
69 * *p++ = high << 16 | low & 0xffff;
70 */
71 static ALWAYS_INLINE uint32_t* storeInc(uint32_t* p, uint16_t high, uint16_t low )
72 {
73 uint16_t* p16 = reinterpret_cast<uint16_t*>(p);
74 #if CPU(BIG_ENDIAN)
75 p16[0] = high;
76 p16[1] = low;
77 #else
78 p16[1] = high;
79 p16[0] = low;
80 #endif
81 return p + 1;
82 }
83
84 #define Exp_shift 20
85 #define Exp_shift1 20
86 #define Exp_msk1 0x100000
87 #define Exp_msk11 0x100000
88 #define Exp_mask 0x7ff00000
89 #define P 53
90 #define Bias 1023
91 #define Emin (-1022)
92 #define Exp_1 0x3ff00000
93 #define Exp_11 0x3ff00000
94 #define Ebits 11
95 #define Frac_mask 0xfffff
96 #define Frac_mask1 0xfffff
97 #define Ten_pmax 22
98 #define Bletch 0x10
99 #define Bndry_mask 0xfffff
100 #define Bndry_mask1 0xfffff
101 #define LSB 1
102 #define Sign_bit 0x80000000
103 #define Log2P 1
104 #define Tiny0 0
105 #define Tiny1 1
106 #define Quick_max 14
107 #define Int_max 14
108
109 #define rounded_product(a, b) a *= b
110 #define rounded_quotient(a, b) a /= b
111
112 #define Big0 (Frac_mask1 | Exp_msk1 * (DBL_MAX_EXP + Bias - 1))
113 #define Big1 0xffffffff
114
115 #if CPU(PPC64) || CPU(X86_64)
116 // FIXME: should we enable this on all 64-bit CPUs?
117 // 64-bit emulation provided by the compiler is likely to be slower than dtoa ow n code on 32-bit hardware.
118 #define USE_LONG_LONG
119 #endif
120
121 struct BigInt {
122 BigInt() : sign(0) { }
123 int sign;
124
125 void clear()
126 {
127 sign = 0;
128 m_words.clear();
129 }
130
131 size_t size() const
132 {
133 return m_words.size();
134 }
135
136 void resize(size_t s)
137 {
138 m_words.resize(s);
139 }
140
141 uint32_t* words()
142 {
143 return m_words.data();
144 }
145
146 const uint32_t* words() const
147 {
148 return m_words.data();
149 }
150
151 void append(uint32_t w)
152 {
153 m_words.append(w);
154 }
155
156 Vector<uint32_t, 16> m_words;
157 };
158
159 static void multadd(BigInt& b, int m, int a) /* multiply by m and add a */
160 {
161 #ifdef USE_LONG_LONG
162 unsigned long long carry;
163 #else
164 uint32_t carry;
165 #endif
166
167 int wds = b.size();
168 uint32_t* x = b.words();
169 int i = 0;
170 carry = a;
171 do {
172 #ifdef USE_LONG_LONG
173 unsigned long long y = *x * (unsigned long long)m + carry;
174 carry = y >> 32;
175 *x++ = (uint32_t)y & 0xffffffffUL;
176 #else
177 uint32_t xi = *x;
178 uint32_t y = (xi & 0xffff) * m + carry;
179 uint32_t z = (xi >> 16) * m + (y >> 16);
180 carry = z >> 16;
181 *x++ = (z << 16) + (y & 0xffff);
182 #endif
183 } while (++i < wds);
184
185 if (carry)
186 b.append((uint32_t)carry);
187 }
188
189 static int hi0bits(uint32_t x)
190 {
191 int k = 0;
192
193 if (!(x & 0xffff0000)) {
194 k = 16;
195 x <<= 16;
196 }
197 if (!(x & 0xff000000)) {
198 k += 8;
199 x <<= 8;
200 }
201 if (!(x & 0xf0000000)) {
202 k += 4;
203 x <<= 4;
204 }
205 if (!(x & 0xc0000000)) {
206 k += 2;
207 x <<= 2;
208 }
209 if (!(x & 0x80000000)) {
210 k++;
211 if (!(x & 0x40000000))
212 return 32;
213 }
214 return k;
215 }
216
217 static int lo0bits(uint32_t* y)
218 {
219 int k;
220 uint32_t x = *y;
221
222 if (x & 7) {
223 if (x & 1)
224 return 0;
225 if (x & 2) {
226 *y = x >> 1;
227 return 1;
228 }
229 *y = x >> 2;
230 return 2;
231 }
232 k = 0;
233 if (!(x & 0xffff)) {
234 k = 16;
235 x >>= 16;
236 }
237 if (!(x & 0xff)) {
238 k += 8;
239 x >>= 8;
240 }
241 if (!(x & 0xf)) {
242 k += 4;
243 x >>= 4;
244 }
245 if (!(x & 0x3)) {
246 k += 2;
247 x >>= 2;
248 }
249 if (!(x & 1)) {
250 k++;
251 x >>= 1;
252 if (!x)
253 return 32;
254 }
255 *y = x;
256 return k;
257 }
258
259 static void i2b(BigInt& b, int i)
260 {
261 b.sign = 0;
262 b.resize(1);
263 b.words()[0] = i;
264 }
265
266 static void mult(BigInt& aRef, const BigInt& bRef)
267 {
268 const BigInt* a = &aRef;
269 const BigInt* b = &bRef;
270 BigInt c;
271 int wa, wb, wc;
272 const uint32_t* x = 0;
273 const uint32_t* xa;
274 const uint32_t* xb;
275 const uint32_t* xae;
276 const uint32_t* xbe;
277 uint32_t* xc;
278 uint32_t* xc0;
279 uint32_t y;
280 #ifdef USE_LONG_LONG
281 unsigned long long carry, z;
282 #else
283 uint32_t carry, z;
284 #endif
285
286 if (a->size() < b->size()) {
287 const BigInt* tmp = a;
288 a = b;
289 b = tmp;
290 }
291
292 wa = a->size();
293 wb = b->size();
294 wc = wa + wb;
295 c.resize(wc);
296
297 for (xc = c.words(), xa = xc + wc; xc < xa; xc++)
298 *xc = 0;
299 xa = a->words();
300 xae = xa + wa;
301 xb = b->words();
302 xbe = xb + wb;
303 xc0 = c.words();
304 #ifdef USE_LONG_LONG
305 for (; xb < xbe; xc0++) {
306 if ((y = *xb++)) {
307 x = xa;
308 xc = xc0;
309 carry = 0;
310 do {
311 z = *x++ * (unsigned long long)y + *xc + carry;
312 carry = z >> 32;
313 *xc++ = (uint32_t)z & 0xffffffffUL;
314 } while (x < xae);
315 *xc = (uint32_t)carry;
316 }
317 }
318 #else
319 for (; xb < xbe; xb++, xc0++) {
320 if ((y = *xb & 0xffff)) {
321 x = xa;
322 xc = xc0;
323 carry = 0;
324 do {
325 z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
326 carry = z >> 16;
327 uint32_t z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
328 carry = z2 >> 16;
329 xc = storeInc(xc, z2, z);
330 } while (x < xae);
331 *xc = carry;
332 }
333 if ((y = *xb >> 16)) {
334 x = xa;
335 xc = xc0;
336 carry = 0;
337 uint32_t z2 = *xc;
338 do {
339 z = (*x & 0xffff) * y + (*xc >> 16) + carry;
340 carry = z >> 16;
341 xc = storeInc(xc, z, z2);
342 z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
343 carry = z2 >> 16;
344 } while (x < xae);
345 *xc = z2;
346 }
347 }
348 #endif
349 for (xc0 = c.words(), xc = xc0 + wc; wc > 0 && !*--xc; --wc) { }
350 c.resize(wc);
351 aRef = c;
352 }
353
354 struct P5Node {
355 WTF_MAKE_NONCOPYABLE(P5Node); WTF_MAKE_FAST_ALLOCATED;
356 public:
357 P5Node() { }
358 BigInt val;
359 P5Node* next;
360 };
361
362 static P5Node* p5s;
363 static int p5sCount;
364
365 static ALWAYS_INLINE void pow5mult(BigInt& b, int k)
366 {
367 static int p05[3] = { 5, 25, 125 };
368
369 if (int i = k & 3)
370 multadd(b, p05[i - 1], 0);
371
372 if (!(k >>= 2))
373 return;
374
375 s_dtoaP5Mutex->lock();
376 P5Node* p5 = p5s;
377
378 if (!p5) {
379 /* first time */
380 p5 = new P5Node;
381 i2b(p5->val, 625);
382 p5->next = 0;
383 p5s = p5;
384 p5sCount = 1;
385 }
386
387 int p5sCountLocal = p5sCount;
388 s_dtoaP5Mutex->unlock();
389 int p5sUsed = 0;
390
391 for (;;) {
392 if (k & 1)
393 mult(b, p5->val);
394
395 if (!(k >>= 1))
396 break;
397
398 if (++p5sUsed == p5sCountLocal) {
399 s_dtoaP5Mutex->lock();
400 if (p5sUsed == p5sCount) {
401 ASSERT(!p5->next);
402 p5->next = new P5Node;
403 p5->next->next = 0;
404 p5->next->val = p5->val;
405 mult(p5->next->val, p5->next->val);
406 ++p5sCount;
407 }
408
409 p5sCountLocal = p5sCount;
410 s_dtoaP5Mutex->unlock();
411 }
412 p5 = p5->next;
413 }
414 }
415
416 static ALWAYS_INLINE void lshift(BigInt& b, int k)
417 {
418 int n = k >> 5;
419
420 int origSize = b.size();
421 int n1 = n + origSize + 1;
422
423 if (k &= 0x1f)
424 b.resize(b.size() + n + 1);
425 else
426 b.resize(b.size() + n);
427
428 const uint32_t* srcStart = b.words();
429 uint32_t* dstStart = b.words();
430 const uint32_t* src = srcStart + origSize - 1;
431 uint32_t* dst = dstStart + n1 - 1;
432 if (k) {
433 uint32_t hiSubword = 0;
434 int s = 32 - k;
435 for (; src >= srcStart; --src) {
436 *dst-- = hiSubword | *src >> s;
437 hiSubword = *src << k;
438 }
439 *dst = hiSubword;
440 ASSERT(dst == dstStart + n);
441
442 b.resize(origSize + n + !!b.words()[n1 - 1]);
443 }
444 else {
445 do {
446 *--dst = *src--;
447 } while (src >= srcStart);
448 }
449 for (dst = dstStart + n; dst != dstStart; )
450 *--dst = 0;
451
452 ASSERT(b.size() <= 1 || b.words()[b.size() - 1]);
453 }
454
455 static int cmp(const BigInt& a, const BigInt& b)
456 {
457 const uint32_t *xa, *xa0, *xb, *xb0;
458 int i, j;
459
460 i = a.size();
461 j = b.size();
462 ASSERT(i <= 1 || a.words()[i - 1]);
463 ASSERT(j <= 1 || b.words()[j - 1]);
464 if (i -= j)
465 return i;
466 xa0 = a.words();
467 xa = xa0 + j;
468 xb0 = b.words();
469 xb = xb0 + j;
470 for (;;) {
471 if (*--xa != *--xb)
472 return *xa < *xb ? -1 : 1;
473 if (xa <= xa0)
474 break;
475 }
476 return 0;
477 }
478
479 static ALWAYS_INLINE void diff(BigInt& c, const BigInt& aRef, const BigInt& bRef )
480 {
481 const BigInt* a = &aRef;
482 const BigInt* b = &bRef;
483 int i, wa, wb;
484 uint32_t* xc;
485
486 i = cmp(*a, *b);
487 if (!i) {
488 c.sign = 0;
489 c.resize(1);
490 c.words()[0] = 0;
491 return;
492 }
493 if (i < 0) {
494 const BigInt* tmp = a;
495 a = b;
496 b = tmp;
497 i = 1;
498 } else
499 i = 0;
500
501 wa = a->size();
502 const uint32_t* xa = a->words();
503 const uint32_t* xae = xa + wa;
504 wb = b->size();
505 const uint32_t* xb = b->words();
506 const uint32_t* xbe = xb + wb;
507
508 c.resize(wa);
509 c.sign = i;
510 xc = c.words();
511 #ifdef USE_LONG_LONG
512 unsigned long long borrow = 0;
513 do {
514 unsigned long long y = (unsigned long long)*xa++ - *xb++ - borrow;
515 borrow = y >> 32 & (uint32_t)1;
516 *xc++ = (uint32_t)y & 0xffffffffUL;
517 } while (xb < xbe);
518 while (xa < xae) {
519 unsigned long long y = *xa++ - borrow;
520 borrow = y >> 32 & (uint32_t)1;
521 *xc++ = (uint32_t)y & 0xffffffffUL;
522 }
523 #else
524 uint32_t borrow = 0;
525 do {
526 uint32_t y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
527 borrow = (y & 0x10000) >> 16;
528 uint32_t z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
529 borrow = (z & 0x10000) >> 16;
530 xc = storeInc(xc, z, y);
531 } while (xb < xbe);
532 while (xa < xae) {
533 uint32_t y = (*xa & 0xffff) - borrow;
534 borrow = (y & 0x10000) >> 16;
535 uint32_t z = (*xa++ >> 16) - borrow;
536 borrow = (z & 0x10000) >> 16;
537 xc = storeInc(xc, z, y);
538 }
539 #endif
540 while (!*--xc)
541 wa--;
542 c.resize(wa);
543 }
544
545 static ALWAYS_INLINE void d2b(BigInt& b, U* d, int* e, int* bits)
546 {
547 int de, k;
548 uint32_t* x;
549 uint32_t y, z;
550 int i;
551 #define d0 word0(d)
552 #define d1 word1(d)
553
554 b.sign = 0;
555 b.resize(1);
556 x = b.words();
557
558 z = d0 & Frac_mask;
559 d0 &= 0x7fffffff; /* clear sign bit, which we ignore */
560 if ((de = (int)(d0 >> Exp_shift)))
561 z |= Exp_msk1;
562 if ((y = d1)) {
563 if ((k = lo0bits(&y))) {
564 x[0] = y | (z << (32 - k));
565 z >>= k;
566 } else
567 x[0] = y;
568 if (z) {
569 b.resize(2);
570 x[1] = z;
571 }
572
573 i = b.size();
574 } else {
575 k = lo0bits(&z);
576 x[0] = z;
577 i = 1;
578 b.resize(1);
579 k += 32;
580 }
581 if (de) {
582 *e = de - Bias - (P - 1) + k;
583 *bits = P - k;
584 } else {
585 *e = 0 - Bias - (P - 1) + 1 + k;
586 *bits = (32 * i) - hi0bits(x[i - 1]);
587 }
588 }
589 #undef d0
590 #undef d1
591
592 static const double tens[] = {
593 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
594 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
595 1e20, 1e21, 1e22
596 };
597
598 static const double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
599 static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
600 9007199254740992. * 9007199254740992.e-256
601 /* = 2^106 * 1e-256 */
602 };
603
604 /* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
605 /* flag unnecessarily. It leads to a song and dance at the end of strtod. */
606 #define Scale_Bit 0x10
607 #define n_bigtens 5
608
609 static ALWAYS_INLINE int quorem(BigInt& b, BigInt& S)
610 {
611 size_t n;
612 uint32_t* bx;
613 uint32_t* bxe;
614 uint32_t q;
615 uint32_t* sx;
616 uint32_t* sxe;
617 #ifdef USE_LONG_LONG
618 unsigned long long borrow, carry, y, ys;
619 #else
620 uint32_t borrow, carry, y, ys;
621 uint32_t si, z, zs;
622 #endif
623 ASSERT(b.size() <= 1 || b.words()[b.size() - 1]);
624 ASSERT(S.size() <= 1 || S.words()[S.size() - 1]);
625
626 n = S.size();
627 ASSERT_WITH_MESSAGE(b.size() <= n, "oversize b in quorem");
628 if (b.size() < n)
629 return 0;
630 sx = S.words();
631 sxe = sx + --n;
632 bx = b.words();
633 bxe = bx + n;
634 q = *bxe / (*sxe + 1); /* ensure q <= true quotient */
635 ASSERT_WITH_MESSAGE(q <= 9, "oversized quotient in quorem");
636 if (q) {
637 borrow = 0;
638 carry = 0;
639 do {
640 #ifdef USE_LONG_LONG
641 ys = *sx++ * (unsigned long long)q + carry;
642 carry = ys >> 32;
643 y = *bx - (ys & 0xffffffffUL) - borrow;
644 borrow = y >> 32 & (uint32_t)1;
645 *bx++ = (uint32_t)y & 0xffffffffUL;
646 #else
647 si = *sx++;
648 ys = (si & 0xffff) * q + carry;
649 zs = (si >> 16) * q + (ys >> 16);
650 carry = zs >> 16;
651 y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
652 borrow = (y & 0x10000) >> 16;
653 z = (*bx >> 16) - (zs & 0xffff) - borrow;
654 borrow = (z & 0x10000) >> 16;
655 bx = storeInc(bx, z, y);
656 #endif
657 } while (sx <= sxe);
658 if (!*bxe) {
659 bx = b.words();
660 while (--bxe > bx && !*bxe)
661 --n;
662 b.resize(n);
663 }
664 }
665 if (cmp(b, S) >= 0) {
666 q++;
667 borrow = 0;
668 carry = 0;
669 bx = b.words();
670 sx = S.words();
671 do {
672 #ifdef USE_LONG_LONG
673 ys = *sx++ + carry;
674 carry = ys >> 32;
675 y = *bx - (ys & 0xffffffffUL) - borrow;
676 borrow = y >> 32 & (uint32_t)1;
677 *bx++ = (uint32_t)y & 0xffffffffUL;
678 #else
679 si = *sx++;
680 ys = (si & 0xffff) + carry;
681 zs = (si >> 16) + (ys >> 16);
682 carry = zs >> 16;
683 y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
684 borrow = (y & 0x10000) >> 16;
685 z = (*bx >> 16) - (zs & 0xffff) - borrow;
686 borrow = (z & 0x10000) >> 16;
687 bx = storeInc(bx, z, y);
688 #endif
689 } while (sx <= sxe);
690 bx = b.words();
691 bxe = bx + n;
692 if (!*bxe) {
693 while (--bxe > bx && !*bxe)
694 --n;
695 b.resize(n);
696 }
697 }
698 return q;
699 }
700
701 /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
702 *
703 * Inspired by "How to Print Floating-Point Numbers Accurately" by
704 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
705 *
706 * Modifications:
707 * 1. Rather than iterating, we use a simple numeric overestimate
708 * to determine k = floor(log10(d)). We scale relevant
709 * quantities using O(log2(k)) rather than O(k) multiplications.
710 * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
711 * try to generate digits strictly left to right. Instead, we
712 * compute with fewer bits and propagate the carry if necessary
713 * when rounding the final digit up. This is often faster.
714 * 3. Under the assumption that input will be rounded nearest,
715 * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
716 * That is, we allow equality in stopping tests when the
717 * round-nearest rule will give the same floating-point value
718 * as would satisfaction of the stopping test with strict
719 * inequality.
720 * 4. We remove common factors of powers of 2 from relevant
721 * quantities.
722 * 5. When converting floating-point integers less than 1e16,
723 * we use floating-point arithmetic rather than resorting
724 * to multiple-precision integers.
725 * 6. When asked to produce fewer than 15 digits, we first try
726 * to get by with floating-point arithmetic; we resort to
727 * multiple-precision integer arithmetic only if we cannot
728 * guarantee that the floating-point calculation has given
729 * the correctly rounded result. For k requested digits and
730 * "uniformly" distributed input, the probability is
731 * something like 10^(k-15) that we must resort to the int32_t
732 * calculation.
733 *
734 * Note: 'leftright' translates to 'generate shortest possible string'.
735 */
736 template<bool roundingNone, bool roundingSignificantFigures, bool roundingDecima lPlaces, bool leftright>
737 void dtoa(DtoaBuffer result, double dd, int ndigits, bool& signOut, int& exponen tOut, unsigned& precisionOut)
738 {
739 // Exactly one rounding mode must be specified.
740 ASSERT(roundingNone + roundingSignificantFigures + roundingDecimalPlaces == 1);
741 // roundingNone only allowed (only sensible?) with leftright set.
742 ASSERT(!roundingNone || leftright);
743
744 ASSERT(std::isfinite(dd));
745
746 int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1 = 0,
747 j, j1, k, k0, k_check, m2, m5, s2, s5,
748 spec_case;
749 int32_t L;
750 int denorm;
751 uint32_t x;
752 BigInt b, delta, mlo, mhi, S;
753 U d2, eps, u;
754 double ds;
755 char* s;
756 char* s0;
757
758 u.d = dd;
759
760 /* Infinity or NaN */
761 ASSERT((word0(&u) & Exp_mask) != Exp_mask);
762
763 // JavaScript toString conversion treats -0 as 0.
764 if (!dval(&u)) {
765 signOut = false;
766 exponentOut = 0;
767 precisionOut = 1;
768 result[0] = '0';
769 result[1] = '\0';
770 return;
771 }
772
773 if (word0(&u) & Sign_bit) {
774 signOut = true;
775 word0(&u) &= ~Sign_bit; // clear sign bit
776 } else
777 signOut = false;
778
779 d2b(b, &u, &be, &bbits);
780 if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask >> Exp_shift1)))) {
781 dval(&d2) = dval(&u);
782 word0(&d2) &= Frac_mask1;
783 word0(&d2) |= Exp_11;
784
785 /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
786 * log10(x) = log(x) / log(10)
787 * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
788 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
789 *
790 * This suggests computing an approximation k to log10(d) by
791 *
792 * k = (i - Bias)*0.301029995663981
793 * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
794 *
795 * We want k to be too large rather than too small.
796 * The error in the first-order Taylor series approximation
797 * is in our favor, so we just round up the constant enough
798 * to compensate for any error in the multiplication of
799 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
800 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
801 * adding 1e-13 to the constant term more than suffices.
802 * Hence we adjust the constant term to 0.1760912590558.
803 * (We could get a more accurate k by invoking log10,
804 * but this is probably not worthwhile.)
805 */
806
807 i -= Bias;
808 denorm = 0;
809 } else {
810 /* d is denormalized */
811
812 i = bbits + be + (Bias + (P - 1) - 1);
813 x = (i > 32) ? (word0(&u) << (64 - i)) | (word1(&u) >> (i - 32))
814 : word1(&u) << (32 - i);
815 dval(&d2) = x;
816 word0(&d2) -= 31 * Exp_msk1; /* adjust exponent */
817 i -= (Bias + (P - 1) - 1) + 1;
818 denorm = 1;
819 }
820 ds = (dval(&d2) - 1.5) * 0.289529654602168 + 0.1760912590558 + (i * 0.301029 995663981);
821 k = (int)ds;
822 if (ds < 0. && ds != k)
823 k--; /* want k = floor(ds) */
824 k_check = 1;
825 if (k >= 0 && k <= Ten_pmax) {
826 if (dval(&u) < tens[k])
827 k--;
828 k_check = 0;
829 }
830 j = bbits - i - 1;
831 if (j >= 0) {
832 b2 = 0;
833 s2 = j;
834 } else {
835 b2 = -j;
836 s2 = 0;
837 }
838 if (k >= 0) {
839 b5 = 0;
840 s5 = k;
841 s2 += k;
842 } else {
843 b2 -= k;
844 b5 = -k;
845 s5 = 0;
846 }
847
848 if (roundingNone) {
849 ilim = ilim1 = -1;
850 i = 18;
851 ndigits = 0;
852 }
853 if (roundingSignificantFigures) {
854 if (ndigits <= 0)
855 ndigits = 1;
856 ilim = ilim1 = i = ndigits;
857 }
858 if (roundingDecimalPlaces) {
859 i = ndigits + k + 1;
860 ilim = i;
861 ilim1 = i - 1;
862 if (i <= 0)
863 i = 1;
864 }
865
866 s = s0 = result;
867
868 if (ilim >= 0 && ilim <= Quick_max) {
869 /* Try to get by with floating-point arithmetic. */
870
871 i = 0;
872 dval(&d2) = dval(&u);
873 k0 = k;
874 ilim0 = ilim;
875 ieps = 2; /* conservative */
876 if (k > 0) {
877 ds = tens[k & 0xf];
878 j = k >> 4;
879 if (j & Bletch) {
880 /* prevent overflows */
881 j &= Bletch - 1;
882 dval(&u) /= bigtens[n_bigtens - 1];
883 ieps++;
884 }
885 for (; j; j >>= 1, i++) {
886 if (j & 1) {
887 ieps++;
888 ds *= bigtens[i];
889 }
890 }
891 dval(&u) /= ds;
892 } else if ((j1 = -k)) {
893 dval(&u) *= tens[j1 & 0xf];
894 for (j = j1 >> 4; j; j >>= 1, i++) {
895 if (j & 1) {
896 ieps++;
897 dval(&u) *= bigtens[i];
898 }
899 }
900 }
901 if (k_check && dval(&u) < 1. && ilim > 0) {
902 if (ilim1 <= 0)
903 goto fastFailed;
904 ilim = ilim1;
905 k--;
906 dval(&u) *= 10.;
907 ieps++;
908 }
909 dval(&eps) = (ieps * dval(&u)) + 7.;
910 word0(&eps) -= (P - 1) * Exp_msk1;
911 if (!ilim) {
912 S.clear();
913 mhi.clear();
914 dval(&u) -= 5.;
915 if (dval(&u) > dval(&eps))
916 goto oneDigit;
917 if (dval(&u) < -dval(&eps))
918 goto noDigits;
919 goto fastFailed;
920 }
921 if (leftright) {
922 /* Use Steele & White method of only
923 * generating digits needed.
924 */
925 dval(&eps) = (0.5 / tens[ilim - 1]) - dval(&eps);
926 for (i = 0;;) {
927 L = (long int)dval(&u);
928 dval(&u) -= L;
929 *s++ = '0' + (int)L;
930 if (dval(&u) < dval(&eps))
931 goto ret;
932 if (1. - dval(&u) < dval(&eps))
933 goto bumpUp;
934 if (++i >= ilim)
935 break;
936 dval(&eps) *= 10.;
937 dval(&u) *= 10.;
938 }
939 } else {
940 /* Generate ilim digits, then fix them up. */
941 dval(&eps) *= tens[ilim - 1];
942 for (i = 1;; i++, dval(&u) *= 10.) {
943 L = (int32_t)(dval(&u));
944 if (!(dval(&u) -= L))
945 ilim = i;
946 *s++ = '0' + (int)L;
947 if (i == ilim) {
948 if (dval(&u) > 0.5 + dval(&eps))
949 goto bumpUp;
950 if (dval(&u) < 0.5 - dval(&eps)) {
951 while (*--s == '0') { }
952 s++;
953 goto ret;
954 }
955 break;
956 }
957 }
958 }
959 fastFailed:
960 s = s0;
961 dval(&u) = dval(&d2);
962 k = k0;
963 ilim = ilim0;
964 }
965
966 /* Do we have a "small" integer? */
967
968 if (be >= 0 && k <= Int_max) {
969 /* Yes. */
970 ds = tens[k];
971 if (ndigits < 0 && ilim <= 0) {
972 S.clear();
973 mhi.clear();
974 if (ilim < 0 || dval(&u) <= 5 * ds)
975 goto noDigits;
976 goto oneDigit;
977 }
978 for (i = 1;; i++, dval(&u) *= 10.) {
979 L = (int32_t)(dval(&u) / ds);
980 dval(&u) -= L * ds;
981 *s++ = '0' + (int)L;
982 if (!dval(&u)) {
983 break;
984 }
985 if (i == ilim) {
986 dval(&u) += dval(&u);
987 if (dval(&u) > ds || (dval(&u) == ds && (L & 1))) {
988 bumpUp:
989 while (*--s == '9')
990 if (s == s0) {
991 k++;
992 *s = '0';
993 break;
994 }
995 ++*s++;
996 }
997 break;
998 }
999 }
1000 goto ret;
1001 }
1002
1003 m2 = b2;
1004 m5 = b5;
1005 mhi.clear();
1006 mlo.clear();
1007 if (leftright) {
1008 i = denorm ? be + (Bias + (P - 1) - 1 + 1) : 1 + P - bbits;
1009 b2 += i;
1010 s2 += i;
1011 i2b(mhi, 1);
1012 }
1013 if (m2 > 0 && s2 > 0) {
1014 i = m2 < s2 ? m2 : s2;
1015 b2 -= i;
1016 m2 -= i;
1017 s2 -= i;
1018 }
1019 if (b5 > 0) {
1020 if (leftright) {
1021 if (m5 > 0) {
1022 pow5mult(mhi, m5);
1023 mult(b, mhi);
1024 }
1025 if ((j = b5 - m5))
1026 pow5mult(b, j);
1027 } else
1028 pow5mult(b, b5);
1029 }
1030 i2b(S, 1);
1031 if (s5 > 0)
1032 pow5mult(S, s5);
1033
1034 /* Check for special case that d is a normalized power of 2. */
1035
1036 spec_case = 0;
1037 if ((roundingNone || leftright) && (!word1(&u) && !(word0(&u) & Bndry_mask) && word0(&u) & (Exp_mask & ~Exp_msk1))) {
1038 /* The special case */
1039 b2 += Log2P;
1040 s2 += Log2P;
1041 spec_case = 1;
1042 }
1043
1044 /* Arrange for convenient computation of quotients:
1045 * shift left if necessary so divisor has 4 leading 0 bits.
1046 *
1047 * Perhaps we should just compute leading 28 bits of S once
1048 * and for all and pass them and a shift to quorem, so it
1049 * can do shifts and ors to compute the numerator for q.
1050 */
1051 if ((i = ((s5 ? 32 - hi0bits(S.words()[S.size() - 1]) : 1) + s2) & 0x1f))
1052 i = 32 - i;
1053 if (i > 4) {
1054 i -= 4;
1055 b2 += i;
1056 m2 += i;
1057 s2 += i;
1058 } else if (i < 4) {
1059 i += 28;
1060 b2 += i;
1061 m2 += i;
1062 s2 += i;
1063 }
1064 if (b2 > 0)
1065 lshift(b, b2);
1066 if (s2 > 0)
1067 lshift(S, s2);
1068 if (k_check) {
1069 if (cmp(b, S) < 0) {
1070 k--;
1071 multadd(b, 10, 0); /* we botched the k estimate */
1072 if (leftright)
1073 multadd(mhi, 10, 0);
1074 ilim = ilim1;
1075 }
1076 }
1077 if (ilim <= 0 && roundingDecimalPlaces) {
1078 if (ilim < 0)
1079 goto noDigits;
1080 multadd(S, 5, 0);
1081 // For IEEE-754 unbiased rounding this check should be <=, such that 0.5 would flush to zero.
1082 if (cmp(b, S) < 0)
1083 goto noDigits;
1084 goto oneDigit;
1085 }
1086 if (leftright) {
1087 if (m2 > 0)
1088 lshift(mhi, m2);
1089
1090 /* Compute mlo -- check for special case
1091 * that d is a normalized power of 2.
1092 */
1093
1094 mlo = mhi;
1095 if (spec_case)
1096 lshift(mhi, Log2P);
1097
1098 for (i = 1;;i++) {
1099 dig = quorem(b, S) + '0';
1100 /* Do we yet have the shortest decimal string
1101 * that will round to d?
1102 */
1103 j = cmp(b, mlo);
1104 diff(delta, S, mhi);
1105 j1 = delta.sign ? 1 : cmp(b, delta);
1106 #ifdef DTOA_ROUND_BIASED
1107 if (j < 0 || !j) {
1108 #else
1109 // FIXME: ECMA-262 specifies that equidistant results round away fro m
1110 // zero, which probably means we shouldn't be on the unbiased code p ath
1111 // (the (word1(&u) & 1) clause is looking highly suspicious). I have n't
1112 // yet understood this code well enough to make the call, but we sho uld
1113 // probably be enabling DTOA_ROUND_BIASED. I think the interesting c orner
1114 // case to understand is probably "Math.pow(0.5, 24).toString()".
1115 // I believe this value is interesting because I think it is precise ly
1116 // representable in binary floating point, and its decimal represent ation
1117 // has a single digit that Steele & White reduction can remove, with the
1118 // value 5 (thus equidistant from the next numbers above and below).
1119 // We produce the correct answer using either codepath, and I don't as
1120 // yet understand why. :-)
1121 if (!j1 && !(word1(&u) & 1)) {
1122 if (dig == '9')
1123 goto round9up;
1124 if (j > 0)
1125 dig++;
1126 *s++ = dig;
1127 goto ret;
1128 }
1129 if (j < 0 || (!j && !(word1(&u) & 1))) {
1130 #endif
1131 if ((b.words()[0] || b.size() > 1) && (j1 > 0)) {
1132 lshift(b, 1);
1133 j1 = cmp(b, S);
1134 // For IEEE-754 round-to-even, this check should be (j1 > 0 || (!j1 && (dig & 1))),
1135 // but ECMA-262 specifies that equidistant values (e.g. (.5) .toFixed()) should
1136 // be rounded away from zero.
1137 if (j1 >= 0) {
1138 if (dig == '9')
1139 goto round9up;
1140 dig++;
1141 }
1142 }
1143 *s++ = dig;
1144 goto ret;
1145 }
1146 if (j1 > 0) {
1147 if (dig == '9') { /* possible if i == 1 */
1148 round9up:
1149 *s++ = '9';
1150 goto roundoff;
1151 }
1152 *s++ = dig + 1;
1153 goto ret;
1154 }
1155 *s++ = dig;
1156 if (i == ilim)
1157 break;
1158 multadd(b, 10, 0);
1159 multadd(mlo, 10, 0);
1160 multadd(mhi, 10, 0);
1161 }
1162 } else {
1163 for (i = 1;; i++) {
1164 *s++ = dig = quorem(b, S) + '0';
1165 if (!b.words()[0] && b.size() <= 1)
1166 goto ret;
1167 if (i >= ilim)
1168 break;
1169 multadd(b, 10, 0);
1170 }
1171 }
1172
1173 /* Round off last digit */
1174
1175 lshift(b, 1);
1176 j = cmp(b, S);
1177 // For IEEE-754 round-to-even, this check should be (j > 0 || (!j && (dig & 1))),
1178 // but ECMA-262 specifies that equidistant values (e.g. (.5).toFixed()) shou ld
1179 // be rounded away from zero.
1180 if (j >= 0) {
1181 roundoff:
1182 while (*--s == '9')
1183 if (s == s0) {
1184 k++;
1185 *s++ = '1';
1186 goto ret;
1187 }
1188 ++*s++;
1189 } else {
1190 while (*--s == '0') { }
1191 s++;
1192 }
1193 goto ret;
1194 noDigits:
1195 exponentOut = 0;
1196 precisionOut = 1;
1197 result[0] = '0';
1198 result[1] = '\0';
1199 return;
1200 oneDigit:
1201 *s++ = '1';
1202 k++;
1203 goto ret;
1204 ret:
1205 ASSERT(s > result);
1206 *s = 0;
1207 exponentOut = k;
1208 precisionOut = s - result;
1209 }
1210
1211 void dtoa(DtoaBuffer result, double dd, bool& sign, int& exponent, unsigned& pre cision)
1212 {
1213 // flags are roundingNone, leftright.
1214 dtoa<true, false, false, true>(result, dd, 0, sign, exponent, precision);
1215 }
1216
1217 void dtoaRoundSF(DtoaBuffer result, double dd, int ndigits, bool& sign, int& exp onent, unsigned& precision)
1218 {
1219 // flag is roundingSignificantFigures.
1220 dtoa<false, true, false, false>(result, dd, ndigits, sign, exponent, precisi on);
1221 }
1222
1223 void dtoaRoundDP(DtoaBuffer result, double dd, int ndigits, bool& sign, int& exp onent, unsigned& precision)
1224 {
1225 // flag is roundingDecimalPlaces.
1226 dtoa<false, false, true, false>(result, dd, ndigits, sign, exponent, precisi on);
1227 }
1228
1229 const char* numberToString(double d, NumberToStringBuffer buffer)
1230 {
1231 double_conversion::StringBuilder builder(buffer, NumberToStringBufferLength) ;
1232 const double_conversion::DoubleToStringConverter& converter = double_convers ion::DoubleToStringConverter::EcmaScriptConverter();
1233 converter.ToShortest(d, &builder);
1234 return builder.Finalize();
1235 }
1236
1237 static inline const char* formatStringTruncatingTrailingZerosIfNeeded(NumberToSt ringBuffer buffer, double_conversion::StringBuilder& builder)
1238 {
1239 size_t length = builder.position();
1240 size_t decimalPointPosition = 0;
1241 for (; decimalPointPosition < length; ++decimalPointPosition) {
1242 if (buffer[decimalPointPosition] == '.')
1243 break;
1244 }
1245
1246 // No decimal seperator found, early exit.
1247 if (decimalPointPosition == length)
1248 return builder.Finalize();
1249
1250 size_t truncatedLength = length - 1;
1251 for (; truncatedLength > decimalPointPosition; --truncatedLength) {
1252 if (buffer[truncatedLength] != '0')
1253 break;
1254 }
1255
1256 // No trailing zeros found to strip.
1257 if (truncatedLength == length - 1)
1258 return builder.Finalize();
1259
1260 // If we removed all trailing zeros, remove the decimal point as well.
1261 if (truncatedLength == decimalPointPosition) {
1262 ASSERT(truncatedLength > 0);
1263 --truncatedLength;
1264 }
1265
1266 // Truncate the StringBuilder, and return the final result.
1267 builder.SetPosition(truncatedLength + 1);
1268 return builder.Finalize();
1269 }
1270
1271 const char* numberToFixedPrecisionString(double d, unsigned significantFigures, NumberToStringBuffer buffer, bool truncateTrailingZeros)
1272 {
1273 // Mimic String::format("%.[precision]g", ...), but use dtoas rounding facil ities.
1274 // "g": Signed value printed in f or e format, whichever is more compact for the given value and precision.
1275 // The e format is used only when the exponent of the value is less than –4 or greater than or equal to the
1276 // precision argument. Trailing zeros are truncated, and the decimal point a ppears only if one or more digits follow it.
1277 // "precision": The precision specifies the maximum number of significant di gits printed.
1278 double_conversion::StringBuilder builder(buffer, NumberToStringBufferLength) ;
1279 const double_conversion::DoubleToStringConverter& converter = double_convers ion::DoubleToStringConverter::EcmaScriptConverter();
1280 converter.ToPrecision(d, significantFigures, &builder);
1281 if (!truncateTrailingZeros)
1282 return builder.Finalize();
1283 return formatStringTruncatingTrailingZerosIfNeeded(buffer, builder);
1284 }
1285
1286 const char* numberToFixedWidthString(double d, unsigned decimalPlaces, NumberToS tringBuffer buffer)
1287 {
1288 // Mimic String::format("%.[precision]f", ...), but use dtoas rounding facil ities.
1289 // "f": Signed value having the form [ – ]dddd.dddd, where dddd is one or mo re decimal digits.
1290 // The number of digits before the decimal point depends on the magnitude of the number, and
1291 // the number of digits after the decimal point depends on the requested pre cision.
1292 // "precision": The precision value specifies the number of digits after the decimal point.
1293 // If a decimal point appears, at least one digit appears before it.
1294 // The value is rounded to the appropriate number of digits.
1295 double_conversion::StringBuilder builder(buffer, NumberToStringBufferLength) ;
1296 const double_conversion::DoubleToStringConverter& converter = double_convers ion::DoubleToStringConverter::EcmaScriptConverter();
1297 converter.ToFixed(d, decimalPlaces, &builder);
1298 return builder.Finalize();
1299 }
1300
1301 namespace Internal {
1302
1303 double parseDoubleFromLongString(const UChar* string, size_t length, size_t& par sedLength)
1304 {
1305 Vector<LChar> conversionBuffer(length);
1306 for (size_t i = 0; i < length; ++i)
1307 conversionBuffer[i] = isASCII(string[i]) ? string[i] : 0;
1308 return parseDouble(conversionBuffer.data(), length, parsedLength);
1309 }
1310
1311 } // namespace Internal
1312
1313 } // namespace WTF
OLDNEW
« no previous file with comments | « Source/WTF/wtf/dtoa.h ('k') | Source/WTF/wtf/dtoa/COPYING » ('j') | Source/config.h » ('J')

Powered by Google App Engine
This is Rietveld 408576698